Data-Centric Systems and Applications

Bing Liu

Y Web Data
Mining

and Usage Data

@ Springer

Data-Centric Systems and Applications

Series Editors

M.J. Carey
S. Ceri

Editorial Board

P. Bernstein
U. Dayal

C. Faloutsos
J.C. Freytag
G. Gardarin
W. Jonker

V. Krishnamurthy
M.-A. Neimat
P. Valduriez
G. Weikum
K.-Y. Whang
J. Widom

Bing Liu

Web Data
Mining

Exploring Hyperlinks, Contents,
and Usage Data

Second Edition

@ Springer

Bing Liu

Department of Computer Science
University of Illinois, Chicago
851 S. Morgan St.

Chicago, IL 60607-7053

USA

liub@cs.uic.edu

ISBN 978-3-642-19459-7 e-ISBN 978-3-642-19460-3
DOI 10.1007/978-3-642-19460-3
Springer Heidelberg Dordrecht London New York

ACM Codes: H2,H.3,1.2, 1.5, E.5
Library of Congress Control Number: 2011932320

© Springer-Verlag Berlin Heidelberg 2007, 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KiinkelLopka GmbH
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To my parents, my wife Yue and children Shelley and Kate

Preface

The rapid growth of the Web in the past two decades has made it the larg-
est publicly accessible data source in the world. Web mining aims to dis-
cover useful information or knowledge from Web hyperlinks, page con-
tents, and usage logs. Based on the primary kinds of data used in the
mining process, Web mining tasks can be categorized into three main
types: Web structure mining, Web content mining and Web usage mining.
Web structure mining discovers knowledge from hyperlinks, which repre-
sent the structure of the Web. Web content mining extracts useful informa-
tion/knowledge from Web page contents. Web usage mining mines user
activity patterns from usage logs and other forms of logs of user interac-
tions with Web systems. Since the publication of the first edition at the end
of 2006, there have been some important advances in several areas. To re-
flect these advances, new materials have been added to most chapters. The
major changes are in Chapter 11 and Chapter 12, which have been re-
written and significantly expanded. When the first edition was written,
opinion mining (Chapter 11) was still in its infancy. Since then, the re-
search community has gained a much better understanding of the problem
and has proposed many novel techniques to solve various aspects of the
problem. To include the latest developments for the Web usage mining
chapter (Chapter 12), the topics of recommender systems and collaborative
filtering, query log mining, and computational advertising have been
added. This new edition is thus considerably longer, from a total of 532
pages in the first edition to a total of 622 pages in this second edition.

The goal of the book is to present the above Web data mining tasks and
their core mining algorithms. The book is intended to be a text with a
comprehensive coverage, and therefore, for each topic, sufficient details
are given so that readers can gain a reasonably complete knowledge of its
algorithms or techniques without referring to any external materials. Five
of the chapters - partially supervised learning, structured data extraction,
information integration, opinion mining and sentiment analysis, and Web
usage mining - make this book unique. These topics are not covered by ex-
isting books, but yet are essential to Web data mining. Traditional Web
mining topics such as search, crawling and resource discovery, and social
network analysis are also covered in detail in this book.

VIII Preface

Although the book is entitled Web Data Mining, it also includes the
main topics of data mining and information retrieval since Web mining
uses their algorithms and techniques extensively. The data mining part
mainly consists of chapters on association rules and sequential patterns,
supervised learning (or classification), and unsupervised learning (or clus-
tering), which are the three fundamental data mining tasks. The advanced
topic of partially (semi-) supervised learning is included as well. For in-
formation retrieval, its core topics that are crucial to Web mining are de-
scribed. The book is thus naturally divided into two parts. The first part,
which consists of Chapters 2—5, covers data mining foundations. The sec-
ond part, which consists of Chapters 6—12, covers Web specific mining.

Two main principles have guided the writing of this book. First, the ba-
sic content of the book should be accessible to undergraduate students, and
yet there should be sufficient in-depth materials for graduate students who
plan to pursue Ph.D. degrees in Web data mining or related areas. Few as-
sumptions are made in the book regarding the prerequisite knowledge of
readers. One with a basic understanding of algorithms and probability con-
cepts should have no problem with this book. Second, the book should ex-
amine the Web mining technology from a practical point of view. This is
important because most Web mining tasks have immediate real-world ap-
plications. In the past few years, | was fortunate to have worked directly or
indirectly with many researchers and engineers in several search engine
companies, e-commerce companies, opinion mining and sentiment analy-
sis companies, and also traditional companies that are interested in exploit-
ing the information on the Web in their businesses. During the process, |
gained practical experiences and first-hand knowledge of real-world prob-
lems. I try to pass those non-confidential pieces of information and knowl-
edge along in the book. The book, thus, has a good balance of theory and
practice. I hope that it will not only be a learning text for students, but also
a valuable source of information/knowledge and ideas for Web mining re-
searchers and practitioners.

Acknowledgements

Many researchers have assisted me technically in writing this book. With-
out their help, the book might never have become reality. My deepest
thanks go to Filippo Menczer, Bamshad Mobasher, and Olfa Nasraoui,
who were so kind to have helped write two essential chapters of the book.
They are all experts in their respective fields. Filippo wrote the entire
chapter on Web crawling. Bamshad and Olfa wrote all sections of the
chapter on Web usage mining except only the recommender systems sec-

Preface IX

tion for which they also helped. I am also very grateful to Wee Sun Lee,
who helped a great deal in the writing of Chapter 5 on partially supervised
learning.

Jian Pei helped with the writing of the PrefixSpan algorithm in Chapter
2, and checked the MS-PS algorithm. Eduard Dragut assisted with the
writing of the last section of Chapter 10 and also read the chapter many
times. Yuanlin Zhang gave many great suggestions on Chapter 9. Simon
Funk, Yehuda Koren, Wee Sun Lee, Jing Peng, Arkadiusz Paterek, and
Domonkos Tikk helped with the recommender systems section in Chapter
12. T am indebted to all of them.

Many other researchers have also assisted in various ways. Yang Dai
and Rudy Setiono helped with Support Vector Machines (SVM). Chris
Ding helped with social network analysis. Clement Yu and ChengXiang
Zhai read Chapter 6. Amy Langville read Chapter 7. Kevin C.-C. Chang,
Ji-Rong Wen, and Clement Yu helped with many aspects of Chapter 10.
Justin Zobel helped clarify some issues related to index compression, and
Ion Muslea helped clarify some issues on wrapper induction. Divy
Agrawal, Yunbo Cao, Charles Elkan, Edward Fox, Jing Jiang, Hang Li,
Xiaoli Li, Ruihua Song, Zhaohui Tan, Dell Zhang, Xin Zhao and Zijian
Zheng helped check various chapters or sections. I am very grateful.

Discussions with many researchers also helped shape the book: Amir
Ashkenazi, Imran Aziz, Shenghua Bao, Roberto Bayardo, Wendell Baker,
Ling Bao, Jeffrey Benkler, Brian Davison, AnHai Doan, Byron Dom,
Juliana Freire, Michael Gamon, Robert Grossman, Natalie Glance, Jiawei
Han, Meichun Hsu, Wynne Hsu, Ronny Kohavi, Birgit Konig, David D.
Lewis, lan McAllister, Wei-Ying Ma, Marco Maggini, Llew Mason,
Kamel Nigan, Julian Qian, Yan Qu, Thomas M. Tirpak, Andrew Tomkins,
Alexander Tuzhilin, Weimin Xiao, Gu Xu, Philip S. Yu, Mohammed Zaki,
Yuri Zelenkov, and Daniel Zeng.

My former and current students, Gao Cong, Xiaowen Ding, Murthy Ga-
napathibhotla, Minqing Hu, Nitin Jindal, Xin Li, Yiming Ma, Arjun Muk-
herjee, Quang Qiu (visiting student from Zhejiang University), William
Underwood, Yanhong Zhai, Zhongwu Zhai (visiting student from Tsinghua
University), Lei Zhang, and Kaidi Zhao contributed many research ideas
over the years and/or checked many algorithms and made numerous cor-
rections. Most chapters of the book have been used in my graduate classes
at the University of Illinois at Chicago. I thank the students in these classes
for implementing several algorithms. Their questions helped me improve
and, in some cases, correct the algorithms. It is not possible to list all their
names. Here, I would particularly like to thank John Castano, Hari Prasad
Divyakotti, Islam Ismailov, Suhyuk Park, Cynthia Kersey, Po-Hsiu Lin,
Srikanth Tadikonda, Makio Tamura, Ravikanth Turlapati, Guillermo

X Preface

Vazquez, Haisheng Wang, and Chad Williams for pointing out errors in
texts, examples or algorithms. Michael Bombyk from DePaul University
also found several typing errors.

It was a pleasure working with the helpful staff at Springer. I thank my
editor Ralf Gerstner who asked me in early 2005 whether I was interested
in writing a book on Web mining. It has been a wonderful experience
working with him since. I also thank my copyeditor Mike Nugent for
helping me improve the presentation, and my production editor Michael
Reinfarth for guiding me through the final production process. Two
anonymous reviewers also gave me many insightful comments.

The Department of Computer Science at the University of Illinois at
Chicago provided computing resources and a supportive environment for
this project.

Finally, I thank my parents, brother and sister for their constant sup-
ports and encouragements. My greatest gratitude goes to my own family:
Yue, Shelley and Kate. They have helped me in so many ways. Despite
their young ages, Shelley and Kate actually read many parts of the book
and caught numerous typing errors. My wife has taken care of almost eve-
rything at home and put up with me and the long hours that I have spent on
this book. I dedicate this book to them.

Bing Liu

Table of Contents

INtrodUCION ccecccecceccncencinccnccaccecceeccnccnnccncceccecccncconcencenee 1
1.1. What is the World Wide Web? «cccceecececccacceceecnccnccaens 1
1.2. A Brief History of the Web and the Internet --------..... 2
1.3. Web Data Mining .. 4

1.3.1. What is Data M|n|ng'? .. 6

1.3.2. What is Web Mining? «esesesersesesssesssenssssssssnnsnns 7
1.4. Summary of Chapters .. 8
1.5. How to Read this BOOK :ccccecceceececceccaceceecnccaccaceecencnes 11
Bib|iographic NOTES - eccececceccececnececceccecnececcncceccecoccaccacecccccnes 12
Bib|iography ... 13

Part I: Data Mining Foundations

2.

Association Rules and Sequential Patterns -------..... 17
2.1. Basic Concepts of Association Rules «-ecceeeeeeeeeeeeecs 17
2.2. Apriori Algorithm ... 20
2.2.1. Frequent Itemset Generation -..cccceeevnneeeeeciccanannne. 20
2.2.2 Association Rule Generation -...cccceeeeeeeenenannnnnnnnn. 24
2.3. Data Formats for Association Rule Mining -:::::e----- 26
2.4. Mining with Multiple Minimum Supports «-...ccccceeeeeee 26
241 Extended Model «ccccoceeeeceininiininiiiieiniieiaceccecaceccecacnnes 28
2.4.2. Mining A|gorithm ... 30
2.4.3. Rule Generation :cececececececececectntcecetececacececacececanens 35
2.5. Mining Class Association Rules :---cccceeeeeeerscccnecinenns 36
2.5.1. Problem Definition --cccccccecececectitiectiacecatececacacecncnees 36
2.5.2. Mining Algorithm ... 38

2.5.3. Mining with Multiple Minimum Supports .-.c.ceeec 41

XII

Table of Contents

2.6. Basic Concepts of Sequential Patterns ««--ccccceeeeeeeee M
2.7. Mining Sequential Patterns Based on GSP:------cce-.. 43
2.7.1. GSP Aigorithm ... 43
2.7.2. Mining with Multiple Minimum Supports ... 45
2.8. Mining Sequential Patterns Based on PrefixSpan--- 49
2.8.1. PrefixSpan Aigorithm ... 50
2.8.2. Mining with Multiple Minimum Supports :--...ce. 52
2.9. Generating Rules from Sequential Patterns -----...... 53
2.9.1. Sequentiai RUI@S ceecececcecerncenncieiecececececcecacencecacanens 54
2.9.2. Label Sequentiai RUI@S ececercecercecacnnnincnnnncncecencncane 54
2.9.3. Class Sequentiai RUI@S :cececerercecenncncnncecncencececencnnns 55
Bibiiographic NOIES - cccccrccncnintnnincnccncncrncencenccnsnccncenccnecsance 56
Bibiiography ... 58
3upervised Learning .. 63
3.1. Basic Concepts ... 63
3.2. Decision Tree INdUCtion «.cccceeernccencrncinncenncienceenceencennee 67
3.2.1. Learning Aigorithm ... 70
3.2.2. Impurity FUNCHION «ecoeenniniiiniiiiiiiiiniiiciincnenes 71
3.2.3. Handling of Continuous Attributes --::.c-ccceeeeeeeeece 75
3.2.4. Some Other ISSUES ««ccccerercecrircecnrecacarececacececacenens 76
3.3. Classifier Evaluation :-cccccccceeeceeieiiniiniiniinienicecnceecenenes 79
3.3.1. Evaluation Methods :«:ccccccececceceinceininiiececacecacecenens 79
3.3.2. Precision, Recall, F-score and Breakeven Point .- 81
3.3.3. Receiver Operating Characteristic Curve ---....--.. 83
3.3.4. Lift CUIVE - cecececerecmtaininiiieieitiecetetecececececacececncncncnnnens 86
3.4. Rule INdUCHION «ccecceeceeceectnninniuiiniienierenrenceecieceeceescacacancenes 87
3.4.1. Sequentiai Covering ... 87
3.4.2. Rule Learning: Learn-One-Rule Function :...--...... 920
3.4.3. DiSCUSSION «ceccececcecececcacecrcacecscacecscecescscecessscecosonces 93
3.5. Classification Based on Associations -....cccceeevennene 93
3.5.1. Classification Using Class Association Rules --- 94
3.5.2. Class Association Rules as Features -----+.cceeeecee. 98
3.5.3. Classification Using Normal Association Rules.. 99
3.6. Naive Bayesian Classification :--cccccceeeeencrniinnninncennene. 100
3.7. Naive Bayesian Text Classification -.....cccccoeeeuenenens 103

Table of Contents XIII

3.7.1. Probabilistic Framework «.-ccceeccescercenncernccenncennes 104
3.7.2. Naive Bayesian Model --.ccoveeeeuneinnniinnniinnnnnen. 105
3.7.3. DiSCUSSION «ccccececcecececcaceccrcececscacecscaceccscsceccscacescne 108
3.8. Support Vector Machinescccoceveenuniiiunnnnincnncncnns 109
3.8.1. Linear SVM: Separable Case :----cseoeeeeesncrscncaene 111
3.8.2. Linear SVM: Non-Separable Case :-------eeeeeeveneees 117
3.8.3. Nonlinear SVM: Kernel Functions «.:....cceoeceeueeens 120
3.9. K-Nearest Neighbor Learning «....cccceoeeeeueeinnucnnnnnene 124
3.10. Ensemble of ClassSifiers :--cccccecceeenienienirniniecnnceeceeceanas 126
3.10.1. Bagging .. 126
3.10.2. Boosting ... 126
Bibliographic NOTES ceeceerertnrtrtitniiiiinienicaieniieceteeceecenceeceanees 128
Bibiiography ... 129
Unsupervised Learning .. 133
4.1. Basic Concepts .. 133
4.2. K-means Clustering ... 136
4.2.1. K-means Algorithm «.ccocceeniiinnniiininiinnniinnnnnnnn. 136
4.2.2. Disk Version of the K-means Algorithm «..ccceccc. 139
4.2.3. Strengths and Weaknesses - .--eeeeeeereesenniacnnnans 140
4.3. Representation Of ClUSTErS -cteceeecerecrtiinnirnnicnnsencnnnens 144
4.3.1. Common Ways of Representing Clusters -------. 145
4.3.2 Clusters of Arbitrary Shapes «---ccceeeeeeecieiiiiaccnnnnn. 146
4.4. Hierarchical Ciustering .. 147
4.4.1. Singie-Link Method cecececececennnnieniieiiiiincncncacecneeee 149
4.4.2. Compiete-i_ink Method - :ccceccececencacannniecacncacecnncaee 149
4.4.3. Average-Link Method «-cccceveeeecerenceranieiecacecacecencnne 150
4.4.4. Strengths and WeaKnesSSes ««ccccceceecececccacaceccncncns 150
4.5. Distance FUNCLIONS -ctceerecrnnirmniitniinineniincencenncenncennenns 151
4.5.1. Numeric Attributes «cccececcecectieincncceiaceccecacencecacenens 151
4.5.2. Binary and Nominal Attributes ---«:ccccoeeeeeirecscnncces 152
4.5.3. Text DoOCUMENTS :cccccececercncetatnntecacnncaceccncecascncecanens 154
4.6. Data Standardization --.c--cceeeeeecerecrenirinininiienicencencenncenns 155
4.7. Handling of Mixed AttribUutes -ccccceeerccrccrcncrnrenreciannas 157
4.8. Which Clustering Algorithm to Use? -..ccccccevenennennane 159
4.9. Cluster Evaluation «-cccccceeeeecemnimtnniinniniencencenncennceenenns 159
4.10. Discovering Holes and Data Regions -.-----c-ceeeeeueenene 162

XIV Table of Contents

Bibliographic 1 [0] (=Y s 165
Bibiiography ... 166
Partiaiiy Supervised Learning 171

5.1. Learning from Labeled and Unlabeled Examples - 171
5.1.1. EM Algorithm with Naive Bayesian

Classification cccecececrcrcrcrerrrerececerececasacecesscscscscnes 173
5.1.2. Co-Training .. 176
5.1.3. Seif-Training .. 178
5.1.4. Transductive Support Vector Machines :..-....... 179
5.1.5. Graph-Based Methods ------cceeeeeeneeiiecnnneiiiacnnnnnes 180
B5.1.6. DiSCUSSION «ccccececctcececcncetercncecascececscacacescacecscacecane 183
5.2. Learning from Positive and Unlabeled Examples - 184
5.2.1. Applications of PU Learning ----ecssseeeeeeeecsccsccnnnes 185
5.2.2. Theoretical Foundation «cccceccecececcacecencncecncncacanens 187
5.2.3. Building Classifiers: Two-Step Approach ------.. 190
5.2.4. Building Classifiers: Biased-SVM :.cccccceeeeceeneeens 197
5.2.5. Building Classifiers: Probability Estimation - 199
B5.2.6. DiSCUSSION «ccccececcrcececcacecercacecscececossacecescacesscssesane 201
Appendix: Derivation of EM for Naive Bayesian
ClasSIfICAtION «ccccececercrcncercececrcncecercncescscecescscacescncane 202
Bibiiographic NOTES teerecrermrnnrtrtnrtnitniteiieireiraceteeteeceecenceannes 204
Bibiiography ... 206

Partll: Web Mining

6.

Information Retrieval and Web Search -:::.:cccceeueeeee 211
6.1. Basic Concepts of Information Retrieval --.............. 212
6.2. Information Retrieval Models «-ccccceceececceccaceceecnncnnces 215
6.2.1. Boolean Model «-:ccceceecececencacaciniecacancaceccncecarcncecanens 216
6.2.2. Vector Space Model «ccoceececneinininiiainiiiecniiiacecnnnnes 217
6.2.3. Statistical Language Model «ccceceecececncecacencecacnnnns 219
6.3. Relevance FeedbacCk :-::cccccceerreemiiniinininiinciecieciaceenenees 220

6.4. Evaluation MeaSuUresS :-.ccccccceereitrinnnncencencenceeceeccecencennes 223

Table of Contents XV

6.5. Text and Web Page Pre-Processing --.-ceeeeeeeeeueenen. 227
6.5.1. Stopword RemoVval «cccceceecececnnininininiacececncececcncenes 227
6.5.2. Stemming ... 228
6.5.3. Other Pre-Processing Tasks for Text ---ccccceeeeeeet 228
6.5.4. Web Page Pre-Processing «-:..:ssseeseeesessuessunsannans 229
6.5.5. Duplicate Detection -« cccceevverenuiinnniiinnnniinnnnnnnn. 231

6.6. Inverted Index and Its Compressioncccccceeueennennee. 232
6.6.1. Inverted INdeX «cccccceccececitiiiainiieiacecacaceccecaceccececenens 232
6.6.2. Search Using an Inverted Index «..ccseoeeeeerecnnccenee 234
6.6.3. Index CoNStruCtioN «:cccceeecsecrirenniicniiiannicnniiannenes 235
6.6.4. Index Compression ... 236

6.7. Latent Semantic |ndexing .. 242
6.7.1. Singular Value Decomposition «ccccceeieeiccinnnn. 243
6.7.2. Query and Retrieval ««ccececeercncninieinieieiiieieienencnnnens 245
6.7.3. An Exampie .. 246
B.7.4. DiSCUSSION «ceccecereececrcecarececaccecececacacescecasescacasssens 249

6.8. Web Search -ccccccceeriiiiimimiiiiiiiiniiniiniieiieiieceeceeceecnennes 249

6.9. Meta-Search: Combining Multiple Rankings ------- 252
6.9.1. Combination Using Similarity Scores -.:-:.cceeec... 254
6.9.2. Combination Using Rank Positions ---..ccccceeeeeee 255

6.10. Web Spamming ... 257
6.10.1. Content SPAMMING «-«eeeeeeeeeresrersssnessnessunisinnnaannnns 258
6.10.2. Link SPamming ««.--ceeeeeeseeseecsueniuesnnntensueniuesnnnnenns 259
6.10.3. H|d|ng Techniques .. 260
6.10.4. Combating Spam ... 261

Bibiiographic NOTES teereerecrmreriitniiniiniteienienieeeesencencenceeceacnes 263

Bibiiography ... 264

Social Network Anaiysis .. 269

7.1. Social Network Anaiysis ... 270
711 Centraiity .. 270
7.1.2 Prestige .. 273

7.2. Co-Citation and Bibliographic Coupling --.-ecceveeeeee 275
7.2.1. CoO-Citation -cccececececececerecectieiencncececececececececececncnnnees 276
7.2.2. Bibiiographic Coupiing 277

7.3. PageRank .. 277
7.3.1. PageRank Aigorithm ... 278

7.3.2. Strengths and Weaknesses of PageRank:----... 285

XVI

Table of Contents

7.3.3. Timed PageRank and Recency Search --:::---..... 286
T4, HITS ccoeirrririrttinttirrntertteieeneeteaeetensssenssssnssssasseses 288
7.4.1. HITS AIGOrithm «cccececvcvencncncninninisinininisisisisscacnes 289
7.4.2. Finding Other Eigenvectors --cccccecceeeciiiiiicaninnnn. 291

7.4.3. Relationships with Co-Citation and
Bibliographic Coupling «:--sccecceeeeescnneccaniccnneenn. 292
7.4.4. Strengths and Weaknesses of HITS ----cccoeeeeeeeee. 293
7.5. Community DiISCOVErY .ot 294
7.5.1. Problem Definition :ccccccccececeeceiececaiacececacencecacenens 295
7.5.2. Bipartite Core Communities «.ececeeeeveeccniicnncaenne 297
7.5.3. Maximum Flow Communities ----sseeeeeeeeeecccecaacnnns 298
7.5.4. Email Communities Based on Betweenness ---- 301
7.5.5. Overlapping Communities of Named Entities .- 303
Bibliographic NOTES ceeceerenirnimninieienitnctnieeceeieeseseeceeceeceaceances 304
Bibiiography ... 305
Web Crawiing .. 311
8.1. A Basic Crawler Aigorithm 312
8.1.1. Breadth-First Crawlers -ccecececececececececececacennnnnaee 313
8.1.2. Preferential Crawlers -ccccccececcececeinincececacercncecenens 314
8.2. |mp|ementation [SSUES +eceeceecrectectunrurereiencencenceaeanennes 315
8.2.1. Fetching ... 315
8.2.2. Parsing ... 316
8.2.3. Stopword Removal and Stemming «----ccceeeeeeneees 318
8.2.4. Link Extraction and Canonicalization -:.--ccecoeee 318
8.2.5. Spider Traps .. 320
8.2.6. Page Repository .. 321
8.2.7. Concurrency .. 322
8.3. Universal Crawlers - -cccccceeerecenniimniiencnennsencencencenceancenns 323
8.3.1. Scaiabiiity .. 324
8.3.2. Coverage vs. Freshness vs. Importance -:--::«.:-- 326
8.4. Focused Crawlers . -ccccccceeermiimiiiniinniiiniiinicrncencencenecnnes 327
8.5. Topical [0 - 11111 =) £ T e 330
8.5.1. Topical Locality and Cues «----eeeeeeereeecurinaniannnens 332
8.5.2. Best-First Variations ---cccccceceeercecnrncacacacecacecennnnes 338
8.5.3. Adaptation ... 341
8.6. EVAalUuation -cceccceeccrncrmimmuiimuiniuiiininiuiieiincinncennieenceencseancees 348
8.7. Crawler Ethics and Conflicts ----cccceeeeecrecernirnirncrnnnnns 353

Table of Contents XVII

8.8. Some New Developments -...cccoevevinininincninuccnnnane 356
Bibiiographic NOTES cevverccnccieiininnicncceccceisnsscccccccccssssencccece 358
Bibiiography ... 359

Structured Data Extraction: Wrapper Generation - 363

0.1 PreliminNari@s -«-ccecceececerrceceieniencruciectantesesencenceeceeceecennes 364
9.1.1. Two Types of Data Rich Pages ---ccscceeeeeeienicnnces 364
0.1.2. Data Model «:ccceceececcencaiatincacaciaiecccncecencacecncececoncns 366
9.1.3. HTML Mark-Up Encoding of Data Instances ----- 368

9.2. Wrapper T2 o [0 1 0] o N T T Y 370
9.2.1. Extraction from a Page 370
9.2.2. Learning Extraction RuUles «ccccccececncncecenncacencncanes 373
9.2.3. Identifying Informative Examples «:.cccecceeeeeecnnecs 377
9.2.4. Wrapper Maintenance «...cccoeeeeiencuneniunininninnnenne 378

9.3. Instance-Based Wrapper Learning -----.c.ceeceeeeeeueennen. 378

9.4. Automatic Wrapper Generation: Problems -............ 381
9.4.1. Two Extraction Problems «ccccccececcecececcncacecncacenens 382
9.4.2. Patterns as Regular EXpressions ««-..cccccceeoeeenneee 383

9.5. String Matching and Tree Matching ----ececeeeeeiennens 384
9.5.1. String Edit Distance -«-.---eeeeeeereeennieneinnnninnninnnnnn. 384
9.5.2. Tree Matching .. 386

9.6. Muitipie Aiignment .. 390
9.6.1. Center Star Method --ccccceeeernccrnncincinnciencetncceancnanes 390
9.6.2. Partial Tree Alignment ---cccceeevecnennnennninnnnnnnnnnn. 391

9.7. Buiiding DOM Tre@S ::ccceccceecercrrncrnucrruccensennceanceasceannans 396

9.8. Extraction Based on a Single List Page:

Flat Data Records - :-ccccececrececteceitrairreitrecicreceneceeseceenaes 397
9.8.1. Two Observations about Data Records ---------.. 398
9.8.2. Mining Data Regions ... 399
9.8.3. Identifying Data Records in Data Regions -----:: 404
9.8.4. Data Iltem Alignment and Extraction «-..cccccceeueeee 405
9.8.5. Making Use of Visual Information -----cceceeeeeeeeee. 406
9.8.6. Some Other TechniqUESs «+-:eoeeeeeeescneniennsnninnnnnne 406

9.9. Extraction Based on a Single List Page:

Nested Data Records «:-ccecceeeeecrctncencenieniencacecennencencens 407

9.10. Extraction Based on Multiple Pages ----:--ceeeveeeeeeee 413

9.10.1. Using Techniques in Previous Sections :---..-. 413

XVIII Table of Contents

10.

9.10.2. RoadRunner Aigorithm 414
9.11. Some Other ISSUES -:cccceeerrecctnctuituncinncenncrancerncsansceanees 415
9.11.1. Extraction from Other Pages :------cseeeeeneeriecccancccs 416
9.11.2. Disiunction or Optionai 416
9.11.3. A Set Type or a Tupie Type 417
9.11.4. Labeling and Integration --..cccoeeeeeruennennnninnnnnnans 418
9.11.5. Domain Specific Extraction ----ccccceeeeeeciiiiiiannnnn. 418
0.12. DISCUSSION ceeceeeccercenctancranceanceanisrncsessseasesssssscesscssscsssssans 419
Bibliographic [\ [0] (= - TR 419
Bibiiography ... 421
Information |ntegration .. 425
10.1. Introduction to Schema Matching --.-.cceceeevenennenane 426
10.2. Pre-Processing for Schema Matching ----.ceeeeeveeenee 428
10.3. Schema-Level Matching ... 429
10.3.1. Linguistic Approaches ««.-.ecceereeeveceeecuenucnnnnnnen. 429
10.3.2. Constraint Based Approaches --ccceeeeeeeeenne. 430

10.4. Domain and Instance-Level Matching -.-.ccceeeeveeneeee 431
10.5. Combining Similarities -......ccccoevevniniiuiniininiinininnnns 434
10.6. 1:11 MATCR veerveererreerrerrercveseesseeseesssesseessessessssessnesassseens 435
10.7. Some Other ISSUES -«ctcceeererrcrniiunirnniienicencsencensennceanees 436
10.7.1. Reuse of Previous Match Results :------cceeeeeeneees 436
10.7.2. Matching a Large Number of Schemas ::-----.... 437

10.7.3 Schema Match ReSUItS :«cccecerececncececniacacenaennnnes 437

10.7.4 User Interactions :cccececcececcncecccncatetcncecaccncececnncace 438

10.8. Integration of Web Query Interfaces -.--.ccceceeveenennenne 438
10.8.1. A Clustering Based Approach «-...cccceeeeeeeeececcncee 411
10.8.2. A Correlation Based Approach -....ccceeeeeeeecenness 444
10.8.3. An Instance Based Approach -cccceeeeeeeeiiceicaann. 447

10.9. Constructing a Unified Global Query Interface ---- 450
10.9.1. Structural Appropriateness and the

Merge Aigorithm .. 451

10.9.2. Lexical Appropriateness 453
10.9.3. Instance Appropriateness 454
Bibiiographic NOTES ceecrecrectnitniruituiiuireretectecencenienieeieacncnnnnes 454

Bibiiography ... 455

Table of Contents XIX

11. Opinion Mining and Sentiment Analysis -......ccccceuce.e. 459
11.1. The Problem of Opinion Mining «.-cceeeeeeeeeneenecnennenns 460
11.1.1. Problem DefinitioNs «:ccceccececccececntiicacececacecencncnee 460

11.1.2. Aspect-Based Opinion Summary -----sseeeeeeeenneees 467

11.2. Document Sentiment Classification -.....cccocceeueeneenns 469

11.2.1. Classification Based on Supervised Learning 470
11.2.2. Classification Based on Unsupervised

Learning .. 472
11.3. Sentence Subjectivity and Sentiment
ClasSIfiCAtiON «-cccccceecrrcrtnitniitiitiitniiteienniceniceacencennees 474
11.4. Opinion Lexicon Expansion 477
11.5. Aspect-Based Opinion Mining «...cccoeeeensiinennnnene. 480
11.5.1. Aspect Sentiment Classification --..cccccceeeeenee. 481
11.5.2. Basic Rules of Opinions 483
11.5.3. Aspect EXtraction «ccceccececcececitiacececacecncacecncacanes 486
11.5.4. Simultaneous Opinion Lexicon Expansion
and Aspect Extraction «--.ccceeeeeereeicninenninnnnnnnen. 490
11.6. Mining Comparative Opinions --.-ceoeeeeeseerscscennacne. 493
11.6.1. Problem Definitions ««sccceeevecseeriienneniciiieennicnnnnanee 493
11.6.2. Identification of Comparative Sentences -------- 495
11.6.3. Identification of Preferred Entities «....cccceoeeeneeee 496
11.7. Some Other Problems -.cccccectecrmnirniinirnniinnccencenncennes 498
11.8. Opinion Search and Retrieval «.....cccocoeveniniiiiunnnnnncns 503
11.9. Opinion Spam Detection ««cccccceeerrccrniinniinniinnicenicenncnnes 506
11.9.1. Types of Spam and Spammers -..cccceeeereccnnnces 506
11.9.2. H|d|ng Techniques .. 508
11.9.3. Spam Detection Based on Supervised
Learning ... 509
11.9.4. Spam Detection Based on Abnormal
BehRaVIOrS :cccececercececcscaceccrcecescrcecesscacescssssescscsscene 511
11.9.5. Group Spam Detection------ccceceevueeiiecccnneiiacannncs 513
11.10. Uti|ity Of REVICWS :tecteceercerurnninuiencenienciarensenceeceeceeceances 514
Bibliographic 1 [0] (=R 515
Bibiiography ... 517
12. Web Usage Mining .. 527

12.1. Data Collection and Pre-Processing .--.-.ceeeeevenenne 528

XX Table of Contents

12.1.1. Sources and Types of Data ------ceeeeeccneeciaccnnnces 530
12.1.2. Key Elements of Web Usage Data
Pre-Processing .. 533
12.2. Data Modeling for Web Usage Mining -----ceeceeeevee. 540
12.3. Discovery and Analysis of Web Usage Patterns - 544
12.3.1. Session and Visitor Analysis --ceeeeeeeecnerecncncs 544
12.3.2. Cluster Analysis and Visitor Segmentation -.-- 545
12.3.3. Association and Correlation Analysis -----------.. 549
12.3.4. Analysis of Sequential and Navigational
PatternNs «ccccecercerecrcnnainrcnceiercncecescaceccscscesssacescancas 550
2.3b. Classification and Prediction based on Web
User TransSactioONs «cccccececcecerctcececcacnceccacecencececenes 554
12.4. Recommender Systems and Collaborative
Filtering .. 555
12.4.1. The Recommendation Problem -..cccceceeeeieennnes 556
12.4.2. Content-Based Recommendation :..----ccoeeeeenees 557
12.4.3. Collaborative Filtering: K-Nearest Neighbor
(KNIN) ceoveerrennenteninennestnenestetssesseseesessesssssessessenes 559
12.4.4. Collaborative Filtering: Using Association
RUIES eecercerercrcareninracescasacessacescssasescssasescssassescsseses 561
12.4.5. Collaborative Filtering: Matrix Factorization --- 565
12.5. Query Log Mining .. 571
12.5.1. Data Sources, Characteristics, and Challenges-- 573
12.5.2. Query Log Data Preparation «::---:ccececeeeeneenenncens 574
12.5.3. Query Log Data Models - cccceccecececncecacececacencncnee 577
12.5.4. Query Log Feature Extraction ---..ccccccoceeuerecencen. 582
12.5.5. Query Log Mining Applications -::..-ccceeeeeeeeeencees 583
12.5.6. Query Log Mining Methods :----eceeeecneeiiaccnnnccs 586
12.6. Computational Advertising -....ccceveeeeienenncnninnnnnnee 589
12.7. Discussion and OQUIOOK ccccceeceeiiniiniininiecncnncencennnnes 593
Bib|iographic |\ o] (== Tt 593
B ibliography ... 594

Su bject INdeX - 605

1 Introduction

When you read this book, you, without doubt, already know what the
World Wide Web is and have used it extensively. The World Wide Web
(or the Web for short) has impacted almost every aspect of our lives. It is
the biggest and most widely known information source that is easily acces-
sible and searchable. It consists of billions of interconnected documents
(called Web pages) which are authored by millions of people. Since its in-
ception, the Web has dramatically changed our information seeking behav-
ior. Before the Web, finding information meant asking a friend or an ex-
pert, or buying/borrowing a book to read. However, with the Web,
everything is just a few clicks away from the comfort of our homes or of-
fices. We can not only find needed information on the Web, but also easily
share our information and knowledge with others.

The Web has also become an important channel for conducting busi-
nesses. We can buy almost anything from online stores without needing to
go to a physical shop. The Web also provides a convenient means for us to
communicate with each other, to express our views and opinions, and to
discuss with people from anywhere in the world. The Web is truly a vir-
tual society. In this first chapter, we introduce the Web, its history, and the
topics that we will study in this book.

1.1 What is the World Wide Web?

The World Wide Web is officially defined as a “wide-area hypermedia in-
formation retrieval initiative aiming to give universal access to a large uni-
verse of documents.” In simpler terms, the Web is an Internet-based
computer network that allows users of one computer to access information
stored on another through the world-wide network called the Internet.

The Web's implementation follows a standard client-server model. In
this model, a user relies on a program (called the client) to connect to a
remote machine (called the server) where the data is stored. Navigating
through the Web is done by means of a client program called the browser,
e.g., Netscape, Internet Explorer, Firefox, Chrome, etc. Web browsers
work by sending requests to remote servers for information and then inter-

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 1
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3 1,
© Springer-Verlag Berlin Heidelberg 2011

2 1 Introduction

preting the returned documents written in HTML and laying out the text
and graphics on the user’s computer screen on the client side.

The operation of the Web relies on the structure of its hypertext docu-
ments. Hypertext allows Web page authors to link their documents to other
related documents residing on computers anywhere in the world. To view
these documents, one simply follows the links (called hyperlinks).

The idea of hypertext was invented by Ted Nelson in 1965 [14], who
also created the well known hypertext system Xanadu (http://xanadu.com/).
Hypertext that also allows other media (e.g., image, audio and video files)
is called hypermedia.

1.2 A Brief History of the Web and the Internet

Creation of the Web: The Web was invented in 1989 by Tim Berners-
Lee, who, at that time, worked at CERN (Centre European pour la Recher-
che Nucleaire, or European Laboratory for Particle Physics) in Switzer-
land. He coined the term “World Wide Web,” wrote the first World Wide
Web server, httpd, and the first client program (a browser and editor),
“WorldWideWeb.”

It began in March 1989 when Tim Berners-Lee submitted a proposal ti-
tled “Information Management: A Proposal” to his superiors at CERN. In
the proposal, he discussed the disadvantages of hierarchical information
organization and outlined the advantages of a hypertext-based system. The
proposal called for a simple protocol that could request information stored
in remote computer systems through networks, and for a scheme by which
information could be exchanged in a common format and documents of
individuals could be linked by hyperlinks to other documents. It also pro-
posed methods for reading text and graphics using the display technology
at CERN at that time. The proposal essentially outlined a distributed hy-
pertext system, which is the basic architecture of the Web.

Initially, the proposal did not receive the needed support. However, in
1990, Berners-Lee re-circulated the proposal and received the support to
begin the work. With this project, Berners-Lee and his team at CERN laid
the foundation for the future development of the Web as a distributed hy-
pertext system. They introduced their server and browser, the protocol
used for communication between clients and the server, the HyperText
Transfer Protocol (HTTP), the HyperText Markup Language (HTML)
used for authoring Web documents, and the Universal Resource Locator
(URL). And so it began.

1.2 A Brief History of the Web and the Internet 3

Mosaic and Netscape Browsers: The next significant event in the de-
velopment of the Web was the arrival of Mosaic. In February of 1993,
Marc Andreesen from the University of Illinois> NCSA (National Center
for Supercomputing Applications) and his team released the first "Mosaic
for X" graphical Web browser for UNIX. A few months later, different
versions of Mosaic were released for Macintosh and Windows operating
systems. This was an important event. For the first time, a Web client, with
a consistent and simple point-and-click graphical user interface, was im-
plemented for the three most popular operating systems available at the
time. It soon made big splashes outside the academic circle where it had
begun. In mid-1994, Silicon Graphics founder Jim Clark collaborated with
Marc Andreessen, and they founded the company Mosaic Communications
(later renamed as Netscape Communications). Within a few months, the
Netscape browser was released to the public, which started the explosive
growth of the Web. The Internet Explorer from Microsoft entered the
market in August, 1995 and began to challenge Netscape.

The creation of the World Wide Web by Tim Berners-Lee followed by
the release of the Mosaic browser are often regarded as the two most sig-
nificant contributing factors to the success and popularity of the Web.

Internet: The Web would not be possible without the Internet, which
provides the communication network for the Web to function. The Inter-
net started with the computer network ARPANET in the Cold War era. It
was produced as the result of a project in the United States aiming at main-
taining control over its missiles and bombers after a nuclear attack. It was
supported by the Advanced Research Projects Agency (ARPA), which was
part of the Department of Defense in the United States. The first
ARPANET connections were made in 1969, and in 1972, it was demon-
strated at the First International Conference on Computers and Communi-
cation, held in Washington D.C. At the conference, ARPA scientists linked
together computers from 40 different locations.

In 1973, Vinton Cerf and Bob Kahn started to develop the protocol later
to be called TCP/IP (Transmission Control Protocol/Internet Proto-
col). In the next year, they published the paper “Transmission Control Pro-
tocol”, which marked the beginning of TCP/IP. This new protocol allowed
diverse computer networks to interconnect and communicate with each
other. In subsequent years, many networks were built, and many compet-
ing techniques and protocols were proposed and developed. However,
ARPANET was still the backbone to the entire system. During the period,
the network scene was chaotic. In 1982, the TCP/IP was finally adopted,
and the Internet, which is a connected set of networks using the TCP/IP
protocol, was born.

4 1 Introduction

Search Engines: With information being shared worldwide, there was a
need for individuals to find information in an orderly and efficient manner.
Thus began the development of search engines. The search system Excite
was introduced in 1993 by six Stanford University students. EINet Galaxy
was established in 1994 as part of the MCC Research Consortium at the
University of Texas. Jerry Yang and David Filo created Yahoo! in 1994,
which started out as a listing of their favorite Web sites, and offered direc-
tory search. In subsequent years, many search systems emerged, e.g., Ly-
cos, Inforseek, AltaVista, Inktomi, Ask Jeeves, Northernlight, etc.

Google was launched in 1998 by Sergey Brin and Larry Page based on
their research project at Stanford University. Microsoft started to commit
to search in 2003, and launched the MSN search engine in spring 2005
(which is now called Bing). Yahoo! provided a general search capability
in 2004 after it purchased Inktomi in 2003.

W3C (The World Wide Web Consortium): W3C was formed in the
December of 1994 by MIT and CERN as an international organization to
lead the development of the Web. W3C's main objective was “to promote
standards for the evolution of the Web and interoperability between
WWW products by producing specifications and reference software.” The
first International Conference on World Wide Web (WWW) was also
held in 1994, which has been a yearly event ever since.

From 1995 to 2001, the growth of the Web boomed. Investors saw
commercial opportunities and became involved. Numerous businesses
started on the Web, which led to irrational developments. Finally, the bub-
ble burst in 2001. However, the development of the Web was not stopped,
but has only become more rational since.

1.3 Web Data Mining

The rapid growth of the Web in the last decade makes it the largest pub-
licly accessible data source in the world. The Web has many unique char-
acteristics, which make mining useful information and knowledge a fasci-
nating and challenging task. Let us review some of these characteristics.

1. The amount of data/information on the Web is huge and still growing.
The coverage of the information is also very wide and diverse. One can
find information on almost anything on the Web.

2. Data of all types exist on the Web, e.g., structured tables, semi-
structured pages, unstructured texts, and multimedia files (images,
audios, and videos).

1.3 Web Data Mining 5

. Information on the Web is heterogeneous. Due to diverse authorships
of Web pages, multiple pages may present the same or similar information
using completely different words and/or formats. This makes integra-
tion of information from multiple pages a challenging problem.

. A significant amount of information on the Web is linked. Hyperlinks
exist among Web pages within a site and across different sites. Within a
site, hyperlinks serve as an information organization mechanism.
Across different sites, hyperlinks represent implicit conveyance of au-
thority to the target pages. That is, those pages that are linked (or
pointed) to by many other pages are usually high quality pages or au-
thoritative pages simply because many people trust them.

. The information on the Web is noisy. The noise comes from two main
sources. First, a typical Web page contains many pieces of information,
e.g., the main content of the page, navigation links, advertisements,
copyright notices, privacy policies, etc. For a particular application,
only part of the information is useful. The rest is considered noise. To
perform fine-grained Web information analysis and data mining, the
noise should be removed. Second, due to the fact that the Web does not
have quality control of information, i.e., one can write almost anything
that one likes, a large amount of information on the Web is of low qual-
ity, erroneous, or even misleading.

. The Web is also about businesses and commerce. All commercial Web
sites allow people to perform useful operations at their sites, e.g., to
purchase products, to pay bills, and to fill in forms. To support such ap-
plications, the Web site needs to provide many types of automated ser-
vices, e.g., recommendation services using recommender systems.

. The Web is dynamic. Information on the Web changes constantly.
Keeping up with the change and monitoring the change are important
issues for many applications.

. The Web is a virtual society. It is not just about data, information and
services, but also about interactions among people, organizations and
automated systems. One can communicate with people anywhere in the
world easily and instantly, and also express one’s views and opinions
on anything in Internet forums, blogs, review sites and social network
sites. Such information offers new types of data that enable many new
mining tasks, e.g., opinion mining and social network analysis.

All these characteristics present both challenges and opportunities for min-
ing and discovery of information and knowledge from the Web. In this
book, we focus only on mining textual data. For mining of images, videos
and audios, please refer to [15, 26].

To explore information mining on the Web, it is necessary to know data

6 1 Introduction

mining, which has been applied in many Web mining tasks. However,
Web mining is not entirely an application of data mining. Due to the rich-
ness and diversity of information and other Web specific characteristics
discussed above, Web mining has developed many of its own algorithms.

1.3.1 What is Data Mining?

Data mining is also called knowledge discovery in databases (KDD). It
is commonly defined as the process of discovering useful patterns or
knowledge from data sources, ¢.g., databases, texts, images, the Web, etc.
The patterns must be valid, potentially useful, and understandable. Data
mining is a multi-disciplinary field involving machine learning, statistics,
databases, artificial intelligence, information retrieval, and visualization.

There are many data mining tasks. Some of the common ones are su-
pervised learning (or classification), unsupervised learning (or cluster-
ing), association rule mining, and sequential pattern mining. We will
study all of them in this book.

A data mining application usually starts with an understanding of the
application domain by data analysts (data miners), who then identify
suitable data sources and the target data. With the data, data mining can be
performed, which is usually carried out in three main steps:

e Pre-processing: The raw data is usually not suitable for mining due to
various reasons. It may need to be cleaned to remove noises or abnor-
malities. The data may also be too large and/or involve many irrelevant
attributes, which call for data reduction through sampling and attribute
or feature selection. Details about data pre-processing can be found in
any standard data mining textbook.

e Data mining: The processed data is then fed to a data mining algorithm
which will produce patterns or knowledge.

e Post-processing: In many applications, not all discovered patterns are
useful. This step identifies those useful ones for applications. Various
evaluation and visualization techniques are used to make the decision.

The whole process (also called the data mining process) is almost always
iterative. It usually takes many rounds to achieve the final satisfactory re-
sult, which is then incorporated into real-world operational tasks.

Traditional data mining uses structured data stored in relational tables,
spread sheets, or flat files in the tabular form. With the growth of the Web
and text documents, Web mining and text mining are becoming increas-
ingly important and popular. Web mining is the focus of this book.

1.3 Web Data Mining 7

1.3.2 What is Web Mining?

Web mining aims to discover useful information or knowledge from the
Web hyperlink structure, page content, and usage data. Although Web
mining uses many data mining techniques, as mentioned above it is not
purely an application of traditional data mining techniques due to the het-
erogeneity and semi-structured or unstructured nature of the Web data.
Many new mining tasks and algorithms were invented in the past decade.
Based on the primary kinds of data used in the mining process, Web min-
ing tasks can be categorized into three types: Web structure mining, Web
content mining and Web usage mining.

e Web structure mining: Web structure mining discovers useful knowl-
edge from hyperlinks (or links for short), which represent the structure
of the Web. For example, from the links, we can discover important
Web pages, which is a key technology used in search engines. We can
also discover communities of users who share common interests. Tradi-
tional data mining does not perform such tasks because there is usually
no link structure in a relational table.

e Web content mining: Web content mining extracts or mines useful in-
formation or knowledge from Web page contents. For example, we can
automatically classify and cluster Web pages according to their topics.
These tasks are similar to those in traditional data mining. However, we
can also discover patterns in Web pages to extract useful data such as
descriptions of products, postings of forums, etc., for many purposes.
Furthermore, we can mine customer reviews and forum postings to dis-
cover consumer opinions. These are not traditional data mining tasks.

e Web usage mining: Web usage mining refers to the discovery of user
access patterns from Web usage logs, which record every click made by
each user. Web usage mining applies many data mining algorithms. One
of the key issues in Web usage mining is the pre-processing of click-
stream data in usage logs in order to produce the right data for mining.

In this book, we will study all these three types of mining. However, due
to the richness and diversity of information on the Web, there are a large
number of Web mining tasks. We will not be able to cover them all. We
will only focus on some important tasks and their fundamental algorithms.

The Web mining process is similar to the data mining process. The dif-
ference is usually in the data collection. In traditional data mining, the data
is often already collected and stored in a data warehouse. For Web mining,
data collection can be a substantial task, especially for Web structure and
content mining, which involves crawling a large number of target Web
pages. We will devote a whole chapter to crawling.

8 1 Introduction

Once the data is collected, we go through the same three-step process:
data pre-processing, Web data mining and post-processing. However, the
techniques used for each step can be quite different from those used in tra-
ditional data mining.

1.4 Summary of Chapters

This book consists of two main parts. The first part, which includes Chaps.
2-5, covers the major topics of data mining. The second part, which com-
prises the rest of the chapters, covers Web mining (including a chapter on
Web search). In the Web mining part, Chaps. 7 and 8 are on Web structure
mining, which are closely related to Web search (Chap. 6). Since it is dif-
ficult to draw a boundary between Web search and Web mining, Web
search and mining are put together. Chaps 9—11 are on Web content min-
ing, and Chap. 12 is on Web usage mining. Below we give a brief intro-
duction to each chapter.

Chapter 2 — Association Rules and Sequential Patterns: This chapter
studies two important data mining models that have been used in many
Web mining tasks, especially in Web usage and content mining. Associa-
tion rule mining finds sets of data items that occur together frequently. Se-
quential pattern mining finds sets of data items that occur together fre-
quently in some sequences. Clearly, they can be used to find regularities in
the Web data. For example, in Web usage mining, association rule mining
can be used to find users’ visit and purchase patterns, and sequential pat-
tern mining can be used to find users’ navigation patterns.

Chapter 3 — Supervised Learning: Supervised learning is perhaps the
most frequently used mining/learning technique in both practical data min-
ing and Web mining. It is also called classification, which aims to learn a
classification function (called a classifier) from data that are labeled with
pre-defined classes or categories. The resulting classifier is then applied to
classify future data instances into these classes. Due to the fact that the
data instances used for learning (called the training data) are labeled with
pre-defined classes, the method is called supervised learning.

Chapter 4 — Unsupervised Learning: In unsupervised learning, the data
used for learning has no pre-defined classes. The learning algorithm has to
find the hidden structures or regularities in the data. One of the key unsu-
pervised learning techniques is clustering, which organizes data instances
into groups or clusters according to their similarities (or differences).
Clustering is widely used in Web mining. For example, we can cluster

1.4 Summary of Chapters 9

Web pages into groups, where each group may represent a particular topic.
We can also cluster documents into a hierarchy of clusters, which may rep-
resent a topic hierarchy.

Chapter 5 — Partially Supervised Learning: Supervised learning re-
quires a large number of labeled data instances to learn an accurate classi-
fier. Labeling, which is often done manually, is labor intensive and time
consuming. To reduce the manual labeling effort, learning from labeled
and unlabeled examples (or LU learning) was proposed to use a small
set of labeled examples (data instances) and a large set of unlabeled exam-
ples for learning. This model is also called semi-supervised learning.

Another learning model that we will study is called learning from posi-
tive and unlabeled examples (or PU learning), which is for two-class
classifications (the two classes are often called the positive and negative
classes). However, there are no labeled negative examples for learning.
This model is useful in many situations. For example, we have a set of
Web mining papers and we want to identify other Web mining papers in a
research paper repository which contains all kinds of papers. The set of
Web mining papers can be treated as the positive data, and the papers in
the research repository can be treated as the unlabeled data.

Chapter 6 — Information Retrieval and Web Search: Search is probably
the largest application on the Web. It has its root in information retrieval
(or IR for short), which is a field of study that helps the user find needed
information from a large collection of text documents. Given a query (e.g.,
a set of keywords), which expresses the user’s information need, an IR
system finds a set of documents that is relevant to the query from its un-
derlying collection. This is also how a Web search engine works.

Web search brings IR to a new height. It applies some IR techniques,
but also presents a host of interesting problems due to special characteris-
tics of the Web data. First of all, Web pages are not the same as plain text
documents because they are semi-structured and contain hyperlinks. Thus,
new methods have been designed to produce better Web IR (or search)
systems. Another major issue is efficiency. Document collections used in
traditional IR systems are not large, but the number of pages on the Web is
huge. For example, Google claimed that it indexed more than 8§ billion
pages when the first edition of this book was written. Web users demand
very fast responses. No matter how accurate a retrieval algorithm is, if the
retrieval cannot be done extremely efficiently, few people will use it. In
the chapter, several other search related issues will also be discussed.

Chapter 7 — Social Network Analysis: Hyperlinks are a special feature of
the Web, which link Web pages to form a huge network. They have been

10 1 Introduction

exploited for many purposes, especially for Web search. Google’s early
success was largely attributed to its hyperlink-based ranking algorithm
called PageRank, which was originated from social network analysis
[24]. In this chapter, we will first introduce some main concepts of social
network analysis and then describe two most well known Web hyperlink
analysis algorithms, PageRank and HITS. In addition, we will also study
several community finding algorithms. When Web pages link to one an-
other, they form Web communities, which are groups of content creators
that share some common interests. Communities not only manifest in hy-
perlinks, but also in other contexts such as emails, Web page contents, and
friendship networks on social networking sites.

Chapter 8 — Web Crawling: A Web crawler is a program that automati-
cally traverses the Web’s hyperlink structure and downloads each linked
page to a local storage. Crawling is often the first step of Web mining or
building a Web search engine. Although conceptually easy, implementing
a practical crawler is by no means simple. Due to efficiency and many
other concerns, it involves a great deal of engineering. There are two main
types of crawlers: universal crawlers and topic crawlers. A universal
crawler downloads all pages irrespective of their contents, while a topic
crawler downloads only pages of certain topics. The difficulty in topic
crawling is how to recognize such pages. We will study several techniques
for this purpose.

Chapter 9 — Structured Data Extraction: Wrapper Generation: A
large number of pages on the Web contain structured data, which are usu-
ally data records retrieved from underlying databases and displayed in
Web pages following some fixed templates. Structured data often represent
their host pages’ essential information, e.g., lists of products and services.
Extracting such data allows one to provide value added services, e.g.,
comparative shopping and meta-search. There are two main approaches to
extraction. One is the supervised approach, which uses supervised learning
to learn data extraction rules. The other is the unsupervised pattern discov-
ery approach, which finds repeated patterns (hidden templates) in Web
pages for data extraction.

Chapter 10 — Information Integration: Due to diverse authorships of the
Web, different Web sites typically use different words or terms to express
the same or similar information. In order to make use of the data or infor-
mation extracted from multiple sites to provide value added services, we
need to semantically integrate the data/information from these sites in or-
der to produce a consistent and coherent database. Intuitively, integration
means (1) to match columns in different data tables that contain the same

1.5 How to Read this Book 11

type of information (e.g., product names) and (2) to match data values that
are semantically the same but expressed differently at different sites.

Chapter 11 — Opinion Mining and Sentiment Analysis: Apart from
structured data, the Web also contains a huge amount of unstructured text.
Analyzing such text is also of great importance. It is perhaps even more
important than extracting structured data because of the sheer volume of
valuable information of almost any imaginable types contained in it. This
chapter focuses only on mining people’s opinions and sentiments ex-
pressed in product reviews, forum discussions and blogs. The task is not
only technically challenging, but also very useful in practice because busi-
nesses and organizations always want to know consumer opinions on their
products and services.

Chapter 12 — Web Usage Mining: Web usage mining aims to study user
clicks and their applications to e-commerce and business intelligence. The
objective is to capture and model behavioral patterns and profiles of us-
ers who interact with a Web site. Such patterns can be used to better un-
derstand the behaviors of different user segments, to improve the organiza-
tion and structure of the site, and to create personalized experiences for
users by providing dynamic suggestions of products and services using re-
commender systems. This chapter also covers the important topics of
query log mining and computational advertising, which have emerged
as active research areas in recent years.

1.5 How to Read this Book

This book is a textbook although two chapters are mainly contributed by
three other researchers. The contents of the two chapters have been care-
fully edited and integrated into the common framework of the whole book.
The book is suitable for both graduate students and senior undergraduate
students in the fields of computer science, information science, engineer-
ing, statistics, and social sciences. It can also be used as a reference by re-
searchers and practitioners who are interested in or are working in the field
of Web mining, data mining or text mining.

