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Preface 

The rapid growth of the Web in the past two decades has made it the larg-
est publicly accessible data source in the world. Web mining aims to dis-
cover useful information or knowledge from Web hyperlinks, page con-
tents, and usage logs. Based on the primary kinds of data used in the 
mining process, Web mining tasks can be categorized into three main 
types: Web structure mining, Web content mining and Web usage mining. 
Web structure mining discovers knowledge from hyperlinks, which repre-
sent the structure of the Web. Web content mining extracts useful informa-
tion/knowledge from Web page contents. Web usage mining mines user 
activity patterns from usage logs and other forms of logs of user interac-
tions with Web systems. Since the publication of the first edition at the end 
of 2006, there have been some important advances in several areas. To re-
flect these advances, new materials have been added to most chapters. The 
major changes are in Chapter 11 and Chapter 12, which have been re-
written and significantly expanded. When the first edition was written, 
opinion mining (Chapter 11) was still in its infancy. Since then, the re-
search community has gained a much better understanding of the problem 
and has proposed many novel techniques to solve various aspects of the 
problem. To include the latest developments for the Web usage mining 
chapter (Chapter 12), the topics of recommender systems and collaborative 
filtering, query log mining, and computational advertising have been 
added. This new edition is thus considerably longer, from a total of 532 
pages in the first edition to a total of 622 pages in this second edition.  

The goal of the book is to present the above Web data mining tasks and 
their core mining algorithms. The book is intended to be a text with a 
comprehensive coverage, and therefore, for each topic, sufficient details 
are given so that readers can gain a reasonably complete knowledge of its 
algorithms or techniques without referring to any external materials. Five 
of the chapters - partially supervised learning, structured data extraction, 
information integration, opinion mining and sentiment analysis, and Web 
usage mining - make this book unique. These topics are not covered by ex-
isting books, but yet are essential to Web data mining. Traditional Web 
mining topics such as search, crawling and resource discovery, and social 
network analysis are also covered in detail in this book.  



 

Although the book is entitled Web Data Mining, it also includes the 
main topics of data mining and information retrieval since Web mining 
uses their algorithms and techniques extensively. The data mining part 
mainly consists of chapters on association rules and sequential patterns, 
supervised learning (or classification), and unsupervised learning (or clus-
tering), which are the three fundamental data mining tasks. The advanced 
topic of partially (semi-) supervised learning is included as well. For in-
formation retrieval, its core topics that are crucial to Web mining are de-
scribed. The book is thus naturally divided into two parts. The first part, 
which consists of Chapters 2–5, covers data mining foundations. The sec-
ond part, which consists of Chapters 6–12, covers Web specific mining.  

Two main principles have guided the writing of this book. First, the ba-
sic content of the book should be accessible to undergraduate students, and 
yet there should be sufficient in-depth materials for graduate students who 
plan to pursue Ph.D. degrees in Web data mining or related areas. Few as-
sumptions are made in the book regarding the prerequisite knowledge of 
readers. One with a basic understanding of algorithms and probability con-
cepts should have no problem with this book. Second, the book should ex-
amine the Web mining technology from a practical point of view. This is 
important because most Web mining tasks have immediate real-world ap-
plications. In the past few years, I was fortunate to have worked directly or 
indirectly with many researchers and engineers in several search engine 
companies, e-commerce companies, opinion mining and sentiment analy-
sis companies, and also traditional companies that are interested in exploit-
ing the information on the Web in their businesses. During the process, I 
gained practical experiences and first-hand knowledge of real-world prob-
lems. I try to pass those non-confidential pieces of information and knowl-
edge along in the book. The book, thus, has a good balance of theory and 
practice. I hope that it will not only be a learning text for students, but also 
a valuable source of information/knowledge and ideas for Web mining re-
searchers and practitioners. 
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1 Introduction 

When you read this book, you, without doubt, already know what the 
World Wide Web is and have used it extensively. The World Wide Web 
(or the Web for short) has impacted almost every aspect of our lives. It is 
the biggest and most widely known information source that is easily acces-
sible and searchable. It consists of billions of interconnected documents 
(called Web pages) which are authored by millions of people. Since its in-
ception, the Web has dramatically changed our information seeking behav-
ior. Before the Web, finding information meant asking a friend or an ex-
pert, or buying/borrowing a book to read. However, with the Web, 
everything is just a few clicks away from the comfort of our homes or of-
fices. We can not only find needed information on the Web, but also easily 
share our information and knowledge with others.  

The Web has also become an important channel for conducting busi-
nesses. We can buy almost anything from online stores without needing to 
go to a physical shop. The Web also provides a convenient means for us to 
communicate with each other, to express our views and opinions, and to 
discuss with people from anywhere in the world. The Web is truly a vir-
tual society. In this first chapter, we introduce the Web, its history, and the 
topics that we will study in this book.  

1.1 What is the World Wide Web? 

The World Wide Web is officially defined as a “wide-area hypermedia in-
formation retrieval initiative aiming to give universal access to a large uni-
verse of documents.” In simpler terms, the Web is an Internet-based 
computer network that allows users of one computer to access information 
stored on another through the world-wide network called the Internet.  

The Web's implementation follows a standard client-server model. In 
this model, a user relies on a program (called the client) to connect to a 
remote machine (called the server) where the data is stored. Navigating 
through the Web is done by means of a client program called the browser, 
e.g., Netscape, Internet Explorer, Firefox, Chrome, etc. Web browsers 
work by sending requests to remote servers for information and then inter-

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 1
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preting the returned documents written in HTML and laying out the text 
and graphics on the user’s computer screen on the client side.  

The operation of the Web relies on the structure of its hypertext docu-
ments. Hypertext allows Web page authors to link their documents to other 
related documents residing on computers anywhere in the world. To view 
these documents, one simply follows the links (called hyperlinks).  

The idea of hypertext was invented by Ted Nelson in 1965 [14], who 
also created the well known hypertext system Xanadu (http://xanadu.com/). 
Hypertext that also allows other media (e.g., image, audio and video files) 
is called hypermedia. 

1.2 A Brief History of the Web and the Internet 

Creation of the Web: The Web was invented in 1989 by Tim Berners-
Lee, who, at that time, worked at CERN (Centre European pour la Recher-
che Nucleaire, or European Laboratory for Particle Physics) in Switzer-
land. He coined the term “World Wide Web,” wrote the first World Wide 
Web server, httpd, and the first client program (a browser and editor), 
“WorldWideWeb.” 

It began in March 1989 when Tim Berners-Lee submitted a proposal ti-
tled “Information Management: A Proposal” to his superiors at CERN. In 
the proposal, he discussed the disadvantages of hierarchical information 
organization and outlined the advantages of a hypertext-based system. The 
proposal called for a simple protocol that could request information stored 
in remote computer systems through networks, and for a scheme by which 
information could be exchanged in a common format and documents of 
individuals could be linked by hyperlinks to other documents. It also pro-
posed methods for reading text and graphics using the display technology 
at CERN at that time. The proposal essentially outlined a distributed hy-
pertext system, which is the basic architecture of the Web.  

Initially, the proposal did not receive the needed support. However, in 
1990, Berners-Lee re-circulated the proposal and received the support to 
begin the work. With this project, Berners-Lee and his team at CERN laid 
the foundation for the future development of the Web as a distributed hy-
pertext system. They introduced their server and browser, the protocol 
used for communication between clients and the server, the HyperText 
Transfer Protocol (HTTP), the HyperText Markup Language (HTML) 
used for authoring Web documents, and the Universal Resource Locator 
(URL). And so it began.  
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Mosaic and Netscape Browsers: The next significant event in the de-
velopment of the Web was the arrival of Mosaic. In February of 1993, 
Marc Andreesen from the University of Illinois’ NCSA (National Center 
for Supercomputing Applications) and his team released the first "Mosaic 
for X" graphical Web browser for UNIX. A few months later, different 
versions of Mosaic were released for Macintosh and Windows operating 
systems. This was an important event. For the first time, a Web client, with 
a consistent and simple point-and-click graphical user interface, was im-
plemented for the three most popular operating systems available at the 
time. It soon made big splashes outside the academic circle where it had 
begun. In mid-1994, Silicon Graphics founder Jim Clark collaborated with 
Marc Andreessen, and they founded the company Mosaic Communications 
(later renamed as Netscape Communications). Within a few months, the 
Netscape browser was released to the public, which started the explosive 
growth of the Web. The Internet Explorer from Microsoft entered the 
market in August, 1995 and began to challenge Netscape.  

The creation of the World Wide Web by Tim Berners-Lee followed by 
the release of the Mosaic browser are often regarded as the two most sig-
nificant contributing factors to the success and popularity of the Web.  

Internet: The Web would not be possible without the Internet, which 
provides the communication network for the Web to function. The Inter-
net started with the computer network ARPANET in the Cold War era. It 
was produced as the result of a project in the United States aiming at main-
taining control over its missiles and bombers after a nuclear attack. It was 
supported by the Advanced Research Projects Agency (ARPA), which was 
part of the Department of Defense in the United States. The first 
ARPANET connections were made in 1969, and in 1972, it was demon-
strated at the First International Conference on Computers and Communi-
cation, held in Washington D.C. At the conference, ARPA scientists linked 
together computers from 40 different locations.  

In 1973, Vinton Cerf and Bob Kahn started to develop the protocol later 
to be called TCP/IP (Transmission Control Protocol/Internet Proto-
col). In the next year, they published the paper “Transmission Control Pro-
tocol”, which marked the beginning of TCP/IP. This new protocol allowed 
diverse computer networks to interconnect and communicate with each 
other. In subsequent years, many networks were built, and many compet-
ing techniques and protocols were proposed and developed. However, 
ARPANET was still the backbone to the entire system. During the period, 
the network scene was chaotic. In 1982, the TCP/IP was finally adopted, 
and the Internet, which is a connected set of networks using the TCP/IP 
protocol, was born.  
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Search Engines: With information being shared worldwide, there was a 
need for individuals to find information in an orderly and efficient manner. 
Thus began the development of search engines. The search system Excite 
was introduced in 1993 by six Stanford University students. EINet Galaxy 
was established in 1994 as part of the MCC Research Consortium at the 
University of Texas. Jerry Yang and David Filo created Yahoo! in 1994, 
which started out as a listing of their favorite Web sites, and offered direc-
tory search. In subsequent years, many search systems emerged, e.g., Ly-
cos, Inforseek, AltaVista, Inktomi, Ask Jeeves, Northernlight, etc.  

Google was launched in 1998 by Sergey Brin and Larry Page based on 
their research project at Stanford University. Microsoft started to commit 
to search in 2003, and launched the MSN search engine in spring 2005 
(which is now called Bing). Yahoo! provided a general search capability 
in 2004 after it purchased Inktomi in 2003.  

W3C (The World Wide Web Consortium): W3C was formed in the 
December of 1994 by MIT and CERN as an international organization to 
lead the development of the Web. W3C's main objective was “to promote 
standards for the evolution of the Web and interoperability between 
WWW products by producing specifications and reference software.” The 
first International Conference on World Wide Web (WWW) was also 
held in 1994, which has been a yearly event ever since.  

From 1995 to 2001, the growth of the Web boomed. Investors saw 
commercial opportunities and became involved. Numerous businesses 
started on the Web, which led to irrational developments. Finally, the bub-
ble burst in 2001. However, the development of the Web was not stopped, 
but has only become more rational since. 

1.3 Web Data Mining 

The rapid growth of the Web in the last decade makes it the largest pub-
licly accessible data source in the world. The Web has many unique char-
acteristics, which make mining useful information and knowledge a fasci-
nating and challenging task. Let us review some of these characteristics.  

1. The amount of data/information on the Web is huge and still growing. 
The coverage of the information is also very wide and diverse. One can 
find information on almost anything on the Web. 

2. Data of all types exist on the Web, e.g., structured tables, semi-
structured pages, unstructured texts, and multimedia files (images, 
audios, and videos). 
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3. Information on the Web is heterogeneous. Due to diverse authorships 
of Web pages, multiple pages may present the same or similar information 
using completely different words and/or formats. This makes integra-
tion of information from multiple pages a challenging problem. 

4. A significant amount of information on the Web is linked. Hyperlinks 
exist among Web pages within a site and across different sites. Within a 
site, hyperlinks serve as an information organization mechanism. 
Across different sites, hyperlinks represent implicit conveyance of au-
thority to the target pages. That is, those pages that are linked (or 
pointed) to by many other pages are usually high quality pages or au-
thoritative pages simply because many people trust them.  

5. The information on the Web is noisy. The noise comes from two main 
sources. First, a typical Web page contains many pieces of information, 
e.g., the main content of the page, navigation links, advertisements, 
copyright notices, privacy policies, etc. For a particular application, 
only part of the information is useful. The rest is considered noise. To 
perform fine-grained Web information analysis and data mining, the 
noise should be removed. Second, due to the fact that the Web does not 
have quality control of information, i.e., one can write almost anything 
that one likes, a large amount of information on the Web is of low qual-
ity, erroneous, or even misleading. 

6. The Web is also about businesses and commerce. All commercial Web 
sites allow people to perform useful operations at their sites, e.g., to 
purchase products, to pay bills, and to fill in forms. To support such ap-
plications, the Web site needs to provide many types of automated ser-
vices, e.g., recommendation services using recommender systems.  

7. The Web is dynamic. Information on the Web changes constantly. 
Keeping up with the change and monitoring the change are important 
issues for many applications.  

8. The Web is a virtual society. It is not just about data, information and 
services, but also about interactions among people, organizations and 
automated systems. One can communicate with people anywhere in the 
world easily and instantly, and also express one’s views and opinions 
on anything in Internet forums, blogs, review sites and social network 
sites. Such information offers new types of data that enable many new 
mining tasks, e.g., opinion mining and social network analysis.   

All these characteristics present both challenges and opportunities for min-
ing and discovery of information and knowledge from the Web. In this 
book, we focus only on mining textual data. For mining of images, videos 
and audios, please refer to [15, 26].  

To explore information mining on the Web, it is necessary to know data 
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mining, which has been applied in many Web mining tasks. However, 
Web mining is not entirely an application of data mining. Due to the rich-
ness and diversity of information and other Web specific characteristics 
discussed above, Web mining has developed many of its own algorithms.  

1.3.1 What is Data Mining?  

Data mining is also called knowledge discovery in databases (KDD). It 
is commonly defined as the process of discovering useful patterns or 
knowledge from data sources, e.g., databases, texts, images, the Web, etc. 
The patterns must be valid, potentially useful, and understandable. Data 
mining is a multi-disciplinary field involving machine learning, statistics, 
databases, artificial intelligence, information retrieval, and visualization. 

There are many data mining tasks. Some of the common ones are su-
pervised learning (or classification), unsupervised learning (or cluster-
ing), association rule mining, and sequential pattern mining. We will 
study all of them in this book.  

A data mining application usually starts with an understanding of the 
application domain by data analysts (data miners), who then identify 
suitable data sources and the target data. With the data, data mining can be 
performed, which is usually carried out in three main steps:  

 Pre-processing: The raw data is usually not suitable for mining due to 
various reasons. It may need to be cleaned to remove noises or abnor-
malities. The data may also be too large and/or involve many irrelevant 
attributes, which call for data reduction through sampling and attribute 
or feature selection. Details about data pre-processing can be found in 
any standard data mining textbook.  

 Data mining: The processed data is then fed to a data mining algorithm 
which will produce patterns or knowledge.  

 Post-processing: In many applications, not all discovered patterns are 
useful. This step identifies those useful ones for applications. Various 
evaluation and visualization techniques are used to make the decision.  

The whole process (also called the data mining process) is almost always 
iterative. It usually takes many rounds to achieve the final satisfactory re-
sult, which is then incorporated into real-world operational tasks. 

Traditional data mining uses structured data stored in relational tables, 
spread sheets, or flat files in the tabular form. With the growth of the Web 
and text documents, Web mining and text mining are becoming increas-
ingly important and popular. Web mining is the focus of this book. 
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1.3.2 What is Web Mining? 

Web mining aims to discover useful information or knowledge from the 
Web hyperlink structure, page content, and usage data. Although Web 
mining uses many data mining techniques, as mentioned above it is not 
purely an application of traditional data mining techniques due to the het-
erogeneity and semi-structured or unstructured nature of the Web data. 
Many new mining tasks and algorithms were invented in the past decade. 
Based on the primary kinds of data used in the mining process, Web min-
ing tasks can be categorized into three types: Web structure mining, Web 
content mining and Web usage mining.  

 Web structure mining: Web structure mining discovers useful knowl-
edge from hyperlinks (or links for short), which represent the structure 
of the Web. For example, from the links, we can discover important 
Web pages, which is a key technology used in search engines. We can 
also discover communities of users who share common interests. Tradi-
tional data mining does not perform such tasks because there is usually 
no link structure in a relational table.  

 Web content mining: Web content mining extracts or mines useful in-
formation or knowledge from Web page contents. For example, we can 
automatically classify and cluster Web pages according to their topics. 
These tasks are similar to those in traditional data mining. However, we 
can also discover patterns in Web pages to extract useful data such as 
descriptions of products, postings of forums, etc., for many purposes. 
Furthermore, we can mine customer reviews and forum postings to dis-
cover consumer opinions. These are not traditional data mining tasks.  

 Web usage mining: Web usage mining refers to the discovery of user 
access patterns from Web usage logs, which record every click made by 
each user. Web usage mining applies many data mining algorithms. One 
of the key issues in Web usage mining is the pre-processing of click-
stream data in usage logs in order to produce the right data for mining.  

In this book, we will study all these three types of mining. However, due 
to the richness and diversity of information on the Web, there are a large 
number of Web mining tasks. We will not be able to cover them all. We 
will only focus on some important tasks and their fundamental algorithms.  

The Web mining process is similar to the data mining process. The dif-
ference is usually in the data collection. In traditional data mining, the data 
is often already collected and stored in a data warehouse. For Web mining, 
data collection can be a substantial task, especially for Web structure and 
content mining, which involves crawling a large number of target Web 
pages. We will devote a whole chapter to crawling. 
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Once the data is collected, we go through the same three-step process: 
data pre-processing, Web data mining and post-processing. However, the 
techniques used for each step can be quite different from those used in tra-
ditional data mining. 

1.4 Summary of Chapters 

This book consists of two main parts. The first part, which includes Chaps. 
2–5, covers the major topics of data mining. The second part, which com-
prises the rest of the chapters, covers Web mining (including a chapter on 
Web search). In the Web mining part, Chaps. 7 and 8 are on Web structure 
mining, which are closely related to Web search (Chap. 6). Since it is dif-
ficult to draw a boundary between Web search and Web mining, Web 
search and mining are put together. Chaps 9–11 are on Web content min-
ing, and Chap. 12 is on Web usage mining. Below we give a brief intro-
duction to each chapter.  

Chapter 2 – Association Rules and Sequential Patterns: This chapter 
studies two important data mining models that have been used in many 
Web mining tasks, especially in Web usage and content mining. Associa-
tion rule mining finds sets of data items that occur together frequently. Se-
quential pattern mining finds sets of data items that occur together fre-
quently in some sequences. Clearly, they can be used to find regularities in 
the Web data. For example, in Web usage mining, association rule mining 
can be used to find users’ visit and purchase patterns, and sequential pat-
tern mining can be used to find users’ navigation patterns. 

Chapter 3 – Supervised Learning: Supervised learning is perhaps the 
most frequently used mining/learning technique in both practical data min-
ing and Web mining. It is also called classification, which aims to learn a 
classification function (called a classifier) from data that are labeled with 
pre-defined classes or categories. The resulting classifier is then applied to 
classify future data instances into these classes. Due to the fact that the 
data instances used for learning (called the training data) are labeled with 
pre-defined classes, the method is called supervised learning.  

Chapter 4 – Unsupervised Learning: In unsupervised learning, the data 
used for learning has no pre-defined classes. The learning algorithm has to 
find the hidden structures or regularities in the data. One of the key unsu-
pervised learning techniques is clustering, which organizes data instances 
into groups or clusters according to their similarities (or differences). 
Clustering is widely used in Web mining. For example, we can cluster 
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Web pages into groups, where each group may represent a particular topic. 
We can also cluster documents into a hierarchy of clusters, which may rep-
resent a topic hierarchy.  

Chapter 5 – Partially Supervised Learning: Supervised learning re-
quires a large number of labeled data instances to learn an accurate classi-
fier. Labeling, which is often done manually, is labor intensive and time 
consuming. To reduce the manual labeling effort, learning from labeled 
and unlabeled examples (or LU learning) was proposed to use a small 
set of labeled examples (data instances) and a large set of unlabeled exam-
ples for learning. This model is also called semi-supervised learning. 

Another learning model that we will study is called learning from posi-
tive and unlabeled examples (or PU learning), which is for two-class 
classifications (the two classes are often called the positive and negative 
classes). However, there are no labeled negative examples for learning. 
This model is useful in many situations. For example, we have a set of 
Web mining papers and we want to identify other Web mining papers in a 
research paper repository which contains all kinds of papers. The set of 
Web mining papers can be treated as the positive data, and the papers in 
the research repository can be treated as the unlabeled data. 