As mentioned earlier, the book is divided into two parts. Part I (Chaps.
2-5) covers the major topics of data mining. Text classification and clus-
tering are included in this part as well. Part II, which includes the rest of
the chapters, covers Web mining (and search). In general, all chapters in
Part II require some techniques in Part I. Within each part, the dependency
is minimal except Chap. 5, which needs several techniques from Chap. 4.

12 1 Introduction

To Instructors: This book can be used as a class text for a one-semester
course on Web data mining. In this case, there are two possibilities. If the
students already have a data mining or machine learning background, the
chapters in Part I can be skipped. If the students do not have any data min-
ing background, I recommend covering some selected sections from each
chapter of Part [before going to Part II. The chapters in Part II can be cov-
ered in any sequence. You can also select a subset of the chapters accord-
ing to your needs.

The book may also be used as a class text for an introductory course on
data mining where Web mining concepts and techniques are introduced. In
this case, I recommend first covering all the chapters in Part I and then se-
lectively covering some chapters or sections from each chapter in Part 11
depending on needs. It is usually a good idea to cover some sections of
Chaps. 6 and 7 as search engines fascinate most students. [also recom-
mend including one or two lectures on data pre-processing for data mining
since the topic is important for practical data mining applications but is not
covered in this book. You can find teaching materials on data pre-processing
from most introductory data mining books.

Supporting Materials: Updates to chapters and teaching materials, in-
cluding lecture slides, data sets, implemented algorithms, and other re-
sources, are available at http://www.springer.com/3-540-37881-2.

Bibliographic Notes

The W3C Web site (http://www.w3.org/) is the most authoritative resource
site for information on Web developments, standards and guidelines. The
history of the Web and hypertext, and Tim Berners-Lee’s original proposal
can all be found there. Many other sites also contain information about the
history of the Web, the Internet and search engines, e.g., http://www.elsop.
com/wrc/h_web.htm, http://www.zeltser.com/web-history/, http://www.isoc.
org/internet/history/, http://www.livinginternet.com, http://www.w3c.rl.ac.uk/
primers/history/origins.htm and http://searchenginewatch.com/.

There are some earlier introductory texts on Web mining, e.g., those by
Baldi et al. [1] and Chakrabarti [3]. There are also several application ori-
ented books, e.g., those by Linoff and Berry [12], and Thuraisingham [22],
and edited volumes by Zaiane et al. [26], Scime [19], and Zhong et al. [27].

On data mining, there are many textbooks, e.g., those by Duda et al. [4],
Dunham [5], Han and Kamber [8], Hand et al. [9], Larose [11], Langley
[10], Mitchell [13], Roiger and Geatz [17], Tan et al. [20], and Witten and
Frank [25]. Application oriented books include those by Berry and Linoff

Bibliography 13

[2], Pyle [16], Rud [18], and Tang and MacLennan [21]. Several edited
volumes exist as well, e.g., those by Fayyad et al. [6], Grossman et al. [7],
and Wang et al. [23].

Latest research results on Web mining can be found in a large number
of conferences and journals (too many to list) due to the interdisciplinary
nature of the field. All the journals and conferences related to the Web
technology, information retrieval, data mining, databases, artificial intelli-
gence, natural language processing, and machine learning may contain
Web mining related papers.

Bibliography

1. Baldi, P., P. Frasconi, and P. Smyth. Modeling the Internet and the Web:
Probabilistic methods and algorithms. 2003: John Wiley & Sons Inc.

2. Berry, M. and G. Linoff. Data mining techniques: for marketing, sales, and
customer relationship management. 2004: Wiley New York.

3. Chakrabarti, S. Mining the Web: discovering knowledge from hypertext data.
2003: Morgan Kaufmann Publishers.

4. Duda, R., P. Hart, and D. Stork. Pattern classification. 2001: John Wiley &
Sons Inc.

5. Dunham, M. Data mining: Introductory and advanced topics. 2002: Pearson
Education.

6. Fayyad, U., G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in
knowledge discovery and data mining. 1996: MIT Press.

7. Grossman, R., C. Kamath, P. Kegelmeyer, V. Kumar, and R. Namburu. Data
mining for scientific and engineering applications. 2001: Springer.

8. Han, J. and M. Kamber. Data mining: concepts and techniques. 2006: Morgan
Kaufmann Publishers.

9. Hand, D., H. Mannila, and P. Smyth. Principles of data mining. 2001: MIT
Press.

10. Langley, P. Elements of machine learning. 1996: Morgan Kaufmann
Publishers.

11. Larose, D.T. Discovering Knowledge in Data: an Introduction to Data
Mining. 2004: John Wiley.

12. Linoff, G. and M. Berry. Mining the web: transforming customer data into
customer value. 2002: John Wiley & Sons, Inc.

13. Mitchell, T. Machine Learning. 1997: McGraw Hill.

14. Nelson, T. A file structure for the complex, the changing and the
indeterminate. In Proceedings of ACM National Conference, 1965.

15. Perner, P. Data mining on multimedia data. 2002: Springer.

16. Pyle, D. Business modeling and data mining. 2003: Morgan Kaufmann
Publishers.

14

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

1 Introduction

Roiger, R. and M. Geatz. Data mining: a tutorial-based primer. 2003:
Addison Wesley Boston.

Rud, O.P. Data Mining Cookbook. 2003: John Wiley & Sons.

Scime, A. Web Mining: applications and techniques. 2005: Idea Group
Publishers.

Tan, P., M. Steinbach, and V. Kumar. Introduction to data mining. 2006:
Pearson Addison Wesley Boston.

Tang, Z. and J. Maclennan. Data mining with SQL Server 2005. 2005: Wiley
Publishing, Inc.

Thuraisingham, B.M. Web Data Mining and Applications in Business
Intelligence and Counter-Terrorism. 2003: CRC Press.

Wang, J., M. Zaki, H. Toivonen, and D. Shasha. Data mining in
bioinformatics. 2005: Springer Verlag.

Wasserman, S. and K. Faust. Social Network Analysis. 1994: Cambridge
University Press.

Witten, 1. and E. Frank. Data Mining: Practical machine learning tools and
techniques. 2005: Morgan Kaufmann Publishers.

Zaiane, O., S. Simoff, and C. Djeraba. Mining multimedia and complex data.
2003: Springer.

Zhong, N., Y. Yao, and J. Liu. Web Intelligence. 2003: Springer.

Partl

Data Mining Foundations

2 Association Rules and Sequential Patterns

Association rules are an important class of regularities in data. Mining of
association rules is a fundamental data mining task. It is perhaps the most
important model invented and extensively studied by the database and data
mining community. Its objective is to find all co-occurrence relationships,
called associations, among data items. Since it was first introduced in
1993 by Agrawal et al. [2], it has attracted a great deal of attention. Many
efficient algorithms, extensions and applications have been reported.

The classic application of association rule mining is the market basket
data analysis, which aims to discover how items purchased by customers
in a supermarket (or a store) are associated. An example association rule is

Cheese — Beer [support = 10%, confidence = 80%)].

The rule says that 10% customers buy Cheese and Beer together, and
those who buy Cheese also buy Beer 80% of the time. Support and confi-
dence are two measures of rule strength, which we will define later.

This mining model is in fact very general and can be used in many ap-
plications. For example, in the context of the Web and text documents, it
can be used to find word co-occurrence relationships and Web usage pat-
terns as we will see in later chapters.

Association rule mining, however, does not consider the sequence in
which the items are purchased. Sequential pattern mining takes care of
that. An example of a sequential pattern is “5% of customers buy bed first,
then mattress and then pillows”. The items are not purchased at the same
time, but one after another. Such patterns are useful in Web usage mining
for analyzing clickstreams in server logs. They are also useful for finding
language or linguistic patterns from natural language texts.

2.1 Basic Concepts of Association Rules

The problem of mining association rules can be stated as follows: Let / =
{is, is, ..., i} be a set of items. Let 7= (4, t,, ..., t,) be a set of transac-
tions (the database), where each transaction ¢; is a set of items such that ¢
c 1. An association rule is an implication of the form,

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 17
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3 2,
© Springer-Verlag Berlin Heidelberg 2011

18 2 Association Rules and Sequential Patterns

X—>Y whereXc/l YclLandXNY=0.
X (or Y) is a set of items, called an itemset.

Example 1: We want to analyze how the items sold in a supermarket are
related to one another. / is the set of all items sold in the supermarket. A
transaction is simply a set of items purchased in a basket by a customer.
For example, a transaction may be:

{Beef, Chicken, Cheese},

which means that a customer purchased three items in a basket, Beef,
Chicken, and Cheese. An association rule may be:

Beef, Chicken — Cheese,

where {Beef, Chicken} is X and {Cheese} is Y. For simplicity, brackets
“{” and “}” are usually omitted in transactions and rules.

A transaction t; € T is said to contain an itemset X if X is a subset of ¢
(we also say that the itemset X covers ¢;). The support count of X in 7
(denoted by X.count) is the number of transactions in 7 that contain X. The
strength of a rule is measured by its support and confidence.

Support: The support of a rule, X — Y, is the percentage of transactions in
T that contains X U Y, and can be seen as an estimate of the probability,
Pr(XUY). The rule support thus determines how frequent the rule is ap-
plicable in the transaction set 7. Let n be the number of transactions in 7.
The support of the rule X — Y is computed as follows:

(X VY).count (1)

support =
n

Support is a useful measure because if it is too low, the rule may just oc-
cur due to chance. Furthermore, in a business environment, a rule cover-
ing too few cases (or transactions) may not be useful because it does not
make business sense to act on such a rule (not profitable).

Confidence: The confidence of a rule, X — Y, is the percentage of transac-
tions in 7 that contain X also contain Y. It can be seen as an estimate of
the conditional probability, Pr(Y | X). It is computed as follows:

(X VY).count

X .count

2

confidence =

Confidence thus determines the predictability of the rule. If the confi-
dence of a rule is too low, one cannot reliably infer or predict ¥ from X.
A rule with low predictability is of limited use.

2.1 Basic Concepts of Association Rules 19

Objective: Given a transaction set 7, the problem of mining association
rules is to discover all association rules in 7 that have support and confi-
dence greater than or equal to the user-specified minimum support (de-
noted by minsup) and minimum confidence (denoted by minconf).

The keyword here is “all”, i.e., association rule mining is complete. Previ-
ous methods for rule mining typically generate only a subset of rules based
on various heuristics (see Chap. 3).

Example 2: Fig. 2.1 shows a set of seven transactions. Each transaction ¢
is a set of items purchased in a basket in a store by a customer. The set / is
the set of all items sold in the store.

ti: Beef, Chicken, Milk

t,: Beef, Cheese

ts: Cheese, Boots

t4: Beef, Chicken, Cheese

ts: Beef, Chicken, Clothes, Cheese, Milk
ts: Chicken, Clothes, Milk

t;: Chicken, Milk, Clothes

Fig. 2.1. An example of a transaction set

Given the user-specified minsup = 30% and minconf = 80%, the following
association rule (sup is the support, and conf is the confidence)

Chicken, Clothes — Milk [sup = 3/7, conf = 3/3]

is valid as its support is 42.86% (> 30%) and its confidence is 100% (>
80%). The rule below is also valid, whose consequent has two items:

Clothes — Milk, Chicken [sup = 3/7, conf = 3/3].
Clearly, more association rules can be discovered, as we will see later. ™

We note that the data representation in the transaction form of Fig. 2.1 is
a simplistic view of shopping baskets. For example, the quantity and price
of each item are not considered in the model.

We also note that a text document or even a sentence in a single docu-
ment can be treated as a transaction without considering word sequence
and the number of occurrences of each word. Hence, given a set of docu-
ments or a set of sentences, we can find word co-occurrence relations.

A large number of association rule mining algorithms have been re-
ported in the literature, which have different mining efficiencies. Their re-
sulting sets of rules are, however, all the same based on the definition of
association rules. That is, given a transaction data set 7, a minimum sup-
port and a minimum confidence, the set of association rules existing in 7' is

20 2 Association Rules and Sequential Patterns

uniquely determined. Any algorithm should find the same set of rules al-
though their computational efficiencies and memory requirements may be
different. The best known mining algorithm is the Apriori algorithm pro-
posed in [3], which we study next.

2.2 Apriori Algorithm

The Apriori algorithm works in two steps:

1. Generate all frequent itemsets: A frequent itemset is an itemset that
has transaction support above minsup.

2. Generate all confident association rules from the frequent itemsets:
A confident association rule is a rule with confidence above minconf.

We call the number of items in an itemset its size, and an itemset of size k
a k-itemset. Following Example 2 above, {Chicken, Clothes, Milk} is a fre-
quent 3-itemset as its support is 3/7 (minsup = 30%). From the itemset, we
can generate the following three association rules (minconf = 8§0%):

Rule 1: Chicken, Clothes — Milk [sup = 3/7, conf = 3/3]
Rule 2: Clothes, Milk — Chicken [sup = 3/7, conf = 3/3]
Rule 3: Clothes — Milk, Chicken [sup = 3/7, conf = 3/3].

Below, we discuss the two steps in turn.

2.2.1 Frequent Itemset Generation

The Apriori algorithm relies on the apriori or downward closure property
to efficiently generate all frequent itemsets.

Downward Closure Property: If an itemset has minimum support, then
every non-empty subset of this itemset also has minimum support.

The idea is simple because if a transaction contains a set of items X,
then it must contain any non-empty subset of X. This property and the
minsup threshold prune a large number of itemsets that cannot be frequent.

To ensure efficient itemset generation, the algorithm assumes that the
items in / are sorted in lexicographic order (a total order). The order is
used throughout the algorithm in each itemset. We use the notation {w[1],
w[2], ..., w[k]} to represent a k-itemset w consisting of items w[1], w[2],

.., wlk], where w[1] <w[2] < ... <w|[k] according to the total order.

The Apriori algorithm for frequent itemset generation, which is given in

Fig. 2.2, is based on level-wise search. It generates all frequent itemsets

2.2 Apriori Algorithm 21

Algorithm Apriori(7)

1 C; « init-pass(7); // the first pass over T

2 Fy<« {f|fe C,fcount/n > minsup}; // nisthe no. of transactions in 7’
3 for (k=2; F #3; kt+) do // subsequent passes over T’
4 Cy < candidate-gen(Fj_));

5 for each transaction ¢ € 7' do // scan the data once

6 for each candidate ¢ € C; do

7 if ¢ is contained in ¢ then

8 c.countt+;

9 endfor

10 endfor

11 Fy« {c € Cy| c.count/n > minsup}

12 endfor

13 return F < U; Fj;

Fig. 2.2. The Apriori algorithm for generating frequent itemsets

Function candidate-gen(F}_;)

1 Ci« O // initialize the set of candidates

2 forallf, f; € Fiy // find all pairs of frequent itemsets

3 with fi = {i\, ..., ir2 ik} // that differ only in the last item

4 andﬁ: {i1,~-~;ik—2,i’k—1}

5 and i;_; <i’;_ do // according to the lexicographic order
6 c< iy, .o b1, Lk s // join the two itemsets f; and f>

7 Ci« Cru {c}; // add the new itemset ¢ to the candidates
8 for cach (k—1)-subset s of ¢ do

9 if (s ¢ F;;) then

10 delete ¢ from Cy; // delete ¢ from the candidates

11 endfor

12 endfor

13 return Cy; // return the generated candidates

Fig. 2.3. The candidate-gen function

by making multiple passes over the data. In the first pass, it counts the sup-
ports of individual items (line 1) and determines whether each of them is
frequent (line 2). F) is the set of frequent 1-itemsets. In each subsequent
pass k, there are three steps:

1. It starts with the seed set of itemsets F;; found to be frequent in the
(k-1)-th pass. It uses this seed set to generate candidate itemsets C;
(line 4), which are possible frequent itemsets. This is done using the
candidate-gen() function.

2. The transaction database is then scanned and the actual support of each
candidate itemset ¢ in Cj is counted (lines 5-10). Note that we do not
need to load the whole data into memory before processing. Instead, at

22 2 Association Rules and Sequential Patterns

any time, only one transaction resides in memory. This is a very impor-
tant feature of the algorithm. It makes the algorithm scalable to huge da-
ta sets, which cannot be loaded into memory.

3. At the end of the pass or scan, it determines which of the candidate
itemsets are actually frequent (line 11).

The final output of the algorithm is the set F* of all frequent itemsets (line
13). The candidate-gen() function is discussed below.

Candidate-gen function: The candidate generation function is given in
Fig. 2.3. It consists of two steps, the join step and the pruning step.

Join step (lines 2—6 in Fig. 2.3): This step joins two frequent (k—1)-
itemsets to produce a possible candidate ¢ (line 6). The two frequent
itemsets f; and f; have exactly the same items except the last one (lines
3-5). ¢ is added to the set of candidates Cy (line 7).

Pruning step (lines 8-11 in Fig. 2.3): A candidate ¢ from the join step may
not be a final candidate. This step determines whether all the &A—1 sub-
sets (there are k of them) of ¢ are in F),. If anyone of them is not in
Fy_1, ¢ cannot be frequent according to the downward closure property,
and is thus deleted from C.

The correctness of the candidate-gen() function is easy to show (see [3]).
Here, we use an example to illustrate the working of the function.

Example 3: Let the set of frequent itemsets at level 3 be
F,={{1,2,3} {1, 2,4}, {1, 3,4}, {1, 3, 5}, {2, 3, 4}}.

For simplicity, we use numbers to represent items. The join step (which
generates candidates for level 4) will produce two candidate itemsets, {1, 2,
3,4} and {1, 3, 4, 5}. {1, 2, 3, 4} is generated by joining the first and the
second itemsets in F3 as their first and second items are the same respec-
tively. {1, 3, 4, 5} is generated by joining {1, 3, 4} and {1, 3, 5}.

After the pruning step, we have only:

C,={{1,2,3,4}}
because {1, 4, 5} is not in F; and thus {1, 3, 4, 5} cannot be frequent.

Example 4: Let us see a complete running example of the Apriori algo-
rithm based on the transactions in Fig. 2.1. We use minsup = 30%.

F;: {{Beef}:4, {Cheese}:4, {Chicken}:5, {Clothes}:3, {Milk}:4}

Note: the number after each frequent itemset is the support count of the
itemset, i.c., the number of transactions containing the itemset. A mini-
mum support count of 3 is sufficient because the support of 3/7 is greater
than 30%, where 7 is the total number of transactions.

2.2 Apriori Algorithm 23

C,: {{Beef, Cheese}, {Beef, Chicken}, {Beef, Clothes}, {Beef, Milk},
{Cheese, Chicken}, {Cheese, Clothes}, {Cheese, Milk},
{Chicken, Clothes}, {Chicken, Milk}, {Clothes, Milk}}

F,: {{Beef, Chicken}:3, {Beef, Cheese}:3, {Chicken, Clothes}:3,
{Chicken, Milk}:4, {Clothes, Milk}:3}

Cy: {{Chicken, Clothes, Milk}}

Note: {Beef, Cheese, Chicken} is also produced in line 6 of Fig. 2.3.
However, {Cheese, Chicken} is not in F,, and thus the itemset {Beef,
Cheese, Chicken} is not included in Cs.

Fy: {{Chicken, Clothes, Milk}:3}. =
Finally, some remarks about the Apriori algorithm are in order:

e Theoretically, this is an exponential algorithm. Let the number of items
in I be m. The space of all itemsets is O(2") because each item may or
may not be in an itemset. However, the mining algorithm exploits the
sparseness of the data and the high minimum support value to make the
mining possible and efficient. The sparseness of the data in the context
of market basket analysis means that the store sells a lot of items, but
each shopper only purchases a few of them.

e The algorithm can scale up to large data sets as it does not load the en-
tire data into the memory. It only scans the data K times, where K is the
size of the largest itemset. In practice, K is often small (e.g., < 10). This
scale-up property is very important in practice because many real-world
data sets are so large that they cannot be loaded into the main memory.

e The algorithm is based on level-wise search. It has the flexibility to stop
at any level. This is useful in practice because in many applications,
long frequent itemsets or rules are not needed as they are hard to use.

e As mentioned earlier, once a transaction set 7, a minsup and a minconf
are given, the set of frequent itemsets that can be found in 7 is uniquely
determined. Any algorithm should find the same set of frequent item-
sets. This property about association rule mining does not hold for many
other data mining tasks, e.g., classification or clustering, for which dif-
ferent algorithms may produce very different results.

e The main problem with association rule mining is that it often produces
a huge number of itemsets (and rules), tens of thousands, or more,
which makes it hard for the user to analyze them to find those useful
ones. This is called the interestingness problem. Researchers have pro-
posed several methods to tackle this problem (see Bibliographic Notes).

An efficient implementation of the Apriori algorithm involves sophisti-
cated data structures and programming techniques, which are beyond the

24 2 Association Rules and Sequential Patterns

scope of this book. Apart from the Apriori algorithm, there is a large num-
ber of other algorithms, e.g., FP-growth [17] and many others.

2.2.2 Association Rule Generation

In many applications, frequent itemsets are already useful and sufficient.
Then, we do not need to generate association rules. In applications where
rules are desired, we use frequent itemsets to generate all association rules.
Compared with frequent itemset generation, rule generation is relatively
simple. To generate rules for every frequent itemset f, we use all non-
empty subsets of /. For each such subset @, we output a rule of the form

f—a)—> a if
confidence = M > minconf , (3)
(f —a).count

where f.count (or (f~c).count) is the support count of f (or (f — «)). The
support of the rule is f.count/n, where n is the number of transactions in the
transaction set 7. All the support counts needed for confidence computa-
tion are available because if f'is frequent, then any of its non-empty subsets
is also frequent and its support count has been recorded in the mining
process. Thus, no data scan is needed in rule generation.

This exhaustive rule generation strategy is, however, inefficient. To de-
sign an efficient algorithm, we observe that the support count of f in the
above confidence computation does not change as « changes. It follows
that for a rule (f — @) —» « to hold, all rules of the form (f — o) = Fuw
must also hold, where ¢, is a non-empty subset of ¢, because the support
count of (f — &) must be less than or equal to the support count of (f —).
For example, given an itemset {A, B, C, D}, if the rule (A, B — C, D) holds,
then the rules (A, B, C — D) and (A, B, D — C) must also hold.

Thus, for a given frequent itemset £, if a rule with consequent « holds,
then so do rules with consequents that are subsets of «. This is similar to
the downward closure property that, if an itemset is frequent, then so are
all its subsets. Therefore, from the frequent itemset f, we first generate all
rules with one item in the consequent. We then use the consequents of
these rules and the function candidate-gen() (Fig. 2.3) to generate all pos-
sible consequents with two items that can appear in a rule, and so on. An
algorithm using this idea is given in Fig. 2.4. Note that all 1-item conse-
quent rules (rules with one item in the consequent) are first generated in
line 2 of the function genRules(). The confidence is computed using (3).

2.2 Apriori Algorithm 25

Algorithm genRules(F) /I F is the set of all frequent itemsets

1 for each frequent k-itemset f; in F, k> 2 do

2 output every l-item consequent rule of f; with confidence > minconf and
support < fr.count / n // n is the total number of transactions in 7

3 H, < {consequents of all 1-item consequent rules derived from f; above};

4 ap-genRules(f;, H));

5 endfor

Procedure ap-genRules(f;, H,,) /I H, is the set of m-item consequents

1 if (k>m+1) AND (H,, # &) then

2 H,+1 < candidate-gen(H,,);

3 for each 4,4, in H,,,, do

4 conf <« fr.count / (fy — hy+1).count,;

5 if (conf> minconf) then

6 output the rule (f; — A,,41) = A+ With confidence = conf and
support = fr.count / n; // n is the total number of transactions in 7

7 else

8 delete ,,+; from H,,;
9 endfor

10 ap-genRules(f;, H,+1);

11 endif

Fig. 2.4. The association rule generation algorithm

Example 5: We again use transactions in Fig. 2.1, minsup = 30% and
minconf = 80%. The frequent itemsets are as follows (see Example 4):

F;: {{Beef}:4, {Cheese}.4, {Chicken}:5, {Clothes}:3, {Milk}:4}

F,: {{Beef, Cheese}:3, {Beef, Chicken}:3, {Chicken, Clothes}:3,
{Chicken, Milk}:4, {Clothes, Milk}:3}

F;: {{Chicken, Clothes, Milk}:3}.

We use only the itemset in F5 to generate rules (generating rules from each
itemset in F, can be done in the same way). The itemset in F5 generates the
following possible 1-item consequent rules:

Rule 1: Chicken, Clothes — Milk [sup = 3/7, conf = 3/3]
Rule 2: Chicken, Milk — Clothes [sup = 3/7, conf = 3/4]
Rule 3: Clothes, Milk — Chicken [sup = 3/7, conf = 3/3].

Due to the minconf requirement, only Rule 1 and Rule 3 are output in line
2 of the algorithm genRules(). Thus, H, = {{Chicken}, {Milk}}. The function
ap-genRules() is then called. Line 2 of ap-genRules() produces H, =
{{Chicken, Milk}}. The following rule is then generated:

Rule 4: Clothes — Milk, Chicken [sup = 3/7, conf = 3/3].

26 2 Association Rules and Sequential Patterns

Thus, three association rules are generated from the frequent itemset
{Chicken, Clothes, Milk} in F3, namely Rule 1, Rule 3 and Rule 4. =

2.3 Data Formats for Association Rule Mining

So far, we have used only transaction data for mining association rules.
Market basket data sets are naturally of this format. Text documents can be
seen as transaction data as well. Each document is a transaction, and each
distinctive word is an item. Duplicate words are removed.

However, mining can also be performed on relational tables. We just
need to convert a table data set to a transaction data set, which is fairly
straightforward if each attribute in the table takes categorical values. We
simply change each value to an attribute—value pair.

Example 6: The table data in Fig. 2.5(A) can be converted to the transac-
tion data in Fig. 2.5(B). Each attribute—value pair is considered an item.
Using only values is not sufficient in the transaction form because different
attributes may have the same values. For example, without including at-
tribute names, value a’s for Attribute1 and Attribute2 are not distinguish-
able. After the conversion, Fig. 2.5(B) can be used in mining.

If an attribute takes numerical values, it becomes complex. We need to
first discretize its value range into intervals, and treat each interval as a ca-
tegorical value. For example, an attribute’s value range is from 1-100. We
may want to divide it into 5 equal-sized intervals, 1-20, 21-40, 41-60, 61—
80, and 81-100. Each interval is then treated as a categorical value. Discre-
tization can be done manually based on expert knowledge or automati-
cally. There are several existing algorithms [14, 40].

A point to note is that for a table data set, the join step of the candidate
generation function (Fig. 2.3) needs to be slightly modified in order to en-
sure that it does not join two itemsets to produce a candidate itemset con-
taining two items from the same attribute.

Clearly, we can also convert a transaction data set to a table data set us-
ing a binary representation and treating each item in / as an attribute. If a
transaction contains an item, its attribute value is 1, and 0 otherwise.

2.4 Mining with Multiple Minimum Supports

The key element that makes association rule mining practical is the minsup
threshold. It is used to prune the search space and to limit the number of
frequent itemsets and rules generated. However, using only a single min-

2.4 Mining with Multiple Minimum Supports 27

Attribute Attribute2 Atribute3

a a X
b n y
(A) Table data

ti: (Attribute1, a), (Attribute2, a), (Attribute3, x)
t: (Attribute1, b), (Attribute2, n), (Attribute3, y)

(B) Transaction data

Fig. 2.5. From a table data set to a transaction data set

sup implicitly assumes that all items in the data are of the same nature
and/or have similar frequencies in the database. This is often not the case
in real-life applications. In many applications, some items appear very fre-
quently in the data, while some other items rarely appear. If the frequen-
cies of items vary a great deal, we will encounter two problems [23]:

1. If the minsup is set too high, we will not find rules that involve infre-
quent items or rare items in the data.

2. In order to find rules that involve both frequent and rare items, we have
to set the minsup very low. However, this may cause combinatorial ex-
plosion and make mining impossible because those frequent items will
be associated with one another in all possible ways.

Let us use an example to illustrate the above problem with a very low min-
sup, which will actually introduce another problem.

Example 7: In a supermarket transaction data set, in order to find rules in-
volving those infrequently purchased items such as FoodProcessor and
CookingPan (they generate more profits per item), we need to set the min-
sup very low. Let us use only frequent itemsets in this example as they are
generated first and rules are produced from them. They are also the source
of all the problems. Now assume we set a very low minsup of 0.005%. We
find the following meaningful frequent itemset:

{FoodProcessor, CookingPan} [sup = 0.006%].

However, this low minsup may also cause the following two meaningless
itemsets being discovered:

fi: {Bread, Cheese, Egg, Bagel, Milk, Sugar, Butter} [sup = 0.007%)],
f»: {Bread, Egg, Milk, CookingPan} [sup = 0.006%].

Knowing that 0.007% of the customers buy the seven items in f; together is
useless because all these items are so frequently purchased in a supermar-

28 2 Association Rules and Sequential Patterns

ket. Worst still, they will almost certainly cause combinatorial explosion!
For itemsets involving such items to be useful, their supports have to be
much higher. Similarly, knowing that 0.006% of the customers buy the
four items in f; together is also meaningless because Bread, Egg and Milk
are purchased on almost every grocery shopping trip. =

This dilemma is called the rare item problem. Using a single minsup
for the whole data set is inadequate because it cannot capture the inherent
natures and/or frequency differences of items in the database. By the na-
tures of items we mean that some items, by nature, appear more frequently
than others. For example, in a supermarket, people buy FoodProcessor and
CookingPan much less frequently than Bread and Milk. The situation is the
same for online stores. In general, those durable and/or expensive goods
are bought less often, but each of them generates more profit. It is thus im-
portant to capture rules involving less frequent items. However, we must
do so without allowing frequent items to produce too many meaningless
rules with very low supports and cause combinatorial explosion [23].

One common solution to this problem is to partition the data into several
smaller blocks (subsets), each of which contains only items of similar fre-
quencies. Mining is then done separately for each block using a different
minsup. This approach is, however, not satisfactory because itemsets or
rules that involve items across different blocks will not be found.

A better solution is to allow the user to specify multiple minimum sup-
ports, i.e., to specify a different minimum item support (MIS) to each
item. Thus, different itemsets need to satisfy different minimum supports
depending on what items are in the itemsets. This model thus enables us to
achieve our objective of finding itemsets involving rare items without
causing frequent items to generate too many meaningless itemsets. This
method helps solve the problem of f;. To deal with the problem of f;, we
prevent itemsets that contain both very frequent items and very rare items
from being generated. A constraint will be introduced to realize this.

An interesting by-product of this extended model is that it enables the
user to easily instruct the algorithm to generate only itemsets that contain
certain items but not itemsets that contain only the other items. This can be
done by setting the MIS values to more than 100% (e.g., 101%) for these
other items. This capability is very useful in practice because in many ap-
plications the user is only interested in certain types of itemsets or rules.

2.4.1 Extended Model

To allow multiple minimum supports, the original model in Sect. 2.1 needs
to be extended. In the extended model, the minimum support of a rule is

2.4 Mining with Multiple Minimum Supports 29

expressed in terms of minimum item supports (MIS) of the items that
appear in the rule. That is, each item in the data can have a MIS value spe-
cified by the user. By providing different MIS values for different items,
the user effectively expresses different support requirements for different
rules. It seems that specifying a MIS value for each item is a difficult task.
This is not so as we will see at the end of Sect. 2.4.2.

Let MIS(i) be the MIS value of item i. The minimum support of a rule
R is the lowest MIS value among the items in the rule. That is, a rule R,

ila iZ: (ERT) Iy —> ik+15 (EED) im

satisfies its minimum support if the rule’s actual support in the data is
greater than or equal to:

min(MIS(i,), MIS(3), ..., MIS(i,)).

Minimum item supports thus enable us to achieve the goal of having
higher minimum supports for rules that involve only frequent items, and
having lower minimum supports for rules that involve less frequent items.

Example 8: Consider the set of items in a data set, {Bread, Shoes,
Clothes}. The user-specified MIS values are as follows:

MIS(Bread) =2% MIS(Clothes) = 0.2% MIS(Shoes) = 0.1%.
The following rule doesn’t satisfy its minimum support:
Clothes — Bread [sup = 0.15%, conf = 70%)].

This is so because min(MIS(Bread), MIS(Clothes)) = 0.2%. The following
rule satisfies its minimum support:

Clothes — Shoes [sup = 0.15%, conf = 70%)].
because min(MIS(Clothes), MIS(Shoes)) = 0.1%. u

As we explained earlier, the downward closure property holds the key
to pruning in the Apriori algorithm. However, in the new model, if we use
the Apriori algorithm to find all frequent itemsets, the downward closure
property no longer holds.

Example 9: Consider the four items 1, 2, 3 and 4 in a data set. Their min-
imum item supports are:

MIS(1)=10% MIS(2)=20% MIS3)=5% MIS(4) = 6%.

If we find that itemset {1, 2} has a support of 9% at level 2, then it does not
satisfy either MIS(1) or MIS(2). Using the Apriori algorithm, this itemset
is discarded since it is not frequent. Then, the potentially frequent itemsets
{1, 2, 3} and {1, 2, 4} will not be generated for level 3. Clearly, itemsets {1,

30 2 Association Rules and Sequential Patterns

2, 3} and {1, 2, 4} may be frequent because MIS(3) is only 5% and MIS(4)
is 6%. It is thus wrong to discard {1, 2}. However, if we do not discard {1,
2}, the downward closure property is lost. =

Below, we present an algorithm to solve this problem. The essential idea
is to sort the items according to their MIS values in ascending order to
avoid the problem.

Note that MIS values prevent low support itemsets involving only fre-
quent items from being generated because their individual MIS values are
all high. To prevent very frequent items and very rare items from appear-
ing in the same itemset, we introduce the support difference constraint.

Let sup(7) be the actual support of item 7 in the data. For each itemset s,
the support difference constraint is as follows:

maxies{sup(i)} - mlnzes{sup(l)} S (ﬂa

where 0 < ¢ <1 is the user-specified maximum support difference, and it
is the same for all itemsets. The constraint basically limits the difference
between the largest and the smallest actual supports of items in itemset s to
@. This constraint can reduce the number of itemsets generated dramati-
cally, and it does not affect the downward closure property.

2.4.2 Mining Algorithm

The new algorithm generalizes the Apriori algorithm for finding frequent
itemsets. We call the algorithm, MS-Apriori. When there is only one MIS
value (for all items), it reduces to the Apriori algorithm.

Like Apriori, MS-Apriori is also based on level-wise search. It generates
all frequent itemsets by making multiple passes over the data. However,
there is an exception in the second pass as we will see later.

The key operation in the new algorithm is the sorting of the items in / in
ascending order of their MIS values. This order is fixed and used in all
subsequent operations of the algorithm. The items in each itemset follow
this order. For example, in Example 9 of the four items 1, 2, 3 and 4 and
their given MIS values, the items are sorted as follows: 3, 4, 1, 2. This or-
der helps solve the problem identified above.

Let F; denote the set of frequent k-itemsets. Each itemset w is of the fol-
lowing form, {w[1], w[2], ..., w[k]}, which consists of items, w[1], w[2],
..., w[k], where MIS(w[1]) £ MIS(w[2]) < ... £ MIS(w[k]). The algorithm
MS-Apriori is given in Fig. 2.6. Line 1 performs the sorting on / according
to the MIS value of each item (stored in MS). Line 2 makes the first pass
over the data using the function init-pass(), which takes two arguments, the

2.4 Mining with Multiple Minimum Supports 31

Algorithm MS-Apriori(7, MS, ¢) /I MS stores all MIS values
1 M < sort(l, MS); // according to MIS(i)’s stored in MS
2 L < init-pass(M, T); // make the first pass over T
3 F <« {{l}|lelL,lcount/n>MIS(l)}; // nisthesizeof T

4 for (k=2; Fi— # J; k++) do

5 if k=2 then

6 Cy < level2-candidate-gen(L, ¢) // k=2

7 else C; <— MScandidate-gen(F)—, @)

8 endif’

9 for each transaction r € T'do

10 for each candidate ¢ € C; do

11 if ¢ is contained in ¢ then // ¢ is a subset of ¢

12 c.countt++

13 if c — {c[1]} is contained in # then // ¢ without the first item
14 (¢ —{c[1]}).count++

15 endfor

16 endfor

17 Fp < {c € Cy| c.count/n > MIS(c[1])}

18 endfor

19 return F < U, F};

Fig. 2.6. The MS-Apriori algorithm

data set 7 and the sorted items M, to produce the seeds L for generating
candidate itemsets of length 2, i.e., C,. init-pass() has two steps:

1. It first scans the data once to record the support count of each item.

2. It then follows the sorted order to find the first item 7 in M that meets
MIS(i). i is inserted into L. For each subsequent item j in M after i, if
Jj.count/n > MIS(i), then j is also inserted into L, where j.count is the
support count of j, and is the total number of transactions in 7.

Frequent 1-itemsets (£;) are obtained from L (line 3). It is easy to show
that all frequent 1-itemsets are in F.

Example 10: Let us follow Example 9 and the given MIS values for the
four items. Assume our data set has 100 transactions (not limited to the
four items). The first pass over the data gives us the following support
counts: {3}.count = 6, {4}.count = 3, {1}.count = 9 and {2}.count = 25. Then,

L=1{3,1,2} and F, = {{3}, {2}}.

Item 4 is not in L because 4.count/n < MIS(3) (= 5%), and {1} is not in F
because 1.count / n < MIS(1) (= 10%). u

For each subsequent pass (or data scan), say pass k, the algorithm per-
forms three operations.

32 2 Association Rules and Sequential Patterns

1. The frequent itemsets in F;_; found in the (k—1)th pass are used to gen-
erate the candidates C; using the MScandidate-gen() function (line 7).
However, there is a special case, i.e., when & = 2 (line 6), for which the
candidate generation function is different, i.e., level2-candidate-gen().

2. It then scans the data and updates various support counts of the candi-
dates in Cy (line 9—16). For each candidate ¢, we need to update its sup-
port count (lines 11-12) and also the support count of ¢ without the first
item (lines 13—14), i.e., ¢ — {c[1]}, which is used in rule generation and
will be discussed in Sect. 2.4.3. If rule generation is not required, lines
13 and 14 can be deleted.

3. The frequent itemsets (F}) for the pass are identified in line 17.

We present candidate generation functions level2-candidate-gen() and
MScandidate-gen() below.

Level2-candidate-gen function: It takes an argument L, and returns a su-
perset of the set of all frequent 2-itemsets. The algorithm is given in Fig.
2.7. Note that in line 5, we use |sup(h) — sup(l)| < ¢ because sup(/) may not
be lower than sup(h), although MIS(/) < MIS(%).

Example 11: Let us continue with Example 10. We set ¢ = 10%. Recall
the MIS values of the four items are (in Example 9):

MIS(1) = 10% MIS(2) = 20%
MIS(3) = 5% MIS(4) = 6%.

The level2-candidate-gen() function in Fig. 2.7 produces
G={{3, 1}

{1, 2} is not a candidate because the support count of item 1 is only 9 (or
9%), less than MIS(1) (= 10%). Hence, {1, 2} cannot be frequent. {3, 2} is
not a candidate because sup(3) = 6% and sup(2) = 25% and their difference
is greater than ¢ = 10% =

Note that we must use L rather than F; because F; does not contain those
items that may satisfy the MIS of an earlier item (in the sorted order) but
not the MIS of itself, e.g., item 1 in the above example. Using L, the prob-
lem discussed in Sect. 2.4.1 is solved for C,.

MScandidate-gen function: The algorithm is given in Fig. 2.8, which is
similar to the candidate-gen function in the Apriori algorithm. It also has
two steps, the join step and the pruning step. The join step (lines 2—-6) is
the same as that in the candidate-gen() function. The pruning step (lines 8—
12) is, however, different.

For each (k-1)-subset s of ¢, if s is not in Fj_, ¢ can be deleted from C.
However, there is an exception, which is when s does not include c[1]

2.4 Mining with Multiple Minimum Supports 33

Function level2-candidate-gen(Z, ¢)

1 Cy« T // initialize the set of candidates

2 for each item / in L in the same order do

3 if [.count/n > MIS(/) then

4 for each item % in L that is after / do

5 if h.count/n > MIS(/) and |sup(h) — sup(I)| < ¢ then

6 Cy, < Gy U {{l, h}}; // insert the candidate {/, &} into C,

Fig. 2.7. The level2-candidate-gen function

Function MScandidate-gen(F_;, ¢)

1 Ci« O, // initialize the set of candidates

2 forallf, f, € Fy // find all pairs of frequent itemsets
3 with fi = {i\, ..., ij2 b1} // that differ only in the last item

4 andf2={i1,...,ik,2,i’k,|}

5 and ik-l < i,k,| and |sup(ik_1) - sup(l ’k71)| < ® do

6 c< iy, oy bi1, L1)3 // join the two itemsets f; and />

7 Cr« Cru {c}; // insert the candidate itemset ¢ into C;
8 for each (k—1)-subset s of ¢ do

9 if (c[1] € s) or (MIS(c[2]) = MIS(c[1])) then

10 if (S & kal) then

11 delete ¢ from Cy; // delete ¢ from the set of candidates
12 endfor

13 endfor

14 return Cy; // return the generated candidates

Fig. 2.8. The MScandidate-gen function

(there is only one such s). That is, the first item of ¢, which has the lowest
MIS value, is not in 5. Even if s is not in F_;, we cannot delete ¢ because
we cannot be sure that s does not satisfy MIS(c[1]), although we know that
it does not satisfy MIS(c[2]), unless MIS(c[2]) = MIS(c[1]) (line 9).

Example 12: Let F5={{1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {1, 4,
6}, {2, 3, 5}}. Items in each itemset are in the sorted order. The join step
produces (we ignore the support difference constraint here)

{1,2,3,5}{1,3, 4,5 and {1, 4, 5, 6}.

The pruning step deletes {1, 4, 5, 6} because {1, 5, 6} is not in F3. We are
then left with C, = {{1, 2, 3, 5}, {1, 3, 4, 5}}. {1, 3, 4, 5} is not deleted al-
though {3, 4, 5} is not in F5 because the minimum support of {3, 4, 5} is
MIS(3), which may be higher than MIS(1). Although {3, 4, 5} does not sat-
isfy MIS(3), we cannot be sure that it does not satisfy MIS(1). However, if
MIS(3) = MIS(1), then {1, 3, 4, 5} can also be deleted. =

34 2 Association Rules and Sequential Patterns

The problem discussed in Sect. 2.4.1 is solved for C; (kK > 2) because,
due to the sorting, we do not need to extend a frequent (k—1)-itemset with
any item that has a lower MIS value. Let us see a complete example.

Example 13: Given the following seven transactions,

Beef, Bread

Bread, Clothes

Bread, Clothes, Milk
Cheese, Boots

Beef, Bread, Cheese, Shoes
Beef, Bread, Cheese, Milk
Bread, Milk, Clothes

and MIS(Milk) = 50%, MIS(Bread) = 70%, and 25% for all other items.
Again, the support difference constraint is not used. The following fre-
quent itemsets are produced:

F, ={{Beef}, {Cheese}, {Clothes}, {Bread}}
F, ={{Beef, Cheese}, {Beef, Bread}, {Cheese, Bread}
{Clothes, Bread}, {Clothes, Milk}}
F; = {{Beef, Cheese, Bread}, {Clothes, Milk, Bread}}. u

To conclude this sub-section, let us further discuss two important issues:

1. Specify MIS values for items: This is usually done in two ways:

e Assign a MIS value to each item according to its actual sup-
port/frequency in the data set 7. For example, if the actual support of
item i in 7 is sup(i), then the MIS value for i may be computed with
Axsup(i), where A is a parameter (0 < 4 < 1) and is the same for all
items in 7.

e Group items into clusters (or blocks). Items in each cluster have simi-
lar frequencies. All items in the same cluster are given the same MIS
value. We should note that in the extended model frequent itemsets
involving items from different clusters will be found.

2. Generate itemsets that must contain certain items: As mentioned earlier,
the extended model enables the user to instruct the algorithm to generate
itemsets that must contain certain items, or not to generate any itemsets
consisting of only the other items. Let us see an example.

Example 14: Given the data set in Example 13, if we want to generate
frequent itemsets that must contain at least one item in {Boots, Bread,
Cheese, Milk, Shoes}, or not to generate itemsets involving only Beef
and/or Clothes, we can simply set

MIS(Beef) = 101%, and MIS(Clothes) = 101%

2.4 Mining with Multiple Minimum Supports 35

Then the algorithm will not generate the itemsets, {Beef}, {Clothes}
and {Beef, Clothes}. However, it will still generate such frequent item-
sets as {Cheese, Beef} and {Cheese, Bread, Beef}. u

In many applications, this feature comes quite handy because the user
is often only interested in certain types of itemsets or rules.

2.4.3 Rule Generation

Association rules are generated using frequent itemsets. In the case of a
single minsup, if f'is a frequent itemset and f;,, is a subset of f, then £,
must also be a frequent itemset. All their support counts are computed and
recorded by the Apriori algorithm. Then, the confidence of each possible
rule can be easily calculated without seeing the data again.

However, in the case of MS-Apriori, if we only record the support count
of each frequent itemset, it is not sufficient. Let us see why.

Example 15: Recall in Example 8, we have
MIS(Bread) = 2% MIS(Clothes) = 0.2% MIS(Shoes) = 0.1%.

If the actual support for the itemset {Clothes, Bread} is 0.15%, and for the
itemset {Shoes, Clothes, Bread} is 0.12%, according to MS-Apriori,
{Clothes, Bread} is not a frequent itemset since its support is less than
MIS(Clothes). However, {Shoes, Clothes, Bread} is a frequent itemset as
its actual support is greater than

min(MIS(Shoes), MIS(Clothes), MIS(Bread)) = MIS(Shoes)).
We now have a problem in computing the confidence of the rule,
Clothes, Bread — Shoes

because the itemset {Clothes, Bread} is not a frequent itemset and thus its
support count is not recorded. In fact, we may not be able to compute the
confidences of the following rules either:

Clothes — Shoes, Bread
Bread — Shoes, Clothes

because {Clothes} and {Bread} may not be frequent. u

Lemma: The above problem may occur only when the item that has the
lowest MIS value in the itemset is in the consequent of the rule (which
may have multiple items). We call this problem the head-item problem.

Proof by contradiction: Let f be a frequent itemset, and a € fbe the item
with the lowest MIS value in f (a is called the head item). Thus, f uses

36 2 Association Rules and Sequential Patterns

MIS(a) as its minsup. We want to form a rule, X — Y, where X, Y c f, X U
Y=fand X N Y=. Our examples above already show that the head-item
problem may occur when @ € Y. Now assume that the problem can also
occur when a € X. Since ¢ € X and X c f, a must have the lowest MIS
value in X and X must be a frequent itemset, which is ensured by the MS-
Apriori algorithm. Hence, the support count of X is recorded. Since f'is a
frequent itemset and its support count is also recorded, then we can com-
pute the confidence of X — Y. This contradicts our assumption. =

The lemma indicates that we need to record the support count of f— {a}.
This is achieved by lines 13—14 in MS-Apriori (Fig. 2.6). All problems in
Example 15 are solved. A similar rule generation function as genRules() in
Apriori can be designed to generate rules with multiple minimum supports.

2.5 Mining Class Association Rules

The mining models studied so far do not use any targets. That is, any item
can appear as a consequent or condition of a rule. However, in some appli-
cations, the user is interested in only rules with some fixed target items on
the right-hand side [22]. For example, the user has a collection of text doc-
uments from some topics (target items), and he/she wants to know what
words are correlated with each topic. In [25], a data mining system based
entirely on such rules, called class association rules, is reported, which
has been in use in Motorola for many different applications since 2006. In
the Web environment, class association rules are also useful because many
types of Web data are in the form of transactions, e.g., search queries is-
sued by users and pages clicked by visitors. Such applications often have
target items, e.g., advertisements. Web sites want to know how user activi-
ties are related to advertisements that the users may view or click (see
Chap. 12). This touches the issue of classification or prediction, which we
will study in the next chapter where we will see that such rules can be used
either directly for classification or indirectly as features for classification.

2.5.1 Problem Definition

Let T be a transaction data set consisting of n transactions. Each transac-
tion is labeled with a class y. Let / be the set of all items in 7, Y be the set
of all class labels (or target items) and / N Y = &. A class association
rule (CAR) is an implication of the form

X—y,where Xc l,andy € Y.

2.5 Mining Class Association Rules 37

The definitions of support and confidence are the same as those for nor-
mal association rules. In general, a class association rule is different from a
normal association rule in two ways:

1. The consequent of a CAR has only a single item, while the consequent
of a normal association rule can have any number of items.

2. The consequent y of a CAR can only be from the class label set 7, i.e., y
e Y. No item from / can appear as the consequent, and no class label
can appear as a rule condition. In contrast, a normal association rule can
have any item as a condition or a consequent.

Objective: The problem of mining CARs is to generate the complete set of
CARs that satisfies the user-specified minimum support (minsup) and min-
imum confidence (minconf) constraints.

Example 16: Fig. 2.9 shows a data set which has seven text documents.
Each document is a transaction and consists of a set of keywords. Each
transaction is also labeled with a topic class (education or sport).

1 = {Student, Teach, School, City, Game, Baseball, Basketball, Team,
Coach, Player, Spectator}
Y = {Education, Sport}.

Transactions Class
doc 1: Student, Teach, School : Education
doc 2: Student, School : Education
doc 3: Teach, School, City, Game : Education
doc 4: Baseball, Basketball : Sport
doc 5: Basketball, Player, Spectator : Sport
doc 6: Baseball, Coach, Game, Team : Sport
doc 7: Basketball, Team, City, Game : Sport

Fig. 2.9. An example of a data set for mining class association rules

Let minsup = 20% and minconf = 60%. The following are two examples of
class association rules:

Student, School — Education [sup= 2/7, conf = 2/2]
Game — Sport [sup= 2/7, conf = 2/3]. u

A question that one may ask is: can we mine the data by simply using the
Apriori algorithm and then perform a post-processing of the resulting rules
to select only those class association rules? In principle, the answer is yes
because CARs are a special type of association rules. However, in practice
this is often difficult or even impossible because of combinatorial explo-
sion, i.e., the number of rules generated in this way can be huge.

38 2 Association Rules and Sequential Patterns

2.5.2 Mining Algorithm

Unlike normal association rules, CARs can be mined directly in a single
step. The key operation is to find all ruleitems that have support above
minsup. A ruleitem is of the form:

(condset, y),

where condset — / is a set of items, and y € Y is a class label. The support
count of a condset (called condsupCount) is the number of transactions in
T that contain the condset. The support count of a ruleitem (called rule-
supCount) is the number of transactions in 7 that contain the condset and
are labeled with class y. Each ruleitem basically represents a rule:

condset — y,

whose support is (rulesupCount / n), where n is the total number of trans-
actions in 7, and whose confidence is (rulesupCount / condsupCount).

Ruleitems that satisfy the minsup are called frequent ruleitems, while
the rest are called infrequent ruleitems. For example, ({Student, School},
Education) is a ruleitem in 7 of Fig. 2.9. The support count of the condset
{Student, School} is 2, and the support count of the ruleitem is also 2. Then
the support of the ruleitem is 2/7 (= 28.6%), and the confidence of the rule-
item is 100%. If minsup = 10%, then the ruleitem satisfies the minsup
threshold. We say that it is frequent. If minconf = 80%, then the ruleitem
satisfies the minconf threshold. We say that the ruleitem is confident. We
thus have the class association rule:

Student, School — Education [sup= 2/7, conf = 2/2].

The rule generation algorithm, called CAR-Apriori, is given in Fig.
2.10, which is based on the Apriori algorithm. Like the Apriori algorithm,
CAR-Apriori generates all the frequent ruleitems by making multiple
passes over the data. In the first pass, it computes the support count of each
1-ruleitem (containing only one item in its condset) (line 1). The set of all
1-candidate ruleitems considered is:

C={{i},y)|ielandy e 1},

which basically associates each item in / (or in the transaction data set 7)
with every class label. Line 2 determines whether the candidate 1-
ruleitems are frequent. From frequent 1-ruleitems, we generate 1-condition
CARs (rules with only one condition) (line 3). In a subsequent pass, say &,
it starts with the seed set of (k—1)-ruleitems found to be frequent in the
(k—1)-th pass, and uses this seed set to generate new possibly frequent k-
ruleitems, called candidate k-ruleitems (Cj in line 5). The actual support

2.5 Mining Class Association Rules 39

Algorithm CAR-Apriori(7)

1 C) <« init-pass(7); // the first pass over T
2 Fy<« {f|fe Cy,f rulesupCount | n > minsup};

3 CAR, < {f|f e F\, frulesupCount / f.condsupCount > minconf};
4 for (k=2; Fi_ #QD; k++) do

5 C) < CARcandidate-gen(Fj_));

6 for each transaction ¢ € T do

7 for each candidate ¢ € C; do

8 if c.condset is contained in ¢ then // ¢ is a subset of ¢

9 c.condsupCount++;

10 if z.class = c.class then

11 c.rulesupCount++

12 endfor

13 end-for

14 Fi <« {c € C;| c.rulesupCount / n > minsup},

15 CAR, < {f|f € Fy, frulesupCount / f.condsupCount > minconf};
16 endfor
17 return CAR < U, CAR;

Fig. 2.10. The CAR-Apriori algorithm

counts, both condsupCount and rulesupCount, are updated during the scan
of the data (lines 6—13) for each candidate k-ruleitem. At the end of the da-
ta scan, it determines which of the candidate k-ruleitems in Cy are actually
frequent (line 14). From the frequent k-ruleitems, line 15 generates k-
condition CARs (class association rules with & conditions).

One interesting note about ruleitem generation is that if a ruleitem/rule
has a confidence of 100%, then extending the ruleitem with more condi-
tions (adding items to its condset) will also result in rules with 100% con-
fidence although their supports may drop with additional items. In some
applications, we may consider these subsequent rules redundant because
additional conditions do not provide any more information. Then, we
should not extend such ruleitems in candidate generation for the next level,
which can reduce the number of generated rules substantially. If desired,
redundancy handling can be added in the CAR-Apriori algorithm easily.

The CARcandidate-gen() function is very similar to the candidate-gen()
function in the Apriori algorithm, and it is thus omitted. The only differ-
ence is that in CARcandidate-gen() ruleitems with the same class are
joined by joining their condsets.

Example 17: Let us work on a complete example using our data in Fig.
2.9. We set minsup = 20%, and minconf = 60%.

Fi: {({School}, Education):(3, 3), ({Student}, Education):(2, 2),
({Teach}, Education):(2, 2), ({Baseball}, Sport):(2, 2),

40 2 Association Rules and Sequential Patterns

({Basketball}, Sport):(3, 3),
({Team}, Sport):(2, 2)}
Note: The two numbers within the parentheses after each ruleitem are its
condSupCount and ruleSupCount respectively.

[sup = 3/7, conf = 3/3]
[sup = 2/7, conf = 2/2]
[sup = 2/7, conf = 2/2]
[sup = 2/7, conf = 2/2]
[sup = 3/7, conf = 3/3]
[sup = 2/7, conf = 2/3]
[sup = 2/7, conf = 2/2]

Note: We do not deal with rule redundancy in this example.

Cy: {({School, Student}, Education), ({School, Teach}, Education),
({Student, Teach}, Education), ({Baseball, Basketball}, Sport),
({Baseball, Game}, Sport), ({Baseball, Team}, Sport),
({Basketball, Game}, Sport), ({Basketball, Team}, Sport),
({Game, Team}, Sport)}

F,: {({School, Student}, Education):(2, 2),
({School, Teach}, Education):(2, 2), ({Game, Team}, Sport):(2, 2)}

[sup = 2/7, conf = 2/2]
[sup = 2/7, conf = 2/2]
[sup = 2/7, conf = 2/2] L

({Game}, Sport):(3, 2),

CAR,: School — Education
Student — Education
Teach — Education
Baseball — Sport
Basketball — Sport
Game — Sport

Team — Sport

CAR,: School, Student — Education
School, Teach — Education

Game, Team — Sport

We note that for many applications involving target items, the data sets
used are relational tables. They need to be converted to transaction forms
before mining. We can use the method in Sect. 2.3 for the purpose.

Example 18: In Fig. 2.11(A), the data set has three data attributes and a
class attribute with two possible values, positive and negative. It is con-
verted to the transaction data in Fig. 2.11(B). Notice that for each class, we
only use its original value. There is no need to attach the attribute “Class”

Attribute1 | Attribute2 | Atribute3 Class
a a X positive
b n y negative
(A) Table data
ti: (Attribute1, a), (Attribute2, a), (Attribute3, x) : Positive
t;: (Attribute1, b), (Attribute2, n), (Attribute3, y) : negative

(B) Transaction data

Fig. 2.11. Converting a table data set (A) to a transaction data set (B)

2.6 Basic Concepts of Sequential Patterns 41

because there is no ambiguity. As discussed in Sect. 2.3, for each numeric
attribute, its value range needs to be discretized into intervals either manu-
ally or automatically before conversion and rule mining. There are many
discretization algorithms. Interested readers are referred to [14]. |

2.5.3 Mining with Multiple Minimum Supports

The concept of mining with multiple minimum supports discussed in Sect.
2.4 can be incorporated in class association rule mining in two ways:

1. Multiple minimum class supports: The user can specify different min-
imum supports for different classes. For example, the user has a data set
with two classes, Yes and No. Based on the application requirement,
he/she may want all rules of class Yes to have the minimum support of
5% and all rules of class No to have the minimum support of 20%.

2. Multiple minimum item supports: The user can specify a minimum
item support for every item (either a class item/label or a non-class
item). This is more general and is similar to normal association rule
mining discussed in Sect. 2.4.

For both approaches, similar mining algorithms to that given in Sect. 2.4
can be devised. The support difference constraint in Sect. 2.4.1 can be in-
corporated as well. Like normal association rule mining with multiple min-
imum supports, by setting minimum class and/or item supports to more
than 100% for some items, the user effectively instructs the algorithm not
to generate rules involving only these items.

Finally, although we have discussed only multiple minimum supports so
far, we can easily use different minimum confidences for different classes
as well, which provides an additional flexibility in applications.

2.6 Basic Concepts of Sequential Patterns

Association rule mining does not consider the order of transactions. How-
ever, in many applications such orderings are significant. For example, in
market basket analysis, it is interesting to know whether people buy some
items in sequence, e.g., buying bed first and then buying bed sheets some
time later. In Web usage mining, it is useful to find navigational patterns
in a Web site from sequences of page visits of users (see Chap. 12). In text
mining, considering the ordering of words in a sentence is vital for finding
linguistic or language patterns (see Chap. 11). For these applications, asso-
ciation rules will not be appropriate. Sequential patterns are needed. Be-

42 2 Association Rules and Sequential Patterns

low, we define the problem of mining sequential patterns and introduce the
main concepts involved.

Let I = {i}, iy, ..., i} be a set of items. A sequence is an ordered list of
itemsets. Recall an itemset X is a non-empty set of items X < /. We denote
a sequence s by (a1a,...a,), where q; is an itemset, which is also called an
element of 5. We denote an element (or an itemset) of a sequence by {xi,
Xy, ..., Xk}, wWhere x; € I is an item. We assume without loss of generality
that items in an element of a sequence are in lexicographic order. An item
can occur only once in an element of a sequence, but can occur multiple
times in different elements. The size of a sequence is the number of ele-
ments (or itemsets) in the sequence. The length of a sequence is the num-
ber of items in the sequence. A sequence of length £ is called a k-sequence.
If an item occurs multiple times in different elements of a sequence, each
occurrence contributes to the value of k. A sequence s; = (@1a;...q,) is a
subsequence of another sequence s, = (h1h,...b,), or s, is a supersequence
of sy, if there exist integers 1 <j; <j, < ... <j,.; <j. <vsuch that a, c b;,
a c by, ..., a, < b;. We also say that s, contains s.

Example 19: Let /={1, 2, 3,4, 5, 6, 7, 8, 9}. The sequence ({314, 518}) is
contained in (or is a subsequence of) ({6} {3, 7}{9}4, 5, 8}{3, 8}) because {3}

c {3, 7}, {4, 5} c {4, 5, 8}, and {8} c {3, 8}. However, ({3}{8}) is not con-
tained in ({3, 8}) or vice versa. The size of the sequence ({3}{4, 548}) i 1s 3,
and the length of the sequence is 4.

Objective: Given a set S of input data sequences (or sequence database),
the problem of mining sequential patterns is to find all sequences that
have a user-specified minimum support. Each such sequence is called a
frequent sequence, or a sequential pattern. The support for a se-
quence is the fraction of total data sequences in S that contains this se-
quence.

Example 20: We use the market basket analysis as an example. Each se-
quence in this context represents an ordered list of transactions of a par-
ticular customer. A transaction is a set of items that the customer pur-
chased at a time (called the transaction time). Then transactions in the
sequence are ordered by increasing transaction time. Table 2.1 shows a
transaction database which is already sorted according to customer ID (the
major key) and transaction time (the minor key). Table 2.2 gives the data
sequences (also called customer sequences). Table 2.3 gives the output

sequential patterns with the minimum support of 25%, i.e., two customers.
|

2.7 Mining Sequential Patterns Based on GSP 43

Table 2.1. A set of transactions sorted by customer ID and transaction time

Customer ID | Transaction Time {Transaction (items bought)

1 July 20, 2005 30

1 July 25, 2005 90

2 July 9, 2005 10, 20

2 July 14, 2005 30

2 July 20, 2005 10, 40, 60, 70
3 July 25, 2005 30, 50, 70, 80
4 July 25, 2005 30

4 July 29, 2005 30, 40, 70, 80
4 August 2, 2005 90

5 July 12, 2005 90

Table 2.2. The sequence database produced from the transactions in Table 2.1.

Customer ID Data Sequence
1 ({30} {90p
2 ({10, 20} {30} {10, 40, 60, 70})
3 ({30, 50, 70, 80}h
4 ({30} {30, 40, 70, 80} {90}
5 {90}

Table 2.3. The final output sequential patterns

Sequential Patterns with Support > 25%

1-sequences ({30, {40}, {70}, ({80}, ({90}
2-sequences ({30} {40}), ({30} {70}, ({30}, {90}, ({30, 70}),
({30, 80}), ({40, 70}), ({70, 80}
3-sequences ({30} {40, 70}), ({30, 70, 80}

2.7 Mining Sequential Patterns Based on GSP

This section describes two algorithms for mining sequential patterns based
on the GSP algorithm in [41]: the original GSP, which uses a single mini-
mum support, and MS-GSP, which uses multiple minimum supports.

2.7.1 GSP Algorithm

GSP works in almost the same way as the Apriori algorithm. We still use
F to store the set of all frequent k-sequences, and Cj to store the set of all

44 2 Association Rules and Sequential Patterns

Algorithm GSP(S)

1 C) < init-pass(S); // the first pass over S

2 Fy <« {{{fe Cy,fcount/n > minsup}; // nis the number of sequences in S
3 for (k=2; Fi #3; kt+) do // subsequent passes over S

4 Cy < candidate-gen-SPM(F}_,);

5 for each data sequence s € S do // scan the data once

6 for each candidate ¢ € C; do

7 if c is contained in s then

8 c.count++; // increment the support count
9 endfor

10 endfor

11 Fy« {c € Cy| c.count/n > minsup}

12 endfor

13 return F < U, F;

Fig. 2.12. The GSP Algorithm for generating sequential patterns

Function candidate-gen-SPM(F)_;) // SPM: Sequential Pattern Mining
1. Join step. Candidate sequences are generated by joining F_; with Fj_;. A se-
quence s, joins with s, if the subsequence obtained by dropping the first item
of sy is the same as the subsequence obtained by dropping the last item of s,.
The candidate sequence generated by joining s; with s, is the sequence s; ex-
tended with the last item in s,. There are two cases:
e the added item forms a separate element if it was a separate element in s»,
and is appended at the end of s; in the merged sequence, and
o the added item is part of the last element of s; in the merged sequence oth-
erwise.

When joining F; with F, we need to add the item in s, both as part of an
itemset and as a separate element. That is, joining ({x}) with ({y}) gives us
both ({x, y}) and ({x} {y}). Note that x and y in {x, y} are ordered.

2. Prune step. A candidate sequence is pruned if any one of its (k—1)-
subsequences is infrequent (without minimum support).

Fig. 2.13. The candidate-gen-SPM function

candidate k-sequences. The algorithm is given in Fig. 2.12. The main dif-
ference is in the candidate generation, candidate-gen-SPM(), which is giv-
en in Fig. 2.13. We use an example to illustrate the function.

Example 21: Table 2.4 shows F3, and C, after the join and prune steps. In
the join step, the sequence ({1, 2}{4}) joins with ({2K4, 5}) to produce ({1,
2}{4, 5}), and joins with ({2}{4K6}) to produce ({1, 2}{4} {6}). The other se-
quences cannot be joined. For instance, ({1}{4, 5}) does not join with any
sequence since there is no sequence of the form ({4, 5}{x}) or ({4, 5, x}). In
the prune step, ({1, 2}{4} {6}) is removed since ({1}{4} {6}) isnot in F5;. M

2.7 Mining Sequential Patterns Based on GSP 45

Table 2.4. Candidate generation: an example

Frequent Candidate 4-sequences

3-sequences | after joining | after pruning

d1,24{4h | (1,2}{4,5p) | ({1,2}{4,5p
1,24 {5h | (1,2} {4} {6}
{1} {4, 5p
1,4} {6h)
({2} {4, 5p
{2} {4} {6})

2.7.2 Mining with Multiple Minimum Supports

As in association rule mining, using a single minimum support in sequen-
tial pattern mining is also a limitation for many applications because some
items appear very frequently in the data, while some others appear rarely.

Example 22: One of the Web mining tasks is to mine comparative sen-
tences such as “the picture quality of camera X is better than that of cam-
era Y.” from product reviews, forum postings and blogs (see Chap. 11).
Such a sentence usually contains a comparative indicator word, e.g., better
in the above sentence. We want to discover linguistic patterns involving a
set of given comparative indicators, e.g., better, more, less, ahead, win,
superior, etc. Some of these indicators (e.g., more and better) appear very
frequently in natural language sentences, while some others (e.g., win and
ahead) appear rarely. In order to find patterns that contain such rare indi-
cators, we have to use a very low minsup. However, this causes patterns
involving frequent indicators to generate a huge number of spurious pat-
terns. Moreover, we need a way to tell the algorithm that we want only
patterns that contain at least one comparative indicator. Using GSP with a
single minsup is no longer appropriate. The multiple minimum supports
model solves both problems nicely.]

We again use the concept of minimum item supports (MIS). The user
is allowed to assign each item a MIS value. By providing different MIS
values for different items, the user essentially expresses different support
requirements for different sequential patterns. To ease the task of specify-
ing many MIS values by the user, the same strategies as those for mining
association rules can also be applied here (see Sect. 2.4.2).

Let MIS(7) be the MIS value of item i. The minimum support of a se-
quential pattern P is the lowest MIS value among the items in the pattern.
Let the set of items in P be: i, i, ..., i,. The minimum support for P is:

46 2 Association Rules and Sequential Patterns

Algorithm MS-GSP(S, MS) // MS stores all MIS values

1 M < sort(l, MS); // according to MIS(i)’s stored in MS

2 L < init-pass(M, S); // make the first pass over S

3 Fi<{{})|! e L,l.count/n>MIS(l)}; // nisthe size of S

4 for (k=2; Fi #3; kt+) do

5 if £ =2 then

6 C < level2-candidate-gen-SPM(L)

7 else C; <— MScandidate-gen-SPM(F}_;)

8 endif

9 for cach data sequence s € S do

10 for each candidate ¢ € C; do

11 if ¢ is contained in s then

12 c.count++

13 if ¢’ is contained in s, where ¢’ is ¢ after an occurrence of
c.minMISItem is removed from ¢ then

14 c.rest.countt++ /I c.rest: ¢ without c.minMISItem

15 endfor

16 endfor

17 Fy < {c € C;| c.count/n > MIS(c.minMISItem)}

18 endfor

19 return F < U; Fy;
Fig. 2.14. The MS-GSP algorithm

minsup(P) = min(MIS(i;), MIS(z,), ..., MIS(i,)).

The new algorithm, called MS-GSP, is given in Fig. 2.14. It generalizes
the GSP algorithm in Fig. 2.12. Like GSP, MS-GSP is also based on level-
wise search. Line 1 sorts the items in ascending order according to their
MIS values stored in MS. Line 2 makes the first pass over the sequence da-
ta using the function init-pass(), which performs the same function as that
in MS-Apriori to produce the seeds set L for generating the set of candi-
date sequences of length 2, i.e., C,. Frequent 1-sequences (£7) are obtained
from L (line 3).

For each subsequent pass, the algorithm works similarly to MS-Apriori.
The function level2-candidate-gen-SPM() can be designed based on lev-
el2-candidate-gen in MS-Apriori and the join step in Fig. 2.13. MScandi-
date-gen-SPM() is, however, complex, which we will discuss shortly.

In line 13, c.minMISItem gives the item that has the lowest MIS value in
the candidate sequence c. Unlike that in MS-Apriori, where the first item
in each itemset has the lowest MIS value, in sequential pattern mining the
item with the lowest MIS value may appear anywhere in a sequence. Simi-
lar to those in MS-Apriori, lines 13 and 14 are used to ensure that all se-
quential rules can be generated after MS-GSP without scanning the origi-
nal data. Note that in traditional sequential pattern mining, sequential rules
are not defined. We will define several types in Sect. 2.9.

2.7 Mining Sequential Patterns Based on GSP 47

Let us now discuss MScandidate-gen-SPM(). In MS-Apriori, the order-
ing of items is not important and thus we put the item with the lowest MIS
value in each itemset as the first item of the itemset, which simplifies the
join step. However, for sequential pattern mining, we cannot artificially
put the item with the lowest MIS value as the first item in a sequence be-
cause the ordering of items is significant. This causes problems for joining.

Example 23: Assume we have a sequence s; = ({1, 2}{4}) in Fj3, from
which we want to generate candidate sequences for the next level. Suppose
that item 1 has the lowest MIS value in s;. We use the candidate generation
function in Fig. 2.13. Assume also that the sequence s, = ({2}{4, 5}) is not
in F5 because its minimum support is not satisfied. Then we will not gen-
erate the candidate ({1, 2}{4, 5}). However, ({1, 24, 5}) can be frequent be-
cause items 2, 4, and 5 may have higher MIS values than item 1. .

To deal with this problem, let us make an observation. The problem on-
ly occurs when the first item in the sequence s, or the last item in the se-
quence s, is the only item with the lowest MIS value, i.e., no other item in
s1 (or s;) has the same lowest MIS value. If the item (say x) with the lowest
MIS wvalue is not the first item in s, then s, must contain x, and the candi-
date generation function in Fig. 2.13 will still be applicable. The same rea-
soning goes for the last item of s,. Thus, we only need special treatment for
these two cases.

Let us see how to deal with the first case, i.e., the first item is the only
item with the lowest MIS value. We use an example to develop the idea.
Assume we have the frequent 3-sequence of s; = ({1, 2K4}). Based on the
algorithm in Fig. 2.13, s; may be extended to generate two possible candi-
dates using ({2K4}{x}) and ({2}{4, x})

c1={1, 2{4K{x}) and c=({1, 2K4, x}),

where x is an item. However, ({2}{4}{x}) and ({244, x}) may not be frequent
because items 2, 4, and x may have higher MIS values than item 1, but we
still need to generate ¢; and ¢, because they can be frequent. A different
join strategy is thus needed.

We observe that for ¢, to be frequent, the subsequence s, = ({1H{4Kx})
must be frequent. Then, we can use s, and s, to generate c¢;. ¢, can be gen-
erated in a similar manner with s, = ({1}{4, x}). s, is basically the subse-
quence of ¢ (or ¢;) without the second item. Here we assume that the MIS
value of x is higher than item 1. Otherwise, it falls into the second case.

Let us see the same problem for the case where the last item has the on-
ly lowest MIS value. Again, we use an example to illustrate. Assume we
have the frequent 3-sequence s, = ({3, 5K1}). It can be extended to produce
two possible candidates based on the algorithm in Fig. 2.13,

48 2 Association Rules and Sequential Patterns

Function MScandidate-gen-SPM(F}_)
1 Join Step. Candidate sequences are generated by joining F_; with Fj_;.
2 if the MIS value of the first item in a sequence (denoted by s,) is less than (<)
the MIS value of every other item in s; then /s, and s, can be equal
Sequence s, joins with s, if (1) the subsequences obtained by dropping the
second item of s; and the last item of s, are the same, and (2) the MIS val-
ue of the last item of s, is greater than that of the first item of s5,. Candidate
sequences are generated by extending s, with the last item of s,:
o if the last item / in s, is a separate element then
{l} is appended at the end of s; as a separate element to form a candi-
date sequence c;.
if (the length and the size of s, are both 2) AND (the last item of s is
greater than the last item of 1) then // maintain lexicographic order
[is added at the end of the last element of s; to form another candi-
date sequence c;.
o else if ((the length of s; is 2 and the size of s; is 1) AND (the last item
of s, is greater than the last item of s1)) OR (the length of s,
is greater than 2) then
the last item in s, is added at the end of the last element of s, to
form the candidate sequence c».
3 elseif the MIS value of the last item in a sequence (denoted by s,) is less than
(<) the MIS value of every other item in s, then
A similar method to the one above can be used in the reverse order.
4 else use the Join Step in Fig. 2.13
5 Prune step: A candidate sequence is pruned if any one of its (k—1)-
subsequences is infrequent (without minimum support) except the subse-
quence that does not contain the item with strictly the lowest MIS value.

Fig. 2.15. The MScandidate-gen-SPM function

c1=({xK3, 5K1}), and ¢z = ({x, 3, S{1}).

For ¢, to be frequent, the subsequence s; = ({x}{3}{1}) has to be frequent
(we assume that the MIS value of x is higher than that of item 1). Thus, we
can use s, and s, to generate c. ¢, can be generated with s; = ({x, 3{1}). s,
is basically the subsequence of ¢; (or ¢,) without the second last item.

The MScandidate-gen-SPM() function is given in Fig. 2.15, which is
self-explanatory. Some special treatments are needed for 2-sequences be-
cause the same s, (or s;) may generate two candidate sequences. We use
two examples to show the working of the function.

Example 24: Consider the items 1, 2, 3, 4, 5, and 6 with their MIS values,

MIS(1) = 0.03 MIS(2) = 0.05 MIS(3) = 0.03
MIS(4) = 0.07 MIS(5) = 0.08 MIS(6) = 0.09.

2.8 Mining Sequential Patterns Based on PrefixSpan 49

The data set has 100 sequences. The following frequent 3-sequences are in

.9,

F5 with their actual support counts attached after “:”:

(a). ({1H{4K5}):4 (b). ({1{4X6}):5 (c). ({1}{5H6}):6
(d). {145, 6}):5 (e). ({1HBH3}):4 (f). ({6{3H6}):9
(9)- ({5, 6}{3}):5 (h). ({SH4}3}):4 (i). {4HSH3p:7.

For sequence (a) (= s), item 1 has the lowest MIS value. It cannot join
with sequence (b) because condition (1) in Fig. 2.15 is not satisfied. How-
ever, (a) can join with (¢) to produce the candidate sequence, ({1}{4}{5}{6}).
(a) can also join with (d) to produce ({1H4}5, 6}). (b) can join with (e) to
produce ({1}{4}{6}{3}), which is pruned subsequently because ({1}{4}{3}) is
infrequent. (d) and (e) can be joined to give ({1}{5, 6}{3}), but it is pruned
because ({1H5K3}) does not exist. (¢) can join with (f) to produce
{1K6}3}{6}) which is done in line 4 because both item 1 and item 3 in (e)
have the same MIS value. However, it is pruned because ({1}{3K6}) is in-
frequent. We do not join (d) and (g), although they can be joined based on
the algorithm in Fig. 2.13, because the first item of (d) has the lowest MIS
value and we use a different join method for such sequences.

Now we look at 3-sequences whose last item has strictly the lowest MIS
value. (i) (= s1) can join with (h) (= s,) to produce ({4}{5}{4}3}). However,
it is pruned because ({4H4}{3}) is not in F3. |

Example 25: Now we consider generating candidates from frequent 2-
sequences, which is special as we noted earlier. We use the same items and
MIS values in Example 24. The following frequent 2-sequences are in F,

€,9,

with their actual support counts attached after “:”:

(a). {1{5}):6 (b). {146}):7 (c) ({5K4}):8
(d). {1, 5}):6 (e). {1, 6}):6.
(a) can join with (b) to produce both {1H5}6}) and ({1}{5, 6}). (b) can join
with (d) to produce ({1, 5K6}). (e) can join with (a) to produce ({1, 6}{5}).
Clearly, there are other joins. Again, (a) will not join with (c). =
Note that the support difference constraint in Sect. 2.4.1 can also be
included. We omitted it to simplify the algorithm as it is already complex.

Also, the user can instruct the algorithm to generate only certain sequential
patterns or not to generate others by setting the MIS values suitably.

2.8 Mining Sequential Patterns Based on PrefixSpan

We now introduce another sequential pattern mining algorithm, called Pre-
fixSpan [33], which does not generate candidates. Different from the GSP

50 2 Association Rules and Sequential Patterns

algorithm [41], which can be regarded as performing breadth-first search
to find all sequential patterns, PrefixSpan performs depth-first search.

2.8.1 PrefixSpan Algorithm

It is easy to introduce the original PrefixSpan algorithm using an example.

Example 26: Consider again mining sequential patterns from Table 2.2
with minsup = 25%. PrefixSpan first sorts all items in each element (or
itemset) as shown in the table. Then, by one scan of the sequence database,
it finds all frequent items, i.e., 30, 40, 70, 80 and 90. The corresponding
length one sequential patterns are ({30}), ({40}), ({70}), ({80}) and ({90}).

We notice that the complete set of sequential patterns can actually be
divided into five mutually exclusive subsets: the subset with prefix ({30}),
the subset with prefix ({40}), the subset with prefix ({70}), the subset with
prefix ({80}), and the subset with prefix ({90}). We only need to find the
five subsets one by one.

To find sequential patterns having prefix ({30}), the algorithm extends
the prefix by adding items to it one at a time. To add the next item x, there
are two possibilities, i.e., X joining the last itemset of the prefix (i.e., ({30,
x})) and x forming a separate itemset (i.e., ({30Kx})). PrefixSpan performs
the task by first forming the ({30})-projected database and then finding all
the cases of the two types in the projected database. The projected database
is produced as follows: If a sequence contains item 30, then the suffix fol-
lowing the first 30 is extracted as a sequence in the projected database.
Furthermore, since infrequent items cannot appear in a sequential pattern,
all infrequent items are removed from the projection. The first sequence in
our example, ({30}{90}), is projected to ({90}). The second sequence, ({10,
20}{30}{10, 40, 60, 70}), is projected to ({40, 70}), where the infrequent
items 10 and 60 are removed. The third sequence ({30, 50, 70, 80}) is pro-
jected to ({_, 70, 80}), where the infrequent item 50 is removed. Note that
the underline symbol “ ” in this projection denotes that the items (only 30
in this case) in the last itemset of the prefix are in the same itemset as
items 50, 70 and 80 in the sequence. The fourth sequence is projected to
({30, 40, 70, 80}90}). The projection of the last sequence is empty since it
does not contain item 30. The final projected database for prefix ({30})
contains the following sequences:

{90}, ({40, 70}), ({_, 70, 80}), and ({30, 40, 70, 80}{90})

By scanning the projected database once, PrefixSpan finds all possible
one item extensions to the prefix, i.e., all x’s for ({30, x}) and all x’s for
{{30Kx}). Let us discuss the details.

2.8 Mining Sequential Patterns Based on PrefixSpan 51

Find All Frequent Patterns of the Form ({30, x}): Two templates {_, x}
and {30, x} are used to match each projected sequence to accumulate the
support count for each possible x (here x matches any item). If in the same
sequence multiple matches are found with the same x, they are only
counted once. Note that in general, the second template should use the last
itemset in the prefix rather than only its last item. In our example, they are
the same because there is only one item in the last itemset of the prefix.

Find All Frequent Patterns of the Form ({30}{x}): In this case, x’s are
frequent items in the projected database that are not in the same itemset as
the last item of the prefix.

Let us continue with our example. It is easy to check that both items 70
and 80 are in the same itemset as 30. That is, we have two frequent se-
quences ({30, 70}) and ({30, 80}). The support count of ({30, 70}) is 2 based
on the projected database; one from the projected sequence ({_, 70, 80}) (a
{_, x} match) and one from the projected sequence ({30, 40, 70, 80}{90}) (a
{30, x} match). In both cases, the x’s are the same, i.e., 70. Similarly, the
support count of ({30, 80}) is 2 as well and thus frequent.

It is also easy to check that items 40, 70, and 90 are also frequent but
not in the same itemset as 30. Thus, ({301{40}), ({30}{70}), and ({30}{90})
are three sequential patterns. The set of sequential patterns having prefix
({30}) can be further divided into five mutually exclusive subsets: the ones
with prefixes ({30, 70}), ({30, 80}), ({30}40}), ({30K70}), and ({30490}).

We can recursively find the five subsets by forming their corresponding
projected databases. For example, to find sequential patterns having prefix
({30}{40}), we can form the ({30440})-projected database containing pro-
jections ({_, 70}) and ({_, 70, 80K90}). Template ({ , x}) has two matches
and in both cases x is 70. Thus, ({30}40, 70}) is output as a sequential pat-
tern. Since there is no other frequent item in this projected database, the
prefix cannot grow longer. The depth-first search returns from this branch.

After completing the mining of the ({30})-projected database, we find all
sequential patterns with prefix ({30}, i.e., ({30}), ({30440}, ({30}{40, 70}),
{30K70}), ({30490}, ({30, 70}), ({30, 80}) and ({30, 70, 80})

By forming and mining the ({40})-, ({70})-, ({80})- and ({90})-pr01ected
databases, the remaining sequential patterns can be found.

The pseudo code of PrefixSpan can be found in [33]. Comparing to the
breadth-first search of GSP, the key advantage of PrefixSpan is that it does
not generate any candidates. It only counts the frequency of local items.
With a low minimum support, a huge number of candidates can be gener-
ated by GSP, which can cause memory and computational problems.

52 2 Association Rules and Sequential Patterns

2.8.2 Mining with Multiple Minimum Supports

The PrefixSpan algorithm can be adapted to mine with multiple minimum
supports. Again, let MIS(7) be the user-specified minimum item support
of item i. Let ¢ be the user-specified support difference threshold in the
support difference constraint (Sect. 2.4.1), i.e., |sup(i) — sup(j)| < o,
where i and j are items in the same sequential pattern, and sup(x) is the ac-
tual support of item x in the sequence database S. PrefixSpan can be modi-
fied as follows. We call the modified algorithm MS-PS.

1. Find every item i whose actual support in the sequence database S is at
least MIS(7). i is called a frequent item.

2. Sort all the discovered frequent items in ascending order according to
their MIS values. Let i, ..., i, be the frequent items in the sorted order.

3. For each item i, in the above sorted order,

(i) identify all the data sequences in S that contain i; and at the same
time remove every item j in each sequence that does not satisfy
Isup(j) — sup(iy)| < @. The resulting set of sequences is denoted by S;.
Note that we are not using i, as the prefix to project the database S.

(ii) call the function r-PrefixSpan(iy, S, count(MIS(iy))) (restricted Pre-
fixSpan), which finds all sequential patterns that contain i, i.e., no
pattern that does not contain #; should be generated. r-PrefixSpan()
uses count(MIS(i;)) (the minimum support count in terms of the
number of sequences) as the only minimum support for mining in S;.
The sequence count is easier to use than the MIS value in percent-
age, but they are equivalent. Once the complete set of such patterns
is found from S;, All occurrences of i; are removed from S.

r-PrefixSpan() is almost the same as PrefixSpan with one important differ-
ence. During each recursive call, either the prefix or every sequence in the
projected database must contain #; because, as we stated above, this func-
tion finds only those frequent sequences that contain #;. Another minor dif-
ference is that the support difference constraint needs to be checked during
each projection as sup(iy) may not be the lowest in the pattern.

Example 27: Consider mining sequential patterns from Table 2.5. Let
MIS(20) = 30% (3 sequences in minimum support count), MIS(30) = 20%
(2 sequences), MIS(40) = 30% (3 sequences), and the MIS values for the
rest of the items be 15% (2 sequences). We ignore the support difference
constraint as it is simple. In step 1, we find three frequent items, 20, 30
and 40. After sorting in step 2, we have (30, 20, 40). We then go to step 3.

In the first iteration of step 3, we work on #; = 30. Step 3(i) gives us the
second, fourth and sixth sequences in Table 2.5, i.e.,

2.9 Generating Rules from Sequential Patterns 53

Table 2.5. An example of a sequence database

Sequence ID Data Sequence

(20, 50}
({40K30K40, 60})
({40, 90, 120}
({30X20, 40}{40, 100})
(20, 40}{10})
({40{30}110})
({20}{80}70})

N[OOI |WIN|—~

S = {({40}{30}{40, 60}), ({30}{20, 40}{40, 100}, ({40}{30}{110})}.

We then run r-PrefixSpan(30, S, 2) in step 3(ii). The frequent items in
Sy are 30, and 40. They both have the support of 3 sequences. The length
one frequent sequence is only ({30}). ({40}) is not included because we re-
quire that every frequent sequence must contain 30. We next find frequent
sequences having prefix ({30}). The database S is projected to give ({40})
and ({40}{40}). 20, 60 and 100 have been removed because their supports in
S are less than the required support for item 30 (i.e., 2 sequences). For the
same reason, the projection of ({40}{30}{110}) is empty. Thus, we find a
length two frequent sequence ({30440}). In this case, there is no item in the
same itemset as 30 to form a frequent sequence of the form ({30, x}).

Next, we find frequent sequences with prefix ({40}). We again project
S1, which gives us only ({30}{40}) and ({30}). ({40, 100}) is not included be-
cause it does not contain 30. This projection gives us another length two
frequent sequence ({40430}). The first iteration of step 3 ends.

In the second iteration of step 3, we work on i, = 20. Step 3(i) gives us
the first, fourth, fifth and seventh sequences in Table 2.5 with item 30 re-
moved, S, = {({20, 50}), ({20, 40}{40, 100}), ({20, 40}{10}), ({20}{80K70})}.
It is easy to see that only item 20 is frequent, and thus only a length one
frequent sequence is generated, ({20}).

In the third iteration of step 3, we work on 75 = 40. We can verify that
again only one frequent sequence, i.e., ({40}), is found.

The final set of sequential patterns generated from the sequence data-
base in Table 2.5 is {({30}), ({20}), ({40}), ({40}{30}), ({30}{40})}. =

2.9 Generating Rules from Sequential Patterns

In classic sequential pattern mining, no rules are generated. It is, however,
possible to define and generate many types of rules. This section intro-

54 2 Association Rules and Sequential Patterns

duces only three types, sequential rules, label sequential rules and class
sequential rules, which have been used in Web usage mining and Web
content mining (see Chaps. 11 and 12).

2.9.1 Sequential Rules

A sequential rule (SR) is an implication of the form, X — ¥, where Y is a
sequence and X is a proper subsequence of Y, i.e., X is a subsequence of Y
and the length Y is greater than the length of X. The support of a sequen-
tial rule, X — 7Y, in a sequence database S is the fraction of sequences in S
that contain Y. The confidence of a sequential rule, X — Y, in S is the pro-
portion of sequences in S that contain X also contain Y.

Given a minimum support and a minimum confidence, according to the
downward closure property, all the rules can be generated from frequent
sequences without going to the original sequence data. Let us see an ex-
ample of a sequential rule found from the data sequences in Table 2.6.

Table 2.6. An example of a sequence database for mining sequential rules

Data Sequence

! ({1H3K5K7. 8, 9p
2 ({1H3}H6H7, 8}
3 {1, 647}

4 ({1H3}5, 6}

5 {1:{3H4h

Example 28: Given the sequence database in Table 2.6, the minimum
support of 30% and the minimum confidence of 60%, one of the sequential
rules found is the following,

{IKTYH - {137, 8} [sup = 2/5, conf = 2/3]
Data sequences 1, 2 and 3 contain ({1}{7}), and data sequences 1 and 2 con-
tain ({1}{3K7, 8}). []

If multiple minimum supports are used, we can employ the results of
multiple minimum support pattern mining to generate all the rules.

2.9.2 Label Sequential Rules

Sequential rules may not be restrictive enough in some applications. We
introduce a special kind of sequential rules called label sequential rules.
A label sequential rule (LSR) is of the form, X — ¥, where Y is a sequence

2.9 Generating Rules from Sequential Patterns 55

and X is a sequence produced from Y by replacing some of its items with
wildcards. A wildcard is denoted by an “*” which matches any item. These
replaced items are usually very important and are called labels. The labels
are a small subset of all the items in the data.

Example 29: Given the sequence database in Table 2.6, the minimum
support of 30% and the minimum confidence of 60%, one of the label se-
quential rules found is the following,

MK, ™ » {1H3KH7, 8}) [sup = 2/5, conf = 2/2].

Notice the confidence change compared to the rule in Example 28. The
supports of the two rules are the same. In this case, data sequences 1 and 2
contain ({1}{*K7, *}), and they also contain ({1}3¥7, 8}). Items 3 and 8 are
labels. u

LSRs are useful because in some applications we need to predict the la-
bels in an input sequence, e.g., items 3 and § above. The confidence of the
rule simply gives us the estimated probability that the two “*”’s are 3 and 8
given that an input sequence contains ({1}{*K7, *}). We will see an applica-
tion of LSRs in Chap. 11, where we want to predict whether a word in a
comparative sentence is an entity (e.g., a product name), which is a label.

Note that due to the use of wildcards, frequent sequences alone are not
sufficient for computing rule confidences. Scanning the data is needed.
Notice also that the same pattern may appear in a data sequence multiple
times. Rule confidences thus can be defined in different ways according to
application needs. The wildcards may also be restricted to match only cer-
tain types of items to make the label prediction meaningful and unambigu-
ous (see some examples in Chap. 11).

2.9.3 Class Sequential Rules

Class sequential rules (CSR) are analogous to class association rules
(CAR). Let S be a set of data sequences. Each sequence is also labeled
with a class y. Let / be the set of all items in S, and Y be the set of all class
labels, I N Y = &. Thus, the input data D for mining is represented with
{(s1, Y1), (52, ¥2), .., (Su» Vu)}, Where s;1s a sequence in S and y; € Yis its
class. A class sequential rule (CSR) is of the form

X — y, where X is a sequence, and y € Y.

A data instance (s;, y;) is said to cover a CSR, X — y, if X is a subsequence
of s;. A data instance (s;, ;) is said to satisfy a CSR if X is a subsequence
of s;and y; = y.

56 2 Association Rules and Sequential Patterns

Example 30: Table 2.7 gives an example of a sequence database with five
data sequences and two classes, ¢; and ¢;. Using the minimum support of
30% and the minimum confidence of 60%, one of the discovered CSRs is:

{1H3K7, 8} > c1 [sup = 2/5, conf = 2/3].
Data sequences 1 and 2 satisfy the rule, and data sequences 1, 2 and 5 cov-

er the rule. u

Table 2.7. An example of a sequence database for mining CSRs

Data Sequence Class
1 {1H3K5K7, 8, 9 €l
2 {1H3K6K7, 8p c
3 {1, 6X9 &
4 {3}5, 6})
5 {1H3KH4K7, 8) &

As in class association rule mining, we can modify the GSP and Prefix-
Span algorithms to produce algorithms for mining all CSRs. Similarly, we
can also use multiple minimum class supports and/or multiple minimum
item supports as in class association rule mining.

Bibliographic Notes

Association rule mining was introduced in 1993 by Agrawal et al. [2].
Since then, thousands of research papers have been published on the topic.
This short chapter only introduces some basics, and it, by no means, does
justice to the huge body of literature in the area. The bibliographic notes
here should help you explore further.

Since given a data set, a minimum support and a minimum confidence,
the solution (the set of frequent itemsets or the set of rules) is determined
and unique, most papers improve the mining efficiency. The most well-
known algorithm is the Apriori algorithm proposed by Agrawal and Sri-
kant [3], which has been described in this chapter. Another important algo-
rithm is FP-growth proposed by Han et al. [17]. The algorithm com-
presses the data and stores it in memory using a frequent pattern tree. It
then mines all frequent itemsets without candidate generation. Other nota-
ble general algorithms include those by Agarwal et al. [1], Mannila et al.
[26], Park et al. [31], Zaki et al. [55], etc. An efficiency comparison of var-
ious algorithms was reported by Zheng et al. [56].

Apart from performance improvements, several variations of the origi-
nal model were also proposed. Srikant and Agrawal [39], and Han and Fu

Bibliographic Notes 57

[15] proposed two algorithms to mine generalized association rules or
multi-level association rules. Liu et al. [23] extended the original model
to take multiple minimum supports, which was also studied by Wang et
al. [47], Seno and Karypis [37], Xiong et al. [51], etc. Srikant et al. [42]
proposed to mine association rules with item constraints. The model re-
stricts the rules that should be generated. Ng et al. [28] generalized the
idea, which was followed by many subsequent papers on the topic of con-
strained rule mining.

It is well known that association rule mining often generates a huge
number of frequent itemsets and rules. Bayardo [6] and Lin and Kedem
[21] introduced the problem of mining maximal frequent itemsets, which
are itemsets with no frequent supersets. Improved algorithms are reported
in many papers, e.g., [1, 10]. Since maximal pattern mining only finds
longest patterns, the support information of their subsets, which are obvi-
ously also frequent, is not found. As a result, association rules cannot be
generated. The next significant development was the mining of closed fre-
quent itemsets studied by Pasquier et al. [32], Zaki and Hsiao [54], and
Wang et al. [46]. Closed itemsets are better than maximal frequent itemsets
because closed frequent itemsets provide a lossless concise representation
of all frequent itemsets.

Other developments on association rules include class association rules
by Liu et al. [22] and emerging patterns (similar to class association
rules) by Dong and Li [13], implication rules by Brin et al. [§8], cyclic as-
sociation rules by Ozden et al. [29], periodic patterns by Yang et al.
[52], negative association rules by Savasere [36] and Wu et al. [50],
weighted association rules by Wang et al. [48], association rules with
numerical variables by Webb [49], high-performance rule mining by
Buehrer et al. [9], incremental rule mining by Cheung et al. [11], inte-
grating mining with database systems by Sarawagi et al. [35], sampling
for rule mining by Toivonen [44], and many others. Cong et al. [12] in-
troduced association rule mining from bioinformatics data, which typically
have a very large number of attributes (more than ten thousands) but only a
very small number of records or transactions (e.g., less than 100).

Another major research area of association rules is the interestingness
of the discovered rules. Since an association rule miner often generates a
huge number of rules, it is very difficult, if not impossible, for human us-
ers to inspect them in order to find those truly interesting or useful rules.
Researchers have proposed many techniques to help users identify such
rules, e.g., [7, 20, 24, 25, 30, 34, 38, 43]. There are also several data min-
ing query languages [16, 18, 27, 45]. A deployed data mining system that
uses some of these ideas, class association rules, and OLAP is reported in
[25], which has been in production use since 2006.

58 2 Association Rules and Sequential Patterns

Regarding sequential pattern mining, the first algorithm was proposed
by Agrawal and Srikant [4], which was a direct application of the Apriori
algorithm. Improvements were made subsequently by several researchers,
e.g., Ayres et al. [5], Pei et al. [33], Srikant and Agrawal [41], Zaki [53],
etc. The MS-GSP and MS-PS algorithms for mining sequential patterns
with multiple minimum supports and the support difference constraint are
introduced in this book. Label and class sequential rules have been used in
[19] for mining comparative sentences from text documents. The literature
on association rule mining and sequential pattern mining is extensive.

There are several publicly available implementations of algorithms for
mining frequent itemsets, maximal frequent itemsets, closed frequent item-
sets, and sequential patterns from various research groups, most notably
from those of Jiawei Han, Johnanne Gehrke, and Mohammed Zaki. There
were also two workshops dedicated to frequent itemset mining organized
by Roberto Bayardo, Bart Goethals, and Mohammed J. Zaki, which re-
ported many efficient implementations. The workshop Web sites are
http://fimi.cs.helsinki.fi/fimi03/ and http://fimi.cs.helsinki.fi/fimi04/.

Bibliography

1. Agarwal, R., C. Aggarwal, and V. Prasad. A tree projection algorithm for
generation of frequent item sets. Journal of Parallel and Distributed
Computing, 2001, 61(3): p. 350-371.

2. Agrawal, R., T. Imieliski, and A. Swami. Mining association rules between
sets of items in large databases. In Proceedings of ACM SIGMOD
International Conference on Management of Data (SIGMOD-1993), 1993.

3. Agrawal, R. and R. Srikant. Fast algorithms for mining association rules. In
Proceedings of International Conference on Very Large Data Bases (VLDB-
1994), 1994.

4. Agrawal, R. and R. Srikant. Mining sequential patterns. In Proceedings of
IEEE International Conference on Data Engingeering (ICDE-1995), 1995.

5. Agyres,], J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using
a bitmap representation. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-2002), 2002.

6. Bayardo Jr, R. Efficiently mining long patterns from databases. In
Proceedings of ACM SIGMOD Conference on Management of Data
(SIGMOD-1998), 1998.

7. Bayardo Jr, R. and R. Agrawal. Mining the most interesting rules. In
Proceedings of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-1999), 1999.

8. Brin, S., R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset counting and
implication rules for market basket data. In Proceedings of ACM SIGMOD
Conference on Management of Data (SIGMOD-1997), 1997.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Bibliography 59

Buehrer, G., S. Parthasarathy, and A. Ghoting. Out-of-core frequent pattern
mining on a commodity PC. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-2006), 2006.
Burdick, D., M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu. Mafia: A
maximal frequent itemset algorithm. Knowledge and Data Engineering, IEEE
Transactions on, 2005, 17(11): p. 1490-1504.

Cheung, D., S. Lee, and B. Kao. A general incremental technique for
maintaining discovered association rules. In Proceedings of the Fifih
International Conference on Database Systems for Advanced Applications
(DASFAA-1997), 1997.

Cong, G., K. Tan, A. Tung, and X. Xu. Mining top-k covering rule groups for
gene expression data. In Proceedings of ACM SIGMOD Conference on
Management of Data (SIGMOD-2005), 2005.

Dong, G. and J. Li. Efficient mining of emerging patterns: Discovering trends
and differences. In Proceedings of ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-1999), 1999.

Dougherty, J., R. Kohavi, and M. Sahami. Supervised and unsupervised
discretization of continuous features. In Proceedings of International
Conference on Machine Learning (ICML-1995), 1995.

Han, J. and Y. Fu. Discovery of Multi-Level Association Rules from Large
Databases. In Proceedings of International Conference on Very Large Data
Bases (VLDB-1995), 1995.

Han, J., Y. Fu, W. Wang, K. Koperski, and O. Zaiane. DMQL: A data mining
query language for relational databases. In Proceedings of 1996 ACM
SIGMOD workshop on Research Issues in Data Mining and Knowledge
Discovery (DMKD-1996), 1996.

Han, J., J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In Proceedings of ACM SIGMOD Conference on Management of
Data (SIGMOD-2000), 2000.

Imielinski, T. and A. Virmani. MSQL: A query language for database mining.
Data Mining and Knowledge Discovery, 1999, 3(4): p. 373-408.

Jindal, N. and B. Liu. Mining comparative sentences and relations. In
Proceedings of National Conf- on Artificial Intelligence (AAAI-2006), 2006.
Klemettinen, M., H. Mannila, P. Ronkainen, H. Toivonen, and A. Verkamo.
Finding interesting rules from large sets of discovered association rules. In
Proceedings of ACM International Conference on Information and
Knowledge Management (CIKM-1994), 1994.

Lin, D. and Z. Kedem. Pincer-search: A new algorithm for discovering the
maximum frequent set. International Conference on Extended Database
Technology (EDBT-1998), 1998: p. 103-119.

Liu, B., W. Hsu, and Y. Ma. Integrating classification and association rule
mining. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-1998), 1998.

Liu, B., W. Hsu, and Y. Ma. Mining association rules with multiple minimum
supports. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-1999), 1999.

60

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

2 Association Rules and Sequential Patterns

Liu, B.,, W. Hsu, and Y. Ma. Pruning and summarizing the discovered
associations. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-1999), 1999.

Liu, B., K. Zhao, J. Benkler, and W. Xiao. Rule interestingness analysis using
OLAP operations. In Proceedings of ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-2006), 2006.

Mannila, H., H. Toivonen, and A. Verkamo. Efficient algorithms for
discovering association rules. In Proceedings of Knowledge Discovery in
Databases (KDD'94), 1994.

Meo, R., G. Psaila, and S. Ceri. A new SQL-like operator for mining
association rules. In Proceedings of International Conference on Very Large
Data Bases (VLDB-1996), 1996.

Ng, R., L. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning
optimizations of constrained associations rules. ACM SIGMOD Record, 1998,
27(2): p. 13-24.

Ozden, B., S. Ramaswamy, and A. Silberschatz. Cyclic association rules. In
Proceedings of IEEE International Conference on Data Engingeering (ICDE-
2002),2002.

Padmanabhan, B. and A. Tuzhilin. Small is beautiful: discovering the
minimal set of unexpected patterns. In Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD-
2000), 2000.

Park, J., M. Chen, and P. Yu. An effective hash-based algorithm for mining
association rules. ACM SIGMOD Record, 1995, 24(2): p. 175-186.

Pasquier, N., Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent
closed itemsets for association rules. Database Theory—ICDT’99, 1999: p.
398-416.

Pei, J., J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu.
PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern
growth. In Proceedings of IEEE International Conference on Data
Engingeering (ICDE-2001), 2001.

Piatetsky-Shapiro, G. Discovery, analysis, and presentation of strong rules.
Knowledge discovery in databases, 1991.

Sarawagi, S., S. Thomas, and R. Agrawal. Integrating association rule mining
with relational database systems: Alternatives and implications. Data Mining
and Knowledge Discovery, 2000, 4(2): p. 89-125.

Savasere, A., E. Omiecinski, and S. Navathe. Mining for strong negative
associations in a large database of customer transactions. In Proceedings of
IEEE International Conference on Data Engingeering (ICDE-1998), 1998.
Seno, M. and G. Karypis. Finding frequent patterns using length-decreasing
support constraints. Data Mining and Knowledge Discovery, 2005, 10(3): p.
197-228.

Silberschatz, A. and A. Tuzhilin. What makes patterns interesting in
knowledge discovery systems. [EEE Transactions on Knowledge and Data
Engineering, 1996, 8(6): p. 970-974.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Bibliography 61

Srikant, R. and R. Agrawal. Mining generalized association rules. Future
Generation Computer Systems, 1997, 13(2-3): p. 161-180.

Srikant, R. and R. Agrawal. Mining quantitative association rules in large
relational tables. ACM SIGMOD Record, 1996, 25(2): p. 1-12.

Srikant, R. and R. Agrawal. Mining sequential patterns: Generalizations and
performance improvements. Advances in Database Technology—EDBT'96,
1996: p. 1-17.

Srikant, R., Q. Vu, and R. Agrawal. Mining association rules with item
constraints. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-1997), 1997.

Tan, P., V. Kumar, and J. Srivastava. Selecting the right interestingness
measure for association patterns. In Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD-
2002), 2002.

Toivonen, H. Sampling large databases for association rules. In Proceedings
of International Conference on Very Large Data Bases (VLDB-1996), 1996.
Tuzhilin, A. and B. Liu. Querying multiple sets of discovered rules. In
Proceedings of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2002), 2002.

Wang, J., J. Han, and J. Pei. Closet+: Searching for the best strategies for
mining frequent closed itemsets. In Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD-
2003), 2003.

Wang, K., Y. He, and J. Han. Mining frequent itemsets using support
constraints. In Proceedings of International Conference on Very Large Data
Bases (VLDB-2000), 2000.

Wang, W., J. Yang, and P. Yu. WAR: weighted association rules for item
intensities. Knowledge and Information systems, 2004, 6(2): p. 203-229.
Webb, G. Discovering associations with numeric variables. In Proceedings of
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-2001),2001.

Wu, X., C. Zhang, and S. Zhang. Efficient mining of both positive and
negative association rules. ACM Transactions on Information Systems (TOIS),
2004, 22(3): p. 381-405.

Xiong, H., P. Tan, and V. Kumar. Mining strong affinity association patterns
in data sets with skewed support distribution. In Proceedings of IEEE
International Conference on Data Mining (ICDM-2003), 2003.

Yang, J., W. Wang, and P. Yu. Mining surprising periodic patterns. Data
Mining and Knowledge Discovery, 2004, 9(2): p. 189-216.

Zaki, M. SPADE: An efficient algorithm for mining frequent sequences.
Machine Learning, 2001, 42(1): p. 31-60.

Zaki, M. and C. Hsiao. CHARM: An efficient algorithm for closed
association rule mining. In Proceedings of SIAM International Conference on
Data Mining (SDM-2002), 2002.

62 2 Association Rules and Sequential Patterns

55. Zaki, M., S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast
discovery of association rules. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-1997), 1997.

56. Zheng, Z., R. Kohavi, and L. Mason. Real world performance of association
rule algorithms. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2001), 2001.

3 Supervised Learning

Supervised learning has been a great success in real-world applications. It
is used in almost every domain, including text and Web domains. Super-
vised learning is also called classification or inductive learning in ma-
chine learning. This type of learning is analogous to human learning from
past experiences to gain new knowledge in order to improve our ability to
perform real-world tasks. However, since computers do not have “experi-
ences”, machine learning learns from data, which are collected in the past
and represent past experiences in some real-world applications.

There are several types of supervised learning tasks. In this chapter, we
focus on one particular type, namely, learning a target function that can be
used to predict the values of a discrete class attribute. This type of learning
has been the focus of the machine learning research and is perhaps also the
most widely used learning paradigm in practice. This chapter introduces a
number of such supervised learning techniques. They are used in almost
every Web mining application. We will see their uses from Chaps. 6—12.

3.1 Basic Concepts

A data set used in the learning task consists of a set of data records, which
are described by a set of attributes 4 = {4, 4,, ..., A4}, Where |4| denotes
the number of attributes or the size of the set 4. The data set also has a
special target attribute C, which is called the class attribute. In our subse-
quent discussions, we consider C separately from attributes in 4 due to its
special status, i.e., we assume that C is not in 4. The class attribute C has a
set of discrete values, i.e., C = {ci, ¢, ..., ¢/}, where |C| is the number of
classes and |C| > 2. A class value is also called a class label. A data set for
learning is simply a relational table. Each data record describes a piece of
“past experience”. In the machine learning and data mining literature, a da-
ta record is also called an example, an instance, a case or a vector. A data
set basically consists of a set of examples or instances.

Given a data set D, the objective of learning is to produce a classifica-
tion/prediction function to relate values of attributes in 4 and classes in
C. The function can be used to predict the class values/labels of the future

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 63
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3 3,
© Springer-Verlag Berlin Heidelberg 2011

64 3 Supervised Learning

data. The function is also called a classification model, a predictive mod-
el or simply a classifier. We will use these terms interchangeably in this
book. It should be noted that the function/model can be in any form, e.g., a
decision tree, a set of rules, a Bayesian model or a hyperplane.

Example 1: Table 3.1 shows a small loan application data set. It has four
attributes. The first attribute is Age, which has three possible values,
young, middle and old. The second attribute is Has_Job, which indicates
whether an applicant has a job. Its possible values are true (has a job) and
false (does not have a job). The third attribute is Own_house, which shows
whether an applicant owns a house. The fourth attribute is Credit_rating,
which has three possible values, fair, good and excellent. The last column
is the Class attribute, which shows whether each loan application was ap-
proved (denoted by Yes) or not (denoted by No) in the past.

Table 3.1. A loan application data set

ID Age Has_job | Own_house | Credit_rating | Class
1 young false false fair No
2 young false false good No
3 young true false good Yes
4 young true true fair Yes
5 young false false fair No
6 middle false false fair No
7 middle false false good No
8 middle true true good Yes
9 middle false true excellent Yes
10 middle false true excellent Yes

11 old false true excellent Yes
12 old false true good Yes
13 old true false good Yes
14 old true false excellent Yes
15 old false false fair No

We want to learn a classification model from this data set that can be
used to classify future loan applications. That is, when a new customer
comes into the bank to apply for a loan, after inputting his/her age, whether
he/she has a job, whether he/she owns a house, and his/her credit rating,
the classification model should predict whether his/her loan application
should be approved. .

Our learning task is called supervised learning because the class labels
(e.g., Yes and No values of the class attribute in Table 3.1) are provided in

3.1 Basic Concepts 65

the data. It is as if some teacher tells us the classes. This is in contrast to
the unsupervised learning, where the classes are not known and the learn-
ing algorithm needs to automatically generate classes. Unsupervised learn-
ing is the topic of the next chapter.

The data set used for learning is called the training data (or the train-
ing set). After a model is learned or built from the training data by a
learning algorithm, it is evaluated using a set of test data (or unseen da-
ta) to assess the model accuracy.

It is important to note that the test data is not used in learning the classi-
fication model. The examples in the test data usually also have class labels.
That is why the test data can be used to assess the accuracy of the learned
model because we can check whether the class predicted for each test case
by the model is the same as the actual class of the test case. In order to
learn and also to test, the available data (which has classes) for learning is
usually split into two disjoint subsets, the training set (for learning) and the
test set (for testing). We will discuss this further in Sect. 3.3.

The accuracy of a classification model on a test set is defined as:

Number of correct classifications 1
Accuracy = ()

Total number of test cases

where a correct classification means that the learned model predicts the
same class as the original class of the test case. There are also other meas-
ures that can be used. We will discuss them in Sect. 3.3.

We pause here to raises two important questions:

1. What do we mean by learning by a computer system?
2. What is the relationship between the training and the test data?

We answer the first question first. Given a data set D representing past
“experiences”, a task 7" and a performance measure M, a computer system
is said to learn from the data to perform the task 7 if after learning the sys-
tem’s performance on the task 7" improves as measured by M. In other
words, the learned model or knowledge helps the system to perform the
task better as compared to no learning. Learning is the process of building
the model or extracting the knowledge.

We use the data set in Example 1 to explain the idea. The task is to pre-
dict whether a loan application should be approved. The performance
measure M is the accuracy in Equation (1). With the data set in Table 3.1,
if there is no learning, all we can do is to guess randomly or to simply take
the majority class (which is the Yes class). Suppose we use the majority
class and announce that every future instance or case belongs to the class
Yes. If the future data are drawn from the same distribution as the existing
training data in Table 3.1, the estimated classification/prediction accuracy

66 3 Supervised Learning

on the future data is 9/15 = 0.6 as there are 9 Yes class examples out of the
total of 15 examples in Table 3.1. The question is: can we do better with
learning? If the learned model can indeed improve the accuracy, then the
learning is said to be effective.

The second question in fact touches the fundamental assumption of
machine learning, especially the theoretical study of machine learning.
The assumption is that the distribution of training examples is identical to
the distribution of test examples (including future unseen examples). In
practical applications, this assumption is often violated to a certain degree.
Strong violations will clearly result in poor classification accuracy, which
is quite intuitive because if the test data behave very differently from the
training data then the learned model will not perform well on the test data.
To achieve good accuracy on the test data, training examples must be suf-
ficiently representative of the test data.

We now illustrate the steps of learning in Fig. 3.1 based on the preced-
ing discussions. In step 1, a learning algorithm uses the training data to
generate a classification model. This step is also called the training step or
training phase. In step 2, the learned model is tested using the test set to
obtain the classification accuracy. This step is called the testing step or
testing phase. If the accuracy of the learned model on the test data is satis-
factory, the model can be used in real-world tasks to predict classes of new
cases (which do not have classes). If the accuracy is not satisfactory, we
need to go back and choose a different learning algorithm and/or do some
further processing of the data (this step is called data pre-processing, not
shown in the figure). A practical learning task typically involves many it-
erations of these steps before a satisfactory model is built. It is also possi-
ble that we are unable to build a satisfactory model due to a high degree of
randomness in the data or limitations of current learning algorithms.

.. Learning
Training algorithm — @ Test

data data

Step 1: Training Step 2: Testing

Fig. 3.1. The basic learning process: training and testing

From the next section onward, we study several supervised learning al-
gorithms, except Sect. 3.3, which focuses on model/classifier evaluation.

We note that throughout the chapter we assume that the training and test
data are available for learning. However, in many text and Web page re-
lated learning tasks, this is not true. Usually, we need to collect raw data,

3.2 Decision Tree Induction 67

design attributes and compute attribute values from the raw data. The rea-
son is that the raw data in text and Web applications are often not suitable
for learning either because their formats are not right or because there are
no obvious attributes in the raw text documents or Web pages.

3.2 Decision Tree Induction

Decision tree learning is one of the most widely used techniques for classi-
fication. Its classification accuracy is competitive with other learning me-
thods, and it is very efficient. The learned classification model is repre-
sented as a tree, called a decision tree. The techniques presented in this
section are based on the C4.5 system from Quinlan [49].