Chapter 6 – Information Retrieval and Web Search: Search is probably 
the largest application on the Web. It has its root in information retrieval 
(or IR for short), which is a field of study that helps the user find needed 
information from a large collection of text documents. Given a query (e.g., 
a set of keywords), which expresses the user’s information need, an IR 
system finds a set of documents that is relevant to the query from its un-
derlying collection. This is also how a Web search engine works.  

Web search brings IR to a new height. It applies some IR techniques, 
but also presents a host of interesting problems due to special characteris-
tics of the Web data. First of all, Web pages are not the same as plain text 
documents because they are semi-structured and contain hyperlinks. Thus, 
new methods have been designed to produce better Web IR (or search) 
systems. Another major issue is efficiency. Document collections used in 
traditional IR systems are not large, but the number of pages on the Web is 
huge. For example, Google claimed that it indexed more than 8 billion 
pages when the first edition of this book was written. Web users demand 
very fast responses. No matter how accurate a retrieval algorithm is, if the 
retrieval cannot be done extremely efficiently, few people will use it. In 
the chapter, several other search related issues will also be discussed.  

Chapter 7 – Social Network Analysis: Hyperlinks are a special feature of 
the Web, which link Web pages to form a huge network. They have been 
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exploited for many purposes, especially for Web search. Google’s early 
success was largely attributed to its hyperlink-based ranking algorithm 
called PageRank, which was originated from social network analysis 
[24]. In this chapter, we will first introduce some main concepts of social 
network analysis and then describe two most well known Web hyperlink 
analysis algorithms, PageRank and HITS. In addition, we will also study 
several community finding algorithms. When Web pages link to one an-
other, they form Web communities, which are groups of content creators 
that share some common interests. Communities not only manifest in hy-
perlinks, but also in other contexts such as emails, Web page contents, and 
friendship networks on social networking sites.  

Chapter 8 – Web Crawling: A Web crawler is a program that automati-
cally traverses the Web’s hyperlink structure and downloads each linked 
page to a local storage. Crawling is often the first step of Web mining or 
building a Web search engine. Although conceptually easy, implementing 
a practical crawler is by no means simple. Due to efficiency and many 
other concerns, it involves a great deal of engineering. There are two main 
types of crawlers: universal crawlers and topic crawlers. A universal 
crawler downloads all pages irrespective of their contents, while a topic 
crawler downloads only pages of certain topics. The difficulty in topic 
crawling is how to recognize such pages. We will study several techniques 
for this purpose.  

Chapter 9 – Structured Data Extraction: Wrapper Generation: A 
large number of pages on the Web contain structured data, which are usu-
ally data records retrieved from underlying databases and displayed in 
Web pages following some fixed templates. Structured data often represent 
their host pages’ essential information, e.g., lists of products and services. 
Extracting such data allows one to provide value added services, e.g., 
comparative shopping and meta-search. There are two main approaches to 
extraction. One is the supervised approach, which uses supervised learning 
to learn data extraction rules. The other is the unsupervised pattern discov-
ery approach, which finds repeated patterns (hidden templates) in Web 
pages for data extraction.  

Chapter 10 – Information Integration: Due to diverse authorships of the 
Web, different Web sites typically use different words or terms to express 
the same or similar information. In order to make use of the data or infor-
mation extracted from multiple sites to provide value added services, we 
need to semantically integrate the data/information from these sites in or-
der to produce a consistent and coherent database. Intuitively, integration 
means (1) to match columns in different data tables that contain the same 
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type of information (e.g., product names) and (2) to match data values that 
are semantically the same but expressed differently at different sites. 

Chapter 11 – Opinion Mining and Sentiment Analysis: Apart from 
structured data, the Web also contains a huge amount of unstructured text. 
Analyzing such text is also of great importance. It is perhaps even more 
important than extracting structured data because of the sheer volume of 
valuable information of almost any imaginable types contained in it. This 
chapter focuses only on mining people’s opinions and sentiments ex-
pressed in product reviews, forum discussions and blogs. The task is not 
only technically challenging, but also very useful in practice because busi-
nesses and organizations always want to know consumer opinions on their 
products and services.  

Chapter 12 – Web Usage Mining: Web usage mining aims to study user 
clicks and their applications to e-commerce and business intelligence. The 
objective is to capture and model behavioral patterns and profiles of us-
ers who interact with a Web site. Such patterns can be used to better un-
derstand the behaviors of different user segments, to improve the organiza-
tion and structure of the site, and to create personalized experiences for 
users by providing dynamic suggestions of products and services using re-
commender systems. This chapter also covers the important topics of 
query log mining and computational advertising, which have emerged 
as active research areas in recent years.   

1.5 How to Read this Book 

This book is a textbook although two chapters are mainly contributed by 
three other researchers. The contents of the two chapters have been care-
fully edited and integrated into the common framework of the whole book. 
The book is suitable for both graduate students and senior undergraduate 
students in the fields of computer science, information science, engineer-
ing, statistics, and social sciences. It can also be used as a reference by re-
searchers and practitioners who are interested in or are working in the field 
of Web mining, data mining or text mining.  

As mentioned earlier, the book is divided into two parts. Part I (Chaps. 
2–5) covers the major topics of data mining. Text classification and clus-
tering are included in this part as well. Part II, which includes the rest of 
the chapters, covers Web mining (and search). In general, all chapters in 
Part II require some techniques in Part I. Within each part, the dependency 
is minimal except Chap. 5, which needs several techniques from Chap. 4. 
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To Instructors: This book can be used as a class text for a one-semester 
course on Web data mining. In this case, there are two possibilities. If the 
students already have a data mining or machine learning background, the 
chapters in Part I can be skipped. If the students do not have any data min-
ing background, I recommend covering some selected sections from each 
chapter of Part I before going to Part II. The chapters in Part II can be cov-
ered in any sequence. You can also select a subset of the chapters accord-
ing to your needs. 

The book may also be used as a class text for an introductory course on 
data mining where Web mining concepts and techniques are introduced. In 
this case, I recommend first covering all the chapters in Part I and then se-
lectively covering some chapters or sections from each chapter in Part II 
depending on needs. It is usually a good idea to cover some sections of 
Chaps. 6 and 7 as search engines fascinate most students. I also recom-
mend including one or two lectures on data pre-processing for data mining 
since the topic is important for practical data mining applications but is not 
covered in this book. You can find teaching materials on data pre-processing 
from most introductory data mining books.  

Supporting Materials: Updates to chapters and teaching materials, in-
cluding lecture slides, data sets, implemented algorithms, and other re-
sources, are available at http://www.springer.com/3-540-37881-2.  

Bibliographic Notes 

The W3C Web site (http://www.w3.org/) is the most authoritative resource 
site for information on Web developments, standards and guidelines. The 
history of the Web and hypertext, and Tim Berners-Lee’s original proposal 
can all be found there. Many other sites also contain information about the 
history of the Web, the Internet and search engines, e.g., http://www.elsop. 
com/wrc/h_web.htm, http://www.zeltser.com/web-history/, http://www.isoc. 
org/internet/history/, http://www.livinginternet.com, http://www.w3c.rl.ac.uk/ 
primers/history/origins.htm and http://searchenginewatch.com/. 

There are some earlier introductory texts on Web mining, e.g., those by 
Baldi et al. [1] and Chakrabarti [3]. There are also several application ori-
ented books, e.g., those by Linoff and Berry [12], and Thuraisingham [22], 
and edited volumes by Zaiane et al. [26], Scime [19], and Zhong et al. [27].  

On data mining, there are many textbooks, e.g., those by Duda et al. [4], 
Dunham [5], Han and Kamber [8], Hand et al. [9], Larose [11], Langley 
[10], Mitchell [13], Roiger and Geatz [17], Tan et al. [20], and Witten and 
Frank [25]. Application oriented books include those by Berry and Linoff 
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[2], Pyle [16], Rud [18], and Tang and MacLennan [21]. Several edited 
volumes exist as well, e.g., those by Fayyad et al. [6], Grossman et al. [7], 
and Wang et al. [23]. 

Latest research results on Web mining can be found in a large number 
of conferences and journals (too many to list) due to the interdisciplinary 
nature of the field. All the journals and conferences related to the Web 
technology, information retrieval, data mining, databases, artificial intelli-
gence, natural language processing, and machine learning may contain 
Web mining related papers.  
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2 Association Rules and Sequential Patterns 

Association rules are an important class of regularities in data. Mining of 
association rules is a fundamental data mining task. It is perhaps the most 
important model invented and extensively studied by the database and data 
mining community. Its objective is to find all co-occurrence relationships, 
called associations, among data items. Since it was first introduced in 
1993 by Agrawal et al. [2], it has attracted a great deal of attention. Many 
efficient algorithms, extensions and applications have been reported.  

The classic application of association rule mining is the market basket 
data analysis, which aims to discover how items purchased by customers 
in a supermarket (or a store) are associated. An example association rule is  

 Cheese  Beer  [support = 10%, confidence = 80%]. 

The rule says that 10% customers buy Cheese and Beer together, and 
those who buy Cheese also buy Beer 80% of the time. Support and confi-
dence are two measures of rule strength, which we will define later.  

This mining model is in fact very general and can be used in many ap-
plications. For example, in the context of the Web and text documents, it 
can be used to find word co-occurrence relationships and Web usage pat-
terns as we will see in later chapters.  

Association rule mining, however, does not consider the sequence in 
which the items are purchased. Sequential pattern mining takes care of 
that. An example of a sequential pattern is “5% of customers buy bed first, 
then mattress and then pillows”. The items are not purchased at the same 
time, but one after another. Such patterns are useful in Web usage mining 
for analyzing clickstreams in server logs. They are also useful for finding 
language or linguistic patterns from natural language texts. 

2.1 Basic Concepts of Association Rules 

The problem of mining association rules can be stated as follows: Let I = 
{i1, i2, …, im} be a set of items. Let T = (t1, t2, …, tn) be a set of transac-
tions (the database), where each transaction ti is a set of items such that ti 
 I. An association rule is an implication of the form,  

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 17
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_2, 
© Springer-Verlag Berlin Heidelberg 2011 
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 X  Y, where X  I, Y  I, and X  Y = .  

X (or Y) is a set of items, called an itemset.  

Example 1: We want to analyze how the items sold in a supermarket are 
related to one another. I is the set of all items sold in the supermarket. A 
transaction is simply a set of items purchased in a basket by a customer. 
For example, a transaction may be:  

{Beef, Chicken, Cheese},  

which means that a customer purchased three items in a basket, Beef, 
Chicken, and Cheese. An association rule may be: 

 Beef, Chicken  Cheese, 

where {Beef, Chicken} is X and {Cheese} is Y. For simplicity, brackets 
“{” and “}” are usually omitted in transactions and rules. ▀ 

A transaction ti  T is said to contain an itemset X if X is a subset of ti 
(we also say that the itemset X covers ti). The support count of X in T 
(denoted by X.count) is the number of transactions in T that contain X. The 
strength of a rule is measured by its support and confidence.  
Support: The support of a rule, X  Y, is the percentage of transactions in 

T that contains X  Y, and can be seen as an estimate of the probability, 
Pr(XY). The rule support thus determines how frequent the rule is ap-
plicable in the transaction set T. Let n be the number of transactions in T. 
The support of the rule X  Y is computed as follows: 

.).  (
n

countYX
support


  (1) 

Support is a useful measure because if it is too low, the rule may just oc-
cur due to chance. Furthermore, in a business environment, a rule cover-
ing too few cases (or transactions) may not be useful because it does not 
make business sense to act on such a rule (not profitable).  

Confidence: The confidence of a rule, X  Y, is the percentage of transac-
tions in T that contain X also contain Y. It can be seen as an estimate of 
the conditional probability, Pr(Y | X). It is computed as follows:  

.
.

).  (
countX

countYX
confidence


  (2) 

Confidence thus determines the predictability of the rule. If the confi-
dence of a rule is too low, one cannot reliably infer or predict Y from X. 
A rule with low predictability is of limited use.    
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Objective: Given a transaction set T, the problem of mining association 
rules is to discover all association rules in T that have support and confi-
dence greater than or equal to the user-specified minimum support (de-
noted by minsup) and minimum confidence (denoted by minconf).  

The keyword here is “all”, i.e., association rule mining is complete. Previ-
ous methods for rule mining typically generate only a subset of rules based 
on various heuristics (see Chap. 3).  

Example 2: Fig. 2.1 shows a set of seven transactions. Each transaction ti 
is a set of items purchased in a basket in a store by a customer. The set I is 
the set of all items sold in the store.  

t1: Beef, Chicken, Milk 
t2: Beef, Cheese 
t3: Cheese, Boots 
t4: Beef, Chicken, Cheese 
t5: Beef, Chicken, Clothes, Cheese, Milk 
t6: Chicken, Clothes, Milk 
t7: Chicken, Milk, Clothes 

Fig. 2.1.  An example of a transaction set 

Given the user-specified minsup = 30% and minconf = 80%, the following 
association rule (sup is the support, and conf is the confidence) 

Chicken, Clothes  Milk  [sup = 3/7, conf = 3/3] 

is valid as its support is 42.86% (> 30%) and its confidence is 100% (> 
80%). The rule below is also valid, whose consequent has two items:  

 Clothes  Milk, Chicken  [sup = 3/7, conf = 3/3]. 

Clearly, more association rules can be discovered, as we will see later.  ▀ 

We note that the data representation in the transaction form of Fig. 2.1 is 
a simplistic view of shopping baskets. For example, the quantity and price 
of each item are not considered in the model.  

We also note that a text document or even a sentence in a single docu-
ment can be treated as a transaction without considering word sequence 
and the number of occurrences of each word. Hence, given a set of docu-
ments or a set of sentences, we can find word co-occurrence relations.  

A large number of association rule mining algorithms have been re-
ported in the literature, which have different mining efficiencies. Their re-
sulting sets of rules are, however, all the same based on the definition of 
association rules. That is, given a transaction data set T, a minimum sup-
port and a minimum confidence, the set of association rules existing in T is 
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uniquely determined. Any algorithm should find the same set of rules al-
though their computational efficiencies and memory requirements may be 
different. The best known mining algorithm is the Apriori algorithm pro-
posed in [3], which we study next.  

2.2 Apriori Algorithm 

The Apriori algorithm works in two steps: 

1. Generate all frequent itemsets: A frequent itemset is an itemset that 
has transaction support above minsup.  

2. Generate all confident association rules from the frequent itemsets: 
A confident association rule is a rule with confidence above minconf.   

We call the number of items in an itemset its size, and an itemset of size k 
a k-itemset. Following Example 2 above, {Chicken, Clothes, Milk} is a fre-
quent 3-itemset as its support is 3/7 (minsup = 30%). From the itemset, we 
can generate the following three association rules (minconf = 80%): 

Rule 1: Chicken, Clothes  Milk  [sup = 3/7, conf = 3/3] 
Rule 2:  Clothes, Milk   Chicken  [sup = 3/7, conf = 3/3] 
Rule 3:  Clothes  Milk, Chicken  [sup = 3/7, conf = 3/3]. 

Below, we discuss the two steps in turn.  

2.2.1 Frequent Itemset Generation 

The Apriori algorithm relies on the apriori or downward closure property 
to efficiently generate all frequent itemsets.  

Downward Closure Property: If an itemset has minimum support, then 
every non-empty subset of this itemset also has minimum support. 

The idea is simple because if a transaction contains a set of items X, 
then it must contain any non-empty subset of X. This property and the 
minsup threshold prune a large number of itemsets that cannot be frequent.  

To ensure efficient itemset generation, the algorithm assumes that the 
items in I are sorted in lexicographic order (a total order). The order is 
used throughout the algorithm in each itemset. We use the notation {w[1], 
w[2], …, w[k]} to represent a k-itemset w consisting of items w[1], w[2], 
…, w[k], where w[1] < w[2] < … < w[k] according to the total order.  

The Apriori algorithm for frequent itemset generation, which is given in 
Fig. 2.2, is based on level-wise search. It generates all frequent itemsets 
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by making multiple passes over the data. In the first pass, it counts the sup-
ports of individual items (line 1) and determines whether each of them is 
frequent (line 2). F1 is the set of frequent 1-itemsets. In each subsequent 
pass k, there are three steps: 

1. It starts with the seed set of itemsets Fk1 found to be frequent in the 
(k1)-th pass. It uses this seed set to generate candidate itemsets Ck 
(line 4), which are possible frequent itemsets. This is done using the 
candidate-gen() function.  

2. The transaction database is then scanned and the actual support of each 
candidate itemset c in Ck is counted (lines 5–10). Note that we do not 
need to load the whole data into memory before processing. Instead, at 

Algorithm Apriori(T) 
1 C1  init-pass(T);   // the first pass over T  
2 F1  {f | f  C1, f.count/n  minsup};  // n is the no. of transactions in T 
3 for (k = 2; Fk1  ; k++) do // subsequent passes over T 
4 Ck  candidate-gen(Fk1); 
5 for each transaction t  T do // scan the data once 
6 for each candidate c  Ck do    
7 if c is contained in t then  
8  c.count++;  
9 endfor 
10 endfor 
11 Fk  {c  Ck | c.count/n  minsup} 
12 endfor 
13 return F  ∪k Fk; 

Fig. 2.2. The Apriori algorithm for generating frequent itemsets 

Function candidate-gen(Fk1)  
1 Ck  ;  // initialize the set of candidates 
2 forall f1, f2  Fk1  // find all pairs of frequent itemsets 
3 with f1 = {i1, … , ik2, ik1}  // that differ only in the last item  
4 and  f2 = {i1, … , ik2, i’k1}   
5 and ik1 < i’k1 do  // according to the lexicographic order 
6 c  {i1, …, ik1, i’k1};  // join the two itemsets f1 and f2 
7 Ck  Ck  {c};  // add the new itemset c to the candidates  
8 for each (k1)-subset s of c do 
9 if (s  Fk1) then   
10 delete c from Ck; // delete c from the candidates 
11 endfor 
12 endfor 
13 return Ck;  // return the generated candidates 

Fig. 2.3. The candidate-gen function  
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any time, only one transaction resides in memory. This is a very impor-
tant feature of the algorithm. It makes the algorithm scalable to huge da-
ta sets, which cannot be loaded into memory.  

3. At the end of the pass or scan, it determines which of the candidate 
itemsets are actually frequent (line 11).  

The final output of the algorithm is the set F of all frequent itemsets (line 
13). The candidate-gen() function is discussed below.  

Candidate-gen function: The candidate generation function is given in 
Fig. 2.3. It consists of two steps, the join step and the pruning step.  

Join step (lines 2–6 in Fig. 2.3): This step joins two frequent (k1)-
itemsets to produce a possible candidate c (line 6). The two frequent 
itemsets f1 and f2 have exactly the same items except the last one (lines 
3–5). c is added to the set of candidates Ck (line 7).  

Pruning step (lines 8–11 in Fig. 2.3): A candidate c from the join step may 
not be a final candidate. This step determines whether all the k1 sub-
sets (there are k of them) of c are in Fk1. If anyone of them is not in 
Fk1, c cannot be frequent according to the downward closure property, 
and is thus deleted from Ck.  

The correctness of the candidate-gen() function is easy to show (see [3]). 
Here, we use an example to illustrate the working of the function.  

Example 3: Let the set of frequent itemsets at level 3 be 
F3 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}}. 

For simplicity, we use numbers to represent items. The join step (which 
generates candidates for level 4) will produce two candidate itemsets, {1, 2, 
3, 4} and {1, 3, 4, 5}. {1, 2, 3, 4} is generated by joining the first and the 
second itemsets in F3 as their first and second items are the same respec-
tively. {1, 3, 4, 5} is generated by joining {1, 3, 4} and {1, 3, 5}.  

After the pruning step, we have only: 
C4 = {{1, 2, 3, 4}} 

because {1, 4, 5} is not in F3 and thus {1, 3, 4, 5} cannot be frequent.  

Example 4: Let us see a complete running example of the Apriori algo-
rithm based on the transactions in Fig. 2.1. We use minsup = 30%.  

F1:   {{Beef}:4, {Cheese}:4, {Chicken}:5, {Clothes}:3, {Milk}:4} 

 Note: the number after each frequent itemset is the support count of the 
itemset, i.e., the number of transactions containing the itemset. A mini-
mum support count of 3 is sufficient because the support of 3/7 is greater 
than 30%, where 7 is the total number of transactions.  
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C2:  {{Beef, Cheese}, {Beef, Chicken}, {Beef, Clothes}, {Beef, Milk},  
 {Cheese, Chicken}, {Cheese, Clothes}, {Cheese, Milk},  
 {Chicken, Clothes}, {Chicken, Milk}, {Clothes, Milk}} 

F2: {{Beef, Chicken}:3, {Beef, Cheese}:3, {Chicken, Clothes}:3,  
  {Chicken, Milk}:4, {Clothes, Milk}:3} 

C3: {{Chicken, Clothes, Milk}} 

 Note: {Beef, Cheese, Chicken} is also produced in line 6 of Fig. 2.3. 
However, {Cheese, Chicken} is not in F2, and thus the itemset {Beef, 
Cheese, Chicken} is not included in C3.  

F3: {{Chicken, Clothes, Milk}:3}. ▀ 

Finally, some remarks about the Apriori algorithm are in order:  

 Theoretically, this is an exponential algorithm. Let the number of items 
in I be m. The space of all itemsets is O(2m) because each item may or 
may not be in an itemset. However, the mining algorithm exploits the 
sparseness of the data and the high minimum support value to make the 
mining possible and efficient. The sparseness of the data in the context 
of market basket analysis means that the store sells a lot of items, but 
each shopper only purchases a few of them.  