Example 2: Fig. 3.2 shows a possible decision tree learnt from the data in
Table 3.1. The tree has two types of nodes, decision nodes (which are in-
ternal nodes) and leaf nodes. A decision node specifies some test (i.c.,
asks a question) on a single attribute. A leaf node indicates a class.

Young mid|dle old
Has_job? | | Own_house? | |Creditﬁrating?
TN
true false true false fair good excellent
AN e | ~
Yes No Yes No No Yes Yes
272) (3/3) (3/3) 22y (1/1) (2/2) (2/2)

Fig. 3.2. A decision tree for the data in Table 3.1

The root node of the decision tree in Fig. 3.2 is Age, which basically
asks the question: what is the age of the applicant? It has three possible an-
swers or outcomes, which are the three possible values of Age. These
three values form three tree branches/edges. The other internal nodes have
the same meaning. Each leaf node gives a class value (Yes or No). (x/y)
below each class means that x out of y training examples that reach this
leaf node have the class of the leaf. For instance, the class of the left most
leaf node is Yes. Two training examples (examples 3 and 4 in Table 3.1)
reach here and both of them are of class Yes. -

To use the decision tree in testing, we traverse the tree top-down ac-
cording to the attribute values of the given test instance until we reach a
leaf node. The class of the leaf is the predicted class of the test instance.

68 3 Supervised Learning

Example 3: We use the tree to predict the class of the following new in-
stance, which describes a new loan applicant.

Age Has_job Own_house Credit-rating Class
young false false good ?

Going through the decision tree, we find that the predicted class is NO as
we reach the second leaf node from the left. .

A decision tree is constructed by partitioning the training data so that the
resulting subsets are as pure as possible. A pure subset is one that con-
tains only training examples of a single class. If we apply all the training
data in Table 3.1 on the tree in Fig. 3.2, we will see that the training exam-
ples reaching each leaf node form a subset of examples that have the same
class as the class of the leaf. In fact, we can see that from the x and y val-
ues in (x/y). We will discuss the decision tree building algorithm in Sect.
3.2.1.

An interesting question is: Is the tree in Fig. 3.2 unique for the data in
Table 3.1? The answer is no. In fact, there are many possible trees that can
be learned from the data. For example, Fig. 3.3 gives another decision tree,
which is much smaller and is also able to partition the training data per-
fectly according to their classes.

true false
/ N\

Yer
(6/6)

true false

Yes No
(3/3) (6/6)

Fig. 3.3. A smaller tree for the data set in Table 3.1

In practice, one wants to have a small and accurate tree for many rea-
sons. A smaller tree is more general and also tends to be more accurate (we
will discuss this later). It is also easier to understand by human users. In
many applications, the user understanding of the classifier is important.
For example, in some medical applications, doctors want to understand the
model that classifies whether a person has a particular disease. It is not sat-
isfactory to simply produce a classification because without understanding
why the decision is made the doctor may not trust the system and/or does
not gain useful knowledge.

It is useful to note that in both Fig. 3.2 and Fig. 3.3, the training exam-

3.2 Decision Tree Induction 69

ples that reach each leaf node all have the same class (see the values of
(x/y) at each leaf node). However, for most real-life data sets, this is usu-
ally not the case. That is, the examples that reach a particular leaf node are
not of the same class, i.e., x < y. The value of x/y is, in fact, the confidence
(conf) value used in association rule mining, and x is the support count.
This suggests that a decision tree can be converted to a set of if-then rules.

Yes, indeed. The conversion is done as follows: Each path from the root
to a leaf forms a rule. All the decision nodes along the path form the condi-
tions of the rule and the leaf node or the class forms the consequent. For
each rule, a support and confidence can be attached. Note that in most
classification systems, these two values are not provided. We add them
here to see the connection of association rules and decision trees.

[I32]

Example 4: The tree in Fig. 3.3 generates three rules. “,” means “and”.

Own_house = true — Class =Yes [sup=6/15, conf=6/6]
Own_house = false, Has_job = true — Class = Yes [sup=3/15, conf=3/3]
Own_house = false, Has_job = false — Class = No [sup=6/15, conf=6/6].

We can see that these rules are of the same format as association rules.
However, the rules above are only a small subset of the rules that can be
found in the data of Table 3.1. For instance, the decision tree in Fig. 3.3
does not find the following rule:

Age = young, Has_job = false — Class = No [sup=3/15, conf=3/3].

Thus, we say that a decision tree only finds a subset of rules that exist in
data, which is sufficient for classification. The objective of association rule
mining is to find all rules subject to some minimum support and minimum
confidence constraints. Thus, the two methods have different objectives.
We will discuss these issues again in Sect. 3.5 when we show that associa-
tion rules can be used for classification as well, which is obvious.

An interesting and important property of a decision tree and its resulting
set of rules is that the tree paths or the rules are mutually exclusive and
exhaustive. This means that every data instance is covered by a single rule
(a tree path) and a single rule only. By covering a data instance, we mean
that the instance satisfies the conditions of the rule.

We also say that a decision tree generalizes the data as a tree is a small-
er (more compact) description of the data, i.e., it captures the key regulari-
ties in the data. Then, the problem becomes building the best tree that is
small and accurate. It turns out that finding the best tree that models the
data is a NP-complete problem [26]. All existing algorithms use heuristic
methods for tree building. Below, we study one of the most successful
techniques.

70 3 Supervised Learning

Algorithm decisionTree(D, A4, T)

1 if D contains only training examples of the same class ¢; € C then

2 make 7T a leaf node labeled with class c;;

3 elseif 4 = then

4 make 7 a leaf node labeled with c;, which is the most frequent class in D

5 else // D contains examples belonging to a mixture of classes. We select a single

6 // attribute to partition D into subsets so that each subset is purer

7 po = impurityEval-1(D);

8 for each attribute 4; € A (={4,, 4y, ..., A;}) do

9 p: = impurityEval-2(4,, D)

10 endfor

11 Select A, € {4, A, ..., 4;} that gives the biggest impurity reduction,
computed using py — p;;

12 if pg — p, < threshold then // A, does not significantly reduce impurity p,

13 make 7 a leaf node labeled with ¢;, the most frequent class in D.

14 else /] A4 is able to reduce impurity p,

15 Make T a decision node on A;

16 Let the possible values of 4, be v, v,, ..., v,. Partition D into m
disjoint subsets Dy, D, ..., D,, based on the m values of 4,.

17 for each D;in {D,, D,, ..., D,,} do

18 if D; # & then

19 create a branch (edge) node 7} for v; as a child node of T;

20 decisionTree(D;, A—{Ag}, T;) // Agis removed

21 endif

22 endfor

23 endif

24 endif

Fig. 3.4. A decision tree learning algorithm

3.2.1 Learning Algorithm

As indicated earlier, a decision tree 7 simply partitions the training data set
D into disjoint subsets so that each subset is as pure as possible (of the
same class). The learning of a tree is typically done using the divide-and-
conquer strategy that recursively partitions the data to produce the tree. At
the beginning, all the examples are at the root. As the tree grows, the ex-
amples are sub-divided recursively. A decision tree learning algorithm is
given in Fig. 3.4. For now, we assume that every attribute in D takes dis-
crete values. This assumption is not necessary as we will see later.

The stopping criteria of the recursion are in lines 1-4 in Fig. 3.4. The
algorithm stops when all the training examples in the current data are of
the same class, or when every attribute has been used along the current tree

3.2 Decision Tree Induction 71

path. In tree learning, each successive recursion chooses the best attribute
to partition the data at the current node according to the values of the at-
tribute. The best attribute is selected based on a function that aims to mi-
nimize the impurity after the partitioning (lines 7-11). In other words, it
maximizes the purity. The key in decision tree learning is thus the choice
of the impurity function, which is used in lines 7, 9 and 11 in Fig. 3.4.
The recursive recall of the algorithm is in line 20, which takes the subset of
training examples at the node for further partitioning to extend the tree.

This is a greedy algorithm with no backtracking. Once a node is created,
it will not be revised or revisited no matter what happens subsequently.

3.2.2 Impurity Function

Before presenting the impurity function, we use an example to show what
the impurity function aims to do intuitively.

Example 5: Fig. 3.5 shows two possible root nodes for the data in Table

3.1.
Young middle old true false
| ~ / N\
No: 3 No: 2 No: 1 No: 0 No: 6
Yes: 2 Yes: 3 Yes: 4 Yes: 6 Yes: 3
(A) (B)

Fig. 3.5. Two possible root nodes or two possible attributes for the root node

Fig. 3.5(A) uses Age as the root node, and Fig. 3.5(B) uses Own_house
as the root node. Their possible values (or outcomes) are the branches. At
each branch, we listed the number of training examples of each class (No
or Yes) that land or reach there. Fig. 3.5(B) is obviously a better choice for
the root. From a prediction or classification point of view, Fig. 3.5(B)
makes fewer mistakes than Fig. 3.5(A). In Fig. 3.5(B), when Own_house =
true every example has the class Yes. When Own_house = false, if we take
majority class (the most frequent class), which is No, we make three mis-
takes/errors. If we look at Fig. 3.5(A), the situation is worse. If we take the
majority class for each branch, we make five mistakes (marked in bold).
Thus, we say that the impurity of the tree in Fig. 3.5(A) is higher than the
tree in Fig. 3.5(B). To learn a decision tree, we prefer Own_house to Age
to be the root node. Instead of counting the number of mistakes or errors,
C4.5 uses a more principled approach to perform this evaluation on every
attribute in order to choose the best attribute to build the tree. =

72 3 Supervised Learning

The most popular impurity functions used for decision tree learning are
information gain and information gain ratio, which are used in C4.5 as
two options. Let us first discuss information gain, which can be extended
slightly to produce information gain ratio.

The information gain measure is based on the entropy function from in-
formation theory [55]:

|C]

entropy(D) = —Z Pr(c;)log, Pr(c;) (2)
J=1

|C]

D Pr(c;) =1,

=1

where Pr(c)) is the probability of class ¢; in data set D, which is the number
of examples of class ¢; in D divided by the total number of examples in D.
In the entropy computation, we define 0log0 = 0. The unit of entropy is
bit. Let us use an example to get a feeling of what this function does.

Example 6: Assume we have a data set D with only two classes, positive
and negative. Let us see the entropy values for three different compositions
of positive and negative examples:

1. The data set D has 50% positive examples (Pr(positive) = 0.5) and 50%
negative examples (Pr(negative) = 0.5).

entropy(D) =—0.5xlog, 0.5-0.5xlog, 0.5=1.

2. The data set D has 20% positive examples (Pr(positive) = 0.2) and 80%
negative examples (Pr(negative) = 0.8).

entropy(D) =—-0.2xlog, 0.2-0.8xlog, 0.8 =0.722.

3. The data set D has 100% positive examples (Pr(positive) = 1) and no
negative examples, (Pr(negative) = 0).

entropy(D) =—-1xlog,1-0xlog, 0=0.

We can see a trend: When the data becomes purer and purer, the entropy
value becomes smaller and smaller. In fact, it can be shown that for this
binary case (two classes), when Pr(positive) = 0.5 and Pr(negative) = 0.5
the entropy has the maximum value, i.e., 1 bit. When all the data in D be-
long to one class the entropy has the minimum value, 0 bit. u

It is clear that the entropy measures the amount of impurity or disorder
in the data. That is exactly what we need in decision tree learning. We now
describe the information gain measure, which uses the entropy function.

3.2 Decision Tree Induction 73

Information Gain

The idea is the following:

1. Given a data set D, we first use the entropy function (Equation 2) to
compute the impurity value of D, which is entropy(D). The impuri-
tyEval-1 function in line 7 of Fig. 3.4 performs this task.

2. Then, we want to know which attribute can reduce the impurity most if
it is used to partition D. To find out, every attribute is evaluated (lines
8—10 in Fig. 3.4). Let the number of possible values of the attribute 4; be
v. If we are going to use 4; to partition the data D, we will divide D into
v disjoint subsets Dy, D,, ..., D,. The entropy after the partition is

v D .
entropy , (D)= 1D, | x entropy(D)). 3)
j=1

= | D]

The impurityEval-2 function in line 9 of Fig. 3.4 performs this task.
3. The information gain of attribute 4, is computed with:

gain(D, 4;) = entropy(D) - entropy , (D). (4)

Clearly, the gain criterion measures the reduction in impurity or disorder.
The gain measure is used in line 11 of Fig. 3.4, which chooses attribute 4,
resulting in the largest reduction in impurity. If the gain of 4, is too small,
the algorithm stops for the branch (line 12). Normally a threshold is used
here. If choosing A4, is able to reduce impurity significantly, 4, is em-
ployed to partition the data to extend the tree further, and so on (lines 15—
21 in Fig. 3.4). The process goes on recursively by building sub-trees using
D, D,, ..., D, (line 20). For subsequent tree extensions, we do not need 4,
any more, as all training examples in each branch has the same 4, value.

Example 7: Let us compute the gain values for attributes Age, Own_house
and Credit_Rating using the whole data set D in Table 3.1, i.e., we evaluate
for the root node of a decision tree.

First, we compute the entropy of D. Since D has 6 No class training ex-
amples, and 9 Yes class training examples, we have

6 6 9 9
entropy(D) = T xlog, 515 xlog, 5 0.971.

We then try Age, which partitions the data into 3 subsets (as Age has
three possible values) D, (with Age=young), D, (with Age=middle), and D;
(with Age=old). Each subset has five training examples. In Fig. 3.5, we al-
so see the number of No class examples and the number of Yes examples
in each subset (or in each branch).

74 3 Supervised Learning

entropy ,,,(D) = %x entropy(D,) + % x entropy(D,) + % x entropy(D;)
5 5 5
=—x0.971+—x0.971+—x0.722 = 0.888.
15 15 15

Likewise, we compute for Own_house, which partitions D into two sub-
sets, D, (with Own_house=true) and D, (with Own_house=false).

£x0+ix0 918 = 0.551.
15 15
Similarly, we obtain entropyus jo(D) = 0.647, and entropycredir rating(D)

=0.608. The gains for the attributes are:

gain(D, Age) =0.971 — 0.888 = 0.083

gain(D, Own_house) = 0.971 — 0.551 = 0.420
gain(D, Has_job) =0.971 — 0.647 = 0.324
gain(D, Credit_rating) =0.971 — 0.608 = 0.363.

Own_house is the best attribute for the root node. Fig. 3.5(B) shows the
root node using Own_house. Since the left branch has only one class (Yes)
of data, it results in a leaf node (line 1 in Fig. 3.4). For Own_house = false,
further extension is needed. The process is the same as above, but we only
use the subset of the data with Own_house = false, i.e., D,. =

Information Gain Ratio

The gain criterion tends to favor attributes with many possible values. An
extreme situation is that the data contain an /D attribute that is an identifi-
cation of each example. If we consider using this /D attribute to partition
the data, each training example will form a subset and has only one class,
which results in entropy;p(D) = 0. So the gain by using this attribute is
maximal. From a prediction point of review, such a partition is useless.
Gain ratio (Equation 5) remedies this bias by normalizing the gain us-
ing the entropy of the data with respect to the values of the attribute. Our
previous entropy computations are done with respect to the class attribute:

gainRatio(D, A,) = gain(D, 4,))
Z(ID N ID_,IJ
| D] | D]

where s is the number of possible values of 4;, and D; is the subset of data

3.2 Decision Tree Induction 75

that has the jth value of 4,. |D/|/|D| corresponds to the probability of Equa-
tion (2). Using Equation (5), we simply choose the attribute with the high-
est gainRatio value to extend the tree.

This method works because if 4; has too many values the denominator
will be large. For instance, in our above example of the /D attribute, the
denominator will be logy|D|. The denominator is called the split info in
C4.5. One note is that the split info can be 0 or very small. Some heuristic
solutions can be devised to deal with it (see [49]).

3.2.3 Handling of Continuous Attributes

It seems that the decision tree algorithm can only handle discrete attrib-
utes. In fact, continuous attributes can be dealt with easily as well. In a real
life data set, there are often both discrete attributes and continuous attrib-
utes. Handling both types in an algorithm is an important advantage.

To apply the decision tree building method, we can divide the value
range of attribute 4; into intervals at a particular tree node. Each interval
can then be considered a discrete value. Based on the intervals, gain or
gainRatio is evaluated in the same way as in the discrete case. Clearly, we
can divide 4, into any number of intervals at a tree node. However, two in-
tervals are usually sufficient. This binary split is used in C4.5. We need to
find a threshold value for the division.

Clearly, we should choose the threshold that maximizes the gain (or
gainRatio). We need to examine all possible thresholds. This is not a prob-
lem because although for a continuous attribute 4; the number of possible
values that it can take is infinite, the number of actual values that appear in
the data is always finite. Let the set of distinctive values of attribute A; that
occur in the data be {v|, v,, ..., v.}, which are sorted in ascending order.
Clearly, any threshold value lying between v; and v;;; will have the same
effect of dividing the training examples into those whose value of attribute
A; lies in {vy, v,, ..., v;} and those whose value lies in {vi+i, Vis2, ..., V,}.
There are thus only 7—1 possible splits on 4;, which can all be evaluated.

The threshold value can be the middle point between v; and v, or just
on the “right side” of value v;, which results in two intervals 4; < v; and A4;
> y;. This latter approach is used in C4.5. The advantage of this approach is
that the values appearing in the tree actually occur in the data. The thresh-
old value that maximizes the gain (gainRatio) value is selected. We can
modify the algorithm in Fig. 3.4 (lines 8-11) easily to accommodate this
computation so that both discrete and continuous attributes are considered.

A change to line 20 of the algorithm in Fig. 3.4 is also needed. For a
continuous attribute, we do not remove attribute 4, because an interval can

76 3 Supervised Learning

be further split recursively in subsequent tree extensions. Thus, the same
continuous attribute may appear multiple times in a tree path (see Example
9), which does not happen for a discrete attribute.

From a geometric point of view, a decision tree built with only continu-
ous attributes represents a partitioning of the data space. A series of splits
from the root node to a leaf node represents a hyper-rectangle. Each side of
the hyper-rectangle is an axis-parallel hyperplane.

Example 8: The hyper-rectangular regions in Fig. 3.6(A), which partitions
the space, are produced by the decision tree in Fig. 3.6(B). There are two
classes in the data, represented by empty circles and filled rectangles.

Y
A
1 Lo
m =
26—=o5 Y o ©° o0
2.5 g W W o) o
| O O
O
m g Em (@)
- m | T o™
| u O O -
0 > 3 4 X
(A) A partition of the data space (B). The decision tree

Fig. 3.6. A partitioning of the data space and its corresponding decision tree

Handling of continuous (numeric) attributes has an impact on the effi-
ciency of the decision tree algorithm. With only discrete attributes the al-
gorithm grows linearly with the size of the data set D. However, sorting of
a continuous attribute takes |D|log|D| time, which can dominate the tree
learning process. Sorting is important as it ensures that gain or gainRatio
can be computed in one pass of the data.

3.2.4 Some Other Issues

We now discuss several other issues in decision tree learning.

Tree Pruning and Overfitting: A decision tree algorithm recursively par-
titions the data until there is no impurity or there is no attribute left. This
process may result in trees that are very deep and many tree leaves may
cover very few training examples. If we use such a tree to predict the train-
ing set, the accuracy will be very high. However, when it is used to clas-
sify unseen test set, the accuracy may be very low. The learning is thus not
effective, i.e., the decision tree does not generalize the data well. This

3.2 Decision Tree Induction 77

phenomenon is called overfitting. More specifically, we say that a classi-
fier f; overfits the data if there is another classifier f; such that f; achieves a
higher accuracy on the training data than f,, but a lower accuracy on the
unseen test data than f; [45].

Overfitting is usually caused by noise in the data, i.e., wrong class val-
ues/labels and/or wrong values of attributes, but it may also be due to the
complexity and randomness of the application domain. These problems
cause the decision tree algorithm to refine the tree by extending it to very
deep using many attributes.

To reduce overfitting in the context of decision tree learning, we per-
form pruning of the tree, i.e., to delete some branches or sub-trees and re-
place them with leaves of majority classes. There are two main methods to
do this, stopping early in tree building (which is also called pre-pruning)
and pruning the tree after it is built (which is called post-pruning). Post-
pruning has been shown more effective. Early-stopping can be dangerous
because it is not clear what will happen if the tree is extended further
(without stopping). Post-pruning is more effective because after we have
extended the tree to the fullest, it becomes clearer which branches/sub-
trees may not be useful (overfit the data). The general idea of post-pruning
is to estimate the error of each tree node. If the estimated error for a node
is less than the estimated error of its extended sub-tree, then the sub-tree is
pruned. Most existing tree learning algorithms take this approach. See [49]
for a technique called the pessimistic error based pruning.

Example 9: In Fig. 3.6(B), the sub-tree representing the rectangular region
X<2,Y>25,Y<2.6

in Fig. 3.6(A) is very likely to be overfitting. The region is very small and
contains only a single data point, which may be an error (or noise) in the
data collection. If it is pruned, we obtain Fig. 3.7(A) and (B).

2.6 .O. O o) o
2.5 - -O o) o
2|l m ™
]
||

0 > 3 4 X
(A) A partition of the data space (B). The decision tree

Fig. 3.7. The data space partition and the decision tree after pruning

78 3 Supervised Learning

Another common approach to pruning is to use a separate set of data
called the validation set, which is not used in training and neither in test-
ing. After a tree is built, it is used to classify the validation set. Then, we
can find the errors at each node on the validation set. This enables us to
know what to prune based on the errors at each node.

Rule Pruning: We noted earlier that a decision tree can be converted to a
set of rules. In fact, C4.5 also prunes the rules to simplify them and to re-
duce overfitting. First, the tree (C4.5 uses the unpruned tree) is converted
to a set of rules in the way discussed in Example 4. Rule pruning is then
performed by removing some conditions to make the rules shorter and
fewer (after pruning some rules may become redundant). In most cases,
pruning results in a more accurate rule set as shorter rules are less likely to
overfit the training data. Pruning is also called generalization as it makes
rules more general (with fewer conditions). A rule with more conditions is
more specific than a rule with fewer conditions.

Example 10: The sub-tree below X < 2 in Fig. 3.6(B) produces these rules:

Rule 1: X<2,Y>25Y>2.6—>1
Rule2: X<2,Y>25,Y<26—>0
Rule3: X<2,Y<25->n1

Note that ¥ > 2.5 in Rule 1 is not useful because of Y > 2.6, and thus Rule
1 should be

Rulel: X<2,Y>26—->1

In pruning, we may be able to delete the conditions ¥ > 2.6 from Rule 1 to
produce:

X<2->11
Then Rule 2 and Rule 3 become redundant and can be removed. o

A useful point to note is that after pruning the resulting set of rules may
no longer be mutually exclusive and exhaustive. There may be data
points that satisfy the conditions of more than one rule, and if inaccurate
rules are discarded, of no rules. An ordering of the rules is thus needed to
ensure that when classifying a test case only one rule will be applied to de-
termine the class of the test case. To deal with the situation that a test case
does not satisfy the conditions of any rule, a default class is used, which is
usually the majority class.

Handling Missing Attribute Values: In many practical data sets, some at-
tribute values are missing or not available due to various reasons. There
are many ways to deal with the problem. For example, we can fill each

3.3 Classifier Evaluation 79

missing value with the special value “unknown” or the most frequent value
of the attribute if the attribute is discrete. If the attribute is continuous, use
the mean of the attribute for each missing value.

The decision tree algorithm in C4.5 takes another approach. At a tree
node, it distributes the training example with missing value for the attrib-
ute to each branch of the tree proportionally according to the distribution
of the training examples that have values for the attribute.

Handling Skewed Class Distribution: In many applications, the propor-
tions of data for different classes can be very different. For instance, in a
data set of intrusion detection in computer networks, the proportion of in-
trusion cases is extremely small (< 1%) compared with normal cases. Di-
rectly applying the decision tree algorithm for classification or prediction
of intrusions is usually not effective. The resulting decision tree often con-
sists of a single leaf node “normal”, which is useless for intrusion detec-
tion. One way to deal with the problem is to over sample the intrusion ex-
amples to increase its proportion. Another solution is to rank the new cases
according to how likely they may be intrusions. The human users can then
investigate the top ranked cases.

3.3 Classifier Evaluation

After a classifier is constructed, it needs to be evaluated for accuracy. Ef-
fective evaluation is crucial because without knowing the approximate ac-
curacy of a classifier, it cannot be used in real-world tasks.

There are many ways to evaluate a classifier, and there are also many
measures. The main measure is the classification accuracy (Equation 1),
which is the number of correctly classified instances in the test set divided
by the total number of instances in the test set. Some researchers also use
the error rate, which is 1 — accuracy. Clearly, if we have several classifi-
ers, the one with the highest accuracy is preferred. Statistical significance
tests may be used to check whether one classifier’s accuracy is signifi-
cantly better than that of another given the same training and test data sets.
Below, we first present several common methods for classifier evaluation,
and then introduce some other evaluation measures.

3.3.1 Evaluation Methods

Holdout Set: The available data D is divided into two disjoint subsets, the
training set D,,;, and the test set D,., D = Dy4in U Dy and Dygiy M Do =
@. The test set is also called the holdout set. This method is mainly used

80 3 Supervised Learning

when the data set D is large. Note that the examples in the original data set
D are all labeled with classes.

As we discussed earlier, the training set is used for learning a classifier
and the test set is used for evaluating the classifier. The training set should
not be used in the evaluation as the classifier is biased toward the training
set. That is, the classifier may overfit the training data, which results in
very high accuracy on the training set but low accuracy on the test set. Us-
ing the unseen test set gives an unbiased estimate of the classification ac-
curacy. As for what percentage of the data should be used for training and
what percentage for testing, it depends on the data set size. 50-50 and two
thirds for training and one third for testing are commonly used.

To partition D into training and test sets, we can use a few approaches:

1. We randomly sample a set of training examples from D for learning and
use the rest for testing.

2. If the data is collected over time, then we can use the earlier part of the
data for training/learning and the later part of the data for testing. In
many applications, this is a more suitable approach because when the
classifier is used in the real-world the data are from the future. This ap-
proach thus better reflects the dynamic aspects of applications.

Multiple Random Sampling: When the available data set is small, using
the above methods can be unreliable because the test set would be too
small to be representative. One approach to deal with the problem is to
perform the above random sampling # times. Each time a different training
set and a different test set are produced. This produces n accuracies. The
final estimated accuracy on the data is the average of the n accuracies.

Cross-Validation: When the data set is small, the n-fold cross-validation
method is very commonly used. In this method, the available data is parti-
tioned into n equal-size disjoint subsets. Each subset is then used as the
test set and the remaining n—1 subsets are combined as the training set to
learn a classifier. This procedure is then run » times, which gives n accura-
cies. The final estimated accuracy of learning from this data set is the aver-
age of the n accuracies. 10-fold and 5-fold cross-validations are often used.

A special case of cross-validation is the leave-one-out cross-validation.
In this method, each fold of the cross validation has only a single test ex-
ample and all the rest of the data is used in training. That is, if the original
data has m examples, then this is m-fold cross-validation. This method is
normally used when the available data is very small. It is not efficient for a
large data set as m classifiers need to be built.

In Sect. 3.2.4, we mentioned that a validation set can be used to prune a
decision tree or a set of rules. If a validation set is employed for that pur-

3.3 Classifier Evaluation 81

pose, it should not be used in testing. In that case, the available data is di-
vided into three subsets, a training set, a validation set and a test set. Apart
from using a validation set to help tree or rule pruning, a validation set is
also used frequently to estimate parameters in learning algorithms. In such
cases, the values that give the best accuracy on the validation set are used
as the final values of the parameters. Cross-validation can be used for pa-
rameter estimating as well. Then a separate validation set is not needed.
Instead, the whole training set is used in cross-validation.

3.3.2 Precision, Recall, F-score and Breakeven Point

In some applications, we are only interested in one class. This is particu-
larly true for text and Web applications. For example, we may be inter-
ested in only the documents or web pages of a particular topic. Also, in
classification involving skewed or highly imbalanced data, e.g., network
intrusion and financial fraud detection, we are typically interested in only
the minority class. The class that the user is interested in is commonly
called the positive class, and the rest negative classes (the negative classes
may be combined into one negative class). Accuracy is not a suitable
measure in such cases because we may achieve a very high accuracy, but
may not identify a single intrusion. For instance, 99% of the cases are
normal in an intrusion detection data set. Then a classifier can achieve
99% accuracy (without doing anything) by simply classifying every test
case as “not intrusion”. This is, however, useless.

Precision and recall are more suitable in such applications because they
measure how precise and how complete the classification is on the positive
class. It is convenient to introduce these measures using a confusion ma-
trix (Table 3.2). A confusion matrix contains information about actual and
predicted results given by a classifier.

Table 3.2. Confusion matrix of a classifier

Classified positive Classified negative
Actual positive TP FN
Actual negative FP TN

where
TP: the number of correct classifications of the positive examples (true positive)
FN: the number of incorrect classifications of positive examples (false negative)
FP: the number of incorrect classifications of negative examples (false positive)
TN: the number of correct classifications of negative examples (true negative)

Based on the confusion matrix, the precision (p) and recall (») of the posi-
tive class are defined as follows:

82 3 Supervised Learning

P P
=—. r=———. (6)
TP + FP TP+ FN

In words, precision p is the number of correctly classified positive ex-
amples divided by the total number of examples that are classified as posi-
tive. Recall 7 is the number of correctly classified positive examples di-
vided by the total number of actual positive examples in the test set. The
intuitive meanings of these two measures are quite obvious.

However, it is hard to compare classifiers based on two measures, which
are not functionally related. For a test set, the precision may be very high
but the recall can be very low, and vice versa.

p

Example 11: A test data set has 100 positive examples and 1000 negative
examples. After classification using a classifier, we have the following
confusion matrix (Table 3.3),

Table 3.3. Confusion matrix of a classifier

Classified positive Classified negative

Actual positive 1 99
Actual negative 0 1000

This confusion matrix gives the precision p = 100% and the recall » = 1%
because we only classified one positive example correctly and classified
no negative examples wrongly. =

Although in theory precision and recall are not related, in practice high
precision is achieved almost always at the expense of recall and high recall
is achieved at the expense of precision. In an application, which measure is
more important depends on the nature of the application. If we need a sin-
gle measure to compare different classifiers, the F-score is often used:

o 2pr

p+r)
The F-score (also called the F;-score) is the harmonic mean of precision
and recall.

2
1 1 (8)
PR + —
p r
The harmonic mean of two numbers tends to be closer to the smaller of
the two. Thus, for the F-score to be high, both p and » must be high.
There is also another measure, called precision and recall breakeven
point, which is used in the information retrieval community. The break-

F =

3.3 Classifier Evaluation 83

even point is when the precision and the recall are equal. This measure as-
sumes that the test cases can be ranked by the classifier based on their like-
lihoods of being positive. For instance, in decision tree classification, we
can use the confidence of each leaf node as the value to rank test cases.

Example 12: We have the following ranking of 20 test documents. 1
represents the highest rank and 20 represents the lowest rank. “+” (“-7)
represents an actual positive (negative) document.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
+ + + -+ - o+ -+ + - -+ - - -+ - -+

Assume that the test set has 10 positive examples.

Atrank 1: p=1/1=100% r=1/10=10%
At rank 2: p=2/2=100% r=2/10=20%
Atrank 9: p=6/9=66.7% r=6/10=60%
At rank 10: p=17/10=170% r="7/10=170%

The breakeven point is p = = 70%. Note that interpolation is needed if
such a point cannot be found.

3.3.3 Receiver Operating Characteristic Curve

A receiver operating characteristic (ROC) curve is a plot of the true posi-
tive rate against the false positive rate. It is also commonly used to evalu-
ate classification results on the positive class in two-class classification
problems. The classifier needs to rank the test cases according to their like-
lihoods of belonging to the positive class with the most likely positive case
ranked at the top. The true positive rate (TPR) is defined as the fraction of
actual positive cases that are correctly classified,

TPR = L 9

TP+ FN

The false positive rate (FPR) is defined as the fraction of actual negative
cases that are classified to the positive class,

_FP
TN + FP’

TPR is basically the recall of the positive class and is also called sensitiv-
ity in statistics. There is also another measure in statistics called specific-
ity, which is the true negative rate (7NR), or the recall of the negative
class. TNR is defined as follows:

(10)

84 3 Supervised Learning

TN
TNR =——. (11)
TN + FP
From Equations (10) and (11), we can see the following relationship,
FPR =1-specificity. (12)

Fig. 3.8 shows the ROC curves of two example classifiers (C, and C;) on
the same test data. Each curve starts from (0, 0) and ends at (1, 1). (0, 0)
represents the situation where every test case is classified as negative, and
(1, 1) represents the situation where every test case is classified as positive.
This is the case because we can treat the classification result as a ranking
of the test cases in the positive class, and we can partition the ranked list at
any point into two parts with the upper part assigned to the positive class
and the lower part assigned to the negative class. We will see shortly that
an ROC curve is drawn based on such partitions. In Fig. 3.8, we also see
the main diagonal line, which represents random guessing, i.e., predicting
each case to be positive with a fixed probability. In this case, it is clear that
for every FPR value, TPR has the same value, i.e., TPR = FPT.

1 =

0.9 - -

0.8 -

0.7 4 - o
e

06 1 7 Gy e

0.5 - / 7

0.4 / Phe

03 4 / e

Ture Positive Rate

024/)
014/ .7

o+

0 01 02 03 04 05 06 07 08 09 1
False Postive Rate

Fig. 3.8. ROC curves for two classifiers (C| and C5) on the same data

For classifier evaluation using the ROC curves in Fig. 3.8, we want to
know which classifier is better. The answer is that when FPR is less than
0.43, C, is better, and when FPR is greater than 0.43, C; is better.

However, sometimes this is not a satisfactory answer because we cannot
say any one of the classifiers is strictly better than the other. For an overall
comparison, researchers often use the area under the ROC curve (AUC).
If the AUC value for a classifier C; is greater than that of another classifier
C,, it is said that C; is better than C;. If a classifier is perfect, its AUC value
is 1. If a classifier makes all random guesses, its AUC value is 0.5.

3.3 Classifier Evaluation 85

Let us now describe how to draw an ROC curve given the classification
result as a ranking of test cases. The ranking is obtained by sorting the test
cases in decreasing order of the classifier’s output values (e.g., posterior
probabilities). We then partition the rank list into two subsets (or parts) at
every test case and regard every test case in the upper part (with higher
classifier output value) as a positive case and every test case in the lower
part as a negative case. For each such partition, we compute a pair of 7PR
and FPR values. When the upper part is empty, we obtain the point (0, 0)
on the ROC and when the lower part is empty, we obtain the point (1, 1).
Finally, we simply connect the adjacent points.

Example 13: We have 10 test cases. A classifier has been built, and it has
ranked the 10 test cases as shown in the second row of Table 3.4 (the num-
bers in row 1 are the rank positions, with 1 being the highest rank and 10
the lowest). The second row shows the actual class of each test case. “+”
means that the test case is from the positive class, and “—” means that it is
from the negative class. All the results needed for drawing the ROC curve
are shown in rows 3-8 in Table 3.4. The ROC curve is given in Fig. 3.9.

Table 3.4. Computations for drawing an ROC curve

Rank 1 2 3 4 5 6 7 8 9 10
Actual class + + - - + - - + - -
TP 0 1 2 2 2 3 3 3 4 4 4
FP 0 0 0 1 2 2 3 4 4 5 6
N 6 6 6 5 4 4 3 2 2 1 0
FN 4 3 2 2 2 1 1 1 0 0 0
TPR 0 025 05| 0.5 0.5 [0.75] 0.75 | 0.75 1 1 1
FPR 0 0 0 |0.17]033|033|0.50]0.67]|0.67]0.83 1
1 —
0.9 e
0.8 LT
2 07 - ’_,—"J
2 46 e
Z 05 Lo
§ 0.4 - /,-"’
g 03 1 e
0.2 L
014 o
0+

0 01 02 03 04 05 06 07 08 09 1

False Positive Rate

Fig. 3.9. ROC curve for the data shown in Table 3.4 =

86 3 Supervised Learning

3.3.4 Lift Curve

The lift curve (also called the lift chart) is similar to the ROC curve. It is
also for evaluation of two-class classification tasks, where the positive
class is the target of interest and usually the rare class. It is often used in
direct marketing applications to link classification results to costs and prof-
its. For example, a mail order company wants to send promotional materi-
als to potential customers to sell an expensive watch. Since printing and
postage cost money, the company needs to build a classifier to identify
likely buyers, and only sends the promotional materials to them. The ques-
tion is how many should be sent. To make the decision, the company needs
to balance the cost and profit (if a watch is sold, the company makes a cer-
tain profit, but to send each letter there is a fixed cost). The lift curve pro-
vides a nice tool to enable the marketer to make the decision.

Like an ROC curve, to draw a lift curve, the classifier needs to produce
a ranking of the test cases according to their likelihoods of belonging to the
positive class with the most likely positive case ranked at the top. After the
ranking, the test cases are divided into N equal-sized bins (N is usually 10
— 20). The actual positive cases in each bin are then counted. A lift curve is
drawn with the x-axis being the percentages of test data (or bins) and the y-
axis being the percentages of cumulative positive cases from the first bin
to the current bin. A lift curve usually also includes a line (called the base-
line) along the main diagonal [from (0, 0) to (100, 100)] which represents
the situation where the positive cases in the test set are uniformly (or ran-
domly) distributed in the N bins (no learning), i.e., each bin contains 100/N
percent of the positive cases. If the lift curve is above this baseline, learn-
ing is said to be effective. The greater the area between the lift curve and
the baseline, the better the classifier.

Example 14: A company wants to send promotional materials to potential
buyers to sell an expensive brand of watches. It builds a classification
model and tests it on a test data of 10,000 people (test cases) that they col-
lected in the past. After classification and ranking, it decides to divide the
test data into 10 bins with each bin containing 10% of the test cases or
1,000 cases. Out of the 1,000 cases in each bin, there are a certain number
of positive cases (e.g., past buyers). The detailed results are listed in Table
3.5, which includes the number (#) of positive cases and the percentage
(%) of positive cases in each bin, and the cumulative percentage for that
bin. The cumulative percentages are used in drawing the lift curve which is
given in Fig. 3.10. We can see that the lift curve is way above the baseline,
which means that the learning is highly effective.

Suppose printing and postage cost $1.00 for each letter, and the sale of
each watch makes $100 (assuming that each buyer only buys one watch).

3.4 Rule Induction 87

If the company wants to send promotional letters to 3000 people, it will
make $36,000, i.e.,

$100 x (210 + 120 + 60) — $3,000 = $36,000

Table 3.5. Classification results for the 10 bins

Bin 1 2 3 4 5 6 7 8 9 10
of test cases | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000
of positive cases | 210 | 120 60 40 | 22 18 12 7 6 5
% of positive cases|42.0%|24.0%| 12% | 8% |4.4%[3.6%(2.4%|1.4% | 1.2% | 1.0%
% cumulative {42.0%|66.0%|78.0%86.0%|90.4%(94.0%(96.4%|97.8%)99.0%100.0%

100 .
80
g 70 al -/
& & X e
£ 5 4 —e—Baseline
.g 40 A ~m—Lift Curve
o
e 30
20 / /
10 -
0 R S —
0 10 20 30 40 50 60 70 80 90 100
% Test Cases
Fig. 3.10. Lift curve for the data shown in Table 3.5 =

3.4 Rule Induction

In Sect. 3.2, we showed that a decision tree can be converted to a set of
rules. Clearly, the set of rules can be used for classification as the tree. A
natural question is whether it is possible to learn classification rules di-
rectly. The answer is yes. The process of learning such rules is called rule
induction or rule learning. We study two approaches in the section.

3.4.1 Sequential Covering

Most rule induction systems use a learning strategy called sequential cov-
ering. A rule-based classifier built with this strategy typically consists of a
list of rules, which is also called a decision list [51]. In the list, the order-
ing of the rules is significant.

88 3 Supervised Learning

The basic idea of sequential covering is to learn a list of rules sequen-
tially, one at a time, to cover the training data. After each rule is learned,
the training examples covered by the rule are removed. Only the remaining
data are used to find subsequent rules. Recall that a rule covers an example
if the example satisfies the conditions of the rule. We study two specific
algorithms based on this general strategy. The first algorithm is based on
the CN2 system [9], and the second algorithm is based on the ideas in
FOIL [50], I-REP [21], REP [7], and RIPPER [106] systems. Many ideas
are also taken from [45].

Algorithm 1 (Ordered Rules)

This algorithm learns each rule without pre-fixing a class. That is, in each
iteration, a rule of any class may be found. Thus rules of different classes
may intermix in the final rule list. The ordering of rules is important.

This algorithm is given in Fig. 3.11. D is the training data. RuleList is
the list of rules, which is initialized to empty set (line 1). Rule is the best
rule found in each iteration. The function learn-one-rule-1() learns the Rule
(lines 2 and 6). The stopping criteria for the while-loop can be of various
kinds. Here we use D = & or Rule is NULL (a rule is not learned). Once a
rule is learned from the data, it is inserted into RuleList at the end (line 4).
All the training examples that are covered by the rule are removed from
the data (line 5). The remaining data is used to find the next rule and so on.
After rule learning ends, a default class is inserted at the end of RuleList.
This is because there may still be some training examples that are not cov-
ered by any rule as no good rule can be found from them, or because some
test cases may not be covered by any rule and thus cannot be classified.
The final list of rules is as follows:

<ri, 1y, ..., I', default-class> (13)

where r; is a rule.

Algorithm 2 (Ordered Classes)

This algorithm learns all rules for each class together. After rule learning
for one class is completed, it moves to the next class. Thus all rules for
each class appear together in the rule list. The sequence of rules for each
class is unimportant, but the rule subsets for different classes are ordered.
Typically, the algorithm finds rules for the least frequent class first, then
the second least frequent class and so on. This ensures that some rules are
learned for rare classes. Otherwise, they may be dominated by frequent
classes and end up with no rules if considered after frequent classes.

3.4 Rule Induction 89

Algorithm sequential-covering-1(D)

1 RuleList < O;

2 Rule < learn-one-rule-1(D);

3 while Rule is not NULL AND D # & do

4 RuleList < insert Rule at the end of RuleList;

5 Remove from D the examples covered by Rule;

6 Rule < learn-one-rule-1(D)

7 endwhile

8 insert a default class c at the end of RuleList, where c is the majority class
in D;

9 return RuleList

Fig. 3.11. The first rule learning algorithm based on sequential covering

Algorithm sequential-covering-2(D, C)

1 RuleList < O&; // empty rule set at the beginning
2 foreachclassc € Cdo
3 prepare data (Pos, Neg), where Pos contains all the examples of class

c from D, and Neg contains the rest of the examples in D;

4 while Pos # J do

5 Rule < learn-one-rule-2(Pos, Neg, c);

6 if Rule is NULL then

7 exit-while-loop

8 else RuleList < insert Rule at the end of RuleList,;

9 Remove examples covered by Rule from (Pos, Neg)
10 endif

11 endwhile

12 endfor

13 return RuleList

Fig. 3.12. The second rule learning algorithm based on sequential covering

The algorithm is given in Fig. 3.12. The data set D is split into two sub-
sets, Pos and Neg, where Pos contains all the examples of class ¢ from D,
and Neg the rest of the examples in D (line 3). c¢ is the class that the algo-
rithm is working on now. Two stopping conditions for rule learning of
each class are in line 4 and line 6. The other parts of the algorithm are
quite similar to those of the first algorithm in Fig. 3.11. Both learn-one-
rule-1() and learn-one-rule-2() functions are described in Sect. 3.4.2.

Use of Rules for Classification

To use a list of rules for classification is straightforward. For a test case,
we simply try each rule in the list sequentially. The class of the first rule

90 3 Supervised Learning

that covers this test case is assigned as the class of the test case. Clearly, if
no rule applies to the test case, the default class is used.

3.4.2 Rule Learning: Learn-One-Rule Function

We now present the function learn-one-rule(), which works as follows: It
starts with an empty set of conditions. In the first iteration, one condition is
added. In order to find the best condition to add, all possible conditions are
tried, which form candidate rules. A condition is of the form 4; op v,
where 4; is an attribute and v is a value of 4,. We also called it an attrib-
ute-value pair. For a discrete attribute, op is “=". For a continuous attrib-
ute, op € {>, <}. The algorithm evaluates all the candidates to find the best
one (the rest are discarded). After the first best condition is added, it tries
to add the second condition and so on in the same fashion until some stop-
ping condition is satisfied. Note that we omit the rule class here because it
is implied, i.e., the majority class of the data covered by the conditions.

This is a heuristic and greedy algorithm in that after a condition is add-
ed, it will not be changed or removed through backtracking. Ideally, we
would want to try all possible combinations of attributes and values. How-
ever, this is not practical as the number of possibilities grows exponen-
tially. Hence, in practice, the above greedy algorithm is used. However, in-
stead of keeping only the best set of conditions, we can improve the
function a little by keeping & best sets of conditions (k > 1) in each itera-
tion. This is called the beam search (k beams), which ensures that a larger
space is explored. Below, we present two specific implementations of the
algorithm, namely learn-one-rule-1() and learn-one-rule-2(). learn-one-
rule-1() is used in the sequential-covering-1 algorithm, and learn-one-rule-
2() is used in the sequential-covering-2 algorithm.

Learn-One-Rule-1

This function uses beam search (Fig. 3.13). The number of beams is k.
BestCond stores the conditions of the rule to be returned. The class is omit-
ted as it is the majority class of the data covered by BestCond. candidate-
CondSet stores the current best condition sets (which are the frontier
beams) and its size is less than or equal to k. Each condition set contains a
set of conditions connected by “and” (conjunction). newCandidateCondSet
stores all the new candidate condition sets after adding each attribute-value
pair (a possible condition) to every candidate in candidateCondSet (lines
5-11). Lines 13—17 update the BestCond. Specifically, an evaluation func-
tion is used to assess whether each new candidate condition set is better
than the existing best condition set BestCond (line 14). If so, it replaces the

3.4 Rule Induction 91

Function learn-one-rule-1(D)
1 BestCond < U, // rule with no condition.

2 candidateCondSet <— {BestCond};

3 attributeValuePairs < the set of all attribute-value pairs in D of the form
(4, op v), where 4, is an attribute and v is a value or an interval,

4 while candidateCondSet # & do

5 newCandidateCondSet < O,

6 for each candidate cond in candidateCondSet do

7 for each attribute-value pair a in attributeValuePairs do

8 newCond < cond U {a};

9 newCandidateCondSet <— newCandidateCondSet U {newCond}

10 endfor

11 endfor

12 remove duplicates and inconsistencies, €.g., {4; = vy, 4; =, };

13 for each candidate newCond in newCandidateCondSet do

14 if evaluation(newCond, D) > evaluation(BestCond, D) then

15 BestCond <— newCond

16 endif

17 endfor

18 candidateCondSet < the k best members of newCandidateCondSet

according to the results of the evaluation function;
19 endwhile
20 if evaluation(BestCond, D) — evaluation(J, D) > threshold then

21 return the rule: “BestCond — ¢” where is ¢ the majority class of the data
covered by BestCond

22 else return NULL

23 endif

Fig. 3.13. The learn-one-rule-1 function

Function evaluation(BestCond, D)
1 D’ <« the subset of training examples in D covered by BestCond,

. Ic| .
2 entropy (D'") = —ZH Pr(c)log, Pr(c)) s
3 return — entropy(D’) // since entropy measures impurity.

Fig. 3.14. The entropy based evaluation function

current BestCond (line 15). Line 18 updates candidateCondSet, which se-
lects k£ new best condition sets (new beams).

Once the final BestCond is found, it is evaluated to see if it is signifi-
cantly better than without any condition (&) using a threshold (line 20). If
yes, a rule will be formed using BestCond and the most frequent (or the
majority) class of the data covered by BestCond (line 21). If not, NULL is
returned to indicate that no significant rule is found.

92 3 Supervised Learning

Function learn-one-rule-2(Pos, Neg, class)

1 split (Pos, Neg) into (GrowPos, GrowNeg) and (PrunePos, PruneNeg)

2 BestRule < GrowRule(GrowPos, GrowNeg, class) /I grow a new rule
3 BestRule < PruneRule(BestRule, PrunePos, PruneNeg) // prune the rule

4 if the error rate of BestRule on (PrunePos, PruneNeg) exceeds 50% then

5 return NULL

6 endif

7

return BestRule

Fig. 3.15. The learn-one-rule-2() function

The evaluation() function (Fig. 3.14) uses the entropy function as in the
decision tree learning. Other evaluation functions are possible too. Note
that when BestCond = &, it covers every example in D, i.e., D= D".

Learn-One-Rule-2

In the learn-one-rule-2() function (Fig. 3.14), a rule is first generated and
then it is pruned. This method starts by splitting the positive and negative
training data Pos and Neg, into growing and pruning sets. The growing
sets, GrowPos and GrowNeg, are used to generate a rule, called BestRule.
The pruning sets, PrunePos and PruneNeg are used to prune the rule be-
cause BestRule may overfit the data. Note that PrunePos and PruneNeg
are actually validation sets discussed in Sects. 3.2.4 and 3.3.1.

growRule() function: growRule() generates a rule (called BestRule) by
repeatedly adding a condition to its condition set that maximizes an
evaluation function until the rule covers only some positive examples in
GrowPos but no negative examples in GrowNeg. This is basically the
same as lines 4—17 in Fig. 3.13, but without beam search (i.e., only the best
rule is kept in each iteration). Let the current partially developed rule be R:

R: avy, .., avy— class

where each av; is a condition (an attribute-value pair). By adding a new
condition avy;, we obtain the rule R": av, .., avi, avi.— class. The evalu-
ation function for R is the following information gain criterion (which is
different from the gain function used in decision tree learning):

gain(R,RJr)=p1><[10g2L—10g2 P J (14)
pr+m Po+no

where p, (respectively, ng) is the number of positive (negative) examples
covered by R in Pos (Neg), and p; (n;) is the number of positive (negative)
examples covered by R" in Pos (Neg). The GrowRule() function simply re-

3.5 Classification Based on Associations 93

turns the rule R that maximizes the gain.

PruneRule() function: To prune a rule, we consider deleting every subset
of conditions from the BestRule, and choose the deletion that maximizes:
p—n
v(BestRule, PrunePos, PruneNeg) = , (15)
p+n

where p (respectively #) is the number of examples in PrunePos (Prune-
Neg) covered by the current rule (after a deletion).

3.4.3 Discussion

Separate-and-Conquer vs. Divide-and-Conquer: Decision tree learning
is said to use the divide-and-conquer strategy. At each step, all attributes
are evaluated and one is selected to partition/divide the data into m disjoint
subsets, where m is the number of values of the attribute. Rule induction
discussed in this section is said to use the separate-and-conquer strategy,
which evaluates all attribute-value pairs (conditions) (which are much lar-
ger in number than the number of attributes) and selects only one. Thus,
each step of divide-and-conquer expands m rules, while each step of sepa-
rate-and-conquer expands only one rule. Due to both effects, the separate-
and-conquer strategy is much slower than the divide-and-conquer strategy.

Rule Understandability: If-then rules are easy to understand by human
users. However, a word of caution about rules generated by sequential
covering is in order. Such rules can be misleading because the covered da-
ta are removed after each rule is generated. Thus the rules in the rule list
are not independent of each other. A rule » may be of high quality in the
context of the data D’ from which » was generated. However, it may be a
weak rule with a very low accuracy (confidence) in the context of the
whole data set D (D’ < D) because many training examples that can be
covered by 7 have already been removed by rules generated before ». If
you want to understand the rules and possibly use them in some real-world
tasks, you should be aware of this fact.

3.5 Classification Based on Associations

In Sect. 3.2, we showed that a decision tree can be converted to a set of
rules, and in Sect. 3.4, we saw that a set of rules may also be found directly
for classification. It is thus only natural to expect that association rules, in
particular class association rules (CAR), may be used for classification

94 3 Supervised Learning

too. Yes, indeed! In fact, normal association rules can be employed for
classification as well as we will see in Sect. 3.5.3. CBA, which stands for
(Classification Based on Associations, is the first reported system that uses
association rules for classification [39]. Classifiers built using association
rules are often called associative classifiers. In this section, we describe
three approaches to employing association rules for classification:

1. Using class association rules for classification directly.
2. Using class association rules as features or attributes.
3. Using normal (or classic) association rules for classification.

The first two approaches can be applied to tabular data or transactional
data. The last approach is usually employed for transactional data only. All
these methods are useful in the Web environment as many types of Web
data are in the form of transactions, e.g., search queries issued by users,
and Web pages clicked by visitors. Transactional data sets are difficult to
handle by traditional classification techniques, but are very natural for as-
sociation rules. Below, we describe the three approaches in turn. We
should note that various sequential rules can be used for classification in
similar ways as well if sequential data sets are involved.

3.5.1 Classification Using Class Association Rules

Recall that a class association rule (CAR) is an association rule with only a
class label on the right-hand side of the rule as its consequent (Sect. 2.5).
For instance, from the data in Table 3.1, the following rule can be found:

Own_house = false, Has_job = true — Class = Yes [sup=3/15, conf=3/3],

which was also a rule from the decision tree in Fig. 3.3. In fact, there is no
difference between rules from a decision tree (or a rule induction system)
and CARs if we consider only categorical (or discrete) attributes (more on
this later). The differences are in the mining processes and the final rule
sets. CAR mining finds all rules in data that satisfy the user-specified min-
imum support (minsup) and minimum confidence (minconf) constraints. A
decision tree or a rule induction system finds only a subset of the rules
(expressed as a tree or a list of rules) for classification.

Example 15: Recall that the decision tree in Fig. 3.3 gives the following
three rules:

Own_house = true — Class =Yes [sup=6/15, conf=6/6]
Own_house = false, Has_job = true — Class=Yes [sup=3/15, conf=3/3]
Own_house = false, Has_job = false — Class=No [sup=6/15, conf=6/6].

3.5 Classification Based on Associations 95

However, there are many other rules that exist in data, e.g.,

Age = young, Has_job = true — Class=Yes [sup=2/15, conf=2/2]
Age = young, Has_job = false — Class=No [sup=3/15, conf=3/3]
Credit_rating = fair —» Class=No [sup=4/15, conf=4/5]

and many more, if we use minsup = 2/15 = 13.3% and minconf = 70%. ®

In many cases, rules that are not in the decision tree (or a rule list) may
be able to perform classification more accurately. Empirical comparisons
reported by several researchers show that classification using CARs can
perform more accurately on many data sets than decision trees and rule in-
duction systems (see Bibliographic Notes for references).

The complete set of rules from CAR mining is also beneficial from a
rule usage point of view. In some applications, the user wants to act on
some interesting rules. For example, in an application for finding causes of
product problems, more rules are preferred to fewer rules because with
more rules, the user is more likely to find rules that indicate causes of the
problems. Such rules may not be generated by a decision tree or a rule in-
duction system. A deployed data mining system based on CARs is re-
ported in [41]. We should, however, also bear in mind of the following:

1. Decision tree learning and rule induction do not use the minsup or min-
conf constraint. Thus, some rules that they find can have very low sup-
ports, which, of course, are likely to be pruned because the chance that
they overfit the training data is high. Although we can set a low minsup
for CAR mining, it may cause combinatorial explosion. In practice, in
addition to minsup and minconf, a limit on the total number of rules to
be generated may be used to further control the CAR generation proc-
ess. When the number of generated rules reaches the limit, the algorithm
stops. However, with this limit, we may not be able to generate long
rules (with many conditions). Recall that the Apriori algorithm works in
a level-wise fashion, i.e., short rules are generated before long rules. In
some applications, this might not be an issue as short rules are often pre-
ferred and are sufficient for classification or for action. Long rules nor-
mally have very low supports and tend to overfit the data. However, in
some other applications, long rules can be useful.

2. CAR mining does not use continuous (numeric) attributes, while deci-
sion trees deal with continuous attributes naturally. Rule induction can
use continuous attributes as well. There is still no satisfactory method to
deal with such attributes directly in association rule mining. Fortunately,
many attribute discretization algorithms exist that can automatically dis-
cretize the value range of a continuous attribute into suitable intervals
[16, 19], which are then considered as discrete values.

96 3 Supervised Learning

Mining Class Association Rules for Classification

There are many techniques that use CARs to build classifiers. Before de-
scribing them, let us first discuss some issues related to CAR mining for
classification. Since a CAR mining algorithm has been discussed in Sect.
2.5, we will not repeat it here.

Rule Pruning: CAR rules are highly redundant, and many of them are not
statistically significant (which can cause overfitting). Rule pruning is thus
needed. The idea of pruning CARs is basically the same as that in decision
tree building or rule induction. Thus, we will not discuss it further (see [36,
39] for some of the pruning methods).

Multiple Minimum Class Supports: As discussed in Sect. 2.5.3, a single
minsup is inadequate for mining CARs because many practical classifica-
tion data sets have uneven class distributions, i.e., some classes cover a
large proportion of the data, while others cover only a very small propor-
tion (which are called rare or infrequent classes).