 The algorithm can scale up to large data sets as it does not load the en-
tire data into the memory. It only scans the data K times, where K is the 
size of the largest itemset. In practice, K is often small (e.g., < 10). This 
scale-up property is very important in practice because many real-world 
data sets are so large that they cannot be loaded into the main memory.  

 The algorithm is based on level-wise search. It has the flexibility to stop 
at any level. This is useful in practice because in many applications, 
long frequent itemsets or rules are not needed as they are hard to use.  

 As mentioned earlier, once a transaction set T, a minsup and a minconf 
are given, the set of frequent itemsets that can be found in T is uniquely 
determined. Any algorithm should find the same set of frequent item-
sets. This property about association rule mining does not hold for many 
other data mining tasks, e.g., classification or clustering, for which dif-
ferent algorithms may produce very different results.  

 The main problem with association rule mining is that it often produces 
a huge number of itemsets (and rules), tens of thousands, or more, 
which makes it hard for the user to analyze them to find those useful 
ones. This is called the interestingness problem. Researchers have pro-
posed several methods to tackle this problem (see Bibliographic Notes). 

An efficient implementation of the Apriori algorithm involves sophisti-
cated data structures and programming techniques, which are beyond the 
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scope of this book. Apart from the Apriori algorithm, there is a large num-
ber of other algorithms, e.g., FP-growth [17] and many others. 

2.2.2 Association Rule Generation 

In many applications, frequent itemsets are already useful and sufficient. 
Then, we do not need to generate association rules. In applications where 
rules are desired, we use frequent itemsets to generate all association rules.  

Compared with frequent itemset generation, rule generation is relatively 
simple. To generate rules for every frequent itemset f, we use all non-
empty subsets of f. For each such subset , we output a rule of the form   

(f  )  ,  if 

,
).(

.
minconf

countf

countf
confidence 





 (3) 

where f.count (or (f).count) is the support count of f (or (f  )). The 
support of the rule is f.count/n, where n is the number of transactions in the 
transaction set T. All the support counts needed for confidence computa-
tion are available because if f is frequent, then any of its non-empty subsets 
is also frequent and its support count has been recorded in the mining 
process. Thus, no data scan is needed in rule generation.  

This exhaustive rule generation strategy is, however, inefficient. To de-
sign an efficient algorithm, we observe that the support count of f in the 
above confidence computation does not change as  changes. It follows 
that for a rule (f  )   to hold, all rules of the form (f  sub)  sub 
must also hold,  where sub is a non-empty subset of , because the support 
count of (f  sub) must be less than or equal to the support count of (f  ). 
For example, given an itemset {A, B, C, D}, if the rule (A, B  C, D) holds, 
then the rules (A, B, C  D) and (A, B, D  C) must also hold. 

Thus, for a given frequent itemset f, if a rule with consequent  holds, 
then so do rules with consequents that are subsets of . This is similar to 
the downward closure property that, if an itemset is frequent, then so are 
all its subsets. Therefore, from the frequent itemset f, we first generate all 
rules with one item in the consequent. We then use the consequents of 
these rules and the function candidate-gen() (Fig. 2.3) to generate all pos-
sible consequents with two items that can appear in a rule, and so on. An 
algorithm using this idea is given in Fig. 2.4. Note that all 1-item conse-
quent rules (rules with one item in the consequent) are first generated in 
line 2 of the function genRules(). The confidence is computed using (3).   
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Example 5: We again use transactions in Fig. 2.1, minsup = 30% and 
minconf = 80%. The frequent itemsets are as follows (see Example 4):  

F1:   {{Beef}:4, {Cheese}:4, {Chicken}:5, {Clothes}:3, {Milk}:4} 
F2: {{Beef, Cheese}:3, {Beef, Chicken}:3, {Chicken, Clothes}:3,  
 {Chicken, Milk}:4, {Clothes, Milk}:3} 
F3: {{Chicken, Clothes, Milk}:3}. 

We use only the itemset in F3 to generate rules (generating rules from each 
itemset in F2 can be done in the same way). The itemset in F3 generates the 
following possible 1-item consequent rules:  

Rule 1: Chicken, Clothes  Milk  [sup = 3/7, conf = 3/3] 
Rule 2:  Chicken, Milk  Clothes  [sup = 3/7, conf = 3/4] 
Rule 3:  Clothes, Milk   Chicken  [sup = 3/7, conf = 3/3]. 

Due to the minconf requirement, only Rule 1 and Rule 3 are output in line 
2 of the algorithm genRules(). Thus, H1 = {{Chicken}, {Milk}}. The function 
ap-genRules() is then called. Line 2 of ap-genRules() produces H2 = 
{{Chicken, Milk}}. The following rule is then generated:  

Rule 4:  Clothes  Milk, Chicken  [sup = 3/7, conf = 3/3]. 

Algorithm genRules(F) // F is the set of all frequent itemsets 
1 for each frequent k-itemset fk in F, k  2 do 
2 output every 1-item consequent rule of fk with confidence  minconf and 

support  fk.count / n // n is the total number of transactions in T 
3  H1 {consequents of all 1-item consequent rules derived from fk above}; 
4  ap-genRules(fk, H1); 
5  endfor 
 
Procedure ap-genRules(fk, Hm) // Hm is the set of m-item consequents 
1 if (k > m + 1) AND (Hm  ) then  
2 Hm+1  candidate-gen(Hm); 
3 for each hm+1 in Hm+1 do 
4 conf   fk.count / (fk  hm+1).count; 
5 if (conf  minconf) then 
6 output the rule (fk  hm+1)  hm+1 with confidence = conf and 

support = fk.count / n; // n is the total number of transactions in T 
7 else 
8 delete hm+1 from Hm+1; 
9 endfor 
10 ap-genRules(fk, Hm+1); 
11 endif 

Fig. 2.4. The association rule generation algorithm 
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Thus, three association rules are generated from the frequent itemset 
{Chicken, Clothes, Milk} in F3, namely Rule 1, Rule 3 and Rule 4.  ▀ 

2.3  Data Formats for Association Rule Mining 

So far, we have used only transaction data for mining association rules. 
Market basket data sets are naturally of this format. Text documents can be 
seen as transaction data as well. Each document is a transaction, and each 
distinctive word is an item. Duplicate words are removed.  

However, mining can also be performed on relational tables. We just 
need to convert a table data set to a transaction data set, which is fairly 
straightforward if each attribute in the table takes categorical values. We 
simply change each value to an attribute–value pair.  
Example 6: The table data in Fig. 2.5(A) can be converted to the transac-
tion data in Fig. 2.5(B). Each attribute–value pair is considered an item. 
Using only values is not sufficient in the transaction form because different 
attributes may have the same values. For example, without including at-
tribute names, value a’s for Attribute1 and Attribute2 are not distinguish-
able. After the conversion, Fig. 2.5(B) can be used in mining. ▀ 

If an attribute takes numerical values, it becomes complex. We need to 
first discretize its value range into intervals, and treat each interval as a ca-
tegorical value. For example, an attribute’s value range is from 1–100. We 
may want to divide it into 5 equal-sized intervals, 1–20, 21–40, 41–60, 61–
80, and 81–100. Each interval is then treated as a categorical value. Discre-
tization can be done manually based on expert knowledge or automati-
cally. There are several existing algorithms [14, 40].  

A point to note is that for a table data set, the join step of the candidate 
generation function (Fig. 2.3) needs to be slightly modified in order to en-
sure that it does not join two itemsets to produce a candidate itemset con-
taining two items from the same attribute. 

 Clearly, we can also convert a transaction data set to a table data set us-
ing a binary representation and treating each item in I as an attribute. If a 
transaction contains an item, its attribute value is 1, and 0 otherwise.  

2.4 Mining with Multiple Minimum Supports  

The key element that makes association rule mining practical is the minsup 
threshold. It is used to prune the search space and to limit the number of 
frequent itemsets and rules generated. However, using only a single min-
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sup implicitly assumes that all items in the data are of the same nature 
and/or have similar frequencies in the database. This is often not the case 
in real-life applications. In many applications, some items appear very fre-
quently in the data, while some other items rarely appear. If the frequen-
cies of items vary a great deal, we will encounter two problems [23]:  

1. If the minsup is set too high, we will not find rules that involve infre-
quent items or rare items in the data.  

2. In order to find rules that involve both frequent and rare items, we have 
to set the minsup very low. However, this may cause combinatorial ex-
plosion and make mining impossible because those frequent items will 
be associated with one another in all possible ways.  

Let us use an example to illustrate the above problem with a very low min-
sup, which will actually introduce another problem.  

Example 7: In a supermarket transaction data set, in order to find rules in-
volving those infrequently purchased items such as FoodProcessor and 
CookingPan (they generate more profits per item), we need to set the min-
sup very low. Let us use only frequent itemsets in this example as they are 
generated first and rules are produced from them. They are also the source 
of all the problems. Now assume we set a very low minsup of 0.005%. We 
find the following meaningful frequent itemset: 
 {FoodProcessor, CookingPan}    [sup = 0.006%]. 

However, this low minsup may also cause the following two meaningless 
itemsets being discovered:  

f1:  {Bread, Cheese, Egg, Bagel, Milk, Sugar, Butter}   [sup = 0.007%], 

f2:  {Bread, Egg, Milk, CookingPan}   [sup = 0.006%]. 

Knowing that 0.007% of the customers buy the seven items in f1 together is 
useless because all these items are so frequently purchased in a supermar-

Attribute1 Attribute2 Atribute3 
a a x 
b n y 

(A) Table data 

t1:    (Attribute1, a), (Attribute2, a), (Attribute3, x) 
t2:    (Attribute1, b), (Attribute2, n), (Attribute3, y) 

(B) Transaction data 

Fig. 2.5. From a table data set to a transaction data set  
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ket. Worst still, they will almost certainly cause combinatorial explosion! 
For itemsets involving such items to be useful, their supports have to be 
much higher. Similarly, knowing that 0.006% of the customers buy the 
four items in f2 together is also meaningless because Bread, Egg and Milk 
are purchased on almost every grocery shopping trip.  ▀ 

This dilemma is called the rare item problem. Using a single minsup 
for the whole data set is inadequate because it cannot capture the inherent 
natures and/or frequency differences of items in the database. By the na-
tures of items we mean that some items, by nature, appear more frequently 
than others. For example, in a supermarket, people buy FoodProcessor and 
CookingPan much less frequently than Bread and Milk. The situation is the 
same for online stores. In general, those durable and/or expensive goods 
are bought less often, but each of them generates more profit. It is thus im-
portant to capture rules involving less frequent items. However, we must 
do so without allowing frequent items to produce too many meaningless 
rules with very low supports and cause combinatorial explosion [23]. 

One common solution to this problem is to partition the data into several 
smaller blocks (subsets), each of which contains only items of similar fre-
quencies. Mining is then done separately for each block using a different 
minsup. This approach is, however, not satisfactory because itemsets or 
rules that involve items across different blocks will not be found.  

A better solution is to allow the user to specify multiple minimum sup-
ports, i.e., to specify a different minimum item support (MIS) to each 
item. Thus, different itemsets need to satisfy different minimum supports 
depending on what items are in the itemsets. This model thus enables us to 
achieve our objective of finding itemsets involving rare items without 
causing frequent items to generate too many meaningless itemsets. This 
method helps solve the problem of f1. To deal with the problem of f2, we 
prevent itemsets that contain both very frequent items and very rare items 
from being generated. A constraint will be introduced to realize this.  

An interesting by-product of this extended model is that it enables the 
user to easily instruct the algorithm to generate only itemsets that contain 
certain items but not itemsets that contain only the other items. This can be 
done by setting the MIS values to more than 100% (e.g., 101%) for these 
other items. This capability is very useful in practice because in many ap-
plications the user is only interested in certain types of itemsets or rules.  

2.4.1 Extended Model 

To allow multiple minimum supports, the original model in Sect. 2.1 needs 
to be extended. In the extended model, the minimum support of a rule is 
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expressed in terms of minimum item supports (MIS) of the items that 
appear in the rule. That is, each item in the data can have a MIS value spe-
cified by the user. By providing different MIS values for different items, 
the user effectively expresses different support requirements for different 
rules. It seems that specifying a MIS value for each item is a difficult task. 
This is not so as we will see at the end of Sect. 2.4.2.  

Let MIS(i) be the MIS value of item i. The minimum support of a rule 
R is the lowest MIS value among the items in the rule. That is, a rule R,  

 i1, i2, …, ik  ik+1, …, ir, 

satisfies its minimum support if the rule’s actual support in the data is 
greater than or equal to:  

 min(MIS(i1), MIS(i2), …, MIS(ir)).  

Minimum item supports thus enable us to achieve the goal of having 
higher minimum supports for rules that involve only frequent items, and 
having lower minimum supports for rules that involve less frequent items.  

Example 8: Consider the set of items in a data set, {Bread, Shoes, 
Clothes}. The user-specified MIS values are as follows: 

MIS(Bread) = 2%  MIS(Clothes) = 0.2% MIS(Shoes) = 0.1%. 

The following rule doesn’t satisfy its minimum support: 

 Clothes  Bread  [sup = 0.15%, conf = 70%]. 

This is so because min(MIS(Bread), MIS(Clothes)) = 0.2%. The following 
rule satisfies its minimum support: 

 Clothes  Shoes  [sup = 0.15%, conf = 70%]. 

because min(MIS(Clothes), MIS(Shoes)) = 0.1%.  ▀  

As we explained earlier, the downward closure property holds the key 
to pruning in the Apriori algorithm. However, in the new model, if we use 
the Apriori algorithm to find all frequent itemsets, the downward closure 
property no longer holds.  

Example 9: Consider the four items 1, 2, 3 and 4 in a data set. Their min-
imum item supports are: 

 MIS(1) = 10%  MIS(2) = 20% MIS(3) = 5%  MIS(4) = 6%. 

If we find that itemset {1, 2} has a support of 9% at level 2, then it does not 
satisfy either MIS(1) or MIS(2). Using the Apriori algorithm, this itemset 
is discarded since it is not frequent. Then, the potentially frequent itemsets 
{1, 2, 3} and {1, 2, 4} will not be generated for level 3. Clearly, itemsets {1, 
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2, 3} and {1, 2, 4} may be frequent because MIS(3) is only 5% and MIS(4) 
is 6%. It is thus wrong to discard {1, 2}. However, if we do not discard {1, 
2}, the downward closure property is lost.   ▀ 

Below, we present an algorithm to solve this problem. The essential idea 
is to sort the items according to their MIS values in ascending order to 
avoid the problem.  

Note that MIS values prevent low support itemsets involving only fre-
quent items from being generated because their individual MIS values are 
all high. To prevent very frequent items and very rare items from appear-
ing in the same itemset, we introduce the support difference constraint.  

Let sup(i) be the actual support of item i in the data. For each itemset s, 
the support difference constraint is as follows: 

 maxis{sup(i)}  minis{sup(i)} ≤ , 

where 0 ≤  ≤ 1 is the user-specified maximum support difference, and it 
is the same for all itemsets. The constraint basically limits the difference 
between the largest and the smallest actual supports of items in itemset s to 
. This constraint can reduce the number of itemsets generated dramati-
cally, and it does not affect the downward closure property.  

2.4.2 Mining Algorithm 

The new algorithm generalizes the Apriori algorithm for finding frequent 
itemsets. We call the algorithm, MS-Apriori. When there is only one MIS 
value (for all items), it reduces to the Apriori algorithm.  

Like Apriori, MS-Apriori is also based on level-wise search. It generates 
all frequent itemsets by making multiple passes over the data. However, 
there is an exception in the second pass as we will see later.  

The key operation in the new algorithm is the sorting of the items in I in 
ascending order of their MIS values. This order is fixed and used in all 
subsequent operations of the algorithm. The items in each itemset follow 
this order. For example, in Example 9 of the four items 1, 2, 3 and 4 and 
their given MIS values, the items are sorted as follows: 3, 4, 1, 2. This or-
der helps solve the problem identified above. 

Let Fk denote the set of frequent k-itemsets. Each itemset w is of the fol-
lowing form, {w[1], w[2], …, w[k]}, which consists of items, w[1], w[2], 
…, w[k], where MIS(w[1])  MIS(w[2])  …  MIS(w[k]). The algorithm 
MS-Apriori is given in Fig. 2.6. Line 1 performs the sorting on I according 
to the MIS value of each item (stored in MS). Line 2 makes the first pass 
over the data using the function init-pass(), which takes two arguments, the 
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data set T and the sorted items M, to produce the seeds L for generating 
candidate itemsets of length 2, i.e., C2. init-pass() has two steps:  

1. It first scans the data once to record the support count of each item.  
2. It then follows the sorted order to find the first item i in M that meets 

MIS(i). i is inserted into L. For each subsequent item j in M after i, if 
j.count/n  MIS(i), then j is also inserted into L, where j.count is the 
support count of j, and n is the total number of transactions in T.  

Frequent 1-itemsets (F1) are obtained from L (line 3). It is easy to show 
that all frequent 1-itemsets are in F1.  

Example 10: Let us follow Example 9 and the given MIS values for the 
four items. Assume our data set has 100 transactions (not limited to the 
four items). The first pass over the data gives us the following support 
counts: {3}.count = 6, {4}.count = 3, {1}.count = 9 and {2}.count = 25. Then,  

L = {3, 1, 2}, and F1 = {{3}, {2}}. 

Item 4 is not in L because 4.count/n < MIS(3) (= 5%), and {1} is not in F1 
because 1.count / n < MIS(1) (= 10%).  ▀ 

For each subsequent pass (or data scan), say pass k, the algorithm per-
forms three operations.  

Algorithm MS-Apriori(T, MS, ) // MS stores all MIS values
1 M  sort(I, MS);  // according to MIS(i)’s stored in MS  
2 L  init-pass(M, T);   // make the first pass over T  
3 F1  {{l} | l  L, l.count/n  MIS(l)};  // n is the size of T 
4 for (k = 2; Fk1  ; k++) do 
5 if k = 2 then   
6 Ck  level2-candidate-gen(L, ) // k = 2 
7 else Ck  MScandidate-gen(Fk1, )  
8 endif; 
9 for each transaction t  T do 
10 for each candidate c  Ck do   
11 if c is contained in t then // c is a subset of t 
12  c.count++ 
13 if c – {c[1]} is contained in t then // c without the first item 
14  (c – {c[1]}).count++  
15 endfor 
16 endfor 
17 Fk  {c  Ck | c.count/n  MIS(c[1])} 
18 endfor 
19 return F  ∪k Fk; 

Fig. 2.6. The MS-Apriori algorithm 
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1. The frequent itemsets in Fk1 found in the (k–1)th pass are used to gen-
erate the candidates Ck using the MScandidate-gen() function (line 7). 
However, there is a special case, i.e., when k = 2 (line 6), for which the 
candidate generation function is different, i.e., level2-candidate-gen().  

2. It then scans the data and updates various support counts of the candi-
dates in Ck (line 9–16). For each candidate c, we need to update its sup-
port count (lines 11–12) and also the support count of c without the first 
item (lines 13–14), i.e., c – {c[1]}, which is used in rule generation and 
will be discussed in Sect. 2.4.3. If rule generation is not required, lines 
13 and 14 can be deleted.  

3. The frequent itemsets (Fk) for the pass are identified in line 17.  
We present candidate generation functions level2-candidate-gen() and 

MScandidate-gen() below. 

Level2-candidate-gen function: It takes an argument L, and returns a su-
perset of the set of all frequent 2-itemsets. The algorithm is given in Fig. 
2.7. Note that in line 5, we use |sup(h)  sup(l)| ≤  because sup(l) may not 
be lower than sup(h), although MIS(l) ≤ MIS(h).  

Example 11: Let us continue with Example 10. We set  = 10%. Recall 
the MIS values of the four items are (in Example 9): 

 MIS(1) = 10%  MIS(2) = 20% 
 MIS(3) = 5%  MIS(4) = 6%. 

The level2-candidate-gen() function in Fig. 2.7 produces   

 C2 = {{3, 1}}. 

{1, 2} is not a candidate because the support count of item 1 is only 9 (or 
9%), less than MIS(1) (= 10%). Hence, {1, 2} cannot be frequent. {3, 2} is 
not a candidate because sup(3) = 6% and sup(2) = 25% and their difference 
is greater than  = 10%  ▀ 

Note that we must use L rather than F1 because F1 does not contain those 
items that may satisfy the MIS of an earlier item (in the sorted order) but 
not the MIS of itself, e.g., item 1 in the above example. Using L, the prob-
lem discussed in Sect. 2.4.1 is solved for C2.   

MScandidate-gen function: The algorithm is given in Fig. 2.8, which is 
similar to the candidate-gen function in the Apriori algorithm. It also has 
two steps, the join step and the pruning step. The join step (lines 2–6) is 
the same as that in the candidate-gen() function. The pruning step (lines 8–
12) is, however, different.  