Example 16: Suppose we have a dataset with two classes, Y and N. 99% of
the data belong to the Y class, and only 1% of the data belong to the N
class. If we set minsup = 1.5%, we will not find any rule for class N. To
solve the problem, we need to lower down the minsup. Suppose we set
minsup = 0.2%. Then, we may find a huge number of overfitting rules for
class Y because minsup = 0.2% is too low for class Y. u

Multiple minimum class supports can be applied to deal with the prob-
lem. We can assign a different minimum class support minsup; for each
class ¢, i.e., all the rules of class ¢; must satisfy minsup;. Alternatively, we
can provide one single total minsup, denoted by ¢ minsup, which is then
distributed to each class according to the class distribution:

minsup; =t_minsup x sup(c;) (16)

where sup(c;) is the support of class ¢; in training data. The formula gives
frequent classes higher minsups and infrequent classes lower minsups.

Parameter Selection: The parameters used in CAR mining are the mini-
mum supports and the minimum confidences. Note that a different mini-
mum confidence may also be used for each class. However, minimum con-
fidences do not affect the classification much because classifiers tend to
use high confidence rules. One minimum confidence is sufficient as long
as it is not set too high. To determine the best minsup; for each class c;, we
can try a range of values to build classifiers and then use a validation set to
select the final value. Cross-validation may be used as well.

3.5 Classification Based on Associations 97

Data Formats: The algorithm for CAR mining given in Sect. 2.5.2 is for
mining transaction data sets. However, many classification data sets are in
the table format. As we discussed in Sect. 2.3, a tabular data set can be eas-
ily converted to a transaction data set.

Classifier Building

After all CAR rules are found, a classifier is built using the rules. There are
many existing approaches, which can be grouped into three categories.

Use the Strongest Rule: This is perhaps the simplest strategy. It simply
uses CARs directly for classification. For each test instance, it finds the
strongest rule that covers the instance. Recall that a rule covers an instance
if the instance satisfies the conditions of the rule. The class of the strongest
rule is then assigned as the class of the test instance. The strength of a rule
can be measured in various ways, e.g., based on confidence, 7 test, or a
combination of both support and confidence values.

Select a Subset of the Rules to Build a Classifier: The representative me-
thod of this category is the one used in the CBA system. The method is
similar to the sequential covering method, but applied to class association
rules with additional enhancements as discussed above.

Let the set of all discovered CARs be S. Let the training data set be D.
The basic idea is to select a subset L (<) of high confidence rules to cov-
er the training data D. The set of selected rules, including a default class, is
then used as the classifier. The selection of rules is based on a total order
defined on the rules in S.

Definition: Given two rules, »; and r;, r; > r; (also called r; precedes 7; or 7;

has a higher precedence than r)) if

1. the confidence of 7; is greater than that of 7, or

2. their confidences are the same, but the support of »; is greater than
that of 7;, or

3. both the confidences and supports of 7; and 7; are the same, but 7; is
generated earlier than 7;.

A CBA classifier L is of the form:

L=<r,nr, ..., r,default-class>
where r; € S, r, = r, if b > a. In classifying a test case, the first rule that
satisfies the case classifies it. If no rule applies to the case, it takes the de-

fault class (default-class). A simplified version of the algorithm for build-
ing such a classifier is given in Fig. 3.16. The classifier is the RuleList.

98 3 Supervised Learning

Algorithm CBA(S, D)

1 S=sort(S); // sorting is done according to the precedence >
2 RuleList = J; // the rule list classifier

3 for each rule r € S in sequence do

4 if D # J AND r classifies at least one example in D correctly then
5 delete from D all training examples covered by 7;

6 add r at the end of RuleList

7 endif

8 endfor

9 add the majority class as the default class at the end of RuleList

Fig. 3.16. A simple classifier building algorithm

This algorithm can be easily implemented by making one pass through
the training data for every rule. However, this is extremely inefficient for
large data sets. An efficient algorithm that makes at most two passes over
the data is given in [39].

Combine Multiple Rules: Like the first approach, this approach does not
take any additional step to build a classifier. At the classification time, for
each test instance, the system first finds the subset of rules that covers the
instance. If all the rules in the subset have the same class, the class is as-
signed to the test instance. If the rules have different classes, the system
divides the rules into groups according to their classes, i.e., all rules of the
same class are in the same group. The system then compares the aggre-
gated effects of the rule groups and finds the strongest group. The class la-
bel of the strongest group is assigned to the test instance. To measure the
strength of each rule group, there again can be many possible techniques.
For example, the CMAR system uses a weighted 7° measure [36].

3.5.2 Class Association Rules as Features

In the above two methods, rules are directly used for classification. In this
method, rules are used as features to augment the original data or simply
form a new data set, which is then fed to a classification algorithm, e.g.,
decision trees or the naive Bayesian method. Such features were found to
be particularly effective for text-based classification applications.

To use CARs as features, only the conditional part of each CAR rule is
needed, and it is often treated as a Boolean feature/attribute. If a data in-
stance in the original data contains the conditional part, the value of the
feature/attribute is set to 1, otherwise it is set to 0. Several applications of
this method have been reported [2, 13, 27, 31]. The reason that such CAR-
based features are helpful is that they capture multi-attribute or multi-item

3.5 Classification Based on Associations 99

correlations with class labels, which are useful for classification but are not
considered by many classification algorithms (e.g., naive Bayesian).

3.5.3 Classification Using Normal Association Rules

Not only can class association rules be used for classification, but also
normal association rules. For example, association rules are commonly
used in e-commerce Web sites for product recommendations, which work
as follows: When a customer purchases some products, the system will
recommend him/her some other related products based on what he/she has
already purchased (see Chap. 12).

Recommendation is essentially a classification or prediction problem. It
predicts what a customer is likely to buy. Association rules are naturally
applicable to such applications. The classification process is as follows:

1. The system first uses previous purchase transactions (the same as mar-
ket basket transactions) to mine association rules. In this case, there are
no fixed classes. Any item can appear on the left-hand side or the right-
hand side of a rule. For recommendation purposes, usually only one
item appears on the right-hand side of a rule.

2. At the prediction (e.g., recommendation) time, given a transaction (e.g.,
a set of items already purchased by a customer), all the rules that cover
the transaction are selected. The strongest rule is chosen and the item on
the right-hand side of the rule (i.e., the consequent) is then the predicted
item and is recommended to the user. If multiple rules are very strong,
multiple items can be recommended.

This method is basically the same as the “use the strongest rule” method
described in Sect. 3.5.1. Again, the rule strength can be measured in vari-
ous ways, e.g., confidence, # test, or a combination of both support and
confidence. For example, in [38], the product of support and confidence is
used as the rule strength. Clearly, the other two methods discussed in Sect.
3.5.1 can be applied as well.

The key advantage of using association rules for recommendation is that
they can predict any item since any item can be the class item on the right-
hand side. Traditional classification algorithms only work with a single
fixed class attribute, and are not easily applicable to recommendations.

Finally, we note that multiple minimum supports (Sect. 2.4) can be of
significant help. Otherwise, rare items will never be recommended, which
causes the coverage problem (see Sect. 12.3.3). It is shown in [46] that us-
ing multiple minimum supports can dramatically increase the coverage.

100 3 Supervised Learning
3.6 Naive Bayesian Classification

Supervised learning can be naturally studied from a probabilistic point of
view. The task of classification can be regarded as estimating the class
posterior probabilities given a test example d, i.e.,

Pr(C=¢; | d). (17)

We then see which class ¢; is more probable. The class with the highest
probability is assigned to the example d.

Formally, let 4;, 4, ..., A4 be the set of attributes with discrete values
in the data set D. Let C be the class attribute with |C| values, ¢y, ¢, ..., ¢/¢.
Given a test example d with observed attribute values a; through a4,
where ¢; is a possible value of 4; (or a member of the domain of 4,), i.e.,

d=<A\=ay, -, Au=au>.

The prediction is the class ¢; such that Pr(C=c; | 41=a\, -, A=au) is
maximal. ¢; is called a maximum a posteriori (MAP) hypothesis.
By Bayes’ rule, the above quantity (17) can be expressed as

Pr(C=c,; |4 =a,....4,=a,)
_Pr(4,=a,,...4,=0a,|C=c)Pr(C=c))
- Pr(4, =a,,... 4, =a,)

Pr(4, =a,,...4,=a,|C=c;)Pr(C=c))

|C|

D Pr(4, =ay,.. Ay =a,|C=c)Pr(C=c,)
k=1

(18)

Pr(C=c;) is the class prior probability of ¢;, which can be estimated from
the training data. It is simply the fraction of the data in D with class c;.

If we are only interested in making a classification, Pr(4,=ay, ...,
Au=ay4) 1s irrelevant for decision making because it is the same for every
class. Thus, only Pr(4,=ai, ..., Au=ay | C=c;) needs to be computed,
which can be written as

Pr(A1=a1, ceny A‘A|=am | C:Cj)
= Pr(A1=a1 | A2=a2, veey A‘A‘:am, C=cj)><Pr(A2=a2, vy A‘A|:a|,4| ‘ C:Cj).

(19)

Recursively, the second term above (i.e., Pr(4d,=a,, ..., A=ai4|C=c)))
can be written in the same way (i.e., Pr(4,=as|43=as ..., Ajy=a ., C=cj)x
Pr(4s=as, ..., Ajy=a,4|C=c))), and so on. However, to further our derivation,
we need to make an important assumption.

Conditional independence assumption: We assume that all attributes are
conditionally independent given the class C = ¢;. Formally, we assume,

3.6 Naive Bayesian Classification 101

Pr(4,=a,| Ar=ay, ..., Au=ay, C=c;) = Pr(4,=a, | C=c)) (20)

and similarly for 4, through 4,,. We then obtain
|4

Pr(4 =ay,.. A, =a,|C=c,)=]]Pr(4,=q,|C=c,) @1
i=1
Pr(C=c;|4 =a,,....,4,=a,)

4|
Pr(C=c)[[Pr(4 =a,|C=c,) (22)

e 14 ’

Y Pr(C=c)[Pr(4, =q,C=c,)
k=1 i=1

Next, we need to estimate the prior probabilities Pr(C=c;) and the conditional
probabilities Pr(4=a;| C=c;) from the training data, which are straightforward.

number of examples of class ¢;
Pr(C=¢c;)=

total number of examples in the data set (23)

number of examples with 4, = a, and classc;
Pr(4;, =a,|C=c,;)=

number of examples of classc; (24)
If we only need a decision on the most probable class for each test in-
stance, we only need the numerator of Equation (22) since the denominator
is the same for every class. Thus, given a test case, we compute the follow-
ing to decide the most probable class for the test case:

|4l

c=argmaXPr(C=cj)HPr(Ai =q,|C=c)) (25)
€ i=1

Example 17: Suppose that we have the training data set in Fig. 3.17,
which has two attributes 4 and B, and the class C. We can compute all the
probability values required to learn a naive Bayesian classifier.

>
=~}
@

Slolocrrrr |k |3|3
olo|To|jnlala|nla|n|T
—h | = | ===~ |~ |~ |~~~

Fig. 3.17. An example of a training data set

102 3 Supervised Learning

Pr(C=1)=1/2, Pr(C=/)=1/2

Pr(4=m | C=t) = 2/5 Pr(d=g | C=f)=2/5 Pr(d=h | C=f)=1/5
Pr(d=m | C=f) = 1/5 Pr(d=g | C=f) = 2/5 Pr(A=h | C=f) =2/5
Pr(B=b | C=t) = 1/5 Pr(B=s | C=t)=2/5 Pr(B=q | C=t)=2/5
Pr(B=b | C=f) = 2/5 Pr(B=s | C=f) = 1/5 Pr(B=q | C=f) = 2/5

Now we have a test example:
A=m B=q C=?

We want to know its class. Equation (25) is applied. For C = ¢, we have

2 1 2 2 2

Pr(C=1)| |Pr(4, =a,|C=t)=—x—x—=—.

(C=0TPr4, =a, 1€ =0 =x5x 3=

For class C =f, we have

2 I 1 2 1

Pr(C = Pr(4, =a. |C=f)=—x—x—=—.

C=PIIPi4, =a,1C= N =3x3x 5=
Since C = ¢t is more probable, ¢ is the predicted class of the test case. H

It is easy to see that the probabilities (i.e., Pr(C=c;) and Pr(4,=a;| C=c;))
required to build a naive Bayesian classifier can be found in one scan of
the data. Thus, the algorithm is linear in the number of training examples,
which is one of the great strengths of the naive Bayes, i.e., it is extremely
efficient. In terms of classification accuracy, although the algorithm makes
the strong assumption of conditional independence, several researchers
have shown that its classification accuracies are surprisingly strong. See
experimental comparisons of various techniques in [15, 29, 40].

To learn practical naive Bayesian classifiers, we still need to address
some additional issues: how to handle numeric attributes, zero counts, and
missing values. Below, we deal with each of them in turn.

Numeric Attributes: The above formulation of the naive Bayesian learn-
ing assumes that all attributes are categorical. However, most real-life data
sets have numeric attributes. Therefore, in order to use the naive Bayeisan
algorithm, each numeric attribute needs to be discretized into intervals.
This is the same as for class association rule mining. Existing discretiza-
tion algorithms in [16, 19] can be used.

Zero Counts: It is possible that a particular attribute value in the test set
never occurs together with a class in the training set. This is problematic
because it will result in a 0 probability, which wipes out all the other prob-
abilities Pr(4=a; | C=c;) when they are multiplied according to Equation

3.7 Naive Bayesian Text Classification 103

(25) or Equation (22). A principled solution to this problem is to incorpo-
rate a small-sample correction into all probabilities.

Let n;; be the number of examples that have both 4;= a;and C = ¢;. Let n;
be the total number of examples with C=c; in the training data set. The un-
corrected estimate of Pr(4=a; | C=c;) is n;/n;, and the corrected estimate is
n; + A4

Pr(Al.zai|C=cj)= (26)

n; +Am;

where m; is the number of values of attribute 4; (e.g., 2 for a Boolean at-
tribute), and A is a multiplicative factor, which is commonly set to 4= 1/n,
where 7 is the total number of examples in the training set D [15, 29].
When 4 =1, we get the well known Laplace’s law of succession [23]. The
general form of correction (also called smoothing) in Equation (26) is
called the Lidstone’s law of succession [37]. Applying the correction 4 =
1/n, the probabilities of Example 17 are revised. For example,

Pr(A=m | C=t) = (2+1/10) / (5 + 3*1/10) = 2.1/5.3 = 0.396
Pr(B=b | C=t) = (1+1/10) / (5 + 3*1/10) = 1.1/5.3 = 0.208.

Missing Values: Missing values are ignored, both in computing the prob-
ability estimates in training and in classifying test instances.

3.7 Naive Bayesian Text Classification

Text classification or categorization is the problem of learning classifica-
tion models from training documents labeled with pre-defined classes.
That learned models are then used to classify future documents. For exam-
ple, we have a set of news articles of three classes or topics, Sport, Politics,
and Science. We want to learn a classifier that is able to classify future
news articles into these classes.

Due to the rapid growth of online documents in organizations and on the
Web, automated document classification is an important problem. Al-
though the techniques discussed in the previous sections can be applied to
text classification, it has been shown that they are not as effective as the
methods presented in this section and in the next two sections. In this sec-
tion, we study a naive Bayesian learning method that is specifically formu-
lated for texts, which makes use of text specific characteristics. However,
the ideas are similar to those in Sect. 3.6. Below, we first present a prob-
abilistic framework for texts, and then study the naive Bayesian equations
for their classification. There are several slight variations of this model.
This section is mainly based on the formulation given in [42].

104 3 Supervised Learning

3.7.1 Probabilistic Framework

The naive Bayesian learning method for text classification is derived based
on a probabilistic generative model. It assumes that each document is
generated by a parametric distribution governed by a set of hidden pa-
rameters. Training data is used to estimate these parameters. The parame-
ters are then applied to classify each test document using Bayes rule by
calculating the posterior probability that the distribution associated with
a class (represented by the unobserved class variable) would have gener-
ated the given document. Classification then becomes a simple matter of
selecting the most probable class.
The generative model is based on two assumptions:

1. The data (or the text documents) are generated by a mixture model.
2. There is a one-to-one correspondence between mixture components and
document classes.

A mixture model models the data with a number of statistical distribu-
tions. Intuitively, each distribution corresponds to a data cluster and the pa-
rameters of the distribution provide a description of the corresponding
cluster. Each distribution in a mixture model is also called a mixture
component (the distribution can be of any kind). Fig. 3.15 plots two
probability density functions of a mixture of two Gaussian distributions
that generate a 1-dimensional data set of two classes, one distribution per
class, whose parameters (denoted by &) are the mean (z;) and the standard
deviation (), i.e., 6. = (w;, ;).

class 1 class 2

Fig. 3.18. Probability density functions of two distributions in a mixture model

Let the number of mixture components (or distributions) in a mixture
model be K, and the jth distribution has the parameters 6. Let ® be the set
of parameters of all components, ® = {@y, ¢, ..., @k, 61, &, ..., b}, where
@; is the mixture weight (or mixture probability) of the mixture compo-
nent j and 6 is the set of parameters of component j. The mixture weights

3.7 Naive Bayesian Text Classification 105

are subject to the constraint Y°* ¢, =1. The meaning of mixture weights (or

probabilities) will be clear below.

Let us see how the mixture model generates a collection of documents.
Recall the classes C in our classification problem are ci, ¢, ..., ¢q. Since
we assume that there is a one-to-one correspondence between mixture
components and classes, each class corresponds to a mixture component.
Thus |C| = K, and the jth mixture component can be represented by its cor-
responding class ¢; and is parameterized by 6. The mixture weights are
class prior probabilities, i.e., ¢ = Pr(c;|®). The mixture model generates
each document d; by:

1. first selecting a mixture component (or class) according to class prior
probabilities (i.e., mixture weights), ¢, = Pr(c;|0);

2. then having this selected mixture component (c;) generate a document d;
according to its parameters, with distribution Pr(djc;; ®) or more pre-
cisely Pr(dj|c;; G).

The probability that a document d; is generated by the mixture model can
be written as the sum of total probability over all mixture components.
Note that to simplify the notation, we use ¢; instead of C = ¢; as in the pre-
vious section:

|C]
Pr(d, |©) = Pr(c,|®)Pr(d, |c,; ®). (27)

J=l

Since each document is attached with its class label, we can now derive the
naive Bayesian model for text classification. Note that in the above prob-
ability expressions, we include © to represent their dependency on ® as we
employ a generative model. In an actual implementation, we need not be
concerned with ®, i.e., it can be ignored.

3.7.2 Naive Bayesian Model

A text document consists of a sequence of sentences, and each sentence
consists of a sequence of words. However, due to the complexity of mod-
eling words sequence and their relationships, several assumptions are
made in the derivation of the Bayesian classifier. That is also why we call
the final classification model, the naive Bayesian classification model.

Specifically, the naive Bayesian classification treats each document as a
“bag” of words. Apart from the mixture model assumptions described
above, the generative model also makes the following words and document
length based assumptions:

106 3 Supervised Learning

1. Words of a document are generated independently of their context, that
is, independently of the other words in the same document given the
class label. This is the familiar naive Bayesian assumption used before.

2. The probability of a word is independent of its position in the document.
For example, the probability of seeing the word “student” in the first po-
sition of the document is the same as seeing it in any other position.

3. Document length is independent of the document class.

With these assumptions, each document can be regarded as generated by a
multinomial distribution. In other words, each document is drawn from a
multinomial distribution of words with as many independent trials as the
length of the document. The words are from a given vocabulary V = {w,
Wy, ..., W}, |V] being the number of words in the vocabulary. To see why
this is a multinomial distribution, we give a short introduction to the multi-
nomial distribution.

A multinomial trial is a process that can result in any of & outcomes,
where £ > 2. Each outcome of a multinomial trial has a probability of oc-
currence. The probabilities of the k outcomes are denoted by py, ps, ..., pi.
For example, the rolling of a die is a multinomial trial, with six possible
outcomes 1, 2, 3, 4, 5, 6. For a fair die, py=p,= ... = p,=1/6.

Now assume # independent trials are conducted, each with the k possi-
ble outcomes and the & probabilities, py, ps, ..., pr. Let us number the out-
comes 1, 2, 3, ..., k. For each outcome, let X; denote the number of trials
that result in that outcome. Then, Xj, X5, ..., X, are discrete random vari-
ables. The collection of Xj, X5, ..., X; is said to have the multinomial dis-
tribution with parameters, 7, py, p2, ..., Pi

In our context, n corresponds to the length of a document, and the out-
comes correspond to all the words in the vocabulary V (k = |V)). p1, ps, ...,
prcorrespond to the probabilities of occurrence of the words in V in a doc-
ument, which are Pr(w/c;; ©). X; is a random variable representing the
number of times that word w, appears in a document. We can thus directly
apply the probability function of the multinomial distribution to find the
probability of a document given its class (including the probability of doc-
ument length, Pr(|d;|), which is assumed to be independent of the class):

" Pr(w, | ¢ ,;0)"
Pr(d,|¢,:0)=Pr(|d,) |d, [[——*
t=1 7

(28)

b

where N,; is the number of times that word w, occurs in document d,

V] V]
>N, =d,|,and Y Pr(w,|c;;0)=1. (29)

t=1 t=1

3.7 Naive Bayesian Text Classification 107

The parameters 6 of the generative component for each class ¢; are the
probabilities of all words w; in ¥V, written as Pr(w|c;; ®), and the probabili-
ties of document lengths, which are the same for all classes (or mixture
components) due to our assumption.

Parameter Estimation: The parameters can be estimated from the train-
ing data D = {D,, D,, ..., D¢}, where D; is the subset of documents for
class ¢; (recall |C| is the number of classes). The vocabulary V' is the set of
all distinctive words in D. Note that we do not need to estimate the prob-
ability of each document length as it is not used in our final classifier. The

estimate of © is written as © . The parameters are estimated based on em-
pirical counts.

The estimated probability of word w; given class ¢; is simply the number
of times that w, occurs in the training data D; (of class ¢;) divided by the to-
tal number of word occurrences in the training data for that class:

SN, Pr(c, | d)
14 |D] .
st:l zzl N si Pr(c J | di)

In Equation (30), we do not use D; explicitly. Instead, we include Pr(cj|d;)
to achieve the same effect because Pr(cjd;) = 1 for each document in D,
and Pr(c;|d;) = 0 for documents of other classes. Again, N; is the number of
times that word w; occurs in document d,.

In order to handle 0 counts for infrequently occurring words that do not
appear in the training set, but may appear in the test set, we need to smooth
the probability to avoid probabilities of 0 or 1. This is the same problem as
in Sect. 3.6. The standard way of doing this is to augment the count of
each distinctive word with a small quantity 4 (0 < A< 1) or a fraction of a
word in both the numerator and the denominator. Thus, any word will have
at least a very small probability of occurrence.

Pr(w, |c,;0) = (30)

A+ " N, Pr(c,|d)
g DI ’
AV I+ 2 Ny Prle, | d)

This is called the Lidstone smoothing (Lidstone’s law of succession).
When A = 1, the smoothing is known as the Laplace smoothing. Many
experiments have shown that 4 < 1 works better for text classification [1].
The best A value for a data set can be found through experiments using a
validation set or through cross-validation.

Finally, class prior probabilities, which are mixture weights ¢, can be
easily estimated using the training data as well,

Pr(w, |c,;0) = (1)

108 3 Supervised Learning

2]
Pr(c,|6) = w (32)

Classification: Given the estimated parameters, at the classification time,
we need to compute the probability of each class ¢; for the test document
d;. That is, we compute the probability that a particular mixture component
¢; generated the given document d;. Using the Bayes rule and Equations
(27), (28), (31), and (32), we have

Pr(c, |©)Pr(d, |c,;0)

Pr(d, |©)
A |d;] A
Pr(c;, ‘G))Hk:lpr(wd,.,k |Cj;®)
—e A 1d,]| AN
Zrz] Pr(c, |®)Hk:1 Pr(wd,,k |c,;0)

where wy,; is the word in position &k of document d; (which is the same as

using w; and N,). If the final classifier is to classify each document into a
single class, the class with the highest posterior probability is selected:

Pr(c,|d;0) = (33)

argmax, Pr(c; | d,.;(:)). (34)

3.7.3 Discussion

Most assumptions made by naive Bayesian learning are violated in prac-
tice. For example, words in a document are clearly not independent of each
other. The mixture model assumption of one-to-one correspondence be-
tween classes and mixture components may not be true either because a
class may contain documents from multiple topics. Despite such viola-
tions, researchers have shown that naive Bayesian learning produces very
accurate models.

Naive Bayesian learning is also very efficient. It scans the training data
only once to estimate all the probabilities required for classification. It can
be used as an incremental algorithm as well. The model can be updated
easily as new data comes in because the probabilities can be conveniently
revised. Naive Bayesian learning is thus widely used for text classification.

The naive Bayesian formulation presented here is based on a mixture of
multinomial distributions. There is also a formulation based on multi-
variate Bernoulli distributions in which each word in the vocabulary is a
binary feature, i.e., it either appears or does not appear in a document.

3.8 Support Vector Machines 109

Thus, it does not consider the number of times that a word occurs in a doc-
ument. Experimental comparisons show that multinomial formulation con-
sistently produces more accurate classifiers [42].

3.8 Support Vector Machines

Support vector machines (SVM) is another type of learning system [57],
which has many desirable qualities that make it one of most popular algo-
rithms. It not only has a solid theoretical foundation, but also performs
classification more accurately than most other algorithms in many applica-
tions, especially those applications involving very high dimensional data.
For instance, it has been shown by several researchers that SVM is perhaps
the most accurate algorithm for text classification. It is also widely used in
Web page classification and bioinformatics applications.

In general, SVM is a linear learning system that builds two-class clas-
sifiers. Let the set of training examples D be

{(Xls J’I), (X25 y2)5 ey (Xm)"n)},
where x; = (x;1, Xp, ..., X;) 1S a r-dimensional input vector in a real-valued

space X < 9, y; is its class label (output value) and y; € {1, -1}. 1 denotes

the positive class and -1 denotes the negative class. Note that we use

slightly different notations in this section. We use y instead of ¢ to repre-
sent a class because y is commonly used to represent a class in the SVM
literature. Similarly, each data instance is called an input vector and de-
noted by a bold face letter. In the following, we use bold face letters for all
vectors.

To build a classifier, SVM finds a linear function of the form

fxX)=(w-x)+b (35)

so that an input vector X; is assigned to the positive class if f(x;) > 0, and to
the negative class otherwise, i.e.,

1 ifiw-x)+bH>0
y=i 1w (36)
-1 if{w-x,)+b5<0
Hence, f(x) is a real-valued function : X < #'—> H#. w=(w, wa, ..., w,) €

9" is called the weight vector. b € 9 is called the bias. (w - x) is the dot
product of w and x (or Euclidean inner product). Without using vector
notation, Equation (35) can be written as:

110 3 Supervised Learning

S, xa, LX) = wixtwaxy + L+ wx, + b,

where x; is the variable representing the ith coordinate of the vector x. For
convenience, we will use the vector notation from now on.
In essence, SVM finds a hyperplane

w-x)+b=0 (37)

that separates positive and negative training examples. This hyperplane is
called the decision boundary or decision surface.

Geometrically, the hyperplane (w - x) + b = 0 divides the input space in-
to two half spaces: one half for positive examples and the other half for
negative examples. Recall that a hyperplane is commonly called a line in a
2-dimensional space and a plane in a 3-dimensional space.

Fig. 3.19(A) shows an example in a 2-dimensional space. Positive in-
stances (also called positive data points or simply positive points) are rep-
resented with small filled rectangles, and negative examples are repre-
sented with small empty circles. The thick line in the middle is the
decision boundary hyperplane (a line in this case), which separates positive
(above the line) and negative (below the line) data points. Equation (35),
which is also called the decision rule of the SVM classifier, is used to
make classification decisions on test instances.

N

/ /1

(B)
Fig. 3.19. (A) A linearly separable data set and (B) possible decision boundaries

Fig. 3.19(A) raises two interesting questions:

1. There are an infinite number of lines that can separate the positive and
negative data points as illustrated by Fig. 3.19(B). Which line should we
choose?

2. A hyperplane classifier is only applicable if the positive and negative
data can be linearly separated. How can we deal with nonlinear separa-
tions or data sets that require nonlinear decision boundaries?

3.8 Support Vector Machines 111

The SVM framework provides good answers to both questions. Briefly, for
question 1, SVM chooses the hyperplane that maximizes the margin (the
gap) between positive and negative data points, which will be defined for-
mally shortly. For question 2, SVM uses kernel functions. Before we dive
into the details, we want to stress that SVM requires numeric data and only
builds two-class classifiers. At the end of the section, we will discuss how
these limitations may be addressed.

3.8.1 Linear SVM: Separable Case

This sub-section studies the simplest case of linear SVM. It is assumed that
the positive and negative data points are linearly separable.

From linear algebra, we know that in (w - x) + » = 0, w defines a direc-
tion perpendicular to the hyperplane (see Fig. 3.20). w is also called the
normal vector (or simply normal) of the hyperplane. Without changing
the normal vector w, varying b moves the hyperplane parallel to itself.
Note also that (w - x) + b = 0 has an inherent degree of freedom. We can
rescale the hyperplane to (Aw - x) + Ab = 0 for 1 € %" (positive real num-
bers) without changing the function/hyperplane.

margin

L v=-1 H:{w-x)+b=-1

Fig. 3.20. Separating hyperplanes and margin of SVM: Support vectors are circled

Since SVM maximizes the margin between positive and negative data
points, let us find the margin. Let d, (respectively d_) be the shortest dis-
tance from the separating hyperplane ((w - x) + b = 0) to the closest posi-
tive (negative) data point. The margin of the separating hyperplane is
d+d_. SVM looks for the separating hyperplane with the largest margin,
which is also called the maximal margin hyperplane, as the final deci-
sion boundary. The reason for choosing this hyperplane to be the decision

112 3 Supervised Learning

boundary is because theoretical results from structural risk minimization in
computational learning theory show that maximizing the margin mini-
mizes the upper bound of classification errors.

Let us consider a positive data point (x", 1) and a negative data point (x-,
-1) that are closest to the hyperplane <w - x> + b = 0. We define two paral-
lel hyperplanes, H, and H_, that pass through x" and x- respectively. H, and

H_ are also parallel to <w - x>+ b =0. We can rescale w and b to obtain

H. (w-x)+b=1 (38)
H. (w-x)y+b=-1 (39)
such that w-xpt+b>1 ify;=1
w-x;) +b<-1 ify;=-1,

which indicate that no training data fall between hyperplanes H. and H..
Now let us compute the distance between the two margin hyperplanes
H. and H.. Their distance is the margin (d+ + d_). Recall from vector space
in linear algebra that the (perpendicular) Euclidean distance from a point x;
to a hyperplane (w - x) + b =0 is:
[(W-x;)+b| (40)
Iwil

where ||w]| is the Euclidean norm of w,

||WH=\/<W~W>=\/w12+w22+...+wr2 _ (41)

To compute d., instead of computing the distance from x" to the separat-
ing hyperplane (w - x) + b = 0, we pick up any point x;on (w - x) + b =0
and compute the distance from x, to (w - X'y + b = 1 by applying Equation
(40) and noticing that (w - x;) + b =0,

CKwexg+b-1] 1
[[wl [wl

. (42)
Likewise, we can compute the distance from x, to (w - X"y + b = -1 to ob-
tain d_ = 1/||w||. Thus, the decision boundary (w - x) + b = 0 lies half way
between H, and H.. The margin is thus

3.8 Support Vector Machines 113

margin=d, +d_= 2 (43)
Wl

In fact, we can compute the margin in many ways. For example, it can
be computed by finding the distances from the origin to the three hyper-
planes, or by projecting the vector (X;— X;") to the normal vector w.

Since SVM looks for the separating hyperplane that maximizes the mar-
gin, this gives us an optimization problem. Since maximizing the margin is
the same as minimizing |[w|[*/2 = (w - w)/2. We have the following linear
separable SVM formulation.

Definition (Linear SVM: Separable Case): Given a set of linearly sepa-
rable training examples,

D= {(le yl)a (X27 yz)a [EXT (Xl’la J’n)}9
learning is to solve the following constrained minimization problem,

C W W
Minimize : {)

(44)
Subjectto: y,(w-x,)+b)>1, i=1,2,...,n

Note that the constraint y,((w-x,)+b)>1, i=1,2,...,n summarizes:
w-xpy+b>1 fory,=1
(w-x;) +b<-1 for y; = -1.

Solving the problem (44) will produce the solutions for w and b, which in turn
give us the maximal margin hyperplane (w - x) + b =0 with the margin 2/||w||.

A full description of the solution method requires a significant amount
of optimization theory, which is beyond the scope of this book. We will
only use those relevant results from optimization without giving formal de-
finitions, theorems, or proofs.

Since the objective function is quadratic and convex and the constraints
are linear in the parameters w and b, we can use the standard Lagrange
multiplier method to solve it.

Instead of optimizing only the objective function (which is called un-
constrained optimization), we need to optimize the Lagrangian of the prob-
lem, which considers the constraints at the same time. The need to con-
sider constraints is obvious because they restrict the feasible solutions.
Since our inequality constraints are expressed using “>”, the Lagrangian
is formed by the constraints multiplied by positive Lagrange multipliers
and subtracted from the objective function, i.e.,

114 3 Supervised Learning

Ly = v wh= YLy, (wex) +5) 1] 5)

where ¢; > 0 are the Lagrange multipliers.

The optimization theory says that an optimal solution to (45) must sat-
isfy certain conditions, called Kuhn—Tucker conditions, which play a
central role in constrained optimization. Here, we give a brief introduction
to these conditions. Let the general optimization problem be

Minimize : f(x)

Subjectto : g,(x)<b;, i=1,2,..,n (46)

where f'is the objective function and g; is a constraint function (which is
different from y; in (44) as y; is not a function but a class label of 1 or -1).
The Lagrangian of (46) is,

L= f()+Y g0 -5)] (@)

An optimal solution to the problem in (46) must satisfy the following
necessary (but not sufficient) conditions:

Zij’ =0, j=12,..,r (48)
g,(x)=-b;<0, i=1,2,...,n (49)
a, 20, i=1,2,..,n (50)
o;(b;—g;(x;))=0, i=1,2,..,n (51

These conditions are called the Kuhn—Tucker conditions. Note that
(49) is simply the original set of constraints in (46). The condition (51) is
called the complementarity condition, which implies that at the solution
point,

If a; > 0 then g[(X) = b,‘.
If g(x)>h then a=0.

These mean that for active constraints, ¢; > 0, whereas for inactive con-
straints, ¢; = 0. As we will see later, they give some very desirable proper-
ties to SVM.

Let us come back to our problem. For the minimization problem (44),
the Kuhn—Tucker conditions are (52)—(56):

3.8 Support Vector Machines 115

oL, - .

——=w, - ax, =0, j=1,2,..,r 52
aW< J ;yz ivij J ()
aLP n

= Z}y :

y,((w-x;)+b)-120, i=1,2,...,n (54)
a, 20, i=1,2,..,n (55)
a;(y;(w-x,)+b)-1)=0, i=1,2,...,n (56)

Inequality (54) is the original set of constraints. We also note that although
there is a Lagrange multiplier ¢; for each training data point, the comple-
mentarity condition (56) shows that only those data points on the margin

hyperplanes (i.e., H. and H_) can have ¢;> 0 since for them y,({w - x;) + b)

—1=0. These data points are called support vectors, which give the name
to the algorithm, support vector machines. All the other data points have
o, = 0.

In general, Kuhn—Tucker conditions are necessary for an optimal solu-
tion, but not sufficient. However, for our minimization problem with a
convex objective function and a set of linear constraints, the Kuhn—Tucker
conditions are both necessary and sufficient for an optimal solution.

Solving the optimization problem is still a difficult task due to the ine-
quality constraints. However, the Lagrangian treatment of the convex op-
timization problem leads to an alternative dual formulation of the problem,
which is easier to solve than the original problem, which is called the pri-
mal problem (Lp is called the primal Lagrangian).

The concept of duality is widely used in the optimization literature. The
aim is to provide an alternative formulation of the problem which is more
convenient to solve computationally and/or has some theoretical signifi-
cance. In the context of SVM, the dual problem is not only easy to solve
computationally, but also crucial for using kernel functions to deal with
nonlinear decision boundaries as we do not need to compute w explicitly
(which will be clear later).

Transforming from the primal to its corresponding dual can be done by
setting to zero the partial derivatives of the Lagrangian (45) with respect to
the primal variables (i.e., w and b), and substituting the resulting relations
back into the Lagrangian. This is to simply substitute (52), which is

116 3 Supervised Learning

Wy =S =12 o7
i=1
and (53), which is
Zyi =0, (58)
i=1

into the original Lagrangian (45) to eliminate the primal variables, which
gives us the dual objective function (denoted by Lp),

n 1 n

LD:Zai_azyiyjaiaj<xi.xj>' (59)
i= i,j=

Lp contains only dual variables and must be maximized under the simpler

constraints, (52) and (53), and «; > 0. Note that (52) is not needed as it has

already been substituted into the objective function Lp. Hence, the dual of

the primal Equation (44) is

n 1 n
Maximize: L, = ZOK,- - Zyiyjaiaj<xi 'Xj>'
i=1 2 i,j=1 (60)

Zyiai =0

Subject to: 5
20, i=12,..,n

This dual formulation is called the Wolfe dual. For our convex objec-
tive function and linear constraints of the primal, it has the property that
the ¢;’s at the maximum of L, gives w and b occurring at the minimum of
Lp (the primal).

Solving (60) requires numerical techniques and clever strategies beyond
the scope of this book. After solving (60), we obtain the values for «;,
which are used to compute the weight vector w and the bias b using Equa-
tions (52) and (56) respectively. Instead of depending on one support vec-
tor (o; > 0) to compute b, in practice all support vectors are used to com-
pute b, and then take their average as the final value for b. This is because
the values of ¢; are computed numerically and can have numerical errors.
Our final decision boundary (maximal margin hyperplane) is

(W-x)+b=> ya,(x;-x)+b=0, 1)

iesv

where sv is the set of indices of the support vectors in the training data.

3.8 Support Vector Machines 117

Testing: We apply (61) for classification. Given a test instance z, we clas-
sify it using the following:

sign((w-z)+b) = sign(Z Vo (X, Z)+ b} (62)

iesv

If (62) returns 1, then the test instance z is classified as positive; otherwise,
it is classified as negative.

3.8.2 Linear SVM: Non-separable Case

The linear separable case is the ideal situation. In practice, however, the
training data is almost always noisy, i.e., containing errors due to various
reasons. For example, some examples may be labeled incorrectly. Fur-
thermore, practical problems may have some degree of randomness. Even
for two identical input vectors, their labels may be different.

For SVM to be useful, it must allow noise in the training data. However,
with noisy data the linear separable SVM will not find a solution because
the constraints cannot be satisfied. For example, in Fig. 3.21, there is a
negative point (circled) in the positive region, and a positive point in the
negative region. Clearly, no solution can be found for the problem.

Recall that the primal for the linear separable case was:

Minimize : g (63)

Subjectto: y,((w-x,)+b)=1, i=1,2,..,n
To allow errors in data, we can relax the margin constraints by introduc-
ing slack variables, & (= 0) as follows:
<W'X,‘>+b21—§i fory,-=1
w-x)+tb<-1+¢& fory,=-1.
Thus we have the new constraints:

Subjectto: y((w-xp+b)>1-E,i=1,2,...,n,
&20,i=1,2,...,n

The geometric interpretation is shown in Fig. 3.21, which has two error da-
ta points x, and x;, (circled) in wrong regions.

118 3 Supervised Learning

Fig. 3.21. The non-separable case: x, and x,, are error data points

We also need to penalize the errors in the objective function. A natural
way is to assign an extra cost for errors to change the objective function to

C(Zgj , (64)

where C > 0 is a user specified parameter. The resulting optimization prob-
lem is still a convex programming problem. £ = 1 is commonly used,
which has the advantage that neither & nor its Lagrangian multipliers ap-
pear in the dual formulation. We only discuss the £ = 1 case below.

The new optimization problem becomes:

w>+CZ§I.
i=1
Subjectto: y,(w-x;)+b)=21-&,, i=1,2,..,n
£ 20, i=1,2,..,n

Minimize: (

Minimize : (

(65)

This formulation is called the soft-margin SVM. The primal Lagrangian
(denoted by Lp) of this formulation is as follows

L, =%<W-W>+Ci§,—_iai[yi(<w'xi>+b)_1+§i]_i'ui§f ? (66)

where ¢, 1; > 0 are the Lagrange multipliers. The Kuhn-Tucker condi-
tions for optimality are the following:

E—w, Zy, ax,; =0, j=12,..,r (67)

3.8 Support Vector Machines 119

aaibp =_,ily"a" 0 (68)
ZL_g:c_ai_yizo, i=1,2,...n (69)
yi(w-x;)+b)—-14+¢& 20, i=1,2,..,n (70)
&>0, i=1,2,..,n (71)
a, 20, i=1,2,..,n (72)
120, i=1,2,...n (73)
a,(y,((w-x)+b)—-1+&)=0, i=1,2,..,n (74)
wé =0, i=1,2,.,n (75)

As the linear separable case, we then transform the primal to its dual by
setting to zero the partial derivatives of the Lagrangian (66) with respect to
the primal variables (i.e., w, b and &), and substituting the resulting rela-
tions back into the Lagrangian. That is, we substitute Equations (67), (68)
and (69) into the primal Lagrangian (66). From Equation (69), C — a; — 1
=0, we can deduce that o; < C because z; > 0. Thus, the dual of (65) is

. < 1<
Maximize: L, (a)= E a; —— z yiyjaiaj<xi 'X«i>
p 255 (76)

n

Zyiai =0

Subject to: 5
0<eg,<C, i=12,..,n

Interestingly, & and its Lagrange multipliers z4 are not in the dual and the
objective function is identical to that for the separable case. The only dif-
ference is the constraint ¢; < C (inferred from C—a;—y; = 0 and g > 0).

The dual problem (76) can also be solved numerically, and the resulting
a; values are then used to compute w and b. w is computed using Equation
(67) and b is computed using the Kuhn—-Tucker complementarity condi-
tions (74) and (75). Since we do not have values for &, we need to get around
it. From Equations (69), (74) and (75), we observe that if 0 < ¢; < C then both
&=0andy,((w-Xx;)+b)—1+&;,)=0. Thus, we can use any training data
point for which 0 < ¢; < C and Equation (74) (with & = 0) to compute b:

b=i—iyiai(xi-xj). (77)

i i=l1

120 3 Supervised Learning

Again, due to numerical errors, we can compute all possible b’s and
then take their average as the final b value.
Note that Equations (69), (74) and (75) in fact tell us more:

o=0 = y(w-x)+b)=1and £=0
0<a<C = ylw-x)+b)=1and &=0 78)
a=C = y(w-x)+b) <1l and &20

Similar to support vectors for the separable case, (78) shows one of the
most important properties of SVM: the solution is sparse in ¢;. Most train-
ing data points are outside the margin area and their ¢;’s in the solution are
0. Only those data points that are on the margin (i.e., y,({(w - x;) + b) =1,
which are support vectors in the separable case), inside the margin (i.e., ¢;
= C and y{({w - x;) + b) < 1), or errors are non-zero. Without this sparsity
property, SVM would not be practical for large data sets.

The final decision boundary is (we note that many ¢;’s are 0)

(W-x)+b=> ya(x,-x)+b=0. (79)
i=1
The decision rule for classification (testing) is the same as the separable
case, i.e., sign({w - x) + b). We notice that for both Equations (79) and
(77), w does not need to be explicitly computed. This is crucial for using
kernel functions to handle nonlinear decision boundaries.

Finally, we still have the problem of determining the parameter C. The
value of C is usually chosen by trying a range of values on the training set
to build multiple classifiers and then to test them on a validation set before
selecting the one that gives the best classification result on the validation
set. Cross-validation is commonly used as well.

3.8.3 Nonlinear SVM: Kernel Functions

The SVM formulations discussed so far require that positive and negative
examples can be linearly separated, i.e., the decision boundary must be a
hyperplane. However, for many real-life data sets, the decision boundaries
are nonlinear. To deal with nonlinearly separable data, the same formula-
tion and solution techniques as for the linear case are still used. We only
transform the input data from its original space into another space (usually
a much higher dimensional space) so that a linear decision boundary can
separate positive and negative examples in the transformed space, which is
called the feature space. The original data space is called the input space.

Thus, the basic idea is to map the data in the input space X to a feature
space F' via a nonlinear mapping ¢,

3.8 Support Vector Machines 121

P X->F
X — @#(Xx).

After the mapping, the original training data set {(x;, y1), (X2, 2), ...,
(Xm J/n)} becomes:

{(¢(X1), yl)a (¢(X2)9 y2): EEEE) (¢(XH)9 yn)} (81)

The same linear SVM solution method is then applied to F. Fig. 3.19 illus-
trates the process. In the input space (figure on the left), the training exam-
ples cannot be linearly separated. In the transformed feature space (figure
on the right), they can be separated linearly.

(80)

Input space X Feature space I
X X Ax)
o
o\ x b, #x)
X #Ax)
0 X
0

Fig. 3.22. Transformation from the input space to the feature space

With the transformation, the optimization problem in (65) becomes
o Awew) d
Minimize : T + C; g (82)
Subjectto: y,(w-g(x,))+b)=21-¢,, i=1,2,..,n
E>0, i=1,2,...n

Its corresponding dual is

Maximize: L, = Zn:ai —% Zn:yl.yjaiaj@(xl.) “P(X,)). (83)

ij=l
iyla[=0

i=l1

0<a,<C, i=12,..,n

Subject to:

The final decision rule for classification (testing) is

3 v (gx,)- g +b (&)

122 3 Supervised Learning

Example 18: Suppose our input space is 2-dimensional, and we choose the
following transformation (mapping):

(xp, X)) = (x12,x22,«/§x]x2) (85)

The training example ((2, 3), -1) in the input space is transformed to the
following training example in the feature space:

(4,9, 8.5), -1). o

The potential problem with this approach of transforming the input data
explicitly to a feature space and then applying the linear SVM is that it
may suffer from the curse of dimensionality. The number of dimensions in
the feature space can be huge with some useful transformations (see be-
low) even with reasonable numbers of attributes in the input space. This
makes it computationally infeasible to handle.

Fortunately, explicit transformations can be avoided if we notice that in
the dual representation both the construction of the optimal hyperplane
(83) in F and the evaluation of the corresponding decision/classification
function (84) only require the evaluation of dot products (#(x) - #z)) and
never the mapped vector #(x) in its explicit form. This is a crucial point.

Thus, if we have a way to compute the dot product (#x) - #z)) in the
feature space F using the input vectors x and z directly, then we would not
need to know the feature vector ¢(x) or even the mapping function ¢ itself.
In SVM, this is done through the use of kernel functions, denoted by K,

K(x,z) =(Ax) - H2)), (86)

which are exactly the functions for computing dot products in the trans-
formed feature space using input vectors x and z. An example of a kernel
function is the polynomial kernel,

K(x,2)=(x - z)". (87)

Example 19: Let us compute this kernel with degree d = 2 in a 2-

dimensional space. Let x = (x1, x,) and z = (z1, z).
(x- Z>2 =(xz, + x222)2

= xlzzl2 +2x,2,%,2, + xzzzz2 (88)

= <(x12’ Xzz’\/ixlxz) : (le’ 222’\/52122)
=(¢(x)-P(2)),

3.8 Support Vector Machines 123

where @(x)=(x,’, xzz,x/lexz),which shows that the kernel (x - z) is a
dot product in the transformed feature space. The number of dimensions in
the feature space is 3. Note that ¢(x) is actually the mapping function used
in Example 18. Incidentally, in general the number of dimensions in the
. . d- r+d-— .
feature space for the polynomial kernel function (x - z) IS]—(‘ 4]j, which
is a huge number even with a reasonable number () of attributes in the in-
put space. Fortunately, by using the kernel function in (87), the huge num-
ber of dimensions in the feature space does not matter. u

The derivation in (88) is only for illustration purposes. In fact, we do not
need to find the mapping function. We can simply apply the kernel func-
tion directly. That is, we replace all the dot products (Hx) - ¢z)) in (83)
and (84) with the kernel function K(x, z) (e.g., the polynomial kernel in
(87)). This strategy of directly using a kernel function to replace dot prod-
ucts in the feature space is called the kernel trick. We never need to ex-
plicitly know what ¢ is.

However, the question is, how do we know whether a function is a ker-
nel without performing the derivation such as that in (88)? That is, how do
we know that a kernel function is indeed a dot product in some feature
space? This question is answered by a theorem called the Mercer’s theo-
rem, which we will not discuss here. See [12] for details.

It is clear that the idea of kernel generalizes the dot product in the input
space. The dot product is also a kernel with the feature map being the identity

K(x,z)=(x"z). (39)
Commonly used kernels include

Polynomial: K(x,z)=((x-z)+8)" (90)

Gaussian RBF: K(x,z) = el /20 o1

where 8 € ¥%,d € N, and c > 0.

Summary

SVM is a linear learning system that finds the maximal margin decision
boundary to separate positive and negative examples. Learning is formu-
lated as a quadratic optimization problem. Nonlinear decision boundaries
are found via a transformation of the original data to a much higher dimen-
sional feature space. However, this transformation is never explicitly done.

124 3 Supervised Learning

Instead, kernel functions are used to compute dot products required in
learning without the need to even know the transformation function.

Due to the separation of the learning algorithm and kernel functions,
kernels can be studied independently from the learning algorithm. One can
design and experiment with different kernel functions without touching the
underlying learning algorithm.

SVM also has some limitations:

1. It works only in real-valued space. For a categorical attribute, we need
to convert its categorical values to numeric values. One way to do this is
to create an extra binary attribute for each categorical value, and set the
attribute value to 1 if the categorical value appears, and 0 otherwise.

2. It allows only two classes, i.e., binary classification. For multiple class
classification problems, several strategies can be applied, e.g., one-
against-rest, and error-correcting output coding [14].

3. The hyperplane produced by SVM is hard to understand by users. It is
difficult to picture where the hyperplane is in a high-dimensional space.
The matter is made worse by kernels. Thus, SVM is commonly used in
applications that do not required human understanding.

3.9 K-Nearest Neighbor Learning

All the previous learning methods learn some kinds of models from the
training data, e.g., decision trees, sets of rules, posterior probabilities, and
hyperplanes. These learning methods are often called eager learning me-
thods as they learn models of the data before testing. In contrast, k-nearest
neighbor (ANN) is a lazy learning method in the sense that no model is
learned from the training data. Learning only occurs when a test example
needs to be classified. The idea of ANN is extremely simple and yet quite
effective in many applications, e.g., text classification.

It works as follows: Again let D be the training data set. Nothing will be
done on the training examples. When a test instance d is presented, the al-
gorithm compares d with every training example in D to compute the simi-
larity or distance between them. The £ most similar (closest) examples in
D are then selected. This set of examples is called the k nearest neighbors
of d. d then takes the most frequent class among the k nearest neighbors.
Note that k£ = 1 is usually not sufficient for determining the class of d due
to noise and outliers in the data. A set of nearest neighbors is needed to ac-
curately decide the class. The general ANN algorithm is given in Fig. 3.23.

3.9 K-Nearest Neighbor Learning 125

Algorithm ANN(D, d, k)

1 Compute the distance between d and every example in D;

2 Choose the k examples in D that are nearest to d, denote the set by P (< D);
3 Assign d the class that is the most frequent class in P (or the majority class).

Fig. 3.23. The k-nearest neighbor algorithm

The key component of a ANN algorithm is the distance/similarity func-
tion, which is chosen based on applications and the nature of the data. For
relational data, the Euclidean distance is commonly used. For text docu-
ments, cosine similarity is a popular choice. We will introduce these dis-
tance functions and many others in the next chapter.

The number of nearest neighbors £ is usually determined by using a va-
lidation set, or through cross validation on the training data. That is, a
range of k values are tried, and the k value that gives the best accuracy on
the validation set (or cross validation) is selected. Fig. 3.21 illustrates the
importance of choosing the right £.

Example 20: In Fig. 3.24, we have two classes of data, positive (filled
squares) and negative (empty circles). If 1-nearest neighbor is used, the
test data point @ will be classified as negative, and if 2-nearest neighbors
are used, the class cannot be decided. If 3-nearest neighbors are used, the
class is positive as two positive examples are in the 3-nearest neighbors.

Fig. 3.24. An illustration of k-nearest neighbor classification

Despite its simplicity, researchers have showed that the classification
accuracy of ANN can be quite strong and in many cases as accurate as
those elaborated methods. For instance, it is showed in [62] that ANN per-
forms equally well as SVM for some text classification tasks. ANN is also
very flexible. It can work with any arbitrarily shaped decision boundaries.

kNN i1s, however, slow at the classification time. Due to the fact that
there is no model building, each test instance is compared with every train-
ing example at the classification time, which can be quite time consuming
especially when the training set D and the test set are large. Another disad-
vantage is that ANN does not produce an understandable model. It is thus
not applicable if an understandable model is required in the application.

126 3 Supervised Learning
3.10 Ensemble of Classifiers

So far, we have studied many individual classifier building techniques. A
natural question to ask is: can we build many classifiers and then combine
them to produce a better classifier? Yes, in many cases. This section de-
scribes two well known ensemble techniques, bagging and boosting. In
both these methods, many classifiers are built and the final classification
decision for each test instance is made based on some forms of voting of
the committee of classifiers.

3.10.1 Bagging

Given a training set D with n examples and a base learning algorithm, bag-

ging (for Bootstrap Aggregating) works as follows [4]:

Training:

1. Create k bootstrap samples S, S,, and S;. Each sample is produced by
drawing n examples at random from D with replacement. Such a sample
is called a bootstrap replicate of the original training set D. On aver-
age, each sample S; contains 63.2% of the original examples in D, with
some examples appearing multiple times.

2. Build a classifier based on each sample S;. This gives us k classifiers.
All the classifiers are built using the same base learning algorithm.

Testing: Classify each test (or new) instance by voting of the & classifiers
(equal weights). The majority class is assigned as the class of the instance.

Bagging can improve the accuracy significantly for unstable learning
algorithms, i.e., a slight change in the training data resulting in a major
change in the output classifier. Decision tree and rule induction methods
are examples of unstable learning methods. k-nearest neighbor and naive
Bayesian methods are examples of stable techniques. For stable classifiers,
Bagging may sometime degrade the accuracy.

3.10.2 Boosting

Boosting is a family of ensemble techniques, which, like bagging, also
manipulates the training examples and produces multiple classifiers to im-
prove the classification accuracy [53]. Here we only describe the popular
AdaBoost algorithm given in [20]. Unlike bagging, AdaBoost assigns a
weight to each training example.

3.10 Ensemble of Classifiers 127

AdaBoost(D, Y, BaseLeaner, k)

1. Initialize Dy(w;) < 1/n for all i; // initialize the weights
2. fort=1tokdo
3. f; < BaseLearner(D,); // build a new classifier f;
4 e, <« ZDt (w); // compute the error of f;
i fi (D (X)) %y,
5. if e, > Y then // if the error is too large,
6. k<—k-1, // remove the iteration and
7. exit-loop /1 exit
8. else
9. pi—el(1-e);
10 Deiw) < Dwy x 1P TP =00 ypdate the weights
1 otherwise
11. Dii(wy) «— M // normalize the weights
i=1 Dt+1 (Wz)

12. endif
13. endfor

1 .
14. fﬁml(x) < argmax Z log— // the final output classifier

YV nfi 0=y '

Fig. 3.25. The AdaBoost algorithm

Training: AdaBoost produces a sequence of classifiers (also using the
same base learner). Each classifier is dependent on the previous one, and
focuses on the previous one’s errors. Training examples that are incor-
rectly classified by the previous classifiers are given higher weights.

Let the original training set D be {(xi, }1), (X2, }2), ---» (Xu, Vu)}, Where X;
is an input vector, y; is its class label and y; € Y (the set of class labels).
With a weight attached to each example, we have, {(x, y1, w1), (X2, Y2, W2),
eees (X, Yo Wi}, and 2 w; = 1. The AdaBoost algorithm is given in Fig. 3.25.

The algorithm builds a sequence of k classifiers (k is specified by the
user) using a base learner, called BaseLeaner in line 3. Initially, the weight
for each training example is 1/n (line 1). In each iteration, the training data
set becomes D,, which is the same as D but with different weights. Each it-
eration builds a new classifier f; (line 3). The error of f; is calculated in line
4. If it is too large, delete the iteration and exit (lines 5-7). Lines 9—11 up-
date and normalize the weights for building the next classifier.