For each (k-1)-subset s of c, if s is not in Fk1, c can be deleted from Ck. 
However, there is an exception, which is when s does not include c[1] 
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(there is only one such s). That is, the first item of c, which has the lowest 
MIS value, is not in s. Even if s is not in Fk1, we cannot delete c because 
we cannot be sure that s does not satisfy MIS(c[1]), although we know that 
it does not satisfy MIS(c[2]), unless MIS(c[2]) = MIS(c[1]) (line 9). 

Example 12: Let F3 = {{1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {1, 4, 
6}, {2, 3, 5}}. Items in each itemset are in the sorted order. The join step 
produces (we ignore the support difference constraint here) 

 {1, 2, 3, 5}, {1, 3, 4, 5} and {1, 4, 5, 6}. 

The pruning step deletes {1, 4, 5, 6} because {1, 5, 6} is not in F3. We are 
then left with C4 = {{1, 2, 3, 5}, {1, 3, 4, 5}}. {1, 3, 4, 5} is not deleted al-
though {3, 4, 5} is not in F3 because the minimum support of {3, 4, 5} is 
MIS(3), which may be higher than MIS(1). Although {3, 4, 5} does not sat-
isfy MIS(3), we cannot be sure that it does not satisfy MIS(1). However, if 
MIS(3) = MIS(1), then {1, 3, 4, 5} can also be deleted.  ▀ 

Function level2-candidate-gen(L, ) 
1 C2  ; // initialize the set of candidates 
2 for each item l in L in the same order do 
3 if l.count/n  MIS(l) then 
4 for each item h in L that is after l do 
5 if h.count/n  MIS(l) and |sup(h)  sup(l)| ≤  then 
6 C2  C2  {{l, h}};  // insert the candidate {l, h} into C2 

Fig. 2.7. The level2-candidate-gen function 

Function MScandidate-gen(Fk1, )  
1 Ck  ;  // initialize the set of candidates 
2 forall f1, f2  Fk  // find all pairs of frequent itemsets 
3 with f1 = {i1, … , ik2, ik1}  // that differ only in the last item  
4 and  f2 = {i1, … , ik2,  i’k1}  
5 and ik-1 < i’k1 and |sup(ik-1)  sup(i’k1)| ≤   do   
6 c  {i1, …, ik1, i’k1};  // join the two itemsets f1 and f2 
7 Ck  Ck  {c};  // insert the candidate itemset c into Ck  
8 for each (k1)-subset s of c do 
9 if (c[1]  s) or (MIS(c[2]) = MIS(c[1])) then 
10 if (s  Fk1) then   
11 delete c from Ck; // delete c from the set of candidates 
12 endfor 
13 endfor 
14 return Ck;  // return the generated candidates 

Fig. 2.8. The MScandidate-gen function 
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The problem discussed in Sect. 2.4.1 is solved for Ck (k > 2) because, 
due to the sorting, we do not need to extend a frequent (k1)-itemset with 
any item that has a lower MIS value. Let us see a complete example.  

Example 13: Given the following seven transactions,  
 Beef, Bread 

 Bread, Clothes 
Bread, Clothes, Milk 
Cheese, Boots 
Beef, Bread, Cheese, Shoes 
Beef, Bread, Cheese, Milk 
Bread, Milk, Clothes 

and MIS(Milk) = 50%, MIS(Bread) = 70%, and 25% for all other items. 
Again, the support difference constraint is not used. The following fre-
quent itemsets are produced: 

F1 = {{Beef}, {Cheese}, {Clothes}, {Bread}} 
F2 = {{Beef, Cheese}, {Beef, Bread}, {Cheese, Bread}  
 {Clothes, Bread}, {Clothes, Milk}} 
F3 = {{Beef, Cheese, Bread}, {Clothes, Milk, Bread}}. ▀ 

To conclude this sub-section, let us further discuss two important issues: 

1. Specify MIS values for items: This is usually done in two ways:  
 Assign a MIS value to each item according to its actual sup-

port/frequency in the data set T.  For example, if the actual support of 
item i in T is sup(i), then the MIS value for i may be computed with 
sup(i), where  is a parameter (0    1) and is the same for all 
items in T.  

 Group items into clusters (or blocks). Items in each cluster have simi-
lar frequencies. All items in the same cluster are given the same MIS 
value. We should note that in the extended model frequent itemsets 
involving items from different clusters will be found.   

2. Generate itemsets that must contain certain items: As mentioned earlier, 
the extended model enables the user to instruct the algorithm to generate 
itemsets that must contain certain items, or not to generate any itemsets 
consisting of only the other items. Let us see an example.  

Example 14: Given the data set in Example 13, if we want to generate 
frequent itemsets that must contain at least one item in {Boots, Bread, 
Cheese, Milk, Shoes}, or not to generate itemsets involving only Beef 
and/or Clothes, we can simply set  

 MIS(Beef) = 101%, and MIS(Clothes) = 101% 
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Then the algorithm will not generate the itemsets, {Beef}, {Clothes} 
and {Beef, Clothes}. However, it will still generate such frequent item-
sets as {Cheese, Beef} and {Cheese, Bread, Beef}. ▀ 

In many applications, this feature comes quite handy because the user 
is often only interested in certain types of itemsets or rules.  

2.4.3  Rule Generation 

Association rules are generated using frequent itemsets. In the case of a 
single minsup, if f is a frequent itemset and fsub is a subset of f, then fsub 
must also be a frequent itemset. All their support counts are computed and 
recorded by the Apriori algorithm. Then, the confidence of each possible 
rule can be easily calculated without seeing the data again.       

However, in the case of MS-Apriori, if we only record the support count 
of each frequent itemset, it is not sufficient. Let us see why.  

Example 15: Recall in Example 8, we have 
MIS(Bread) = 2%  MIS(Clothes) = 0.2% MIS(Shoes) = 0.1%. 

If the actual support for the itemset {Clothes, Bread} is 0.15%, and for the 
itemset {Shoes, Clothes, Bread} is 0.12%, according to MS-Apriori, 
{Clothes, Bread} is not a frequent itemset since its support is less than 
MIS(Clothes). However, {Shoes, Clothes, Bread} is a frequent itemset as 
its actual support is greater than  
 min(MIS(Shoes), MIS(Clothes), MIS(Bread)) = MIS(Shoes)). 

We now have a problem in computing the confidence of the rule,  

Clothes, Bread  Shoes 

because the itemset {Clothes, Bread} is not a frequent itemset and thus its 
support count is not recorded. In fact, we may not be able to compute the 
confidences of the following rules either: 

Clothes  Shoes, Bread 
Bread  Shoes, Clothes 

because {Clothes} and {Bread} may not be frequent.  ▀ 

Lemma: The above problem may occur only when the item that has the 
lowest MIS value in the itemset is in the consequent of the rule (which 
may have multiple items). We call this problem the head-item problem. 

Proof by contradiction: Let f be a frequent itemset, and a  f be the item 
with the lowest MIS value in f (a is called the head item). Thus, f uses 
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MIS(a) as its minsup. We want to form a rule, X  Y, where X, Y  f, X  
Y = f and X  Y = . Our examples above already show that the head-item 
problem may occur when a  Y. Now assume that the problem can also 
occur when a  X. Since a  X and X  f, a must have the lowest MIS 
value in X and X must be a frequent itemset, which is ensured by the MS-
Apriori algorithm. Hence, the support count of X is recorded. Since f is a 
frequent itemset and its support count is also recorded, then we can com-
pute the confidence of X  Y. This contradicts our assumption.  ▀ 

The lemma indicates that we need to record the support count of f – {a}. 
This is achieved by lines 13–14 in MS-Apriori (Fig. 2.6). All problems in 
Example 15 are solved. A similar rule generation function as genRules() in 
Apriori can be designed to generate rules with multiple minimum supports.  

2.5 Mining Class Association Rules 

The mining models studied so far do not use any targets. That is, any item 
can appear as a consequent or condition of a rule. However, in some appli-
cations, the user is interested in only rules with some fixed target items on 
the right-hand side [22]. For example, the user has a collection of text doc-
uments from some topics (target items), and he/she wants to know what 
words are correlated with each topic. In [25], a data mining system based 
entirely on such rules, called class association rules, is reported, which 
has been in use in Motorola for many different applications since 2006. In 
the Web environment, class association rules are also useful because many 
types of Web data are in the form of transactions, e.g., search queries is-
sued by users and pages clicked by visitors. Such applications often have 
target items, e.g., advertisements. Web sites want to know how user activi-
ties are related to advertisements that the users may view or click (see 
Chap. 12). This touches the issue of classification or prediction, which we 
will study in the next chapter where we will see that such rules can be used 
either directly for classification or indirectly as features for classification.  

2.5.1 Problem Definition 

Let T be a transaction data set consisting of n transactions. Each transac-
tion is labeled with a class y. Let I be the set of all items in T, Y be the set 
of all class labels (or target items) and I  Y = . A class association 
rule (CAR) is an implication of the form  

 X  y, where X  I, and y  Y.  
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The definitions of support and confidence are the same as those for nor-
mal association rules. In general, a class association rule is different from a 
normal association rule in two ways: 
1. The consequent of a CAR has only a single item, while the consequent 

of a normal association rule can have any number of items.  
2. The consequent y of a CAR can only be from the class label set Y, i.e., y 
 Y. No item from I can appear as the consequent, and no class label 
can appear as a rule condition. In contrast, a normal association rule can 
have any item as a condition or a consequent.  

Objective: The problem of mining CARs is to generate the complete set of 
CARs that satisfies the user-specified minimum support (minsup) and min-
imum confidence (minconf) constraints.  

Example 16: Fig. 2.9 shows a data set which has seven text documents. 
Each document is a transaction and consists of a set of keywords. Each 
transaction is also labeled with a topic class (education or sport).  

I = {Student, Teach, School, City, Game, Baseball, Basketball, Team, 
Coach, Player, Spectator} 

Y = {Education, Sport}. 

 Transactions  Class 
doc 1:  Student, Teach, School  : Education 
doc 2:  Student, School  : Education   
doc 3:  Teach, School, City, Game  : Education 
doc 4:  Baseball, Basketball : Sport 
doc 5:  Basketball, Player, Spectator   : Sport 
doc 6:  Baseball, Coach, Game, Team  : Sport 
doc 7:  Basketball, Team, City, Game  : Sport 

Fig. 2.9. An example of a data set for mining class association rules 

Let minsup = 20% and minconf = 60%. The following are two examples of 
class association rules: 

Student, School  Education [sup= 2/7, conf = 2/2] 
Game  Sport [sup= 2/7, conf = 2/3]. ▀ 

A question that one may ask is: can we mine the data by simply using the 
Apriori algorithm and then perform a post-processing of the resulting rules 
to select only those class association rules? In principle, the answer is yes 
because CARs are a special type of association rules. However, in practice 
this is often difficult or even impossible because of combinatorial explo-
sion, i.e., the number of rules generated in this way can be huge.   
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2.5.2 Mining Algorithm 

Unlike normal association rules, CARs can be mined directly in a single 
step. The key operation is to find all ruleitems that have support above 
minsup. A ruleitem is of the form: 

(condset, y), 

where condset  I is a set of items, and  y  Y is a class label. The support 
count of a condset (called condsupCount) is the number of transactions in 
T that contain the condset. The support count of a ruleitem (called rule-
supCount) is the number of transactions in T that contain the condset and 
are labeled with class y. Each ruleitem basically represents a rule:     

 condset  y, 

whose support is (rulesupCount / n), where n is the total number of trans-
actions in T, and whose confidence is (rulesupCount / condsupCount).  