128 3 Supervised Learning

Testing: For each test case, the results of the series of classifiers are com-
bined to determine the final class of the test case, which is shown in line
14 of Fig. 3.25 (a weighted voting).

Boosting works better than bagging in most cases as shown in [48]. It
also tends to improve performance more when the base learner is unstable.

Bibliographic Notes

Supervised learning has been studied extensively by the machine learning
community. The book by Mitchell [45] covers most learning techniques
and is easy to read. Duda et al.’s pattern classification book is also a great
reference [17]. Most data mining books have one or two chapters on su-
pervised learning, e.g., those by Han and Kamber [24], Hand et al. [25],
Tan et al. [56], and Witten and Frank [59].

For decision tree induction, Quinlan’s book [49] has all the details and
the code of his popular decision tree system C4.5. Other well-known sys-
tems include CART by Breiman et al. [6] and CHAD by Kass [28]. Scal-
ing up of decision tree algorithms was also studied in several papers. These
algorithms can have the data on disk, and are thus able to run with huge
data sets. See [22] for an algorithm and also additional references.

Rule induction algorithms generate rules directly from the data. Well-
known systems include AQ by Michalski et al. [44], CN2 by Clark and
Niblett [9], FOIL by Quinlan [50], FOCL by Pazzani et al. [47], I-REP by
Furnkranz and Widmer [21], and RIPPER by Cohen [10].

Using association rules to build classifiers was proposed by Liu et al. in
[39], which also reported the CBA system. CBA selects a small subset of
class association rules as the classifier. Other classifier building techniques
include combining multiple rules by Li et al. [36], using rules as features
by Meretakis and Wiithrich [43], Antonie and Zaiane [2], Deshpande and
Karypis [13], and Lesh et al. [31], generating a subset of rules by Cong et
al. [11], Wang et al. [58], Yin and Han [63], and Zaki and Aggarwal [64].
Additional systems include those by Li et al. [35], Yang et al. [61], etc.

The naive Bayesian classification model described in Sect. 3.6 is based
on the papers by Domingos and Pazzani [15], Kohavi et al. [29] and Lang-
ley et al [30]. The naive Bayesian classification for text discussed in Sect.
3.7 is based on the multinomial formulation given by McCallum and Ni-
gam [42]. This model was also used earlier by Lewis and Gale [33], and Li
and Yamanishi [34]. Another formulation of naive Bayesian classification
is based on the multivariate Bernoulli model, which was used by Lewis
[32], and Robertson and Sparck-Jones [52].

Bibliography 129

Support vector machines (SVM) was first introduced by Vapnik and his
colleagues in 1992 [3]. Further details are given in his 1995 book [57].
Two other books on SVM and kernel methods are those by Cristianini and
Shawe-Taylor [12] and Scholkopf and Smola [54]. The discussion on
SVM in this chapter is heavily influenced by Cristianini and Shawe-
Taylor’s book and the tutorial paper by Burges [8]. Two popular SVM sys-
tems are SVM"" (available at http://svmlight.joachims.org/) and LIBSVM
(available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/).

Existing classifier ensemble methods include bagging by Breiman [4],
boosting by Schapire [53] and Freund and Schapire [20], random forest al-
so by Breiman [5], stacking by Wolpert [60], random trees by Fan [18],
and many others.

Bibliography

1. Agrawal, R., R. Bayardo, and R. Srikant. Athena: Mining-based interactive
management of text databases. Advances in Database Technology—EDBT
2000, 2000: p. 365-379.

2. Antonie, M. and O. Zaiane. Text document categorization by term
association. In Proceedings of IEEE International Conference on Data Minig
(ICDM-2002), 2002.

3. Boser, B., I. Guyon, and V. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of Fifth Annual Workshop on Computational
Learning Theory, 1992.

4. Breiman, L. Bagging predictors. Machine learning, 1996, 24(2): p. 123-140.

5. Breiman, L. Random forests. Machine learning, 2001, 45(1): p. 5-32.

6. Breiman, L., J.H. Friedman, R. Olshen, and C.L. Stone. Classification and
Regression Trees. 1984: Chapman and Hall.

7. Brunk, C. and M. Pazzani. An investigation of noise-tolerant relational
concept learning algorithms. In Proceedings of International Workshop on
Macine Learning, 1991.

8. Burges, C. A tutorial on support vector machines for pattern recognition. Data
mining and knowledge discovery, 1998, 2(2): p. 121-167.

9. Clark, P. and T. Niblett. The CN2 induction algorithm. Machine learning,
1989, 3(4): p. 261-283.

10. Cohen, W. Fast effective rule induction. In Proceedings of International
Conference on Machine Learning (ICML-1995), 1995.

11. Cong, G., A. Tung, X. Xu, F. Pan, and J. Yang. Farmer: Finding interesting
rule groups in microarray datasets. In Proceedings of ACM SIGMOD
Conference on Management of Data (SIGMOD-2004), 2004.

12. Cristianini, N. and J. Shawe-Taylor. An introduction to support Vector
Machines: and other kernel-based learning methods. 2000: Cambridge Univ
Press.

130 3 Supervised Learning

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Deshpande, M. and G. Karypis. Using conjunction of attribute values for
classification. In Proceedings of ACM Intl. Conf. on Information and
Knowledge Management (CIKM-2002), 2002.

Dietterich, T. and G. Bakiri. Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research, 1995, 2.
Domingos, P. and M. Pazzani. On the optimality of the simple Bayesian
classifier under zero-one loss. Machine learning, 1997, 29(2): p. 103-130.
Dougherty, J., R. Kohavi, and M. Sahami. Supervised and unsupervised
discretization of continuous features. In Proceedings of International
Conference on Machine Learning (ICML-1995), 1995.

Duda, R., P. Hart, and D. Stork. Pattern classification. 2001: John Wiley &
Sons Inc.

Fan, W. On the optimality of probability estimation by random decision trees.
In Proceedings of National Conf. on Artificial Intelligence (AAAI-2004),
2004.

Fayyad, U. and K. Irani. Multi-interval discretization of continuous-valued
attributes for classification learning. In Proceedings of the Intl. Joint Conf. on
Artificial Intelligence (IJCAI-1993), 1993.

Freund, Y. and R. Schapire. Experiments with a new boosting algorithm. In
Proceedings of International Conference on Machine Learning (ICML-1996),
1996.

Firnkranz, J. and G. Widmer. Incremental reduced error pruning. In
Proceedings of International Conference on Machine Learning (ICML-1994),
1994.

Gehrke, J., R. Ramakrishnan, and V. Ganti. RainForest—a framework for fast
decision tree construction of large datasets. Data mining and knowledge
discovery, 2000, 4(2): p. 127-162.

Good, 1. The estimation of probabilities: an essay on modern Bayesian
methods. 1965: MIT Press.

Han, J. and M. Kamber. Data mining: concepts and techniques. 20006:
Morgan Kaufmann Publishers.

Hand, D., H. Mannila, and P. Smyth. Principles of data mining. 2001: MIT
Press.

Hyafil, L. and R. Rivest. Constructing optimal binary decision trees is NP-
complete. Information Processing Letters, 1976, 5(1): p. 15-17.

Jindal, N. and B. Liu. Identifying comparative sentences in text documents. In
Proceedings of ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR-2006), 2006.

Kass, G. An exploratory technique for investigating large quantities of
categorical data. Applied statistics, 1980, 29(2): p. 119-127.

Kohavi, R., B. Becker, and D. Sommerfield. Improving simple bayes. In
Proceedings of European Conference on Machine Learning (ECML-1997),
1997.

Langley, P., W. Iba, and K. Thompson. An analysis of Bayesian classifiers. In
Proceedings of National Conf- on Artificial Intelligence (AAAI-1992), 1992.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.
46.

Bibliography 131

Lesh, N., M. Zaki, and M. Ogihara. Mining features for sequence
classification. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-1999), 1999.

Lewis, D. An evaluation of phrasal and clustered representations on a text
categorization task. In Proceedings of ACM SIGIR Conf. on Research and
Development in Information Retrieval (SIGIR-1992), 1992.

Lewis, D. and W. Gale. A sequential algorithm for training text classifiers. In
Proceedings of ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR-1994), 1994.

Li, H. and K. Yamanishi. Document classification using a finite mixture
model. In Proceedings of Annual Meeting of the Association for
Computational Linguistics (ACL-1997), 1997.

Li, J., G. Dong, K. Ramamohanarao, and L. Wong. DeEPs: A new instance-
based lazy discovery and classification system. Machine learning, 2004,
54(2): p. 99-124.

Li, W., J. Han, and J. Pei. CMAR: Accurate and efficient classification based
on multiple class-association rules. In Proceedings of IEEE International
Conference on Data Mining (ICDM-2001), 2001.

Lidstone, G. Note on the General Case of the Bayes-Laplace formula for
Inductive or a Posteriori Probabilities. Transaction of the Faculty of
Actuuaries, 1920, 8: p. 182-192.

Lin, W., S. Alvarez, and C. Ruiz. Efficient adaptive-support association rule
mining for recommender systems. Data mining and knowledge discovery,
2002, 6(1): p. 83-105.

Liu, B., W. Hsu, and Y. Ma. Integrating classification and association rule
mining. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-1998), 1998.

Liu, B., Y. Ma, and C. Wong. Classification using association rules:
weaknesses and enhancements. Data mining for scientific applications, 2001.
Liu, B., K. Zhao, J. Benkler, and W. Xiao. Rule interestingness analysis using
OLAP operations. In Proceedings of ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-2006), 2006.

McCallum, A. and K. Nigam. A comparison of event models for naive bayes
text classification. In Proceedings of AAAI-98 Workshop on Learning for
Text Categorization, 1998.

Meretakis, D. and B. Wuthrich. Extending na ve Bayes classifiers using long
itemsets. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-1999), 1999.

Michalski, R., I. Mozetic, J. Hong, and N. Lavrac. The multi-purpose
incremental learning system AQ15 and its testing application to three medical
domains. In Proceedings of National Conf. on Artificial Intelligence (AAAI-
86), 1986.

Mitchell, T. Machine Learning. 1997: McGraw Hill.

Mobasher, B., H. Dai, T. Luo, and M. Nakagawa. Effective personalization
based on association rule discovery from web usage data. In Proceedings of
ACM Workshop on Web Information and Data Management, 2001.

132 3 Supervised Learning

47.

48.

49.

50.

51.
52.

53.

54.
55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Pazzani, M., C. Brunk, and G. Silverstein. A knowledge-intensive approach to
learning relational concepts. In Proceedings of Intl. Workshop on Machine
Learning (ML-1991), 1991.

Quinlan, J. Bagging, boosting, and C4. 5. In Proceedings of National Conf. on
Artificial Intelligence (AAAI-1996), 1996.

Quinlan, J. C4. 5: programs for machine learning. 1993: Morgan Kaufmann
Publishers.

Quinlan, J. Learning logical definitions from relations. Machine learning,
1990, 5(3): p. 239-266.

Rivest, R. Learning decision lists. Machine learning, 1987, 2(3): p. 229-246.
Robertson, S. and K. Jones. Relevance weighting of search terms. Journal of
the American Society for Information Science, 1976, 27(3): p. 129-146.
Schapire, R. The strength of weak learnability. Machine learning, 1990, 5(2):
p. 197-227.

Scholkopf, B. and A. Smola. Learning with kernels. 2002: MIT Press.
Shannon, E. A mathematical theory of communication. Bell System
Technical Journal, 1948, 27: p. 379—423.

Tan, P., M. Steinbach, and V. Kumar. Introduction to data mining. 2006:
Pearson Addison Wesley Boston.

Vapnik, V. The nature of statistical learning theory. 1995: Springer Verlag.
Wang, K., S. Zhou, and Y. He. Growing decision trees on support-less
association rules. In Proceedings of ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-2000), 2000: ACM.

Witten, 1. and E. Frank. Data Mining: Practical machine learning tools and
techniques. 2005: Morgan Kaufmann Publishers.

Wolpert, D. Stacked Generalization. Neural Networks, 1992, 5: p. 241-259.
Yang, Q., T. Li, and K. Wang. Building association-rule based sequential
classifiers for web-document prediction. Data mining and knowledge
discovery, 2004, 8(3): p. 253-273.

Yang, Y. and X. Liu. A re-examination of text categorization methods. In
Proceedings of ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR-1999), 1999.

Yin, X. and J. Han. CPAR: Classification based on predictive association
rules. In Proceedings of SIAM International Conference on Data Mining
(SDM-2003), 2003.

Zaki, M. and C. Aggarwal. XRules: an effective structural classifier for XML
data. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2003),2003.

4 Unsupervised Learning

Supervised learning discovers patterns in the data that relate data attributes
to a class attribute. These patterns are then utilized to predict the values of
the class attribute of future data instances. These classes indicate some
real-world predictive or classification tasks such as determining whether a
news article belongs to the category of sports or politics, or whether a pa-
tient has a particular disease. However, in some other applications, the data
have no class attributes. The user wants to explore the data to find some in-
trinsic structures in them. Clustering is one technology for finding such
structures. It organizes data instances into similarity groups, called clus-
ters such that the data instances in the same cluster are similar to each oth-
er and data instances in different clusters are very different from each oth-
er. Clustering is often called unsupervised learning, because unlike
supervised learning, class values denoting an a priori partition or grouping
of the data are not given. Note that according to this definition, we can also
say that association rule mining is an unsupervised learning task. However,
due to historical reasons, clustering is closely associated and even syn-
onymous with unsupervised learning while association rule mining is not.
We follow this convention, and describe some main clustering techniques
in this chapter.

Clustering has been shown to be one of the most commonly used data
analysis techniques. It also has a long history, and has been used in almost
every field, e.g., medicine, psychology, botany, sociology, biology, arche-
ology, marketing, insurance, library science, etc. In recent years, due to the
rapid increase of online documents and the expansion of the Web, text
document clustering too has become a very important task. In Chap. 12,
we will also see that clustering is very useful in Web usage mining.

4.1 Basic Concepts

Clustering is the process of organizing data instances into groups whose
members are similar in some way. A cluster is therefore a collection of da-
ta instances which are “similar” to each other and are “dissimilar” to data

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 133
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3 4,
© Springer-Verlag Berlin Heidelberg 2011

134 4 Unsupervised Learning

instances in other clusters. In the clustering literature, a data instance is al-
so called an object as the instance may represent an object in the real-
world. It is also called a data point as it can be seen as a point in an 7-
dimension space, where 7 is the number of attributes in the data.

Fig. 4.1 shows a 2-dimensional data set. We can clearly see three groups
of data points. Each group is a cluster. The task of clustering is to find the
three clusters hidden in the data. Although it is easy for a human to visu-
ally detect clusters in a 2-dimensional or even 3-demensional space, it be-
comes very hard, if not impossible, to detect clusters visually as the num-
ber of dimensions increases. Additionally, in many applications, clusters
are not as clear-cut or well separated as the three clusters in Fig. 4.1. Au-
tomatic techniques are thus needed for clustering.

00O
000 O
OO
o O
[}
ooo 00o0
%0 0450
[9)
oOOO

Fig. 4.1. Three natural groups or clusters of data points

After seeing the example in Fig. 4.1, you may ask the question: What is
clustering for? To answer it, let us see some application examples from
different domains.

Example 1: A company wants to conduct a marketing campaign to pro-
mote its products. The most effective strategy is to design a set of person-
alized marketing materials for each individual customer according to
his/her profile and financial situation. However, this is too expensive for a
large number of customers. At the other extreme, the company designs
only one set of marketing materials to be used for all customers. This one-
size-fits-all approach, however, may not be effective. The most cost-
effective approach is to segment the customers into a small number of
groups according to their similarities and design some targeted marketing
materials for each group. This segmentation task is commonly done using
clustering algorithms, which partition customers into similarity groups. In
marketing research, clustering is often called segmentation. =

Example 2: A company wants to produce and sell T-shirts. Similar to the
case above, on one extreme, for each customer it can measure his/her size
and have a T-shirt tailor-made for him/her. Obviously, this T-shirt is going
to be expensive. On the other extreme, only one size of T-shirts is made.

4.1 Basic Concepts 135

Since this size may not fit most people, the company might not be able to
sell as many T-shirts. Again, the most cost effective way is to group people
based on their sizes and make a different generalized size of T-shirts for
each group. This is why we see small, medium and large size T-shirts in
shopping malls, and seldom see T-shirts with only a single size. The me-
thod used to group people according to their sizes is clustering. The proc-
ess is usually as follows: The T-shirt manufacturer first samples a large
number of people and measure their sizes to produce a measurement data-
base. It then clusters the data, which partitions the data into some similar-
ity subsets, i.e., clusters. For each cluster, it computes the average of the
sizes and then uses the average to mass-produce T-shirts for all people of
similar size. =

Example 3: Everyday, news agencies around the world generate a large
number of news articles. If a Web site wants to collect these news articles
to provide an integrated news service, it has to organize the collected arti-
cles according to some topic hierarchy. The question is: What should the
topics be, and how should they be organized? One possibility is to employ
a group of human editors to do the job. However, the manual organization
is costly and very time consuming, which makes it unsuitable for news and
other time sensitive information. Throwing all the news articles to the
readers with no organization is clearly not an option. Although classifica-
tion is able to classify news articles according to predefined topics, it is not
applicable here because classification needs training data, which have to be
manually labeled with topic classes. Since news topics change constantly
and rapidly, the training data would need to change constantly as well,
which is infeasible via manual labeling. Clustering is clearly a solution for
this problem because it automatically groups a stream of news articles
based on their content similarities. Hierarchical clustering algorithms
can also organize documents hierarchically, i.e., each topic may contain
sub-topics and so on. Topic hierarchies are particularly useful for texts.

The above three examples indicate two types of clustering, partitional
and hierarchical. Indeed, these are the two most important types of clus-
tering approaches. We will study some specific algorithms of these two
types of clustering.

Our discussion and examples above also indicate that clustering needs a
similarity function to measure how similar two data points (or objects) are,
or alternatively a distance function to measure the distance between two
data points. We will use distance functions in this chapter. The goal of
clustering is thus to discover the intrinsic grouping of the input data
through the use of a clustering algorithm and a distance function.

136 4 Unsupervised Learning

Algorithm k-means(k, D)

1 choose k data points as the initial centroids (cluster centers)

2 repeat

3 for cach data point X € D do

4 compute the distance from X to each centroid;

5 assign X to the closest centroid // a centroid represents a cluster
6 endfor

7 re-compute the centroid using the current cluster memberships

8 until the stopping criterion is met

Fig. 4.2. The k-means algorithm

4.2 K-means Clustering

The k-means algorithm is the best known partitional clustering algo-
rithm. It is perhaps also the most widely used among all clustering algo-
rithms due to its simplicity and efficiency. Given a set of data points and
the required number of k clusters (k is specified by the user), this algorithm
iteratively partitions the data into £ clusters based on a distance function.

4.2.1 K-means Algorithm

Let the set of data points (or instances) D be
{Xla X2, ... Xn}a

where x; = (x;1, X, ..., X;) is a vector in a real-valued space X < %', and r
is the number of attributes in the data (or the number of dimensions of the
data space). The k-means algorithm partitions the given data into k£ clus-
ters. Each cluster has a cluster center, which is also called the cluster cen-
troid. The centroid, usually used to represent the cluster, is simply the
mean of all the data points in the cluster, which gives the name to the algo-
rithm, i.e., since there are k clusters, thus £ means. Fig. 4.2 gives the k-
means clustering algorithm.

At the beginning, the algorithm randomly selects £ data points as the
seed centroids. It then computes the distance between each seed centroid
and every data point. Each data point is assigned to the centroid that is
closest to it. A centroid and its data points therefore represent a cluster.
Once all the data points in the data are assigned, the centroid for each clus-
ter is re-computed using the data points in the current cluster. This process
repeats until a stopping criterion is met. The stopping (or convergence) cri-
terion can be any one of the following:

4.2 K-means Clustering 137

. no (or minimum) re-assignments of data points to different clusters.
. no (or minimum) change of centroids.
3. minimum decrease in the sum of squared error (SSE),

N —

k

SSE = Z Zdist(x,mj)z, (D

j=1 xeC;

where k is the number of required clusters, C; is the jth cluster, m; is the
centroid of cluster C; (the mean vector of all the data points in C;), and
dist(x, m;) is the distance between data point x and centroid m,.

The k-means algorithm can be used for any application data set where the
mean can be defined and computed. In Euclidean space, the mean of a
cluster is computed with:

1

L= — X.
T

2

where |Cj| is the number of data points in cluster C;. The distance from a
data point X; to a cluster mean (centroid) m; is computed with

dist(x;,m) =[x, —m, || 3)

2 2 2
:\/(xil_mjl) +(xi2_mj2) +"'+(xir_mjr)

Example 4: Fig. 4.3(A) shows a set of data points in a 2-dimensional
space. We want to find 2 clusters from the data, i.e., kK = 2. First, two data
points (each marked with a cross) are randomly selected to be the initial
centroids (or seeds) shown in Fig. 4.3(A). The algorithm then goes to the
first iteration (the repeat-loop).

Iteration 1: Each data point is assigned to its closest centroid to form 2
clusters. The resulting clusters are given in Fig. 4.3(B). Then the cen-
troids are re-computed based on the data points in the current clusters
(Fig. 4.3(C)). This leads to iteration 2.

Iteration 2: Again, each data point is assigned to its closest new centroid to
form two new clusters shown in Fig. 4.3(D). The centroids are then re-
computed. The new centroids are shown in Fig. 4.3(E).

Iteration 3: The same operations are performed as in the first two itera-
tions. Since there is no re-assignment of data points to different clusters
in this iteration, the algorithm ends.

The final clusters are those given in Fig. 4.3(G). The set of data points in
each cluster and its centroid are output to the user.

138 4 Unsupervised Learning

0 0
0
¢ O o O
oo @ o O
° 0

o oo™ vy L-Tos
/l o\‘. .-~ 0 \\ /l \‘ .-70 \l
'Q - < o) o! 10, O! Pid 0 o'
’/ OI’ - 5 ’, +O/I .t 3_ 5
1077 o 0. 10_.7.70 0.
~=--/ // ~=--/ ,/
|\O~ . 0.’ |\0~ 0.’
T T
Iteration 1: (B). Cluster assignment (C). Re-compute centroids
2PSN [y 'B\\ “TToO N
I/ o \\ I’O (o] \\‘ I/ \\ IIO \‘
, O+ o /l (0] (2] II o © \\ 'l o !
) 0 \ N 3_ ’ I o+ \ ! + /’
10 o} |‘ o 10 o) l‘ o o,
1 , Vi \\ . Vi
O,r \\O//’ ‘~~o_” \\O,/’
] T
Iteration 2: (D). Cluster assignment (E). Re-compute centroids
//’6\\ //—_6\\ //’6\‘ /’—-6\\
’ AN /70 \‘ ’ o\ /I (o] ‘l
'o O o 0y) \ /0o !
,l G— \\ II + , 'l Q— \\ + ,’
' 0 o 10 0)/ 10 o) 10 0,
\ P \ ’ \ e ‘\ ’
\\~_0_’/ \\O//, _q,, K /,/
T T
Iteration 3: (F). Cluster assignment (G). Re-compute centroids

Fig. 4.3. The working of the k~-means algorithm through an example

One problem with the k-means algorithm is that some clusters may be-
come empty during the clustering process since no data point is assigned to
them. Such clusters are called empty clusters. To deal with an empty clus-
ter, we can choose a data point as the replacement centroid, e.g., a data
point that is furthest from the centroid of a large cluster. If the sum of the
squared error (SSE) is used as the stopping criterion, the cluster with the

largest squared error may be used to find another centroid.

4.2 K-means Clustering 139

4.2.2 Disk Version of the K-means Algorithm

The k-means algorithm may be implemented in such a way that it does not
need to load the entire data set into the main memory, which is useful for
large data sets. Notice that the centroids for the & clusters can be computed
incrementally in each iteration because the summation in Equation (2) can
be calculated separately first. During the clustering process, the number of
data points in each cluster can be counted incrementally as well. This gives
us a disk based implementation of the algorithm (Fig. 4.4), which produces
exactly the same clusters as that in Fig. 4.2, but with the data on disk. In
each for-loop, the algorithm simply scans the data once.

The whole clustering process thus scans the data ¢ times, where ¢ is the
number of iterations before convergence, which is usually not very large
(< 50). In applications, it is quite common to set a limit on the number of
iterations because later iterations typically result in only minor changes to
the clusters. Thus, this algorithm may be used to cluster large data sets
which cannot be loaded into the main memory. Although there are several
special algorithms that scale-up clustering algorithms to large data sets,
they all require sophisticated techniques.

Algorithm disk-k-means(k, D)

1 Choose k data points as the initial centriods m;, j =1, ..., k;
2 repeat
3 initialize s; <= 0,/ =1, ..., k; /10 is a vector with all 0’s
4 initialize n; <= 0,/ =1, ..., k; //'n; is the number of points in cluster j
5 for each data point x € D do
6 j < arg min dist (x,m,);
ie{l,2,..k}
7 assign x to the cluster j;
8 S <5+ X;
9 nj<—n;+1;
10 endfor
11 m; < s;/n,j=1,..,k

12 until the stopping criterion is met

Fig. 4.4. A simple disk version of the k-means algorithm

Let us give some explanations of this algorithm. Line 1 does exactly the
same thing as the algorithm in Fig. 4.2. Line 3 initializes vector s; which is
used to incrementally compute the sum in Equation (2) (line 8). Line 4 ini-
tializes n; which records the number of data points assigned to cluster j
(line 9). Lines 6 and 7 perform exactly the same tasks as lines 4 and 5 in
the original algorithm in Fig. 4.2. Line 11 re-computes the centroids,

140 4 Unsupervised Learning

which are used in the next iteration. Any of the three stopping criteria may
be used here. If the sum of squared error is applied, we can modify the al-
gorithm slightly to compute the sum of square error incrementally.

4.2.3 Strengths and Weaknesses

The main strengths of the k-means algorithm are its simplicity and effi-
ciency. It is easy to understand and easy to implement. Its time complexity
is O(tkn), where n is the number of data points, & is the number of clusters,
and ¢ is the number of iterations. Since both £ and ¢ are normally much
smaller than n, the k-means algorithm is considered a linear algorithm in
the number of data points.

The weaknesses and ways to address them are as follows:

1. The algorithm is only applicable to data sets where the notion of the
mean is defined. Thus, it is difficult to apply to categorical data sets.
There is, however, a variation of the k-means algorithm called k-modes,
which clusters categorical data. The algorithm uses the mode instead of
the mean as the centroid. Assuming that the data instances are described
by r categorical attributes, the mode of a cluster C; is a tuple m; = (m;;,
mp, ..., m;) where mj; is the most frequent value of the ith attribute of
the data instances in cluster C;. The similarity (or distance) between a
data instance and a mode is the number of values that they match (or do
not match).

2. The user needs to specify the number of clusters £ in advance. In prac-
tice, several k values are tried and the one that gives the most desirable
result is selected. We will discuss the evaluation of clusters later.

3. The algorithm is sensitive to outliers. Outliers are data points that are
very far away from other data points. Outliers could be errors in the data
recording or some special data points with very different values. For ex-
ample, in an employee data set, the salary of the Chief-Executive-
Officer (CEO) of the company may be considered as an outlier because
its value could be many times larger than everyone else. Since the k-
means algorithm uses the mean as the centroid of each cluster, outliers
may result in undesirable clusters as the following example shows.

Example 5: In Fig. 4.5(A), due to an outlier data point, the two result-
ing clusters do not reflect the natural groupings in the data. The ideal
clusters are shown in Fig. 4.5(B). The outlier should be identified and
reported to the user. 0

There are several methods for dealing with outliers. One simple me-
thod is to remove some data points in the clustering process that are

4.2 K-means Clustering 141

much further away from the centroids than other data points. To be safe,
we may want to monitor these possible outliers over a few iterations and
then decide whether to remove them. It is possible that a very small
cluster of data points may be outliers. Usually, a threshold value is used
to make the decision.

/, o b A ' Tte- ~< .
o o 0\‘:0 ‘\\\\ outlier
ooy ° + ERREN
\ o ! <
‘?_9\0 o"\p ______________________ o

1
(A): Undesirable clusters

[P RN o .
;9 o 9 outlier
' o O / o'

:‘ Q ': ,’oo + ': /
‘\?__9_?,‘ ‘\\ o ’ol, (o]
1
(B): Ideal clusters
Fig. 4.5. Clustering with and without the effect of outliers =

Another method is to perform random sampling. Since in sampling
we only choose a small subset of the data points, the chance of selecting
an outlier is very small. We can use the sample to do a pre-clustering
and then assign the rest of the data points to these clusters, which may
be done in any of the three ways below:

e Assign each remaining data point to the centroid closest to it. This is
the simplest method.

e Use the clusters produced from the sample to perform supervised
learning (classification). Each cluster is regarded as a class. The clus-
tered sample is thus treated as the training data for learning. The re-
sulting classifier is then applied to classify the remaining data points
into appropriate classes or clusters.

e Use the clusters produced from the sample as seeds to perform semi-
supervised learning. Semi-supervised learning is a new learning
model that learns from a small set of labeled examples (with classes)
and a large set of unlabeled examples (without classes). In our case,
the clustered sample data are used as the labeled set and the remain-
ing data points are used as the unlabeled set. The results of the learn-

142 4 Unsupervised Learning

ing naturally cluster all the remaining data points. We will study this
technique in the next chapter.

. The algorithm is sensitive to initial seeds, which are the initially se-
lected centroids. Different initial seeds may result in different clusters.
Thus, if the sum of squared error is used as the stopping criterion, the
algorithm only achieves local optimal. The global optimal is computa-
tionally infeasible for large data sets.

Example 6: Fig. 4.6 shows the clustering process of a 2-dimensional da-
ta set. The goal is to find two clusters. The randomly selected initial
seeds are marked with crosses in Fig. 4.6(A). Fig. 4.6(B) gives the clus-
tering result of the first iteration. Fig. 4.6(C) gives the result of the sec-
ond iteration. Since there is no re-assignment of data points, the algo-
rithm stops.

0 0
o o
0 o ©
o o

o
o 0

) 0\) o\
,I o o 1 ,I o + o 1
1 1
W2 L0 o 0%
yo TR ~ Sy T ~
\Q~~~o (o] Oo ?,’ \\q~p (o] + Oo O/,'
1 1
(B). Iteration 1 (C). Iteration 2

Fig. 4.6. Poor initial seeds (centroids)

If the initial seeds are different, we may obtain entirely different clus-
ters as Fig. 4.7 shows. Fig. 4.7 uses the same data as Fig. 4.6, but differ-
ent initial seeds (Fig. 4.7(A)). After two iterations, the algorithm ends,
and the final clusters are given in Fig. 4.7(C). These two clusters are
more reasonable than the two clusters in Fig. 4.6(C), which indicates
that the choice of the initial seeds in Fig. 4.6(A) is poor.

To select good initial seeds, researchers have proposed several meth-
ods. One simple method is to first compute the mean m (the centroid) of
the entire data set (any random data point rather than the mean can be

4.2 K-means Clustering 143

used as well). Then the first seed data point x; is selected to be the fur-
thest from the mean m. The second data point x, is selected to be the
furthest from x;. Each subsequent data point x; is selected such that the
sum of distances from x; to those already selected data points is the larg-
est. However, if the data has outliers, the method will not work well. To
deal with outliers, again, we can randomly select a small sample of the
data and perform the same operation on the sample. As we discussed
above, since the number of outliers is small, the chance that they show
up in the sample is very small.

(A). Random selection of k seeds (centroids)

- -~

NN N - k4
d 7’ N
[2N 0, ‘0N .

0
o o SO S 7o i
l \ o) 10 O A 1 1
/ ° \ ," @ ’, / o \‘\ I’ o+ ° II
'\9- ° 0/' I\ o 0’/' '\ (o] o) I' 0 (0] I’

~_ Y- \0 _. __O_’, ‘o ./

I 1
(B). Iteration 1 (C). Iteration 2
Fig. 4.7. Good initial seeds (centroids) =

Another method is to sample the data and use the sample to perform
hierarchical clustering, which we will discuss in Sect. 4.4. The centroids
of the resulting £ clusters are used as the initial seeds.

Yet another approach is to manually select seeds. This may not be a
difficult task for text clustering applications because it is easy for human
users to read some documents and pick some good seeds. These seeds
may help improve the clustering result significantly and also enable the
system to produce clusters that meet the user’s needs.

. The k-means algorithm is not suitable for discovering clusters that are
not hyper-ellipsoids (or hyper-spheres).

Example 7: Fig. 4.8(A) shows a 2-dimensional data set. There are two
irregular shaped clusters. However, the two clusters are not hyper-

144 4 Unsupervised Learning

ellipsoids, which means that the k-means algorithm will not be able to
find them. Instead, it may find the two clusters shown in Fig. 4.8(B).

The question is: are the two clusters in Fig. 4.8(B) necessarily bad?
The answer is no. It depends on the application. It is not true that a clus-
tering algorithm that is able to find arbitrarily shaped clusters is always
better. We will discuss this issue in Sect. 4.3.2.

%Oogo% o %oogo\%\\
qb OQ) I’ qb OQ) \
o oooo8 000 - Oooog 00 !
0800 %08 ‘\0 ® 9o /,’

2 & 8-

o -

00 1 00 ~
%% 00 oooééo S 00 000533 N
5 5050) P
0000 0P *~00000 0P .7

(A): Two natural clusters (B): k-means clusters

Fig. 4.8. Natural (but irregular) clusters and k-means clusters u

Despite these weaknesses, k-means is still the most popular algorithm in
practice due to its simplicity, efficiency and the fact that other clustering
algorithms have their own lists of weaknesses. There is no clear evidence
showing that any other clustering algorithm performs better than the k-
means algorithm in general, although it may be more suitable for some
specific types of data or applications than k-means. Note also that compar-
ing different clustering algorithms is a very difficult task because unlike
supervised learning, nobody knows what the correct clusters are, especially
in high dimensional spaces. Although there are several cluster evaluation
methods, they all have drawbacks. We will discuss the evaluation issue in
Sect. 4.9.

4.3 Representation of Clusters

Once a set of clusters is found, the next task is to find a way to represent
the clusters. In some applications, outputting the set of data points that
makes up the cluster to the user is sufficient. However, in other applica-
tions that involve decision making, the resulting clusters need to be repre-
sented in a compact and understandable way, which also facilitates the
evaluation of the resulting clusters.

4.3 Representation of Clusters 145

4.3.1 Common Ways of Representing Clusters

There are three main ways to represent clusters:

1. Use the centroid of each cluster to represent the cluster. This is the most
popular way. The centroid tells where the center of the cluster is. One
may also compute the radius and standard deviation of the cluster to de-
termine the spread in each dimension. The centroid representation alone
works well if the clusters are of the hyper-spherical shape. If clusters are
elongated or are of other shapes, centroids may not be suitable.

2. Use classification models to represent clusters. In this method, we treat
each cluster as a class. That is, all the data points in a cluster are re-
garded as having the same class label, e.g., the cluster ID. We then run a
supervised learning algorithm on the data to find a classification model.
For example, we may use the decision tree learning to distinguish the
clusters. The resulting tree or set of rules provide an understandable rep-
resentation of the clusters.

Fig. 4.9 shows a partitioning produced by a decision tree algorithm.
The original clustering gave three clusters. Data points in cluster 1 are
represented by 1’s, data points in cluster 2 are represented by 2’s, and
data points in cluster 3 are represented by 3’s. We can see that the three
clusters are separated and each can be represented with a rule.

X < 2 — cluster 1
x>2,y>15 — cluster 2
x>2,y<1.5 — cluster 3

VA | 2
11111: 2,7 2
]
111111:222222
1.5 2 .L";“g """"
3373
) 733 3
2 X

Fig. 4.9. Description of clusters using rules

We make two remarks about this representation method:

e The partitioning in Fig. 4.9 is an ideal case as each cluster is repre-
sented by a single rectangle (or rule). However, in most applications,
the situation may not be so ideal. A cluster may be split into a few

146 4 Unsupervised Learning

hyper-rectangles or rules. However, there is usually a dominant or
large rule which covers most of the data points in the cluster.

e One can use the set of rules to evaluate the clusters to see whether
they conform to some existing domain knowledge or intuition.

3. Use frequent values in each cluster to represent it. This method is main-
ly for clustering of categorical data (e.g., in the k~~-modes clustering). It is
also the key method used in text clustering, where a small set of fre-
quent words in each cluster is selected to represent the cluster.

4.3.2 Clusters of Arbitrary Shapes

Hyper-elliptical and hyper-spherical clusters are usually easy to represent,
using their centroids together with spreads (e.g., standard deviations),
rules, or a combination of both. However, other arbitrary shaped clusters,
like the natural clusters shown in Fig. 4.8(A), are hard to represent espe-
cially in high dimensional spaces.

A common criticism about an algorithm like k-means is that it is not
able to find arbitrarily shaped clusters. However, this criticism may not be
as bad as it sounds because whether one type of clustering is desirable or
not depends on the application. Let us use the natural clusters in Fig.
4.8(A) to discuss this issue together with an artificial application.

Example 8: Assume that the data shown in Fig. 4.8(A) is the measurement
data of people’s physical sizes. We want to group people based on their
sizes into only two groups in order to mass-produce T-shirts of only 2 sizes
(say large and small). Even if the measurement data indicate two natural
clusters as in Fig. 4.8(A), it is difficult to use the clusters because we need
centroids of the clusters to design T-shirts. The clusters in Fig. 4.8(B) are
in fact better because they provide us the centroids that are representative
of the surrounding data points. If we use the centroids of the two natural
clusters as shown in Fig. 4.10 to make T-shirts, it is clearly inappropriate
because they are too near to each other in this case. In general, it does not
make sense to define the concept of center or centroid for an irregularly
shaped cluster. =

Note that clusters of arbitrary shapes can be found by neighborhood
search algorithms such as some hierarchical clustering methods (see the
next section), and density-based clustering methods [17]. Due to the diffi-
culty of representing an arbitrarily shaped cluster, an algorithm that finds
such clusters may only output a list of data points in each cluster, which
are not as easy to use. These kinds of clusters are more useful in spatial
and image processing applications, but less useful in others.

4.4 Hierarchical Clustering 147

Fig. 4.10. Two natural clusters and their centroids

4.4 Hierarchical Clustering

Hierarchical clustering is another major clustering approach. It has a num-
ber of desirable properties which make it popular. It clusters by producing
a nested sequence of clusters like a tree (also called a dendrogram). Sin-
gleton clusters (individual data points) are at the bottom of the tree and one
root cluster is at the top, which covers all data points. Each internal cluster
node contains child cluster nodes. Sibling clusters partition the data points
covered by their common parent. Fig. 4.11 shows an example.

8]

1 2 3 4 5

Fig. 4.11. An illustration of hierarchical clustering

At the bottom of the tree, there are 5 clusters (5 data points). At the next
level, cluster 6 contains data points 1 and 2, and cluster 7 contains data
points 4 and 5. As we move up the tree, we have fewer and fewer clusters.
Since the whole clustering tree is stored, the user can choose to view clus-
ters at any level of the tree.

148 4 Unsupervised Learning

There are two main types of hierarchical clustering methods:

Agglomerative (bottom up) clustering: It builds the dendrogram (tree)
from the bottom level, and merges the most similar (or nearest) pair of
clusters at each level to go one level up. The process continues until all
the data points are merged into a single cluster (i.e., the root cluster).

Divisive (top down) clustering: It starts with all data points in one cluster,
the root. It then splits the root into a set of child clusters. Each child
cluster is recursively divided further until only singleton clusters of in-
dividual data points remain, i.e., each cluster with only a single point.

Agglomerative methods are much more popular than divisive methods. We
will focus on agglomerative hierarchical clustering. The general agglom-
erative algorithm is given in Fig. 4.12.

Algorithm Agglomerative(D)

1 Make each data point in the data set D a cluster,

2 Compute all pair-wise distances of X, Xy, ..., X, € D;
2 repeat

3 find two clusters that are nearest to each other;

4 merge the two clusters form a new cluster c;

5 compute the distance from c to all other clusters;
12 until there is only one cluster left

Fig. 4.12. The agglomerative hierarchical clustering algorithm
Example 9: Fig. 4.13 illustrates the working of the algorithm. The data

points are in a 2-dimensional space. Fig. 4.13(A) shows the sequence of
nested clusters, and Fig. 4.13(B) gives the dendrogram. =

2loa RN
/;/ \\ \\
7’ /‘“\ AY
’ ’//’ pr \‘ 4 \\
, 1, O ' \
“' ! Opz/’ ! PR aiaEN ‘l
'I ' * 1 ,, I’ /, 2 \\ 1
Vo et b
W Ps3 3,/ \\p S
\S~-- Se--
d
p1 p2 p3 P4 ps
(A). Nested clusters (B) Dendrogram

Fig. 4.13. The working of an agglomerative hierarchical clustering algorithm

4.4 Hierarchical Clustering 149

Unlike the k-means algorithm, which uses only the centroids in distance
computation, hierarchical clustering may use anyone of several methods to
determine the distance between two clusters. We introduce them next.

4.41 Single-Link Method

In single-link (or single linkage) hierarchical clustering, the distance be-
tween two clusters is the distance between two closest data points in the
two clusters (one data point from each cluster). In other words, the single-
link clustering merges the two clusters in each step whose two nearest data
points (or members) have the smallest distance, i.e., the two clusters with
the smallest minimum pair-wise distance. The single-link method is suit-
able for finding non-elliptical shape clusters. However, it can be sensitive
to noise in the data, which may cause the chain effect and produce strag-
gly clusters. Fig. 4.14 illustrates this situation. The noisy data points (rep-
resented with filled circles) in the middle connect two natural clusters and
split one of them.

/000 0 %00
/0 1 \
io 00 ° ot O
"0 O eoe ® 9 o) o PRSI
\‘\Q o O/'l ‘\O

Fig. 4.14. The chain effect of the single-link method

With suitable data structures, single-link hierarchical clustering can be
done in O(n*) time, where 7 is the number of data points. This is much
slower than the k-means method, which performs clustering in linear time.

4.4.2 Complete-Link Method

In complete-link (or complete linkage) clustering, the distance between
two clusters is the maximum of all pair-wise distances between the data
points in the two clusters. In other words, the complete-link clustering
merges the two clusters in each step whose two furthest data points have
the smallest distance, i.e., the two clusters with the smallest maximum
pair-wise distance. Fig. 4.15 shows the clusters produced by complete-link
clustering using the same data as in Fig. 4.14.

150 4 Unsupervised Learning

, -0 0
v (()) o (0] o 0
fo 00 9, o}
v O O e .," \\. 0) 0o o /
‘\\O (6] ’/, N o o

Fig. 4.15. Clustering using the complete-link method

Although the complete-link method does not have the problem of chain
effects, it can be sensitive to outliers. Despite this limitation, it has been
observed that the complete-link method usually produces better clusters
than the single-link method. The worse case time complexity of the com-
plete-link clustering is O(n’log 1), where n is the number of data points.

4.4.3 Average-Link Method

This is a compromise between the sensitivity of complete-link clustering to
outliers and the tendency of single-link clustering to form long chains that
do not correspond to the intuitive notion of clusters as compact, spherical
objects. In this method, the distance between two clusters is the average
distance of all pair-wise distances between the data points in two clusters.
The time complexity of this method is also O(n’log n).

Apart from the above three popular methods, there are several others.
The following two methods are also commonly used:

Centroid method: In this method, the distance between two clusters is the
distance between their centroids.

Ward's method: In this method, the distance between two clusters is de-
fined as the increase in the sum of squared error (distances) from that of
two clusters to that of one merged cluster. Thus, the clusters to be merged
in the next step are the ones that will increase the sum the least. Recall that
the sum of squared error (SSE) is one of the measures used in the k-means
clustering (Equation (1)).

4.4.4. Strengths and Weaknesses

Hierarchical clustering has several advantages compared to the k-means
and other partitioning clustering methods. It is able to take any form of dis-
tance or similarity function. Moreover, unlike the k-means algorithm
which only gives k clusters at the end, the hierarchy of clusters from hier-

4.5 Distance Functions 151

archical clustering enables the user to explore clusters at any level of detail
(or granularity). In many applications, this resulting hierarchy can be very
useful in its own right. For example, in text document clustering, the clus-
ter hierarchy may represent a topic hierarchy in the documents.

Some studies have shown that agglomerative hierarchical clustering of-
ten produces better clusters than the k-means method. It can also find clus-
ters of arbitrary shapes, e.g., using the single-link method.

Hierarchical clustering also has several weaknesses. As we discussed
with the individual methods, the single-link method may suffer from the
chain effect, and the complete-link method is sensitive to outliers. The
main shortcomings of all hierarchical clustering methods are their compu-
tation complexities and space requirements, which are at least quadratic.
Compared to the k-means algorithm, this is very inefficient and not practi-
cal for large data sets. One can use sampling to deal with the problems. A
small sample is taken to do clustering and then the rest of the data points
are assigned to each cluster either by distance comparison or by supervised
learning (see Sect. 4.3.1). Some scale-up methods may also be applied to
large data sets. The main idea of the scale-up methods is to find many
small clusters first using an efficient algorithm, and then to use the cen-
troids of these small clusters to represent the clusters to perform the final
hierarchical clustering (see the BIRCH method in [54]).

4.5 Distance Functions

Distance or similarity functions play a central role in all clustering algo-
rithms. Numerous distance functions have been reported in the literature
and used in applications. Different distance functions are also used for dif-
ferent types of attributes (also called variables).

4.5.1 Numeric Attributes

The most commonly used distance functions for numeric attributes are the
Euclidean distance and Manhattan (city block) distance. Both distance
measures are special cases of a more general distance function called the
Minkowski distance. We use dis#(x;, X;) to denote the distance between
two data points of » dimensions. The Minkowski distance is:

1
. h '™\
dlSt(Xi’Xj):(’ X =X ‘ +|'xi2_xj2 ‘h +ot|x, —X ", “4)

where /4 is a positive integer.

152 4 Unsupervised Learning

If 4 =2, it is the Euclidean distance,

dist(x;,X ;) = \/(xil _xj1)2 +(x, _sz)z +o+(x, —x, g (%)
If 2 =1, 1t is the Manhattan distance,

dist(X,,X ;) =| x; —x; [+]x, = x5 [+ 4] x, —x, | (6)

Other common distance functions include:

Weighted Euclidean distance: A weight is associated with each attribute
to express its importance in relation to other attributes.

dist(X;,X ;)= \/wl (x; — le)z +w,(x;, — sz)2 ot w(x, —x, ’ 7
Squared Euclidean distance: the standard Euclidean distance is squared
in order to place progressively greater weights on data points that are fur-

ther apart. The distance is
dist(x;,x,) = (x; —le)2 +(x;, —sz)z +ot(x, —x;). (8)

Chebychev distance: This distance measure is appropriate in cases where
one wants to define two data points as “different” if they are different on
any one of the attributes. The Chebychev distance is

dist(x,,X ;) =max(| x, —x, |,[x, =%, |0 | X, —x,]). ©)

4.5.2 Binary and Nominal Attributes

The above distance measures are only appropriate for numeric attributes.
For binary and nominal attributes (also called unordered categorical at-
tributes), we need different functions. We discuss binary attributes first.

A binary attribute has two states or values, usually represented by 1
and 0. The two states have no numerical ordering. For example, Gender
has two values, male and female, which have no ordering relations but are
just different. Existing distance functions for binary attributes are based on
the proportion of value matches in two data points. A match means that,
for a particular attribute, both data points have the same value. It is easy to
use a confusion matrix to introduce these measures. Given the ith and jth
data points, X; and Xx;, we can construct the confusion matrix in Fig. 4.16.

To give the distance functions, we further divide binary attributes into
symmetric and asymmetric attributes. For different types of attributes,
different distance functions need to be used [31]:

4.5 Distance Functions 153

Data point X;

1 0
1 a b a+b
Data point X; 0 c d c+d

a+tc b+d at+b+tctd

the number of attributes with the value of 1 for both data points.

the number of attributes for which x;r= 1 and x;r= 0, where x;/ (x;) is
the value of the fth attribute of the data point x; (x;).

c: the number of attributes for which x;;= 0 and x;= 1.

d: the number of attributes with the value of 0 for both data points.

SE

Fig. 4.16. Confusion matrix of two data points with only binary attributes

Symmetric attributes: A binary attribute is symmetric if both of its states
(0 and 1) have equal importance, and carry the same weight, e.g., male and
female of the attribute Gender. The most commonly used distance function
for symmetric attributes is the simple matching distance, which is the
proportion of mismatches (Equation (10)) of their values. We assume that
every attribute in the data set is a symmetric attribute.

b+c
dist(x;,X ;) = ——— (10)
a+b+c+d
We can also weight some components in Equation (10) according to ap-
plication needs. For example, we may want mismatches to carry twice the
weight of matches, or vice versa:

dist(x;,X ;) =ﬂ (11)
7 a+d+2b+o)

dist(xi,xj)zL (12)
' 2a+d)+b+c

Example 10: Given the following two data points, where each attribute is
a symmetric binary attribute,

X 1 1 1 0 1 0
Xo 0 1 1 0 0 1 0

the distance computed based on the simple matching distance is

154 4 Unsupervised Learning

dist(xi,x.):L:E:OAE. (13)
2424142 7 -

Asymmetric attributes: A binary attribute is asymmetric if one of the
states is more important or valuable than the other. By convention, we use
state 1 to represent the more important state, which is typically the rare or
infrequent state. The most commonly used distance measure for asymmet-
ric attributes is the Jaccard distance:

dist(xi,xj)zﬁ. (14)
a+b+c

Similarly, we can vary the Jaccard distance by giving more weight to
(b+c) or more weight to a to express different emphases.

dist(xi,x.)zﬂ. (15)
D 2b+ o)

dist(xi,xA):bi. (16)
" 2a+b+c

Note that there is also a Jaccard coefficient, which measures similarity
(rather than distance) and is defined as a / (a+b+c).

For general nominal attributes with more than two states or values, the
commonly used distance measure is also based on the simple matching dis-
tance. Given two data points X; and x;, let the number of attributes be 7, and
the number of values that match in x; and x; be g:

dist(x,,x,)=—2. (17)
’ r

As that for binary attributes, we can give higher weights to different com-
ponents in Equation (17) according to different application characteristics.

4.5.3 Text Documents

Although a text document consists of a sequence of sentences and each
sentence consists of a sequence of words, a document is usually considered
as a “bag” of words in document clustering. The sequence and the position
information of words are ignored. Thus a document can be represented as a
vector just like a normal data point. However, we use similarity to com-
pare two documents rather than distance. The most commonly used simi-

4.6 Data Standardization 155

larity function is the cosine similarity. We will study this similarity meas-
ure in Sect. 6.2.2 when we discuss information retrieval and Web search.

4.6 Data Standardization

One of the most important steps in data pre-processing for clustering is to
standardize the data. For example, using the Euclidean distance, standardi-
zation of attributes is highly recommended so that all attributes can have
equal impact on the distance computation. This is to avoid obtaining clus-
ters that are dominated by attributes with the largest amounts of variation.

Example 11: In a 2-dimensional data set, the value range of one attribute
is from O to 1, while the value range of the other attribute is from 0 to
1000. Consider the following pair of data points x;: (0.1, 20) and x;: (0.9,
720). The Euclidean distance between the two points is

dist(x,,x,) = (0.9~ 0.1> + (720 - 20)? = 700.000457, (18)
which is almost completely dominated by (720-20) = 700. To deal with
the problem, we standardize the attributes, e.g., to force the attributes to
have a common value range. If both attributes are forced to have a scale
within the range 0-1, the values 20 and 720 become 0.02 and 0.72. The
distance on the first dimension becomes 0.8 and the distance on the second
dimension 0.7, which are more equitable. Then, dis«(x;, x;) = 1.063. u

This example shows that standardizing attributes is important. In fact,
different types of attributes require different treatments. We list these
treatments below.

Interval-scaled attributes: These are numeric/continuous attributes. Their
values are real numbers following a linear scale. Examples of such attrib-
utes are age, height, weight, cost, etc. The idea is that intervals keep the
same importance through out the scale. For example, the difference in age
between 10 and 20 is the same as that between 40 and 50.

There are two main approaches to standardize interval scaled attributes,
range and z-score. The range method divides each value by the range of
valid values of the attribute so that the transformed value ranges between 0
and 1. Given the value x; of the fth attribute of the ith data point, the new
value rg(x;) is,

Xy — min(f) (19)
max(f)—min(f)’

ra(x,) =

156 4 Unsupervised Learning

where min(f) and max(f) are the minimum value and maximum value of at-
tribute f respectively. max(f) — min(f) is the value range of the valid values
of attribute f.

The z-score method transforms an attribute value based on the mean and
the standard deviation of the attribute. That is, the z-score of the value in-
dicates how far and in what direction the value deviates from the mean of
the attribute, expressed in units of the standard deviation of the attribute.
The standard deviation of attribute f, denoted by o, is computed with:

2 Gy sy (20)

9

o r

n—1

where n is the number of data points in the data set, x;s is the same as
above, and i is the mean of attribute £, which is computed with:

1 n
_ 2 21
Hp = " i1 Nir 21

Given the value x; its z-score (the new value after transformation) is z(x;),

Ny T Hy (22)

z(x,)=
if
o,

Ratio-Scaled Attributes: These are also numeric attributes taking real
values. However, unlike interval-scaled attributes, their scales are not lin-
ear. For example, the total amount of microorganisms that evolve in a time
t is approximately given by

B
Ae”

b

where 4 and B are some positive constants. This formula is referred to as
exponential growth. If we have such attributes in a data set for clustering,
we have one of the following two options:

1. Treat it as an interval-scaled attribute. This is often not recommended
due to scale distortion.
2. Perform logarithmic transformation to each value, x;; i.e.,

log(x;,). (23)

After the transformation, the attribute can be treated as an interval-
scaled attribute.

Nominal (Unordered Categorical) Attributes: As we discussed in Sect.
4.5.2, the value of such an attribute can take anyone of a set of states (also

4.7 Handling of Mixed Attributes 157

called categories). The states have no logical or numerical ordering. For
example, the attribute fruit may have the possible values, Apple, Orange,
and Pear, which have no ordering. A binary attribute is a special case of
a nominal attribute with only two states or values.

Although nominal attributes are not standardized as numeric attributes,
it is sometime useful to convert a nominal attribute to a set of binary at-
tributes. Let the number of values of a nominal attribute be v. We can then
create v binary attributes to represent them, i.e., one binary attribute for
each value. If a data instance for the nominal attribute takes a particular
value, the value of its corresponding binary attribute is set to 1, otherwise
it is set to 0. The resulting binary attributes can be used as numeric attrib-
utes. We will discuss this again in Sect. 4.7.

Example 12: For the nominal attribute fruit, we create three binary attrib-
utes called, Apple, Orange, and Pear in the new data. If a particular data
instance in the original data has Apple as the value for fruit, then in the
transformed data, we set the value of the attribute Apple to 1, and the val-
ues of attributes Orange and Pear to 0. u

Ordinal (Ordered Categorical) Attributes: An ordinal attribute is like a
nominal attribute, but its values have a numerical ordering. For example,
the age attribute may have the values, Young, Middle-Age and Old. The
common approach to distance computation is to treat ordinal attributes as
interval-scaled attributes and use the same methods as for interval-scaled
attributes to standardize the values of ordinal attributes.

4.7 Handling of Mixed Attributes

So far, we have assumed that a data set contains only one type of attrib-
utes. However, in practice, a data set may contain mixed attributes. That is,
it may contain any subset of the six types of attributes, interval-scaled,
symmetric binary, asymmetric binary, ratio-scaled, ordinal and nomi-
nal attributes. Clustering a data set involving mixed attributes is a chal-
lenging problem.

One way to deal with such a data set is to choose a dominant attribute
type and then convert the attributes of other types to this type. For exam-
ple, if most attributes in a data set are interval-scaled, we can convert ordi-
nal attributes and ratio-scaled attributes to interval-scaled attributes as dis-
cussed above. It is also appropriate to treat symmetric binary attributes as
interval-scaled attributes. However, it does not make much sense to con-
vert a nominal attribute with more than two values or an asymmetric bi-
nary attribute to an interval-scaled attribute, but it is still frequently done in

158 4 Unsupervised Learning

practice by assigning some numbers to them according to some hidden or-
dering. For instance, in the example of Apple, Orange, and Pear, one may
order them according to their prices, and thus make the attribute fiuit an
ordinal attribute or even an interval-scaled attribute. In the previous sec-
tion, we also saw that a nominal attribute can be converted to a set of
(symmetric) binary attributes, which in turn can be regarded as interval-
scaled attributes.

Another method of handling mixed attributes is to compute the distance
of each attribute of the two data points separately and then combine all the
individual distances to produce an overall distance. We describe one such
method, which is due to Gower [22] and is also described in [25, 31]. We
describe the combination formula first (Equation (24)) and then present the
methods to compute individual distances.

2.,.8/d] 24)

dist(X,,X) =———.
27 7 f
Zf:l 5!/
This distance value is between 0 and 1. 7 is the number of attributes in the
data set. The indicator s/ is 1 if both values x; and x; for attribute f are

non-missing, and it is set to 0 otherwise. It is also set to 0 if attribute f'is
asymmetric and the match is 0-0. Equation (24) cannot be computed if all
5,.«;' ’s are 0. In such a case, some default value may be used or one of the

data points is removed. d J is the distance contributed by attribute £, and it

is in the range 0—1. If fis a binary or nominal attribute,

df:{l if Xy #x, (25)

v 0 otherwise

If all the attributes are nominal, Equation (24) reduces to Equation (17).
The same is true for symmetric binary attributes, in which we recover the
simple matching distance (Equation (10)). When the attributes are all
asymmetric, we obtain the Jaccard distance (Equation (14)).

If attribute fis interval-scaled, we use

df = | Xy =Xy | (26)
ij

Rf

where R;is the value range of attribute f, which is

R, =max(f)—min(f) 27

4.9 Cluster Evaluation 159

Ordinal attributes and ratio-scaled attributes are handled in the same way
after conversion.

If all the attributes are interval-scaled, Equation (24) becomes the Man-
hattan distance assuming that all attribute values are standardized by divid-
ing their values with the ranges of their corresponding attributes.

4.8 Which Clustering Algorithm to Use?

Clustering research and application has a long history. Over the years, a
vast collection of clustering algorithms has been designed. This chapter
only introduced several of the main algorithms.

Given an application data set, choosing the “best” clustering algorithm
to cluster the data is a challenge. Every clustering algorithm has limitations
and works well with only certain data distributions. However, it is very
hard, if not impossible, to know what distribution the application data fol-
lows. Worse still, the application data set may not fully follow any “ideal”
structure or distribution required by the algorithms. Apart from choosing a
suitable clustering algorithm from a large collection of available algo-
rithms, deciding how to standardize the data, to choose a suitable distance
function and to select other parameter values (e.g., k in the k-means algo-
rithm) are complex as well. Due to these complexities, the common prac-
tice is to run several algorithms using different distance functions and pa-
rameter settings, and then to carefully analyze and compare the results.

The interpretation of the results should be based on insight into the
meaning of the original data together with knowledge of the algorithms
used. That is, it is crucial that the user of a clustering algorithm fully un-
derstands the algorithm and its limitations. He/she should also have the
domain expertise to examine the clustering results. In many cases, generat-
ing cluster descriptions using a supervised learning method (e.g., decision
tree induction) can be particularly helpful to the analysis and comparison.

4.9 Cluster Evaluation

After a set of clusters is found, we need to assess the goodness of the clus-
ters. Unlike classification, where it is easy to measure accuracy using la-
beled test data, for clustering nobody knows what the correct clusters are
given a data set. Thus, the quality of a clustering is much harder to evalu-
ate. We introduce a few commonly used evaluation methods below.

160 4 Unsupervised Learning

User Inspection: A panel of experts is asked to inspect the resulting clus-
ters and to score them. Since this process is subjective, we take the average
of the scores from all the experts as the final score of the clustering. This
manual inspection is obviously a labor intensive and time consuming task.
It is subjective as well. However, in most applications, some level of man-
ual inspection is necessary because no other existing evaluation methods
are able to guarantee the quality of the final clusters. It should be noted
that direct user inspection may be easy for certain types of data, but not for
others. For example, user inspection is not hard for text documents because
one can read them easily. However, for a relational table with only num-
bers, staring at the data instances in each cluster makes no sense. The user
can only meaningfully study the centroids of the clusters, or rules that cha-
racterize the clusters generated by a decision tree algorithm or some other
supervised learning methods (see Sect. 4.3.1).

Ground Truth: In this method, classification data sets are used to evalu-
ate clustering algorithms. Recall that a classification data set has several
classes, and each data instance/point is labeled with one class. Using such
a data set for cluster evaluation, we make the assumption that each class
corresponds to a cluster. For example, if a data set has three classes, we as-
sume that it has three clusters, and we request the clustering algorithm to
also produce three clusters. After clustering, we compare the cluster mem-
berships with the class memberships to determine how good the clustering
is. A variety of measures can be used to assess the clustering quality, e.g.,
entropy, purity, precision, recall, and F-score.

To facilitate evaluation, a confusion matrix can be constructed from the
resulting clusters. From the matrix, various measurements can be com-
puted. Let the set of classes in the data set D be C = (cy, ¢, ..., ¢x). The
clustering method also produces & clusters, which partition D into & dis-
joint subsets, Dy, D, ..., Dy.

Entropy: For each cluster, we can measure its entropy as follows:

k
entropy(D;) == _Pr,(c,)log, Pr,(c)), (28)
j=1
where Pri(c)) is the proportion of class ¢; data points in cluster 7 or D;. The
total entropy of the whole clustering (which considers all clusters) is
| D, |

k
entropy,,, (D) = X o ixentropy(D) (29)
i=1

Purity: This measures the extent that a cluster contains only one class of
data. The purity of each cluster is computed with

4.9 Cluster Evaluation 161

purity(D,) = mjaX(Pr,» (c,)). (30)

The total purity of the whole clustering (considering all clusters) is

| D, |
| D]

k
purity,,, (D)= x purity(D,). (31)
i=1

Precision, recall, and F-score can be computed as well for each cluster
based on the class that is the most frequent in the cluster. Note that these
measures are based on a single class (see Sect. 3.3.2).

Example 13: Assume we have a text collection D of 900 documents from
three topics (or three classes), Science, Sports, and Politics. Each class has
300 documents, and each document is labeled with one of the topics
(classes). We use this collection to perform clustering to find three clus-
ters. Class/topic labels are not used in clustering. After clustering, we want
to measure the effectiveness of the clustering algorithm.

First, a confusion matrix (Fig. 4.17) is constructed based on the cluster-
ing results. From Fig. 4.17, we see that cluster 1 has 250 Science docu-
ments, 20 Sports documents, and 10 Politics documents. The entries of the
other rows have similar meanings. The last two columns list the entropy
and purity values of each cluster and also the total entropy and purity of
the whole clustering (last row). We observe that cluster 1, which contains
mainly Science documents, is a much better (or purer) cluster than the oth-
er two. This fact is also reflected by both their entropy and purity values.

Cluster Science Sports Politics Entropy Purity
1 250 20 10 0.589 | 0.893

2 20 180 80 1.198 | 0.643

3 30 100 210 1.257 | 0.617
Total 300 300 300 1.031 0.711

Fig. 4.17. Confusion matrix with entropy and purity values

Obviously, we can use the total entropy or the total purity to compare
different clustering results from the same algorithm with different parame-
ter settings or from different algorithms.

Precision and recall may be computed similarly for each cluster. For ex-
ample, the precision of Science documents in cluster 1 is 0.89. The recall
of Science documents in cluster 1 is 0.83. The F-score for Science docu-
ments is thus 0.86. o

162 4 Unsupervised Learning

A final remark about this evaluation method is that although an algo-
rithm may perform well on some labeled data sets, there is no guarantee
that it will perform well on the actual application data at hand, which has
no class labels. However, the fact that it performs well on some labeled da-
ta sets does give us some confidence on the quality of the algorithm. This
evaluation method is said to be based on external data or information.

There are also methods that evaluate clusters based on the internal in-
formation in the clusters (without using external data with class labels).
These methods measure intra-cluster cohesion (compactness) and inter-
cluster separation (isolation). Cohesion measures how near the data points in
a cluster are to the cluster centroid. Sum of squared error (SSE) is a com-
monly used measure. Separation measures how far apart different cluster
centroids are from one another. Any distance functions can be used for the
purpose. We should note, however, that good values for these measurements
do not always mean good clusters. In most applications, expert judgments
are still the key. Clustering evaluation remains to be a very difficult problem.

Indirect Evaluation: In some applications, clustering is not the primary
task. Instead, it is used to help perform another more important task. Then,
we can use the performance on the primary task to determine which clus-
tering method is the best for the task. For instance, in a Web usage mining
application, the primary task is to recommend books to online shoppers. If
the shoppers can be clustered according to their profiles and their past pur-
chasing history, we may be able to provide better recommendations. A few
clustering methods can be tried, and their results are then evaluated based
on how well they help with the recommendation task. Of course, here we
assume that the recommendation results can be reliably evaluated.

4.10 Discovering Holes and Data Regions

In this section, we wander a little to discuss something related but quite
different from the preceding algorithms. We show that unsupervised learn-
ing tasks may be performed by using supervised learning techniques [35].

In clustering, data points are grouped into clusters according to their dis-
tances (or similarities). However, clusters only represent one aspect of the
hidden knowledge in data. Another aspect that we have not studied is the
holes. If we treat data instances as points in an 7-dimensional space, a hole
is simply a region in the space that contains no or few data points. The ex-
istence of holes is due to the following two reasons:

1. insufficient data in certain areas, and/or
2. certain attribute-value combinations are not possible or seldom occur.

4.10 Discovering Holes and Data Regions 163

Although clusters are important, holes in the space can be quite useful
too. For example, in a disease database we may find that certain symptoms
and/or test values do not occur together, or when a certain medicine is
used, some test values never go beyond certain ranges. Discovery of such
information can be of great importance in medical domains because it
could mean the discovery of a cure to a disease or some biological laws.

The technique discussed in this section aims to divide the data space in-
to two types of regions, data regions (also called dense regions) and
empty regions (also called sparse regions). A data region is an area in the
space that contains a concentration of data points and can be regarded as a
cluster. An empty region is a hole. A supervised learning technique similar
to decision tree induction is used to separate the two types of regions. The
algorithm (called CLTree for CLuster Tree) works for numeric attributes,
but can be extended to discrete or categorical attributes.

Decision tree learning is a popular technique for classifying data of var-
ious classes. For a decision tree algorithm to work, we need at least two
classes of data. A clustering data set, however, has no class label for each
data point. Thus, the technique is not directly applicable. However, the
problem can be dealt with by a simple idea.

We can regard each data instance/point in the data set as having a class
label Y. We assume that the data space is uniformly distributed with an-
other type of points, called non-existing points, which we will label N.
With the N points added to the original data space, our problem of parti-
tioning the data space into data regions and empty regions becomes a su-
pervised classification problem. The decision tree algorithm can be
adapted to solve the problem. Let us use an example to illustrate the idea.

Example 14: Fig. 4.18(A) gives a 2-dimensional space with 24 data (Y)
points. Two data regions (clusters) exist in the space. We then add some
uniformly distributed N points (represented by “0”) to the data space (Fig.
4.18(B)). With the augmented data set, we can run a decision tree algo-
rithm to obtain the partitioning of the space in Fig. 4.18(B). Data regions
and empty regions are separated. Each region is a rectangle, which can be
expressed as a rule. u

The reason that this technique works is that if there are clusters (or
dense data regions) in the data space, the data points cannot be uniformly
distributed in the entire space. By adding some uniformly distributed N
points, we can isolate data regions because within each data region there
are significantly more Y points than N points. The decision tree technique
is well known for this partitioning task.

164 4 Unsupervised Learning

(<)] o o o |
o o ol =" : " o a" : "
[o]
o : -O. .lo ° o o : - . -l "
. . . .- il
[o o N o
(B). Partitioning with added (C). Partitioning without adding
N points N points.

Fig. 4.18. Separating data and empty regions using a decision tree

An interesting question is: can the task be performed without physically
adding the N points to the original data? The answer is yes. Physically add-
ing N points increases the size of the data and thus the running time. A
more important issue is that it is unlikely that we can have points truly uni-
formly distributed in a high-dimensional space as we would need an expo-
nential number of them. Fortunately, we do not need to physically add any
N points. We can compute them when needed. The CLTree method is able
to produce the partitioning in Fig. 4.18(C) with no N points added. The de-
tails are quite involved. Interested readers can refer to [35]. This method
has some interesting characteristics:

e [t provides descriptions or representations of the resulting data regions
and empty regions in terms of hyper-rectangles, which can be expressed
as rules as we have seen in Sect. 3.2 of Chap. 3 and in Sect. 4.3.1. Many
applications require such descriptions, which can be easily interpreted
by users.

e [t automatically detects outliers, which are data points in empty regions.

e [t may not use all attributes in the data just as in decision tree building
for supervised learning. That is, it can automatically determine what at-
tributes are important and what are not. This means that it can perform
subspace clustering, i.e., finding clusters that exist in some subspaces
(represented by some subsets of the attributes) of the original space.

Bibliographic Notes 165

This method also has limitations. The main limitation is that data re-
gions of irregular shapes are hard to handle since decision tree learning on-
ly generates hyper-rectangles (formed by axis-parallel hyper-planes),
which are rules. Hence, an irregularly shaped data or empty region may be
split into several hyper-rectangles. Post-processing is needed to join them
if desired (see [35] for additional details).

Bibliographic Notes

Clustering or unsupervised learning has a long history and a very large
body of work. This chapter described only some widely used core algo-
rithms. Most other algorithms are variations or extensions of these meth-
ods. For a comprehensive coverage of clustering, please refer to several
books dedicated to clustering, e.g., those by Everitt [18], Hartigan [26],
Jain and Dubes [30], and Kaufman and Rousseeuw [31]. Most data mining
texts also have excellent coverage of clustering techniques, e.g., Han and
Kamber [25] and Tan et al. [43], which have influenced the writing of this
chapter. Below, we review some more recent developments on clustering
and give some further readings.

A density-based clustering algorithm based on local data densities was
proposed by Ester et al. [17] and Xu et al. [48] for finding clusters of arbi-
trary shapes. Hinneburg and Keim [29], Sheikholeslami et al. [40] and
Wang et al. [46] proposed several grid-based clustering methods which
first partition the space into small grids. A popular neural network cluster-
ing algorithm is the Self-Organizing Map (SOM) by Kohonen [32]. Fuzzy
clustering (e.g., fuzzy c-means) was studied by Bezdek [7] and Dunn [16].
Cheeseman et al. [9] and Moore [36] studied clustering using mixture
models. The method assumes that clusters are a mixture of Gaussians and
uses the EM algorithm [12] to learn a mixture density. We will see in
Chap. 5 that EM based partially supervised learning algorithms are basi-
cally clustering methods with some given initial seeds.

Most clustering algorithms work on numeric data. Categorical data
and/or transaction data clustering were investigated by Barbara et al. [5],
Ganti et al. [20], Gibson et al. [21], Guha et al. [24], Wang et al. [45], etc.
A related area in artificial intelligence is the conceptual clustering, which
was studied by Fisher [19], and others.

Many clustering algorithms, e.g., hierarchical clustering algorithms,
have high time complexities and are thus not suitable for large data sets.
Scaling up such algorithms becomes an important issue for large applica-
tions. Several researchers have designed techniques to scale up clustering

166 4 Unsupervised Learning

algorithms, e.g., Bradley et al. [8], Guha et al. [23], Ng and Han [38], and
Zhang et al. [54].

In recent years, there were quite a few new developments in clustering.
The first one is subspace clustering. Traditional clustering algorithms use
the whole space to find clusters, but natural clusters may exist in only
some sub-spaces. That is, some clusters may only use certain subsets of the
attributes. This problem was investigated by Agrawal et al. [3], Aggarwal
etal. [1], Aggarwal and Yu [2], Cheng et al. [10], Liu et al. [35], Zaki et al.
[49], and many others.

The second new research is semi-supervised clustering, which means
that the user can provide some initial information to guide the clustering
process. For example, the user can select some initial seeds [6] and/or spe-
cify some constraints, e.g., must-link (two points must be in the same
cluster) and cannot-link (two points cannot be in the same cluster) [44].

The third is the spectral clustering, which emerged from several fields,
e.g., VLSI [4] and computer vision [39, 41, 47]. It clusters data points by
computing eigenvectors of the similarity matrix. Recently, it was also stud-
ied in machine learning and data mining [15, 37, 53].

Yet another new research is co-clustering, which simultaneously clus-
ters both rows and columns. This approach was studied by Cheng and
Church [11], Dhillon [13], Dhillon et al. [14], and Hartigan [27].

Regarding document and Web page clustering, most implementations
are still based on k-means and hierarchical clustering methods or their var-
iations but using text specific similarity or distance functions. Steinbach et
al. [42], and Zhao and Karypis [55, 56] experimented with k-means and
agglomerative hierarchical clustering methods and also proposed some
improvements. Many researchers also worked on clustering of search en-
gine results (or snippets) to organize search results into different topics,
e.g., Hearst and Pedersen [28], Kummamuru et al. [33], Leouski and Croft
[34], Zamir and Etzioni [50, 51], and Zeng et al. [52].

Bibliography

1. Agarwal, R., C. Aggarwal, and V. Prasad. A tree projection algorithm for
generation of frequent item sets. Journal of Parallel and Distributed
Computing, 2001, 61(3): p. 350-371.

2. Aggarwal, C. and P. Yu. Finding generalized projected clusters in high
dimensional spaces. In Proceedings of ACM SIGMOD International
Conference on Management of Data (SIGMOD-2000), 2000.

3. Agrawal, R., J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. In

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

Bibliography 167

Proceedings of ACM SIGMOD International Conference on Management of
Data (SIGMOD-1998), 1998.

Alpert, C., A. Kahng, and S. Yao. Spectral partitioning: the more eigenvectors,
the better. Discrete Applied Mathematics, 1999, 90(1-3): p. 3-26.

Barbara, D., Y. Li, and J. Couto. COOLCAT: an entropy-based algorithm for
categorical clustering. In Proceedings of ACM International Conference on
Information and knowledge management (CIKM-2002), 2002.

Basu, S., A. Banerjee, and R. Mooney. Semi-supervised clustering by
seeding. In Proceedings of International Conference on Machine Learning
(ICML-2002), 2002.

Bezdek, J.C. Cluster Validity with Fuzzy Sets. Journal of Cybernetics, 1974,
3:p. 58-72.

Bradley, P., U. Fayyad, and C. Reina. Scaling clustering algorithms to large
databases. Knowledge Discovery and Data Mining, 1998: p. 9-15.
Cheeseman, P. and J. Stutz. Bayesian classification (AutoClass): Theory and
results. Advances in Knowledge Discovery and Data Mining, 1996.

Cheng, C., A. Fu, and Y. Zhang. Entropy-based subspace clustering for
mining numerical data. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-1999), 1999.
Cheng, Y. and G. Church. Biclustering of expression data. In Proceedings of
ISMB-2000, 2000.

Dempster, A., N. Laird, and D. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 1977, 39(1): p. 1-38.

Dhillon, I. Co-clustering documents and words using bipartite spectral graph
partitioning. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2001),2001.

Dhillon, I., S. Mallela, and D. Modha. Information-theoretic co-clustering. In
Proceedings of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2003), 2003.

Ding, C. and X. He. Linearized cluster assignment via spectral ordering. In
Proceedings of International Conference on Machine Learning (ICML-2004),
2004.

Dunn, J. A fuzzy relative of the ISODATA process and its use in detecting
compact well-separated clusters. Cybernetics and Systems, 1973, 3(3): p. 32-57.
Ester, M., H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-1996), 1996.

Everitt, B. Cluster analysis. 1974: Heinemann, London.

Fisher, D. Knowledge acquisition via incremental conceptual clustering.
Machine Learning, 1987, 2(2): p. 139-172.

Ganti, V., J. Gehrke, and R. Ramakrishnan. CACTUS—clustering categorical
data using summaries. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-1999), 1999.

168 4 Unsupervised Learning

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

Gibson, D., J. Kleinberg, and P. Raghavan. Clustering categorical data: An
approach based on dynamical systems. The VLDB Journal, 2000, 8(3-4): p. 236.
Gower, J. A general coefficient of similarity and some of its properties.
Biometrics, 1971: p. 857-871.

Guha, S., R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm for
large databases. Information Systems, 2001, 26(1): p. 35-58.

Guha, S., R. Rastogi, and K. Shim. Rock: A robust clustering algorithm for
categorical attributes*® 1. Information Systems, 2000, 25(5): p. 345-366.

Han, J. and M. Kamber. Data mining: concepts and techniques. 20006:
Morgan Kaufmann Publishers.

Hartigan, J. Clustering algorithms. 1975: John Wiley & Sons, Inc.

Hartigan, J. Direct clustering of a data matrix. Journal of the American
Statistical Association, 1972: p. 123-129.

Hearst, M. and J. Pedersen. Reexamining the cluster hypothesis: scatter/gather
on retrieval results. In Proceedings of ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR-1996), 1996.

Hinneburg, A. and D. Keim. Optimal grid-clustering: Towards breaking the
curse of dimensionality in high-dimensional clustering. In Proceedings of
International Conference on Very Large Data Bases (VLDB-1999), 1999.
Jain, A. and R. Dubes. Algorithms for clustering data. 1988: Prentice Hall.
Kaufman, L. and P. Rousseeuw. Finding groups in data: an introduction to
cluster analysis. 2005: John Wiley & Sons, Inc.

Kohonen, T. Self-Organizing Maps. 1995: Springer.

Kummamuru, K., R. Lotlikar, S. Roy, K. Singal, and R. Krishnapuram. A
hierarchical monothetic document clustering algorithm for summarization and
browsing search results. In Proceedings of International Conference on
World Wide Web (WWW-2004), 2004.

Leouski, A. and W. Croft. An evaluation of techniques for clustering search
results. In Technical Report IR-76. 1996, Department of Computer Science,
University of Massachusetts.

Liu, B., Y. Xia, and P. Yu. Clustering through decision tree construction. In
Proceedings of ACM International Conference on Information and knowledge
management (CIKM-2000), 2000.

Moore, A. Very fast EM-based mixture model clustering using
multiresolution kd-trees. In Proceedings of Neural Info. Processing Systems
(NIPS-1998), 1999.

Ng, A., M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an
algorithm. In Proceedings of 14th Advances in Neural Information
Processing Systems, 2001.

Ng, R. and J. Han. Efficient and effective clustering methods for spatial data
mining. In Proceedings of International Conference on Very Large Data
Bases (VLDB-1994), 1994.

Scott, G. and H. Longuet-Higgins. Feature grouping by relocalisation of
eigenvectors of the proximity matrix. In Proceedings of British Machine
Vision Conference, 1990.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Bibliography 169

Sheikholeslami, G., S. Chatterjee, and A. Zhang. Wavecluster: A multi-
resolution clustering approach for very large spatial databases. In Proceedings
of International Conference on Very Large Data Bases (VLDB-1998), 1998.
Shi, J. and J. Malik. Normalized cuts and image segmentation. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 2002, 22(8): p. 888-905.
Steinbach, M., G. Karypis, and V. Kumar. A comparison of document clustering
techniques. In Proceedings of KDD Workshop on Text Mining, 2000.

Tan, P., M. Steinbach, and V. Kumar. Introduction to data mining. 2006:
Pearson Addison Wesley Boston.

Wagstaff, K. and C. Cardie. Clustering with instance-level constraints. In
Proceedings of International Conference on Machine Learning (ICML-2000),
2000.

Wang, K., Y. He, and J. Han. Mining frequent itemsets using support
constraints. In Proceedings of International Conference on Very Large Data
Bases (VLDB-2000), 2000.

Wang, W., J. Yang, and R. Muntz. STING: A statistical information grid
approach to spatial data mining. In Proceedings of International Conference
on Very Large Data Bases (VLDB-1997), 1997.

Weiss, Y. Segmentation using eigenvectors: a unifying view. In Proceedings
of IEEE Intl. Conf. on Computer Vision, 1999.

Xu, X., M. Ester, H. Kriegel, and J. Sander. A nonparametric clustering
algorithm for knowledge discovery in large spatial databases. In Proceedings
of IEEE International Conference on Data Engingeering (ICDE-2003), 1998.
Zaki, M., M. Peters, 1. Assent, and T. Seidl. Clicks: An effective algorithm for
mining subspace clusters in categorical datasets. Data & Knowledge
Engineering, 2007, 60(1): p. 51-70.

Zamir, O. and O. Etzioni. Grouper: a dynamic clustering interface to Web
search results. Computer Networks, 1999, 31(11-16): p. 1361-1374.

Zamir, O. and O. Etzioni. Web document clustering: A feasibility
demonstration. In Proceedings of International Conference on World Wide
Web (WWW-1998), 1998.

Zeng, H., Q. He, Z. Chen, W. Ma, and J. Ma. Learning to cluster web search
results. In Proceedings of ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR-2004), 2004.

Zha, H., X. He, C. Ding, M. Gu, and H. Simon. Spectral relaxation for k-
means clustering. Advances in Neural Information Processing Systems, 2002,
2:p. 1057-1064.

Zhang, T., R. Ramakrishnan, and M. Livny. BIRCH: an efficient data
clustering method for very large databases. ACM SIGMOD Record, 1996,
25(2): p. 103-114.

Zhao, Y. and G. Karypis. Empirical and theoretical comparisons of selected
criterion functions for document clustering. Machine Learning, 2004, 55(3):
p. 311-331.

Zhao, Y., G. Karypis, and U. Fayyad. Hierarchical clustering algorithms for
document datasets. Data Mining and Knowledge Discovery, 2005, 10(2): p.
141-168.

5 Partially Supervised Learning

With Wee Sun Lee

In supervised learning, the learning algorithm uses labeled training exam-
ples from every class to generate a classification function. One of the
drawbacks of this classic paradigm is that a large number of labeled exam-
ples are needed in order to learn accurately. Since labeling is often done
manually, it can be very labor intensive and time consuming. In this chap-
ter, we study two partially supervised learning problems. As their names
suggest, these two learning problems do not need full supervision, and thus are
able to reduce the labeling effort. The first is the problem of learning from la-
beled and unlabeled examples, which is commonly known as semi-
supervised learning. In this chapter, we also call it LU learning (L and U
stand for “labeled” and “unlabeled” respectively). In this learning setting,
there is a small set of labeled examples of every class, and a large set of
unlabeled examples. The objective is to make use of the unlabeled exam-
ples to improve learning.

The second is the problem of learning from positive and unlabeled exam-
ples. This problem assumes two-class classification. However, the training
data only has a set of labeled positive examples and a set of unlabeled ex-
amples, but no labeled negative examples. In this chapter, we also call this
problem PU learning (P and U stand for “positive” and “unlabeled” re-
spectively). The objective is to build an accurate classifier without labeling
any negative examples. We study these two problems in the context of text
classification and Web page classification in this chapter. However, the
general ideas and the algorithms are also applicable to other kinds of clas-
sification tasks.

5.1 Learning from Labeled and Unlabeled Examples

As we described in Chap. 3, the common approach to learning a classifica-
tion function is to label a set of examples with some pre-defined categories
or classes, and then use a learning algorithm to produce a classifier. This
classifier is applied to assign classes to future instances (or test data). In
the context of text classification and Web page classification, the examples
are text documents and Web pages. This approach to building a classifier

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 171
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3 5,
© Springer-Verlag Berlin Heidelberg 2011

172 5 Partially Supervised Learning

is called supervised learning because the training documents/pages have
been labeled with pre-defined classes.

The main bottleneck of building such a classifier is that a large, often
prohibitive, number of labeled training documents are needed to build ac-
curate classifiers. In text classification, the labeling is typically done ma-
nually by reading the documents, which is a time consuming task. How-
ever, we cannot eliminate labeling completely because without it a
machine learning algorithm will not know what the user is interested in.
Although unsupervised learning or clustering may help to some extent,
clustering does not guarantee to produce the categorization results required
by the user. This raises an important question: Can the manual labeling ef-
fort be reduced, and can other sources of information be used so that the
number of labeled examples required for learning would not be too large?

This section addresses the problem of learning from a small set of la-
beled examples and a large set of unlabeled examples, i.c., LU learning.
Thus, in this setting only a small set of examples needs to be labeled for
each class. However, since a small set of labeled examples is not sufficient
for building an accurate classifier, a large number of unlabeled examples
are utilized to help. One key point to note is that although the number may
be small, every class must have some labeled examples.

In many applications, unlabeled examples are easy to come by. This is
especially true for online documents. For example, if we want to build a
classifier to classify news articles into different categories or classes, it is
fairly easy to collect a huge number of unlabeled news articles from the
Web. In fact, in many cases, the new data that need to be classified (which
have no class labels) can be used as the unlabeled examples.

The question is: why do the unlabeled data help? In the context of text
classification, one reason is that the unlabeled data provide information on
the joint probability distribution over words. For example, using only the
labeled data we find that documents containing the word “homework” tend
to belong to a particular class. If we use this fact to classify the unlabeled
documents, we may find that “lecture” co-occurs with “homework™ fre-
quently in the unlabeled set. Then, “lecture” may also be an indicative
word for the class. Such correlations provide a helpful source of informa-
tion to increase classification accuracy, especially when the labeled data
are scarce.

Several researchers have shown that unlabeled data help learning. That
is, under certain conditions using both labeled and unlabeled data in learn-
ing is better than using a small set of labeled data alone. Their techniques
can thus alleviate the labor-intensive labeling effort. We now study some
of these learning techniques, and also discuss their limitations.

5.1 Learning from Labeled and Unlabeled Examples 173

5.1.1 EM Algorithm with Naive Bayesian Classification

One of the LU learning techniques uses the Expectation—Maximization
(EM) algorithm [11]. EM is a popular iterative algorithm for maximum li-
kelihood estimation in problems with missing data. The EM algorithm
consists of two steps, the Expectation step (or E-step), and the Maximi-
zation step (or M-step). The E-step basically fills in the missing data
based on the current estimation of the parameters. The M-step, which max-
imizes the likelihood, re-estimates the parameters. This leads to the next it-
eration of the algorithm, and so on. EM converges to a local minimum
when the model parameters stabilize.

The ability of EM to work with missing data is exactly what is needed
for learning from labeled and unlabeled examples. The documents in the
labeled set (denoted by L) all have class labels (or values). The documents
in the unlabeled set (denoted by U) can be regarded as having missing
class labels. We can use EM to estimate them based on the current model,
i.e., to assign probabilistic class labels to each document d; in U, i.e.,
Pr(cj|d;). After a number of iterations, all probabilities will converge.

Note that the EM algorithm is not really a specific “algorithm”, but is a
framework or strategy. It simply runs a base algorithm iteratively. We will
use the naive Bayesian (NB) algorithm discussed in Sect. 3.7 as the base
algorithm, and run it iteratively. The parameters that EM estimates in this
case are the probability of each word given a class and the class prior
probabilities (see Equations (31) and (32) in Sect. 3.7 of Chap. 3).

Although it is quite involved to derive the EM algorithm with the NB
classifier, it is fairly straightforward to implement and to apply the algo-
rithm. That is, we use a NB classifier in each iteration of EM, Equation
(33) in Chap. 3 for the E-step, and Equations (31) and (32) in Chap. 3 for
the M-step. Specifically, we first build a NB classifier f using the labeled
examples in L. We then use f'to classify the unlabeled examples in U, more
accurately to assign a probability to each class for every unlabeled exam-
ple, i.e., Pr(cj|d;), which takes the value in [0, 1] instead of {0, 1}. Some
explanations are in order here.

Let the set of classes be C = {ci, c», ..., ¢/¢}. Each iteration of EM will
assign every example d; in U a probability distribution on the classes that it
may belong to. That is, it assigns d; the class probabilities of Pr(ci|d)),
Pr(ca|d)), ..., Pr(c|¢|d;). This is different from the example in the labeled set
L, where each document belongs to only a single class ¢, i.e., Pr(cyd) = 1
and Pr(cj|d;) = 0 for j # k.

Based on the assignments of Pr(c;|d;) to each document in U, a new NB
classifier can be constructed. This new classifier can use both the labeled
set L and the unlabeled set U as the examples in U now have probabilistic

174 5 Partially Supervised Learning

Algorithm EM(L, U)
1 Learn an initial naive Bayesian classifier f/ from only the labeled set L (us-
ing Equations (31) and (32) in Chap. 3);

2 repeat
/I E-Step
3 for each example d; in U do
4 Using the current classifier f'to compute Pr(cj|d;) (using Equation
(33) in Chap. 3).
5 end
/I M-Step
6 learn a new naive Bayesian classifier f from L U U by computing Pr(c;)

and Pr(wj|c;) (using Equations (31) and (32) in Chap. 3).
7 until the classifier parameters stabilize
Return the classifier f from the last iteration.

Fig. 5.1. The EM algorithm with naive Bayesian classification

labels, Pr(cj|d;). This leads to the next iteration. The process continues until
the classifier parameters (Pr(wc;) and Pr(c;)) no longer change (or have
minimum changes).

The EM algorithm with the NB classification was proposed for LU
learning by Nigam et al. [34]. The algorithm is shown in Fig. 5.1. EM here
can also be seen as a clustering method with some initial seeds (labeled da-
ta) in each cluster. The class labels of the seeds indicate the class labels of
the resulting clusters.

The derivation of the EM algorithm in Fig. 5.1 is quite involved and is
given as an appendix at the end of this chapter. Two assumptions are made
in the derivation. They are in fact the two mixture model assumptions in
Sect. 3.7 of Chap. 3 for deriving the naive Bayesian classifier for text clas-
sification, i.e.,

1. the data is generated by a mixture model, and
2. there is a one-to-one correspondence between mixture components and
classes.

It has been shown that the EM algorithm in Fig. 5.1 works well if the
two mixture model assumptions for a particular data set are true. Note that
although naive Bayesian classification makes additional assumptions as we
discussed in Sect. 3.7 of Chap. 3, it performs surprisingly well despite the
obvious violation of the assumptions. The two mixture model assumptions,
however, can cause major problems when they do not hold. In many real-
life situations, they may be violated. It is often the case that a class (or top-
ic) contains a number of sub-classes (or sub-topics). For example, the class
Sports may contain documents about different sub-classes of sports, e.g.,

5.1 Learning from Labeled and Unlabeled Examples 175

Baseball, Basketball, Tennis, and Softball. Worse still, a class ¢; may even
contain documents from completely different topics, e.g., Science, Politics,
and Sports. The first assumption above is usually not a problem. The sec-
ond assumption is critical. If the condition holds, EM works very well and
is particularly useful when the labeled set is very small, e.g., fewer than
five labeled documents per class. In such cases, every iteration of EM is
able to improve the classifier dramatically. However, if the second condi-
tion does not hold, the classifier from each iteration can become worse and
worse. That is, the unlabeled set hurts learning instead of helping it.
Two methods are proposed to remedy the situation.

Weighting the Unlabeled Data: In LU learning, the labeled set is small,
but the unlabeled set is very large. So the EM’s parameter estimation is
almost completely determined by the unlabeled set after the first iteration.
This means that EM essentially performs unsupervised clustering. When
the two mixture model assumptions are true, the natural clusters of the data
are in correspondence with the class labels. The resulting clusters can be
used as the classifier. However, when the assumptions are not true, the
clustering can go very wrong, i.e., the clustering may not converge to mix-
ture components corresponding to the given classes, and are therefore det-
rimental to classification accuracy. In order to reduce the effect of the
problem, we can weight down the unlabeled data during parameter estima-
tion (EM iterations). Specifically, we change the computation of Pr(w/c;)
(Equation (31) in Chap. 3) to the following, where the counts of the unla-
beled documents are decreased by a factor of 4, 0 < < 1:

2+ 37 AN, Pr(c, |d,))

Pr(w, [¢;) = VT~ ’
V4 > AN, Pr(c; |d))
where
) u ifd eU
AG) = ’ 2
® {1 ifd el @)

When u = 1, each unlabeled document is weighted the same as a labeled
document. When = 0, the unlabeled data are not considered. The value of
4 can be chosen based on leave-one-out cross-validation accuracy on the
labeled training data. The u value that gives the best result is used.

Finding Mixture Components: Instead of weighting unlabeled data low,
we can attack the problem head on, i.e., by finding the mixture compo-
nents (sub-classes) of the class. For example, the original class Sports may
consist of documents from Baseball, Tennis, and Basketball, which are

176 5 Partially Supervised Learning

three mixture components (sub-classes or sub-topics) of Sports. Instead of
using the original class, we try to find these components and treat each of
them as a class. That is, if we can find the three mixture components, we
can use them to replace the class Sports. There are several automatic ap-
proaches for identifying mixture components. For example, a hierarchical
clustering technique was proposed in [8] to find the mixture components,
which showed good performances. A simple approach based on leave-one-
out cross-validation on the labeled training set was also given in [34].
Manually identifying different components may not be a bad option for
text documents because one only needs to read the documents in the la-
beled set (or some sampled unlabeled documents), which is very small.

5.1.2 Co-Training

Co-training is another approach to learning from labeled and unlabeled ex-
amples. This approach assumes that the set of attributes (or features) in the
data can be partitioned into two subsets. Each of them is sufficient for
learning the target classification function. For example, in Web page clas-
sification, one can build a classifier using either the text appearing on the
page itself, or the anchor text attached to hyperlinks pointing to the page
from other pages on the Web. This means that we can use the same train-
ing data to build two classifiers using two subsets of features.

Traditional learning algorithms do not consider this division of features,
or feature redundancy. All the features are pooled together in learning. In
some cases, feature selection algorithms are applied to remove redundant
features. Co-training exploits this feature division to learn separate classi-
fiers over each of the feature sets, and utilizes the fact that the two classifi-
ers must agree on their labeling of the unlabeled data to do LU learning.

Blum and Mitchell [3] formalize the co-training setting and provide a
theoretical guarantee for accurate learning subject to certain assumptions.
In the formalization, we have an example (data) space X = X; x X, where
X, and X; provide two different “views” of the example. That is, each ex-
ample x (represented as a vector) is given as a pair (X, X;). This simply
means that the set of features (or attributes) is partitioned into two subsets.
Each “view” or feature subset is sufficient for correct classification. Under
some further assumptions, it was proven that co-training algorithms can
learn from unlabeled data starting from only a weak classifier built using
the small set of labeled training documents.

The first assumption is that the example distribution is compatible with
the target functions; that is, for most examples, the target classification
functions over the feature sets predict the same label. In other words, if f
denotes the combined classifier, f; denotes the classifier learned from X}, f>

5.1 Learning from Labeled and Unlabeled Examples 177

denotes the classifier learned from X5 and c is the actual class label of ex-
ample x, then f(x) = f1(x;) = f2(X2) = ¢ for most examples.

The second assumption is that the features in one set of an example are
conditionally independent of the features in the other set, given the class
of the example. In the case of Web page classification, this assumes that
the words on a Web page are not related to the words on its incoming hy-
perlinks, except through the class of the Web page. This is a somewhat un-
realistic assumption in practice.

The co-training algorithm explicitly uses the feature split to learn from
labeled and unlabeled data. The algorithm is iterative. The main idea is
that in each iteration, it learns a classifier from the labeled set L with each
subset of the features, and then applies the classifier to classify (or label)
the unlabeled examples in U. A number (#;) of most confidently classified
examples in U from each class ¢; are added to L. This process ends when U
becomes empty (or a fixed number of iterations is reached). In practice, we
can set a different n; for a different class ¢; depending on class distribu-
tions. For example, if a data set has one third of class 1 examples and two
thirds of class 2 examples, we can set n; = 1 and n, = 2.

The whole co-training algorithm is shown in Fig. 5.2. Lines 2 and 3
build two classifiers f; and f, from the two “views” of the data respectively.
fi and £, are then applied to classify the unlabeled examples in U (lines 4
and 5). Some most confidently classified examples are removed from U
and added to L. The algorithm then goes to the next iteration.

Algorithm co-training(L, U)

1 repeat

2 Learn a classifier f; using L based on only x; portion of the examples x.

3 Learn a classifier f; using L based on only x, portion of the examples x.

4 Apply f; to classify the examples in U, for each class ¢;, pick n; examples
that f; most confidently classifies as class ¢;, and add them to L.

5 Apply f; to classify the examples in U, for each class ¢;, pick n; examples
that £, most confidently classifies as class ¢;, and add them to L.

6 until U becomes empty or a fixed number of iterations are reached

Fig. 5.2. A co-training algorithm

When the co-training algorithm ends, it returns two classifiers. At classi-
fication time, for each test example the two classifiers are applied sepa-
rately and their scores are combined to decide the class. For naive Bayes-
ian classifiers, we multiply the two probability scores, i.e.,

Pr(¢[x) = Pr(c/[x1)Pr(c/|x2) (3)

The key idea of co-training is that classifier f; adds examples to the la-
beled set that are used for learning f; based on the X, view, and vice versa.

178 5 Partially Supervised Learning

Due to the conditional independence assumption, the examples added by f;
can be considered as new and random examples for learning f; based on the
X view. Then the learning will progress. The situation is illustrated in Fig.
5.3. This example has classes, positive and negative, and assumes linear
separation of the two classes. In the X; view (Fig. 5.3(A)), the circled ex-
amples are most confident positive and negative examples classified (or
labeled) by f; in the unlabeled set U. In the X; view (Fig. 5.3(B)), these cir-
cled examples appear randomly. With these random examples from U add-
ed to L, a better f; will be learned in the next iteration.

+
e o, ©

_ o -
++ - o 0_© _

(A) X, view: data in U labeled by 7, (B) X, view: the same data

Fig. 5.3. Two views of co-training.

However, if the added examples to L are not random examples in the X,
space but very similar to the situation in Fig. 5.3(A), then these examples
are not informative to learning. That is, if the two subsets of features are
correlated given the class or the conditional independence assumption is
violated, the added examples will not be random but isolated in a specific
region similar to those in Fig. 5.3(A). Then they will not be as useful or in-
formative to learning. Consequently, co-training will not be effective.

In [33], it is shown that co-training produces more accurate classifiers
than the EM algorithm presented in the previous section, even for data sets
whose feature division does not completely satisfy the strict requirements
of compatibility and conditional independence.

5.1.3 Self-Training

Self-training, which is similar to both EM and co-training, is another me-
thod for LU learning. It is an incremental algorithm that does not use the
split of features. Initially, a classifier (e.g., naive Bayesian classifier) is
trained with the small labeled set considering all features. The classifier is
then applied to classify the unlabeled set. Those most confidently classi-
fied (or unlabeled) documents of each class, together with their predicted
class labels, are added to the labeled set. The classifier is then re-trained

5.1 Learning from Labeled and Unlabeled Examples 179

and the procedure is repeated. This process iterates until all the unlabeled
documents are given class labels. The basic idea of this method is that the
classifier uses its own predictions to teach itself.

5.1.4 Transductive Support Vector Machines

Support vector machines (SVM) is one of the most effective methods for
text classification. One way to use unlabeled data in training SVM is by
selecting the labels of the unlabeled data in such a way that the resulting
margin of the classifier is maximized. Training for the purpose of labeling
known (unlabeled) test instances is referred to as transduction, giving rise
to the name transductive SVM [41]. An example of how transduction can
change the decision boundary is shown in Fig. 5.4. In this example, the old
decision boundary, constructed using only labeled data, would have a very
small margin on the unlabeled data. By utilizing the unlabeled data in the
training process, a classifier that has the largest margin on both the labeled
and unlabeled data can be obtained.

v @ .
. < ® ®,
., y=1
@ ®
~... Old decision boundary
- o . New decision
X o@ ° boimdary
y=-1 "

Fig. 5.4. The old decision boundary (before the addition of unlabeled data) and the
new decision boundary created by transductive SVM. The unlabeled data are indi-
cated by circles around them

The main difficulty with applying transductive SVM is the computa-
tional complexity. When all the labels are observed, training SVM is a
convex optimization problem that can be solved efficiently. The problem
of assigning labels to unlabeled examples in such a way that the resulting
margin of the classifier is maximized can no longer be solved efficiently.

To solve the problem, Joachims [20] used a sub-optimal iterative me-
thod that starts by learning a classifier using only the labeled data. The me-
thod then treats a subset of unlabeled instances that are most confidently
labeled positive by the learned classifier as initial positive examples while

180 5 Partially Supervised Learning

the rest of the unlabeled examples are treated as initial negative examples.
The number of instances to label as positive can be specified by the user to
change the precision—recall trade-off and is maintained throughout the it-
erations. The method then tries to improve the soft margin cost function by
iteratively changing the labels of some of the instances and retraining the
SVM. The ratio of positive to negative instances is maintained by selecting
one positively labeled instance p and one negatively labeled instance ¢ to
change in each iteration. It was shown in [20] that if the two instances are
selected such that the slack variables &, > 0, & >0 and &, + &, > 2, the soft
margin cost function will decrease at each iteration. Further improvements
described in [20] include allowing the soft margin error of unlabeled ex-
amples to be penalized differently from the soft margin error of the labeled
examples and penalizing the soft margin error on the positive unlabeled
examples differently from the soft margin error on the negative unlabeled
examples. The penalty on the unlabeled examples is also iteratively in-
creased from a small value to the desired value. This may improve the
chances of finding a good local optimum as it may be easier to improve the
cost function when the penalty is small. The method was applied success-
fully to text classification problems.

Like other methods of learning from labeled and unlabeled examples,
transductive SVM can be sensitive to its assumptions. When the large
margin assumption is correct on the dataset, it may improve performance
but when the assumption is incorrect, it can decrease performance com-
pared to supervised learning. As an example, the transductive SVM per-
formed poorly using small labeled data sets when separating Project Web
pages from other types of university Web pages in [20]. It was conjectured
that, with a small number of labeled data, separating the Web pages ac-
cording to some of the underlying topics of the Web pages may give a lar-
ger margin than separating them according to whether the Web pages are
Project pages or not.

5.1.5 Graph-Based Methods

Graph-based LU learning methods can be viewed as extensions of nearest
neighbor supervised learning algorithms that work with both labeled and
unlabeled instances. The basic idea in these methods is to treat labeled and
unlabeled instances as vertices in a graph where a similarity function is
used to define the edge weights between instances. The graph, with similar
instances connected by larger weights, is then used to help label the unla-
beled instances in such a way that labels of vertices connected by edges
with large weights tend to agree with each other. Methods used for con-
structing the graphs include connecting each instance to its k-nearest

5.1 Learning from Labeled and Unlabeled Examples 181

neighbors, connecting each instance to other instances within a certain dis-
tance o and using a fully connected graph with an exponentially decreasing
similarity function such as the Gaussian function to assign the weights.
The assumptions used in these methods are similar to those of the nearest
neighbor classifier, that is, near neighbors should have the same labels and
we have a good measure of similarity between instances. We discuss three
types of graph-based LU learning methods below: mincut, Gaussian
fields and spectral graph transducer. All three methods work on binary
classification problems but, like the support vector machines, can be used
with strategies such as one-against-rest for solving multiple class classifi-
cation problems.

Mincut: This method was proposed by Blum and Chalwa [2]. A weighted
graph G = (V, E, W) is constructed first, where V' consists of the labeled
and unlabeled instances, £ consists of edges between the instances and W
is a function on the edges with W(i, j)) = w; denoting the similarity of in-
stances 7 and j. The vertices associated with labeled instances are then giv-
en values from {0, 1} consistent with their binary labels. The idea in the
mincut algorithm is to find an assignment of values v; from the set {0, 1}

to the unlabeled instances in V" such that the cost function z(_ -
1] €.

Wy v, =V |
is minimized. The advantage of this formulation is that the problem can be
solved in polynomial time even though it is a combinatorial optimization
problem. One way to do this is to transform the problem into a max-flow
problem (see [9] for a description of the max-flow problem). To do that,
we convert the graph into a flow network by introducing a source vertex v.
and a sink vertex v_, where the source vertex is connected by edges with
infinite capacities to the positive labeled instances while the sink vertex is
connected by edges with infinite capacities to the negative labeled in-
stances. The other edge weights in the graph are also treated as edge ca-
pacities in the flow network. A cut of the network is a partition of the ver-
tices into two subsets V. and V_such that v, € V. and v_€ V_. A minimum
cut is a partition that has the smallest sum of capacities in the edges con-
necting V., and V_. Finding a minimum cut is equivalent to minimizing the

function Z wy v, =V, | since all the vertices are assigned values from {0,
(i) 0

1}. Max-flow algorithms can be used to efficiently find a mincut of the
network in time O(|V]).

Gaussian Fields: Instead of minimizing z wy v, =v; | Zhu et al. [46]

(i,j)eE
proposed minimizing Z e) with the value of the vertices being
i,j)e

selected from [0, 1] instead of {0, 1}. The advantage of using this formulation

182 5 Partially Supervised Learning

is that it allows the solution to be obtained using linear algebra. Let W be
the weight matrix corresponding to the graph,

W= |:WLL WLU:| 4
WUL WUU
where W, , W, ,, W, and W, are sub-matrices with the subscript L de-

noting labeled instances and the subscript U denoting the unlabeled in-
stances. Let D be a diagonal matrix where p, = Z w 1s the sum of the en-
J

tries in row (or column) i. We also form a vector v, consisting of values
assigned to the labeled and unlabeled instances. The labeled instances are
assigned fixed values in {0, 1} consistent with their labels while the values
v; assigned to the wunlabeled instances are chosen to minimize
Z(i,j)eE w; (v, —v,)*. The solution can be written as

vy =(Dyy - WUU)_IWULVL’ (5)

where v, is the part of the vector v that contains values assigned to the un-
labeled instances, v, is the part of the vector that contains values assigned
to labeled instances and D, is the sub-matrix of D consisting of sum of

entries of rows in W associated with unlabeled instances.

o s e
The optimization problem Z(i,j)eE w; (v, —v,)* can also be written in ma-

trix form as v'Av where A = D — W is known as the combinatorial Lapla-
cian of the graph. The matrix A is known to be positive semidefinite, so it
can be viewed as an inverse covariance matrix of a multivariate Gaussian
random variable, giving rise to the name Gaussian field.

Spectral Graph Transducer: One potential problem with the mincut
formulation is that the mincut cost function tends to prefer unbalanced cuts
where the number of instances in either the positive or negative class vast-
ly outnumbers the number of instances in the other class. Unbalanced cuts
tend to have a lower cost in the mincut formulation because the number of
edges between V., and V_ is maximized when the sizes of V. and V_ are
equal and is small when either one of them is small. For example, if we
have n vertices and V. contains a single element, then there are potentially
n—1 edges between V. and V_. In contrast, if V. and V_ are the same size,
then there are potentially n°/4 edges between the two sets of vertices.

Let cut(V., V_) be the sum of the edge weights connecting V. and V_. To
mitigate the effect of preferring unbalanced cut, Joachims [21] proposed to

minimize a cost function of normalized cut cut(V..,V.) | where the cut value
VoAV |

5.1 Learning from Labeled and Unlabeled Examples 183

is normalized by the number of edges between the two sets. Minimizing
this cost function is computationally difficult, so Joachims [21] proposed
minimizing a relaxed version of the problem.

Let A be the combinatorial Laplacian of the graph. It can be shown that
minimizing the normalized cut (with no labeled data) using ¢ and f num-
ber of instances (& and f are specified by the user) in the two partitions is
equivalent to minimizing v'Av for v; € {, 7.}, where

Yo a

V. " and y_ V; . (6)
Instead of using v; € {., 7}, Joachims [21] proposed to allow v; to take
real values under the constraint v/ 1=0 and v'v=n, where 1 is the all one
vector. To make sure that the labeled instances are properly classified, a
term (v—3)'C(v—y) is added to the cost function, where C is a diagonal ma-
trix with non-zero entries only for labeled instances and yis the target vec-
tor for approximation by v. The components of y that correspond to posi-
tive and negative instances are set to % and y respectively, while the
components of y that correspond to unlabeled instances do not affect the
cost function because their corresponding diagonal entries of C are set to
zero. The values of the non-zero entries of C can be set by the user to give
different misclassification costs to each instance. This gives the combined
optimization problem of

min, V' Av+c(v—y) C(v—-y) (7)
s.t. vi1=0and v'v=n

where ¢ gives a trade-off between the cost for the labeled and unlabeled
parts. The solution of Equation (7) is obtained using spectral methods.

The Gaussian field method and spectral graph transduction have been
applied to the natural language processing problem of word sense disam-
biguation in [35, 37]. Word sense disambiguation is the problem of assign-
ing appropriate meanings to words (which may have multiple meanings)
according to the context that they appear in. Although some improvements
are observed, the success of these methods is still limited.

5.1.6 Discussion
We discuss two issues: (1) whether the unlabeled set U is always helpful
and (2) the evaluation of LU learning.

Does the Unlabeled Set Always Help? The answer is no. As we have
seen, all approaches make strong assumptions. For example, EM makes

184 5 Partially Supervised Learning

two mixture model assumptions, and co-training makes the feature split as-
sumption. When the assumptions are true for an application data set, unla-
beled data can help learning (even dramatically). When the assumptions
are not true, the unlabeled data may harm learning. Automatically detect-
ing bad match of the problem structure with the model assumptions in ad-
vance is, however, very hard and remains an open problem.

A related issue is that researchers have not shown that when the labeled
set is sufficiently large, the unlabeled data still help. Manual labeling more
documents may not be as difficult as it seems in some applications, espe-
cially when the number of classes is small. In most cases, to label a docu-
ment one does not even need to read the entire document (if it is long).
Typically, the first few sentences can already tell its class. Compounded
with the problem of inability to decide whether the unlabeled data indeed
help classification, practical applications of LU learning are still limited.

Evaluation: The evaluation of LU learning is commonly done in the same
way as traditional classification. However, there is a problem with the
availability of sufficient test data. In practice, users always want to have a
reasonable guarantee on the predictive accuracy of a classification system
before they use the system. This means that test data sets have to be used
to evaluate the system. Existing algorithms for LU learning assume that
there is a large set of labeled test data for this purpose. However, this con-
tradicts the LU learning problem statement, which says that the labeled set
is very small. If we can ask the user to label more data, then we do not
need LU learning because some examples of the test set can be used in
training. Evaluation without more labeled data is also an open problem.
One may look at this problem in another way. We first use the classifier
generated by LU learning to classify the unlabeled set or a new test set and
then sample some classified documents to be checked manually in order to
estimate the classification accuracy. If classification is sufficiently accu-
rate, the results of the classifier will be used. Otherwise, improvements
need to be made. In this case, additional labeled data obtained during man-
ual inspection can be added to the original labeled set. You see we end up
doing more labeling! Hopefully, we do not have to do too much labeling.

5.2 Learning from Positive and Unlabeled Examples

In some applications, the problem is to identify a particular class P of doc-
uments from a set of mixed documents, which contains documents of class
P and also other kinds of documents. We call the class of documents that
one is interested in the positive class documents, or simply positive docu-

5.2 Learning from Positive and Unlabeled Examples 185

ments. We call the rest of the documents the negative class documents or
simply negative documents.

This problem can be seen as a classification problem with two classes,
positive and negative. However, there are no labeled negative documents
for training. The problem is stated more formally as follows,

Problem Statement: Given a set P of positive documents that we are in-
terested in, and a set U of unlabeled documents (the mixed set), which
contains both positive documents and negative documents, we want to
build a classifier using P and U that can identify positive documents in U
or in a separate test set — in other words, we want to accurately classify
positive and negative documents in U or in the test (or future) data set.

This problem is called PU learning. Note that the set U can be used in
both training and testing because U is unlabeled.

The key feature of this problem is that there is no labeled negative doc-
ument for learning. Traditional supervised learning algorithms are thus not
directly applicable because they all require both labeled positive and la-
beled negative documents to build a classifier. This is also the case for LU
learning, although the labeled set for each class may be very small.

5.2.1 Applications of PU Learning

The PU learning problem occurs frequently in Web and text retrieval ap-
plications, because most of the time the user is only interested in Web pag-
es or text documents of a particular topic. For example, one may be inter-
ested in only travel-related pages (positive pages). Then all the other types
of pages are negative pages. Let us use a concrete example to show the ac-
tual setting of a PU learning application.

Example 1: We want to build a repository of data mining research papers.
We can start with an initial set of papers from a data mining conference or
journal, which are positive examples. We then want to find data mining
papers from online journals and conference series in the fields of databases
and artificial intelligence. Journals and conferences in these fields all con-
tain some data mining papers. They also contain many other types of pa-
pers. The problem is how to extract data mining papers from such confer-
ences and journals, or in other words, how to classify the papers from these
sources into data mining papers and non-data mining papers without label-
ing any negative papers in any source. =

In practical applications, positive documents are usually available be-
cause if one has worked on a particular task for some time one should have
accumulated many related documents. Even if no positive document is

186 5 Partially Supervised Learning

available initially, collecting some from the Web or any other source is
relatively easy. One can then use this set to find the same class of docu-
ments from other sources without manually labeling any negative docu-
ments. PU learning is particularly useful in the following situations:

1. Learning with multiple unlabeled sets: In some applications, one
needs to find positive documents from a large number of document col-
lections. For example, we want to identify Web pages that sell printers.
We can easily obtain a set of positive pages from an online merchant,
e.g., amazon.com. Then we want to find printer pages from other mer-
chants. We can crawl each site one by one and extract printer pages
from each site using PU learning. We do not need to manually label
negative pages (non-printer pages) from any site.

Although it may not be hard to label some negative pages from a sin-
gle site, it is difficult to label for every site. Note that in general the
classifier built based on the negative pages from one site s; may not be
used to classify pages from another site s, because the negative pages in
s, can be very different from the negative pages in s;. The reason is that
although both sites sell printers, the other products that they sell can be
quite different. Thus using the classifier built for s; to classify pages in
s, may violate the fundamental assumption of machine learning: the dis-
tribution of training examples is identical to the distribution of test ex-
amples. As a consequence, we may obtain poor accuracy results.

2. Learning with unreliable negative examples: This situation often oc-
curs in experimental sciences. For example, in biology, biologists per-
form experiments to determine some biological functions. They are of-
ten quite confident about positive cases that they have discovered.
However, they may not be confident about negative cases because labo-
ratory results can be affected by all kinds of conditions. The negative
cases are thus unreliable. It is perhaps more appropriate to treat such
negative cases as unlabeled examples than negative examples.

PU learning is also useful for modeling and solving the following prob-
lems, which have been dealt with traditionally using other techniques:

Set expansion: Given a set S of seeds or examples of a particular class,
and a set D of candidate instances, we wish to determine which of the can-
didates in D belong to S. In other words, we “expand” the set S based on
the given seeds. This is clearly a classification problem which requires ar-
riving at a binary decision for each candidate in D (belonging to S or not).
However, in practice, the problem is often solved as a ranking problem,
i.e., ranking the instances in D based on their likelihoods of belonging to S.

It is shown in [28] that the set expansion problem can be modeled by PU
learning exactly, with .S and D as P and U respectively. The paper uses a

5.2 Learning from Positive and Unlabeled Examples 187

PU learning method called S-EM [30] to solve an entity set expansion
problem in text mining, i.e., to expand a set of given named entities (seeds)
based on a text corpus. The classic methods for solving this problem in
text mining and natural language processing were based on distributional
similarity [23, 36]. The approach works by comparing the similarity of the
surrounding word distributions of each candidate with those of the seeds,
and then ranking the candidates using their similarity scores. However, it is
shown in [28] that S-EM outperforms distributional similarity significantly
for the problem. In machine learning, there is also a technique called
Bayesian Sets [16] which was specifically designed for solving the set ex-
pansion problem. However, it does not perform as well as S-EM. The rea-
son given in the paper is as follows: Distributional similarity does not use
any information in the candidate set (or the unlabeled set U) to separate
positive and negative instances. It ranks the candidates solely through
similarity comparisons with the given seeds (or positive cases). Bayesian
Sets is better because it considers U. Its learning method produces a weight
vector for features based on their occurrence differences in the positive set
P and the unlabeled set U. This weight vector is then used in computing
the final scores for ranking. S-EM also considers these differences and in
addition, it uses automatically identified reliable negative instances to help
distinguish negative and positive cases, which both Bayesian Sets and dis-
tributional similarity do not do. This balanced approach by S-EM to sepa-
rate the positive and negative cases is the reason for its higher accuracy.

Covariate shift or sample selection bias: Most machine learning methods
assume that the training and the test data have identical distributions.
However, this assumption may not hold in practice, i.e., the training and
the test distributions can be different. The problem is called covariate
shift or sample selection bias [18, 19, 40, 44]. In general, this problem is
not solvable because the two distributions can be arbitrarily far apart from
each other. Various assumptions were made to solve some special cases.

A special case of the problem is studied in [27], where the positive train-
ing and test samples have identical distributions, but the negative training
and test samples may have different distributions. This scenario occurs in
many binary text classification problems. It is shown that PU learning pro-
vides a good solution, which does not need the negative training data.

5.2.2 Theoretical Foundation

Before discussing the theoretical foundation of PU learning, let us first de-
velop some intuition on why PU learning is possible and why unlabeled
data are helpful. Fig. 5.5 shows the idea.

188 5 Partially Supervised Learning

Nt ST o) o ©O
VT AN ‘ + 5 Ooo
\ ,’+ ++ N)/ > O +(+) o O o
‘o + i @] O
(VR S o + 04 o oP%o
A PN O+
AN T f] o oo
B Y ©+g | 0 o
(A) With only positive data (B) With both positive and unlabeled data

Fig. 5.5. Unlabeled data are helpful

In Fig. 5.5(A), we see only positive documents (data points) represented
with +’s. We assume that a linear classifier is sufficient for the classifica-
tion task. In this case, it is hard to know where to draw the line to separate
positive and negative examples because we do not know where the nega-
tive examples might be. There are infinite possibilities. However, if the un-
labeled data (represented by small circles) are added to the space (Fig.
5.5(B)), it is very clear where the separation line should be. Let us now
discuss a theoretical result of PU learning.

Let (x;, ¥;) be random variables drawn independently from probability
distribution D() where y € {—1, 1} is the conditional random variable that
we wish to estimate given X. X; represents a document, and y; is its class,
which can be 1 (positive) or —1 (negative). Let Dy),-; be the conditional
distribution from which the positive examples are independently drawn
and let D, be the marginal distribution from which unlabeled examples are
independently drawn. Our objective is to learn a classification function f
that can separate positive and negative documents. Since learning is to
produce a classifier that has the minimum probability of error, Pr(f(x)=y),
let us rewrite it into a more useful form,

Pr(fix)=y) = Pr(f(x)=1 and y=-1) + Pr(f{x)= -1 and y=1). ()
The first term can be rewritten as
Pr(f{x)=1 and y=-1)
= Pr(f{x)=1) — Pr(fix)=1 and y=1) ©)
= Pr(f{x)=1) — (Pr(y=1) — Pr(f(x)= -1 and y=1)).
Substituting (9) into Equation (8), we obtain
Pr(f{x)=y) (10)
= Pr(f{ix)=1) — Pr(y=1) + 2Pr(f(x)= —1|y=1)Pr(y=1).

Since Pr(y = 1) is constant (although it is unknown), we can minimize the
probability of error by minimizing

5.2 Learning from Positive and Unlabeled Examples 189

Pr(f(x)=1) + 2Pr(f(x)= 1|y =1)Pr(y=1). (11)

If we can hold Pr(f(x)= —1|y=1) small, then learning is approximately
the same as minimizing Pr(f{x)=1). Holding Pr({x)= —1|y=1) small while
minimizing Pr(A{x)=1) is approximately the same as minimizing Pr,(f(x)=1)
(on the unlabeled set U) while holding Prp(f{x)=1) > r (on the positive set
P), where r is the recall, i.e., Pr(f{x)=1|y=1). Note that (Prp(f{x)=1) > r) is
the same as (Prp(f(x)=-1) < 1-r).

Two theorems given by Liu et al. [30] state these formally and show that
in both the noiseless case (P has no error) and the noisy case (P contains
errors, i.e., some negative documents) reasonably good learning results can
be achieved if

e the problem is posed as a constrained optimization problem where the
algorithm tries to minimize the number of unlabeled examples labeled
positive subject to the constraint that the fraction of errors on the posi-
tive examples is no more than 1- 7.

Example 2: Fig. 5.6 illustrates the constrained optimization problem. As-
sume that positive and negative documents can be linearly separated. Posi-
tive documents are represented with +’s, and unlabeled documents with
small circles. Assume also that the positive set has no error and we want
the recall » on the positive set to be 100%. Each line in the figure is a pos-
sible linear classifier. Every document on the left of each line will be la-
beled (classified) by the line as positive, and every document on the right
will be labeled as negative. Lines 1 and 2 are clearly not solutions because
the constraint “the fraction of errors on the positive examples must be no
more than 1— » (= 0)” is violated, although the number of unlabeled exam-
ples labeled (classified) as positive is minimized by line 1. Lines 4, 5, and
6 are poor solutions too because the number of unlabeled examples labeled
as positive is not minimized by any of them. Line 3 is the optimal solution.
Under the constraint that no positive example is labeled negative, line 3
minimizes the number of unlabeled examples labeled as positive.

0 0 o)
+0§ 0 o oF o
o +]o o
+ 0
0 0

1 2 3 4 5 6

Fig. 5.6. An illustration of the constrained optimization problem

190 5 Partially Supervised Learning

Based on the constrained optimization idea, two kinds of approaches
have been proposed to build PU classifiers: the two-step approach and the
direct approach. In the actual learning algorithms, the user may not need
to specify a desired recall level » on the positive set because some of these
algorithms have their evaluation methods that can automatically determine
whether a good solution has been found.

5.2.3 Building Classifiers: Two-Step Approach

As its name suggests the two-step approach works in two steps:

1. Identifying a set of reliable negative documents (denoted by RN) from
the unlabeled set U.

2. Building a classifier using P, RN and U — RN. This step may apply an
existing learning algorithm once or iteratively depending on the quality
and the size of the RN set.

Step 1 Step 2

(RN)

%V
7

~
DD
~
DD
~
Y
~
DANNNN

positive negative

Fig. 5.7. An illustration of the two-step approach

This two-step approach is illustrated in Fig. 5.7. Here, we assume that
step 2 uses an iterative algorithm. In step 1, a set of reliable negative doc-
uments (RN) is found from the unlabeled set U, which divides U into two
subsets, RN and Q (= U - RN). Q is called the likely positive set. In step 2,
the algorithm iteratively improves the results by adding more documents to
RN until a convergence criterion is met. We can see that the process is try-
ing to minimize the number of unlabeled examples labeled positive since

5.2 Learning from Positive and Unlabeled Examples 191

Algorithm Spy(P, U)
RN « J;
S <« Sample(P, s%);
U<« UUS;
Ps<« P-S;
Assign each document in Ps the class label 1;
Assign each document in Us the class label —1;
NB(Us, Ps); // This produces a NB classifier.
Classify each document in Us using the NB classifier;
9. Determine a probability threshold ¢ using S;
10. for each document d € Us do
11. if its probability Pr(1|d) < ¢ then

PN R WD =

12. RN < RN U {d};
13. endif
14. endfor

Fig. 5.8. The spy technique for step 1.

0O becomes smaller and smaller while RN becomes larger and larger. In
other words, it tries to iteratively increase the number of unlabeled exam-
ples that are labeled negative while maintaining the positive examples in P
correctly classified. We present several techniques for each step below.

Techniques for Step 1

We introduce four methods to extract reliable negative documents from the
unlabeled set U.

Spy Technique: This technique works by sending some “spy” documents
from the positive set P to the unlabeled set U. Fig. 5.8 gives the algorithm
of the technique, which is used in the S-EM system [30]. The algorithm
has three sub-steps:

1. It randomly samples a set S of positive documents from P and put them
in U (lines 2 and 3). The default sampling ratio of s% is 15% in S-EM.
The documents in S act as “spy” documents from the positive set to the
unlabeled set U. Since the spies behave similarly to the unknown posi-
tive documents in U, they allow the algorithm to infer the behavior of
the unknown positive documents in U.

2. It runs the naive Bayesian (NB) algorithm using the set P — S as positive
and the set U U S as negative (lines 3—7). The NB classifier is then ap-
plied to classify each document 4 in U U S (or Us), i.e., to assign it a
probabilistic class label Pr(1|d), where 1 represents the positive class.

3. It uses the probabilistic labels of the spies to decide which documents
are most likely to be negative. A threshold ¢ is employed to make the

192 5 Partially Supervised Learning

decision. Those documents in U with lower probabilities (Pr(1|d)) than ¢
are the most likely negative documents, denoted by RN (lines 10—14).

We now discuss how to determine ¢ using spies (line 9). Let the set of
spies be S = {sy, 55, ..., 5;}, and the probabilistic labels assigned to each
s; be Pr(1]s;). Intuitively, we can use the minimum probability in S as the
threshold value ¢, i.e., t = min{Pr(l|s,), Pr(1]sy), ..., Pr(1l|sy)}, which
means that we want to retrieve all spy documents. In a noiseless case,
using the minimum probability is acceptable. However, most real-life
document collections have outliers and noise. Using the minimum prob-
ability is unreliable. The reason is that the posterior probability Pr(1]s;)
of an outlier document s; in S could be 0 or smaller than most (or even
all) actual negative documents. However, we do not know the noise lev-
el of the data. To be safe, the S-EM system uses a large noise level / =
15% as the default. The final classification result is not very sensitive to
[as long it is not too small. To determine ¢, we first sort the documents
in S according to their Pr(1]s;) values. We then use the selected noise
level / to decide ¢: we select ¢ such that / percent of documents in S have
probability less than ¢. Hence, ¢ is not a fixed value. The actual parame-
ter is in fact /.

Note that the reliable negative set RN can also be found through multiple
iterations. That is, we run the spy algorithm multiple times. Each time a
new random set of spies S is selected from P and a different set of reliable
negative documents is obtained, denoted by RN, The final set of reliable
negative documents is the intersection of all RN, This may be a better
technique because we do not need to worry that one set of random spies S
may not be chosen well, especially when the set P is not large.

Cosine-Rocchio (CR) Technique: This method (Fig. 5.9) is used in [27].
It consists of two sub-steps:

Sub-step 1 (lines 1-9, Fig. 5.9): This sub-step extracts a set of potential
negatives PN from U by computing similarities of the unlabeled docu-
ments in U with the positive documents in P. Those documents in U that
are very dissimilar to the documents in P are likely to be negative (lines
7-9). To make the decisions, a similarity measure and a similarity thre-
shold are needed. The similarity measure is the well-known cosine simi-
larity (see Sect. 6.2.2). To compute the similarity, each document in P
and U is first converted to a vector d using the TF-IDF scheme (see Sect.
6.2.2). Note that we use a lower case bold letter to represent a vector
here. The positive documents in P are used to compute the threshold
value. First, a positive representative vector (vp) is constructed by sum-
ming up the documents in P (line 3). The similarity of each document d
in P with vp is calculated using the cosine measure, cos(vp, d), in line 4.

5.2 Learning from Positive and Unlabeled Examples 193

Algorithm CR(P, U)
1. PN=U;RN=,
2. Represent each document d € P and U as a vector using the TF-IDF scheme;
1 d .
Vp=—"— —_— >
| Pl d]|
Compute cos(v,, d) for each d € P;
Sort all the documents de P according to cos(v,, d) in a decreasing order;
@ = cos(V,, d) where d s ranked in the position of (1- /)*|P|;
for eachd € U do
if cos(v,, d) < w then
PN=PNU {d}
10, ¢, =% d _p zd;
| Plazplld]l | PN iyl d]]
1. ¢, =—2— 4 By d.
| PN |icrv 1| [Plizp|ld]]
12. foreachd € U do
13. if cos(cpy, d) > cos(cp, d) then

14. RN =RNU {d}

A e A

Fig. 5.9. The CR technique for step 1

Line 5 sorts the documents in P according to their cos(vp, d) values,
which helps to determine the similarity threshold. The threshold is used
to filter out as many as possible hidden positive documents from U so
that a very pure negative set PN can be obtained. Since the hidden posi-
tives in U should have the same behaviors as the positives in P in terms
of their similarities to vp, ideally we should set the minimum similarity
value of all documents d € P and vp as the threshold value w. However,
as in the spy technique, we need to consider possible noise in P. It would
therefore be prudent to ignore a small percentage / of documents in P
that are most dissimilar to vp and assume them to be noise or outliers.
The default noise level of / = 5% is used in [27]. In line 6, / is used to
decide the similarity threshold w. Then, for each document d in U, if its
cosine similarity cos(vp, d) is less then w, it is regarded as a potential
negative and stored in PN (lines 8-9). PN, however, is still not sufficient
for accurate learning. Using PN, sub-step 2 produces the final RN.
Sub-step 2 (line 10—-14, Fig. 5.9): To extract the final reliable negatives, the
algorithm employs the Rocchio classification method to build a classifier
fusing P and PN. Those documents in U that are classified as negatives
by fare regarded as the final reliable negatives and stored in set RN. Fol-
lowing the Rocchio formula in Sect. 6.3, the classifier f'actually consists
of a positive and a negative prototype vectors ¢p and cpy (lines 11 and

194 5 Partially Supervised Learning

12). a and f are parameters for adjusting the relative impact of the ex-
amples in P and PN. As suggested in [4], @ = 16 and f = 4 are used in
[27]. The classification is done in lines 12—14. Details about Rocchio
classification can be found in Sect. 6.3.

1IDNF Technique: The 1DNF method (Fig. 5.10) is used in [43]. It first
builds a positive feature set PF containing words that occur in the positive
set P more frequently than in the unlabeled set U (lines 1-7). Line 1 col-
lects all the words in U U P to obtain a vocabulary V. Lines 8—13 try to
identify reliable negative documents from U. A document in U that does
not contain any feature in PF is regarded as a reliable negative document.

NB Technique: This method is employed in [29]. It simply uses a naive
Bayesian classifier to identify a set of reliable negative documents RN
from the unlabeled set U. The algorithm is given in Fig. 5.11.

This method may also be run multiple times. Each time we randomly
remove a few documents from P to obtain a different set of reliable nega-
tive documents, denoted by RN;. The final set of reliable negative docu-
ments RN is the intersection of all RN..

Rocchio technique: This method is employed in [26]. The algorithm is the
same as that in Fig. 5.11 except that NB is replaced with Rocchio. The
Rocchio classification method is described in Sect. 6.3.

Techniques for Step 2

There are two approaches for this step.

1. Run a learning algorithm (e.g., NB or SVM) using P and RN. The set of
documents in U-RN is discarded. This method works well if the reliable
negative set RN is sufficiently large and contains mostly negative docu-
ments. The spy technique, NB and Rocchio in step 1 are often able to
produce a sufficiently large set of negative documents. The 1DNF tech-
nique may only identify a very small set of negative documents. Then
running a learning algorithm will not be able to build a good classifier.

2. Run a learning algorithm iteratively till it converges or some stopping
criterion is met. This method is used when the set RN is small.

We will not discuss the first approach as it is straightforward. SVM usually
does very well. Below, we introduce two techniques for the second ap-
proach, which are based on EM and SVM respectively.

EM Algorithm with Naive Bayesian Classification: The EM algorithm
can be used naturally here [30]. As in LU learning, the Expectation step
basically fills in the missing data. In our case, it produces and revises the

5.2 Learning from Positive and Unlabeled Examples 195

Algorithm 1DNF(P, U)

1. Assume the word feature set be V"= {wy,..., w,}, w; eU U P;

2. Let positive feature set PF « &,

3. foreachw; € Vdo // freq(w;, P): number of times
4. if (freq(w;, P) / |P| > freq(w;, U) / |U|) then // that w; appears in P
5. PF « PF U {w;};

6. endif

7. endfor;

8. RN« U,

9. for each documentd € U do

10. if 3w, freq(w;, d) > 0 and w; € PF then

11. RN < RN — {d}

12. endif

13. endfor

Fig. 5.10. The 1DNF technique for step 1

Assign each document in P the class label 1;

Assign each document in U the class label —1;

Build a NB classifier using P and U,

Use the classifier to classify U. Those documents in U that are classified as
negative form the reliable negative set RN.

Fig. 5.11. The NB method for Step 1

=

probabilistic labels of the documents in U-RN (see below). The parameters
are estimated in the Maximization step after the missing data are filled.
This leads to the next iteration of the algorithm. EM converges when its
parameters stabilize. Using NB in each iteration, EM employs the same
equations as those used in building a NB classifier (Equation (33) for the
Expectation step, and Equations (31) and (32) for the Maximization step).
The class probability given to each document in U-RN takes the value in
[0, 1] instead of {0, 1}. The algorithm is given in Fig. 5.12.

The EM algorithm here makes the same mixture model assumptions as
in LU learning. Thus, it has the same problem of model mismatch. See the
discussions in Sect. 5.1.1.

Iterative SVM: In this method, SVM is run iteratively using P, RN and Q
(= U-RN). The algorithm, called I-SVM, is given in Fig. 5.13. The basic
idea is as follows: In each iteration, a new SVM classifier f'is constructed
from P and RN (line 4). Here RN is regarded as the set of negative exam-
ples (line 2). The classifier f'is then applied to classify the documents in O
(line 5). The set W of documents in Q that are classified as negative (line
6) is removed from Q (line 8) and added to RN (line 9). The iteration stops

196 5 Partially Supervised Learning

Algorithm EM(P, U, RN)
1. Each document in P is assigned the class label 1;
2. Each document in RN is assigned the class label —1;
3. Learn an initial NB classifier / from P and RN (using Equations (31) and
(32) in Chap. 3);

4 repeat
// E-Step
5 for each example d; in U-RN do
6 Using the current classifier f'to compute Pr(c;|d;) using Equation (33)
in Chap. 3.
7 end
/I M-Step
8 learn a new NB classifier /' from P, RN and U-RN by computing Pr(c;)

and Pr(w,|c;) (using Equations (31) and (32) in Chap. 3).
9 until the classifier parameters stabilize
10. Return the classifier f from the last iteration.

Fig. 5.12. EM algorithm with the NB classifier

Algorithm I-SVM(P, RN, Q)

1. Every document in P is assigned the class label 1;

2. Every document in RN is assigned the class label —1;

3. loop

4. Use P and RN to train a SVM classifier f;

5. Classify Q using f;

6. Let W be the set of documents in Q that is classified as negative;
7 if W = then exit-loop // convergence

8 else O« O0-W,

9. RN <« RNuU W,

10. endif’;

Fig. 5.13. Running SVM iteratively

when no document in Q is classified as negative, i.e., W = & (line 7). The
final classifier is the result. This method is used in [26] [42, 43].

Finally, we note again that if the first step is able to identify a large
number of reliable negative documents from U, running SVM once in step
2 is sufficient. Iterative approaches may not be necessary, which are also
less efficient. The Spy, NB and Rocchio methods for step 1 are often able
to identify a large number of reliable negative documents. See [29] for an
evaluation of various methods based on two benchmark text collections.

Classifier Selection

The iterative methods discussed above produce a new classifier at each it-
eration. However, the classifier at the convergence may not be the best

5.2 Learning from Positive and Unlabeled Examples 197

classifier. In general, each iteration of the algorithm gives a classifier that
may potentially be a better classifier than the classifier produced at con-
vergence. This is true for both EM and SVM.

The main problem with EM is that classes and topics may not have one-
to-one correspondence. This is the same problem as in LU learning. SVM
may also produce poor classifiers at the convergence because SVM is sen-
sitive to noise. If the RN set is not chosen well or in an iteration some posi-
tive documents are classified as negative, then the subsequent iterations
may produce very poor results. In such cases, it is often better to stop at an
earlier iteration. One simple method is to apply the theory directly. That is,
each classifier is applied to classify a positive validation set, P,. If many
documents from P, (e.g., > 5%) are classified as negative, the algorithm
should stop (that is a recall of 95%). If the set P is small, the method can
also be applied to P directly. A principled method is given in the next sub-
section, i.e., Equation (14).

5.2.4 Building Classifiers: Biased-SVM

We now present a direct approach, called biased-SVM. This approach modi-
fies the SVM formulation slightly so that it is suitable for PU learning. Let the
set of training examples be {(X, y1), (X2, 1), ..., (Xus V) }, Where X; is an input
vector and y; is its class label, y; € {1, —1}. Assume that the first k—1 examples
are positive examples P (labeled 1), while the rest are unlabeled examples U,
which are treated as negative and labeled —1. Thus, the negative set has errors,
i.e., containing positive documents. We consider two cases.

1. Noiseless case: There is no error in the positive examples but only in
unlabeled examples. The theoretical result in Sect. 5.2.2 states that if the
sample size is large enough, minimizing the number of unlabeled exam-
ples classified as positive while constraining the positive examples to be
correctly classified will give a good classifier. Following the theory, in
this noiseless case, we have this following SVM formulation

. (W W) o
Minimize : +C :
> Zf

Subjectto: (w-x;,)+b=1, i=12,.., k-1
-1w-x;)+b)21-¢,, i=k,k+1,..,n
& 20, i=k,k+1,..,n

In this formulation, we do not allow any error in the positive set P,
which is the first constraint, but allow errors for the negative set (the
original unlabeled set), which is the second constraint. Clearly, the for-

(12)

198 5 Partially Supervised Learning

mulation follows the theory exactly due to the second term in the objec-
tive function. The subscript in the second term starts from k&, which is
the index of the first unlabeled example. To distinguish this formulation
from the classic SVM, we call it the biased-SVM [29].

2. Noisy case: In practice, the positive set may also contain some errors.
Thus, if we allow noise (or error) in positive examples, we have the fol-
lowing soft margin version of the biased-SVM which uses two parame-
ters C, and C_ to weight positive errors and negative errors differently.

. (W-w) — C
Minimize: ———+C,) &+C_) &
D IEES) (13)
Subjectto: y,(w-x,)+b)=21-&,, i=12,.,n

20, i=1,2,..,n

We can vary C, and C_to achieve our objective. Intuitively, we give a
bigger value for C, and a smaller value for C_ because the unlabeled set,
which is assumed to be negative, contains positive data.

We now focus on Equation (13) as it is more realistic in practice. We need
to choose values for C, and C_. The common practice is to try a range of
values for both C. and C_ and use a separate validation set to verify the
performance of the resulting classifier. The C. and C_ values that give the
best classification results on the validation set are selected as the final pa-
rameter values for them. Cross-validation is another possible technique for
the purpose. Since the need to learn from positive and unlabeled examples
often arises in retrieval situations (retrieving positive documents from the
unlabeled set), we employ the commonly used F-score as the performance
measure, I’ = 2pr/(p+r), where p is the precision and r is the recall.

Unfortunately it is not clear how to estimate the F-score without labeled
negative examples. In [24], Lee and Liu proposed an alternative perform-
ance measure to compare different classifiers. It behaves similarly to the F-
score but can be estimated directly from the validation set without the need
of labeled negative examples. The measure is

2
r

Pr(f(x)=1)’

where fis the classifier and Pr(f{x)=1) is the probability that a document is
classified as positive. It is not easy to see why Equation (14) behaves simi-
larly to the F-score, but we can show that */Pr(f(x)=1) = pr/Pr(y=1), where
Pr(y=1) is the probability of positive documents. pr/Pr(y=1) behaves simi-
larly to the F-score in the sense that it is large when both p and r are large
and is small when either p or r is small.

(14)

5.2 Learning from Positive and Unlabeled Examples 199

We first write recall () and precision (p) in terms of probability:

r=Pr(f(x)=1] y=1), (15)
p =Pr(y=1| f{x)=1). (16)
According to probability theory, we have
Pr(f(ix)=1p=1)Pr()=1) = Pr(y=1| fix)=1)Pr(f(x)=1), 17)
which can be written as
. - (18)

Pr(f(x)=1) Pr(y=1)
Multiplying both sides by 7, we obtain the result:

r? __ pr ' (19)
Pr(f(x)=1) Pr(y=1)

The quantity #*/Pr(f(x)=1) can be estimated based on the validation set,
which contains both positive and unlabeled documents. » can be estimated
using the positive examples in the validation set and Pr(f{x) = 1) can be es-
timated from the whole validation set.

This criterion in fact reflects the theory in Sect. 5.2.2 very well. The
quantity is large when r is large and Pr(f{x) = 1) is small, which means that
the number of unlabeled examples labeled as positive should be small. In
[29], it is shown that biased-SVM works better than two-step techniques.

5.2.5 Building Classifiers: Probability Estimation

We now present another direct approach, which is proposed in [14] and is
based on a probabilistic formulation. We use similar notations as in Sect.
5.2.4. Let x be an example and y € {1, —1} be a binary class label. Let s =
1 if the example x is labeled, and let s = 0 if x is unlabeled. Only positive
examples are labeled, so y = 1 is certain when s = 1 (i.e., every labeled ex-
ample must be positive), but when s = 0, then either y = 1 or y = -1 may be
true (i.e., an unlabelled example can be positive or negative). The fact that
only positive examples are labeled can be stated formally as follows,

Pr(s =1|x,y=-1)=0. (20)

In words, the probability that x appears in the labeled set is zero if y = —1.
Our goal is to learn a classification function f{x) such that f{(x) = Pr(y =

1|x) as closely as possible. To achieve this goal, an assumption called se-

lected completely at random is made which states that the labeled posi-

200 5 Partially Supervised Learning

tive examples are chosen randomly from all positive examples. What this
means is that if y = 1, the probability that a positive example is labeled is
the same constant regardless of x. Stated formally, the assumption is that

Pr(s=1]x,y=1)=Pr(s = [y =). Q1)

Here, ¢ = Pr(s = 1|y = 1) is the constant probability that a positive exam-
ple is labeled.

For learning, a training sample, which consists of two subsets, the “la-
beled” (s = 1) set P and the “unlabeled” (s = 0) set U, is randomly drawn
from a distribution Pr(x, y, s) that satisfies Equations (20) and (21). If these
two sets are given to a standard learning algorithm, the algorithm will yield
a function g(x) such that g(x) = Pr(s = 1|x) approximately. The main result
of [14] is the following lemma which shows how to obtain f{x) from g(x).

Lemma 1: Suppose the “selected completely at random” assumption
holds. Then,

Fo=E%, @)
where ¢ = Pr(s = 1|y = 1).

Proof: We consider g(x), which is Pr(s = 1|x). Due to the assumption Pr(s
=1ly=1,x)=Pr(s =1y = 1), we have

g(x) = Pr(s = 1|x)
Pry=1As=1]x)
Pry=1x)Pr(s =1y =1, x)
Pr(y=1x)Pr(s =1y =1)
fX)Pr(s=1y=1)

The result follows by dividing each side by Pr(s = 1|y = 1), whichisc. ™

The value of the constant ¢ = Pr(s = 1|y = 1) can be estimated using a
trained classifier g and a validation set of examples. Let } be such a vali-
dation set that is drawn from the overall distribution Pr(x, y, s) in the same
manner as the training set. Let V5 be the subset of examples in V' that is la-
beled (and hence positive). The estimator of ¢ (= Pr(s = 1|y = 1)) is the av-
erage value of g(x) for all x in P. Formally, the estimator is

N
¢= v, |XEZV:Pg(X)- (23)

This is a reasonable estimator of ¢ because theoretically g(x) = ¢ for all
X e VP,

5.2 Learning from Positive and Unlabeled Examples 201

g(x) =Pr(s = 1]x)
=Pr(s = 1|x, y = 1)Pr(y = 1]x) + Pr(s = 1|x, y = -1)Pr(y = -1|x)
=Pr(s=1]x,y=1)x1+0x0sincex € Vp
=Pr(s=1p=1).

With this estimator, Equation (22) can be used to build a PU classifier f.
In [14], the classifier g was built using SVM, and the scaling method in
[38] was used to get probability estimates from the SVM output.

It is also worth noting that an interesting consequence of Lemma 1 is
that f'is an increasing function of g. This means that if the classifier f'is on-
ly used to rank examples x according to the chance that they belong to
class y = 1, then the classifier g can be used directly instead of 1.

5.2.6 Discussion

Does PU Learning Always Work? Theoretical results show that it should

if the positive set and the unlabeled set are sufficiently large [30]. This has

been confirmed by many experimental studies. Interested readers can find
the detailed results in [29, 30], which we summarize below:

1. PU learning can achieve about the same classification results as fully
supervised learning when the positive set and the unlabeled set are suf-
ficiently large. This implies that labeled negative examples do not pro-
vide much information for learning. When the positive set is very small,
PU learning is poorer than fully supervised learning.

2. For the two-step approaches, using SVM for the second step performs
better than EM. SVM needs to be run only once if step 1 can extract a
large number of reliable negative documents. Both Spy and Rocchio are
able to do that. Thus, the iterative method in step 2 is not necessary.

The generative model of naive Bayes with EM in the second step can
perform very well if the mixture model assumption holds [30]. How-
ever, if the mixture model assumption does not hold, the classification
results can be very poor [29]. Note that SVM is called a discriminative
model (or classifier) because it does not make any model assumptions.
It simply finds a surface to separate positive and negative examples.

3. Biased-SVM performs slightly better than the 2-step approaches. How-
ever, it is slow in training because SVM needs to be run a large number
of times in order to select the best values for C. and C_.

Evaluation: Unlike LU learning, here we do not even have labeled nega-
tive examples, which makes the evaluation difficult. Although Equation
(14) and other heuristics allow a system to choose a “better” classifier
among a set of classifiers, it is unable to give the actual accuracy, precision

202 5 Partially Supervised Learning

or recall of each classifier. Evaluation is an open problem. The results re-
ported in the literature assume that a set of labeled positive and negative
test examples is available, which, of source, is unrealistic because the PU
learning model states that no labeled negative example is available.

In some cases, the evaluation can be done with some confidence. For
example, if the user needs to extract positive documents from many unla-
beled sets (document sources) as in the example of identifying printer pag-
es from multiple Web sites, a PU learning algorithm can be applied to one
site and then the user manually checks the classification result to see
whether it is satisfactory. If the result is satisfactory, the algorithm can be
applied to the rest of the sites without further manual evaluation.

Appendix: Derivation of EM for Naive Bayesian Classification

EM is a method for performing a classical statistical estimation technique
called maximum likelihood estimation. In maximum likelihood estima-
tion, the aim is to find the model parameter © that maximizes the likeli-
hood function Pr(D,; ®) for observed data D,. In other words, maximum
likelihood estimation aims to select the model that is most likely to have
generated the observed data. In many cases, such as in the naive Bayesian
classification model, the maximum likelihood estimator is easy to find and
has a closed form solution when all components of the data D are ob-
served. However, the problem becomes difficult when the data D actually
consists of an observed component D, and an unobserved component D,
In such cases, iterative methods that converge only to a local maximum,
such as the EM method, are usually used.

Maximizing the log likelihood function logPr(D,; ®) produces the same
solution as maximizing the likelihood function and is easier to handle mathe-
matically. In the presence of unobserved data D,, the log likelihood function
becomes log Pr(D,;0) = log ZD‘, Pr(D,,D,;®). Instead of maximizing the
log likelihood log ZDU Pr(D,,D,;

u?’

©®) directly, at each iteration 7, the EM al-
gorithm finds the value ® that maximizes the expected complete log likelihood
2., E(D,1D,;0")logPr(D,,D,;0), 24)

where ®"" is the parameter that was produced in iteration 7-1. In many
cases, such as in the naive Bayesian model, the expected log likelihood is
easy to maximize and has a closed form solution. It can be shown (see
[11]) that the log likelihood increases monotonically with each iteration of
the EM algorithm.

Appendix: Derivation of EM for Naive Bayesian Classification 203

We now derive the EM update for the naive Bayesian model. We first
consider the complete log likelihood, that is, the log likelihood when all
variables are observed. The conditional probability of a document given its
class is (see Sect. 3.7.2 in Chap. 3)

e Pr(w | ¢;©)
Pr(d] 0:0) = Pr(. d I [T EEL
=1 tis

Each document and its class label are assumed to have been sampled
independently. Let c(; be the class label of document i. The likelihood
function can hence be written as

(25)

|D| |D| |V

[TPriaieo:0)Prics@) <[Tprapia I |

i=1

M Pr(co;®). (26)

Taking logs, we have the complete log likelihood function

|D| V] |D|

D > N, logPr(w:|ci;®) + > _log Pr(c;©) + ¢, 27

i=1 t=1 i=1

where ¢ is a constant containing the terms unaffected by ©. To facilitate
the process of taking expectation when some of the class labels are not ob-
served, we introduce indicator variables, 4, that take the value 1 when
document i takes the label £ and the value 0 otherwise. The complete log
likelihood can be written in the following equivalent form

|D| V] IC| |D| |C]
D D> N, logPr(w.| ¢,;0)+ Y > h, logPr(c,;0) + 4. (28)
i=1 t=1 k=l i=1 k=1

When some of the labels are not observed, we take the conditional expec-
tation for the unobserved variables /4; with respect to O™ to get the ex-
pected complete log likelihood

D] V] €]

2.2 D> Pr(¢, [d;;07)N, logPr(w: | ¢,;0)
o1 1 k-1 (29)

D] €]

+. 2 Pr(c, | d;;0"")logPr(c,;0) + ¢,

i=l k=1

where, for the observed labels c(;, we use the convention that Pr(cld;0")
takes the value one for ¢, = ¢(; and zero otherwise. We maximize the ex-
pected complete log likelihood subject to the coefficients summing to one
using the Lagrange multiplier method. The Lagrangian is

204 5 Partially Supervised Learning

Dl V| IC]

2D Prlc, |d; 0")N, logPr(w | c,;0)

i=l t=1 k=1
e (30)
+>°> Pr(c, |d,;0" ") logPr(c,; ©)

i=l k=1

+ /’t[l—iPr(ck;(B)j + iiﬂﬂ((l—iPr(Wt | ck;®)j +¢.

t=1 k=1
Differentiating the Lagrangian with respect to 4, we get Z‘f_‘ll’r(ck;@) =1.

Differentiating with respect to Pr(cy; ®), we get

|D|
> Pr(c, |d,;0"") = APr(c,;0) fork=1,.,|C]|. €2))

i=l1

Summing the left and right-hand side over £ and using Z'}i‘lpr(ck; 0)=1,

we get 4 zf‘:ipr(ck |d;0"")=| D| Substituting back, we obtain the up-
i=1 k=1

date equation

D] . -1
Pr(Cj' @T) — Zi=l Pr(Cf | di,@) ‘ (32)
’ | D

Working similarly, we can get the update equation for Pr(w,c;; ©"),

D] -
Zizl N, Pr(c, | d;0"") (33)
TSN e, 14,67

s=1

Pr(w, |c,;;0") =

To handle the 0 count problem (see Sect. 3.7.2 in Chap. 3), we can use
Lidstone smoothing (Equation (31) in Chap. 3).

Bibliographic Notes

Learning with labeled and unlabeled examples (LU learning) using naive
Bayes and EM was proposed by Nigam et al. [34]. They also noted the
problem of having mixtures of subclasses in the classes and proposed to
identify and use such subclasses as a possible solution. A hierarchical clus-
tering technique was also proposed by Cong et al. [8] for handling the mix-
ture of subclasses problem. Castelli and Cover [5] presented a theoretical
study of LU learning using mixture models.

Bibliographic Notes 205

Co-training was introduced by Blum and Mitchell [3]. Follow-on works
include those by Collins and Singer [7], Goldman and Zhou [17], etc. Gen-
eralization error bounds within the Probably Approximately Correct (PAC)
framework was given in [10] by Dasgupta et al. Nigam and Ghani [33] ex-
amined the importance of feature division in co-training and compared it to
the EM algorithm and self-training.

Transduction was proposed by Vapnik [41] as learning when the test in-
stances are known. Joachims described a heuristic algorithm and built a
system for performing transduction using SVM [20]. The transductive
SVM given in [20] can also be used for induction, i.e. classifying future
unseen instances. In contrast, most graph-based methods are more suited
for transduction. The graph-based mincut algorithm was introduced by
Blum and Chalwa [2]. The graph-based Gaussian field method was pro-
posed by Zhu et al. [46] while the spectral graph transducer was proposed
by Joachims [21]. The edited book by Chapelle et al. [6] gives a compre-
hensive coverage of various LU learning algorithms.

On learning from positive and unlabeled examples (or PU learning),
Denis [13] reported a theoretical study of PAC learning in this setting un-
der the statistical query model [22], which assumes that the proportion of
positive instances in the unlabeled set is known. Letouzey et al. [25] pre-
sented a learning algorithm based on a modified decision tree method in
this model. Liu et al. [30] gives another theoretical study. It was concluded
that learning can be achieved if the problem is posed as a constrained op-
timization problem (see Sect. 5.2.2). Most existing algorithms for solving
the problem are based on this constrained optimization model.

Over the years, several practical algorithms were proposed. The first
class of algorithms deals with the problem in two steps. These algorithms
include S-EM [30], PEBL [42, 43], and Roc-SVM [26], which have been
studied in this chapter. The second class of algorithm follows the theoreti-
cal result directly. Lee and Liu [24] described a weighted logistic regres-
sion technique. Liu et al. [29] described a biased-SVM technique. A com-
prehensive comparison of various techniques was also reported in [29]. It
was shown that biased-SVM performed better than other techniques. Re-
cently, Elkan and Noto proposed a new probabilistic model [14], which
has also been applied to a real-life bioinformatics problem [31] with prom-
ising results. Some other works on PU learning include those of Barbara et
al. [1], Deng et al. [12], Fung, et al. [15], Zhang and Lee [45], etc.

A closely related work to PU learning is one-class SVM, which uses on-
ly positive examples to build a classifier. This method was proposed by
Scholkopf et al. [39]. Manevitz and Yousef [32] studied text classification
using one-class SVM. Li and Liu [26] showed that its accuracy results
were poorer than PU learning for text classification.

206

5 Partially Supervised Learning

Bibliography

1.

10.

11.

12.

13.

14.

15.

16.

Barbara, D., C. Domeniconi, and N. Kang. Classifying documents without
labels. In Proceedings of SIAM International Conference on Data Mining
(SDM-2004), 2004.

Blum, A. and S. Chawla. Learning from Labeled and Unlabeled Data Using
Graph Mincuts. In Proceedings of International Conference on Machine
Learning (ICML-2001), 2001.

Blum, A. and T. Mitchell. Combining labeled and unlabeled data with co-
training. In Proceedings of Conference on Computational Learning Theory,
1998.

Buckley, C., G. Salton, and J. Allan. The effect of adding relevance information
in a relevance feedback environment. In Proceedings of ACM SIGIR Conf. on
Research and Development in Information Retrieval (SIGIR-1994), 1994.
Castelli, V. and T. Cover. Classification rules in the unknown mixture parameter
case: relative value of labeled and unlabeled samples. In Proceedings of IEEE
International Symp. Information Theory, 1994.

Chapelle, O., B. Scholkopf, and A. Zien. Semi-supervised learning. Vol. 2.
2006: MIT Press.

Collins, M. and Y. Singer. Unsupervised models for named entity
classification. In Proceedings of Conference on Empirical Methods in Natural
Language Processing (EMNLP-1999), 1999.

Cong, G., W. Lee, H. Wu, and B. Liu. Semi-supervised text classification
using partitioned EM. In Proceedings of Conference of Database Systems for
Advanced Applications (DASFAA 2004), 2004.

Cormen, T., C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.
2001: MIT Press.

Dasgupta, S., M. Littman, and D. McAllester. PAC generalization bounds for
co-training. In Proceedings of Advances in Neural Information Processing
Systems (NIPS-2001), 2001.

Dempster, A., N. Laird, and D. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 1977, 39(1): p. 1-38.

Deng, L., X. Chai, Q. Tan, W. Ng, and D. Lee. Spying out real user
preferences for metasearch engine personalization. In Proceedings of
Workshop on WebKDD, 2004.

Denis, F. PAC learning from positive statistical queries. In Proceedings of
Intl. Conf. on Algorithmic Learning Theory (ALT-1998), 1998.

Elkan, C. and K. Noto. Learning classifiers from only positive and unlabeled
data. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2008), 2008.

Fung, G., J. Yu, H. Lu, and P. Yu. Text classification without labeled
negative documents. In Proceedings of IEEE International Conference on
Data Engingeering (ICDE-2005), 2005.

Ghahramani, Z. and K. Heller. Bayesian sets. Advances in Neural Information
Processing Systems, 2006, 18: p. 435.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Bibliography 207

Goldman, S. and Y. Zhou. Enhanced Supervised Learning with Unlabeled
Data. In Proceedings of International Conference on Machine Learning
(ICML-2000), 2000.

Heckman, J. Sample selection bias as a specification error. Econometrica:
Journal of the econometric society, 1979: p. 153-161.

Huang, J., A. Smola, A. Gretton, K. Borgwardt, and B. Scholkopf. Correcting
sample selection bias by unlabeled data. Advances in Neural Information
Processing Systems, 2007, 19: p. 601.

Joachims, T. Transductive inference for text classification using support
vector machines. In Proceedings of International Conference on Machine
Learning (ICML-1999), 1999.

Joachims, T. Transductive learning via spectral graph partitioning. In
Proceedings of International Conference on Machine Learning (ICML-2003),
2003.

Kearns, M. Efficient noise-tolerant learning from statistical queries. Journal
of the ACM (JACM), 1998, 45(6): p. 983-1006.

Lee, L. Measures of distributional similarity. In Proceedings of Annual
Meeting of the Association for Computational Linguistics (ACL-1999), 1999.
Lee, W. and B. Liu. Learning with positive and unlabeled examples using
weighted logistic regression. In Proceedings of International Conference on
Machine Learning (ICML-2003), 2003.

Letouzey, F., F. Denis, and R. Gilleron. Learning from positive and unlabeled
examples. In Proceedings of Intl. Conf. on Algorithmic Learning Theory
(ALT-200), 2000.

Li, X. and B. Liu. Learning to classify texts using positive and unlabeled data.
In Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI-2003), 2003.

Li, X., B. Liu, and S. Ng. Negative Training Data can be Harmful to Text
Classification. In Proceedings of Conference on Empirical Methods in
Natural Language Processing (EMNLP-2010), 2010.

Li, X., L. Zhang, B. Liu, and S. Ng. Distributional similarity vs. PU learning
for entity set expansion. In Proceedings of Annual Meeting of the Association
for Computational Linguistics (ACL-2010), 2010.

Liu, B,, Y. Dai, X. Li, W. Lee, and P. Yu. Building text classifiers using
positive and unlabeled examples. In Proceedings of IEEE International
Conference on Data Mining (ICDM-2003),2003.

Liu, B., W. Lee, P. Yu, and X. Li. Partially supervised classification of text
documents. In Proceedings of International Conference on Machine Learning
(ICML-2002), 2002.

Luigi, C., E. Charles, and C. Michele. Learning gene regulatory networks
from only positive and unlabeled data. BMC Bioinformatics, 2010, 11.
Manevitz, L. and M. Yousef. One-class svms for document classification. 7The
Journal of Machine Learning Research, 2002, 2.

Nigam, K. and R. Ghani. Analyzing the effectiveness and applicability of co-
training. In Proceedings of ACM International Conference on Information
and Knowledge Management (CIKM-2000), 2000.

208

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

5 Partially Supervised Learning

Nigam, K., A. McCallum, S. Thrun, and T. Mitchell. Text classification from
labeled and unlabeled documents using EM. Machine Learning, 2000, 39(2):
p. 103-134.

Niu, Z., D. Ji, and C. Tan. Word sense disambiguation using label
propagation based semi-supervised learning. In Proceedings of Meeting of the
Association for Computational Linguistics (ACL-2005), 2005.

Pantel, P., E. Crestan, A. Borkovsky, A. Popescu, and V. Vyas. Web-scale
distributional similarity and entity set expansion. In Proceedings of
Conference on Empirical Methods in Natural Language Processing (EMNLP-
2009), 2009.

Pham, T., H. Ng, and W. Lee. Word sense disambiguation with semi-
supervised learning. In Proceedings of National Conference on Artificial
Intelligence (AAAI-2005), 2005.

Platt, J.C. Probabilities for SV machines. In Advances in Large Margin
Classifiers, A. J. Smola, P. Bartlett, B. Schoélkopf, and D. Schuurmans,
Editors. 1999, MIT Press. p. 61-73.

Scholkopf, B., J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson.
Estimating the support of a high-dimensional distribution. Neural
computation, 2001, 13(7): p. 1443-1471.

Shimodaira, H. Improving predictive inference under covariate shift by
weighting the log-likelihood function. Journal of Statistical Planning and
Inference, 2000, 90(2): p. 227-244.

Vapnik, V. and V. Vapnik. Statistical learning theory. Vol. 2. 1998: Wiley
New York.

Yu, H. General MC: Estimating boundary of positive class from small
positive data. In Proceedings of IEEE International Conference on Data
Mining (ICDM-2003), 2003: IEEE.

Yu, H., J. Han, and K. Chang. PEBL: positive example based learning for
Web page classification using SVM. In Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD-
2002),2002.

Zadrozny, B. Learning and evaluating classifiers under sample selection bias.
In Proceedings of International Conference on Machine Learning (ICML-
2004),2004.

Zhang, D. and W. Lee. A simple probabilistic approach to learning from
positive and unlabeled examples. In Proceedings of 5th Annual UK Workshop
on Computational Intelligence, 2005.

Zhu, X., Z. Ghahramani, and J. Lafferty. Semi-supervised learning using
gaussian fields and harmonic functions. In Proceedings of International
Conference on Machine Learning (ICML-2003),2003.

Part 11

Web Mining

6 Information Retrieval and Web Search

Web search needs no introduction. Due to its convenience and the richness
of information on the Web, searching the Web is increasingly becoming
the dominant information seeking method. People make fewer and fewer
trips to libraries, but more and more searches on the Web. In fact, without
effective search engines and rich Web contents, writing this book would
have been much harder.

Web search has its root in information retrieval (or IR for short), a
field of study that helps the user find needed information from a large
collection of text documents. Traditional IR assumes that the basic
information unit is a document, and a large collection of documents is
available to form the text database. On the Web, the documents are Web
pages.

Retrieving information simply means finding a set of documents that is
relevant to the user query. A ranking of the set of documents is usually
also performed according to their relevance scores to the query. The most
commonly used query format is a list of keywords, which are also called
terms. IR is different from data retrieval in databases using SQL queries
because the data in databases are highly structured and stored in relational
tables, while information in text is unstructured. There is no structured
query language like SQL for text retrieval.

It is safe to say that Web search is the single most important application
of IR. To a great extent, Web search also helped IR. Indeed, the
tremendous success of search engines has pushed IR to the center stage.
Search is, however, not simply a straightforward application of traditional
IR models. It uses some IR results, but it also has its unique techniques and
presents many new problems for IR research.

First of all, efficiency is a paramount issue for Web search, but is only
secondary in traditional IR systems mainly due to the fact that document
collections in most IR systems are not very large. However, the number of
pages on the Web is huge. For example, Google indexed more than 8
billion pages when this book was written. Web users also demand very fast
responses. No matter how effective an algorithm is, if the retrieval cannot
be done efficiently, few people will use it.

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 211
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_6,
© Springer-Verlag Berlin Heidelberg 2011

212 6 Information Retrieval and Web Search

Web pages are also quite different from conventional text documents
used in traditional IR systems. First, Web pages have hyperlinks and
anchor texts, which do not exist in traditional documents (except citations
in research publications). Hyperlinks are extremely important for search
and play a central role in search ranking algorithms as we will see in the
next chapter. Anchor texts associated with hyperlinks too are crucial
because a piece of anchor text is often a more accurate description of the
page that its hyperlink points to. Second, Web pages are semi-structured.
A Web page is not simply a few paragraphs of text like in a traditional
document. A Web page has different fields, e.g., title, metadata, body, etc.
The information contained in certain fields (e.g., the title field) is more
important than in others. Furthermore, the content in a page is typically
organized and presented in several structured blocks (of rectangular
shapes). Some blocks are important and some are not (e.g., advertisements,
privacy policy, copyright notices, etc). Effectively detecting the main
content block(s) of a Web page is useful to Web search because terms
appearing in such blocks are more important.

Finally, spamming is a major issue on the Web, but not a concern for
traditional IR. This is so because the rank position of a page returned by a
search engine is extremely important. If a page is relevant to a query but is
ranked very low (e.g., below top 30), then the user is unlikely to look at the
page. If the page sells a product, then this is bad for the business. In order
to improve the ranking of some target pages, “illegitimate” means, called
spamming, are often used to boost their rank positions. Detecting and
fighting Web spam is a critical issue as it can push low quality (even
irrelevant) pages to the top of the search rank, which harms the quality of
the search results and the user’s search experience.

In this chapter, we first study some information retrieval models and
methods that are closely related to Web search. We then dive into some
Web search specific issues.

6.1 Basic Concepts of Information Retrieval

Information retrieval (IR) is the study of helping users to find information
that matches their information needs. Technically, IR studies the acquisition,
organization, storage, retrieval, and distribution of information. Historically,
IR is about document retrieval, emphasizing document as the basic unit.
Fig. 6.1 gives a general architecture of an IR system.

In Fig. 6.1, the user with information need issues a query (user query)
to the retrieval system through the query operations module. The
retrieval module uses the document index to retrieve those documents that

6.1 Basic Concepts of Information Retrieval 213

contain some query terms (such documents are likely to be relevant to the
query), compute relevance scores for them, and then rank the retrieved
documents according to the scores. The ranked documents are then
presented to the user. The document collection is also called the text
database, which is indexed by the indexer for efficient retrieval.

The user
Document
User collection
query
Y
~| Query |
user .
feedback operations indexer
Executable
query
Y

\/
Retrieval Document
Ranked system index
documents

Fig. 6.1. A general IR system architecture

A user query represents the user’s information needs, which is in one of
the following forms:

1. Keyword queries: The user expresses his/her information needs with a
list of (at least one) keywords (or terms) aiming to find documents that
contain some (at least one) or all the query terms. The terms in the list
are assumed to be connected with a “soft” version of the logical AND.
For example, if one is interested in finding information about Web
mining, one may issue the query ‘Web mining’ to an IR or search engine
system. ‘Web mining’ is retreated as ‘Web AND mining’. The retrieval
system then finds those likely relevant documents and ranks them
suitably to present to the user. Note that a retrieved document does not
have to contain all the terms in the query. In some IR systems, the
ordering of the words is also significant and will affect the retrieval
results.

2. Boolean queries: The user can use Boolean operators, AND, OR, and
NOT to construct complex queries. Thus, such queries consist of terms
and Boolean operators. For example, ‘data OR Web’ is a Boolean
query, which requests documents that contain the word ‘data’ or ‘Web.
A page is returned for a Boolean query if the query is logically true in
the page (i.e., exact match). Although one can write complex Boolean
queries using the three operators, users seldom write such queries.

214 6 Information Retrieval and Web Search

Search engines usually support a restricted version of Boolean queries.

3. Phrase queries: Such a query consists of a sequence of words that
makes up a phrase. Each returned document must contain at least one
instance of the phrase. In a search engine, a phrase query is normally
enclosed with double quotes. For example, one can issue the following
phrase query (including the double quotes), “Web mining techniques
and applications” to find documents that contain the exact phrase.

4. Proximity queries: The proximity query is a relaxed version of the
phrase query and can be a combination of terms and phrases. Proximity
queries seek the query terms within close proximity to each other. The
closeness is used as a factor in ranking the returned documents or pages.
For example, a document that contains all query terms close together is
considered more relevant than a page in which the query terms are far
apart. Some systems allow the user to specify the maximum allowed
distance between the query terms. Most search engines consider both
term proximity and term ordering in retrieval.

5. Full document queries: When the query is a full document, the user
wants to find other documents that are similar to the query document.
Some search engines (e.g., Google) allow the user to issue such a query
by providing the URL of a query page. Additionally, in the returned
results of a search engine, each snippet may have a link called “more
like this” or “similar pages.” When the user clicks on the link, a set of
pages similar to the page in the snippet is returned.

6. Natural language questions: This is the most complex case, and also
the ideal case. The user expresses his/her information need as a natural
language question. The system then finds the answer. However, such
queries are still hard to handle due to the difficulty of natural language
understanding. Nevertheless, this is an active research area, called
question answering. Some search systems are starting to provide
question answering services on some specific types of questions, e.g.,
definition questions, which ask for definitions of technical terms.
Definition questions are usually easier to answer because there are
strong linguistic patterns indicating definition sentences, e.g., “defined

LR T3

as”, “refers to”, etc. Definitions can usually be extracted offline [34, 39].

The query operations module can range from very simple to very
complex. In the simplest case, it does nothing but just pass the query to the
retrieval engine after some simple pre-processing, e.g., removal of
stopwords (words that occur very frequently in text but have little
meaning, e.g., “the”, “a”, “in”, etc). We will discuss text pre-processing in
Sect. 6.5. In more complex cases, it needs to transform natural language

queries into executable queries. It may also accept user feedback and use it

6.2 Information Retrieval Models 215

to expand and refine the original queries. This is usually called relevance
feedback, which will be discussed in Sect. 6.3.

The indexer is the module that indexes the original raw documents in
some data structures to enable efficient retrieval. The result is the document
index. In Sect. 6.6, we study a particular type of indexing scheme, called
the inverted index, which is used in search engines and most IR systems.
An inverted index is easy to build and very efficient to search.

The retrieval system computes a relevance score for each indexed
document to the query. According to their relevance scores, the documents
are ranked and presented to the user. Note that it usually does not compare
the user query with every document in the collection, which is too
inefficient. Instead, only a small subset of the documents that contains at
least one query term is first found from the index and relevance scores
with the user query are then computed only for this subset of documents.

6.2 Information Retrieval Models

An IR model governs how a document and a query are represented and
how the relevance of a document to a user query is defined. There are four
main IR models: Boolean model, vector space model, language model and
probabilistic model. The most commonly used models in IR systems and
on the Web are the first three models, which we study in this section.

Although these three models represent documents and queries differently,
they use the same framework. They all treat each document or query as a
“bag” of words or terms. Term sequence an