Ruleitems that satisfy the minsup are called frequent ruleitems, while 
the rest are called infrequent ruleitems. For example, ({Student, School}, 
Education) is a ruleitem in T of Fig. 2.9. The support count of the condset 
{Student, School} is 2, and the support count of the ruleitem is also 2. Then 
the support of the ruleitem is 2/7 (= 28.6%), and the confidence of the rule-
item is 100%. If minsup = 10%, then the ruleitem satisfies the minsup 
threshold. We say that it is frequent. If minconf = 80%, then the ruleitem 
satisfies the minconf threshold. We say that the ruleitem is confident. We 
thus have the class association rule: 

Student, School  Education [sup= 2/7, conf = 2/2]. 

The rule generation algorithm, called CAR-Apriori, is given in Fig. 
2.10, which is based on the Apriori algorithm. Like the Apriori algorithm, 
CAR-Apriori generates all the frequent ruleitems by making multiple 
passes over the data. In the first pass, it computes the support count of each 
1-ruleitem (containing only one item in its condset) (line 1). The set of all 
1-candidate ruleitems considered is:  

C1 = {({i}, y) | i  I, and y  Y}, 

which basically associates each item in I (or in the transaction data set T) 
with every class label. Line 2 determines whether the candidate 1-
ruleitems are frequent. From frequent 1-ruleitems, we generate 1-condition 
CARs (rules with only one condition) (line 3). In a subsequent pass, say k, 
it starts with the seed set of (k1)-ruleitems found to be frequent in the 
(k1)-th pass, and uses this seed set to generate new possibly frequent k-
ruleitems, called candidate k-ruleitems (Ck in line 5). The actual support 
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counts, both condsupCount and rulesupCount, are updated during the scan 
of the data (lines 6–13) for each candidate k-ruleitem. At the end of the da-
ta scan, it determines which of the candidate k-ruleitems in Ck are actually 
frequent (line 14). From the frequent k-ruleitems, line 15 generates k-
condition CARs (class association rules with k conditions).  

One interesting note about ruleitem generation is that if a ruleitem/rule 
has a confidence of 100%, then extending the ruleitem with more condi-
tions (adding items to its condset) will also result in rules with 100% con-
fidence although their supports may drop with additional items. In some 
applications, we may consider these subsequent rules redundant because 
additional conditions do not provide any more information. Then, we 
should not extend such ruleitems in candidate generation for the next level, 
which can reduce the number of generated rules substantially. If desired, 
redundancy handling can be added in the CAR-Apriori algorithm easily.  

The CARcandidate-gen() function is very similar to the candidate-gen() 
function in the Apriori algorithm, and it is thus omitted. The only differ-
ence is that in CARcandidate-gen() ruleitems with the same class are 
joined by joining their condsets. 

Example 17: Let us work on a complete example using our data in Fig. 
2.9. We set minsup = 20%, and minconf = 60%. 

F1:    { ({School}, Education):(3, 3),  ({Student}, Education):(2, 2), 
  ({Teach}, Education):(2, 2),  ({Baseball}, Sport):(2, 2), 

Algorithm CAR-Apriori(T) 
1 C1  init-pass(T);   // the first pass over T  
2 F1  {f | f  C1, f. rulesupCount / n  minsup};  
3 CAR1  {f | f  F1, f.rulesupCount / f.condsupCount  minconf};  
4 for (k = 2; Fk1  ; k++) do  
5 Ck  CARcandidate-gen(Fk1);    
6 for each transaction t  T do  
7 for each candidate c  Ck do    
8 if c.condset is contained in t then // c is a subset of t 
9 c.condsupCount++;  
10 if t.class = c.class then  
11 c.rulesupCount++ 
12 endfor 
13 end-for 
14 Fk  {c  Ck | c.rulesupCount / n  minsup}; 
15 CARk  {f | f  Fk, f.rulesupCount / f.condsupCount  minconf};  
16 endfor 
17 return CAR  ∪k CARk; 

Fig. 2.10. The CAR-Apriori algorithm 
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  ({Basketball}, Sport):(3, 3), ({Game}, Sport):(3, 2),  
  ({Team}, Sport):(2, 2)} 

Note: The two numbers within the parentheses after each ruleitem are its 
condSupCount and ruleSupCount respectively. 

CAR1:  School  Education [sup = 3/7, conf = 3/3] 
 Student  Education [sup = 2/7, conf = 2/2] 
 Teach  Education [sup = 2/7, conf = 2/2] 
 Baseball  Sport [sup = 2/7, conf = 2/2] 
 Basketball  Sport [sup = 3/7, conf = 3/3] 
 Game  Sport [sup = 2/7, conf = 2/3]  
 Team  Sport [sup = 2/7, conf = 2/2]  

Note: We do not deal with rule redundancy in this example.   

C2:   { ({School, Student}, Education),  ({School, Teach}, Education),  
  ({Student, Teach}, Education),  ({Baseball, Basketball}, Sport), 
  ({Baseball, Game}, Sport), ({Baseball, Team}, Sport),  

  ({Basketball, Game}, Sport),  ({Basketball, Team}, Sport), 
  ({Game, Team}, Sport)} 

F2:   { ({School, Student}, Education):(2, 2),   
 ({School, Teach}, Education):(2, 2), ({Game, Team}, Sport):(2, 2)} 

CAR2:  School, Student  Education [sup = 2/7, conf = 2/2] 
 School, Teach  Education [sup = 2/7, conf = 2/2] 
 Game, Team  Sport [sup = 2/7, conf = 2/2] ▀ 

We note that for many applications involving target items, the data sets 
used are relational tables. They need to be converted to transaction forms 
before mining. We can use the method in Sect. 2.3 for the purpose.  

Example 18: In Fig. 2.11(A), the data set has three data attributes and a 
class attribute with two possible values, positive and negative. It is con-
verted to the transaction data in Fig. 2.11(B). Notice that for each class, we 
only use its original value. There is no need to attach the attribute “Class” 

Attribute1 Attribute2 Atribute3 Class 
a a x positive 
b n y negative 

(A) Table data 

t1:    (Attribute1, a), (Attribute2, a), (Attribute3, x)  : Positive 
t2:    (Attribute1, b), (Attribute2, n), (Attribute3, y)  : negative 

(B) Transaction data 

Fig. 2.11. Converting a table data set (A) to a transaction data set (B)  
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because there is no ambiguity. As discussed in Sect. 2.3, for each numeric 
attribute, its value range needs to be discretized into intervals either manu-
ally or automatically before conversion and rule mining. There are many 
discretization algorithms. Interested readers are referred to [14]. ▀ 

2.5.3 Mining with Multiple Minimum Supports 

The concept of mining with multiple minimum supports discussed in Sect. 
2.4 can be incorporated in class association rule mining in two ways: 

1. Multiple minimum class supports: The user can specify different min-
imum supports for different classes. For example, the user has a data set 
with two classes, Yes and No. Based on the application requirement, 
he/she may want all rules of class Yes to have the minimum support of 
5% and all rules of class No to have the minimum support of 20%.  

2. Multiple minimum item supports: The user can specify a minimum 
item support for every item (either a class item/label or a non-class 
item). This is more general and is similar to normal association rule 
mining discussed in Sect. 2.4.  

For both approaches, similar mining algorithms to that given in Sect. 2.4 
can be devised. The support difference constraint in Sect. 2.4.1 can be in-
corporated as well. Like normal association rule mining with multiple min-
imum supports, by setting minimum class and/or item supports to more 
than 100% for some items, the user effectively instructs the algorithm not 
to generate rules involving only these items.  

Finally, although we have discussed only multiple minimum supports so 
far, we can easily use different minimum confidences for different classes 
as well, which provides an additional flexibility in applications.  

2.6 Basic Concepts of Sequential Patterns  

Association rule mining does not consider the order of transactions. How-
ever, in many applications such orderings are significant. For example, in 
market basket analysis, it is interesting to know whether people buy some 
items in sequence, e.g., buying bed first and then buying bed sheets some 
time later. In Web usage mining, it is useful to find navigational patterns 
in a Web site from sequences of page visits of users (see Chap. 12). In text 
mining, considering the ordering of words in a sentence is vital for finding 
linguistic or language patterns (see Chap. 11). For these applications, asso-
ciation rules will not be appropriate. Sequential patterns are needed. Be-
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low, we define the problem of mining sequential patterns and introduce the 
main concepts involved.  

Let I = {i1, i2, …, im} be a set of items. A sequence is an ordered list of 
itemsets. Recall an itemset X is a non-empty set of items X  I. We denote 
a sequence s by a1a2…ar, where ai is an itemset, which is also called an 
element of s.  We denote an element (or an itemset) of a sequence by {x1, 
x2, …, xk}, where xj  I is an item. We assume without loss of generality 
that items in an element of a sequence are in lexicographic order. An item 
can occur only once in an element of a sequence, but can occur multiple 
times in different elements. The size of a sequence is the number of ele-
ments (or itemsets) in the sequence. The length of a sequence is the num-
ber of items in the sequence. A sequence of length k is called a k-sequence. 
If an item occurs multiple times in different elements of a sequence, each 
occurrence contributes to the value of k. A sequence s1 = a1a2…ar is a 
subsequence of another sequence s2 = b1b2…bv, or s2 is a supersequence 
of s1, if there exist integers 1 ≤ j1 < j2 < … < jr1 < jr  v such that a1  bj1, 
a2  bj2, …, ar  bjr. We also say that s2 contains s1.  

Example 19: Let I = {1, 2, 3, 4, 5, 6, 7, 8, 9}. The sequence {3}{4, 5}{8} is 
contained in (or is a subsequence of) {6} {3, 7}{9}{4, 5, 8}{3, 8} because {3} 
 {3, 7}, {4, 5}  {4, 5, 8}, and {8}  {3, 8}. However, {3}{8} is not con-
tained in {3, 8} or vice versa. The size of the sequence {3}{4, 5}{8} is 3, 
and the length of the sequence is 4.  ▀ 

Objective: Given a set S of input data sequences (or sequence database), 
the problem of mining sequential patterns is to find all sequences that 
have a user-specified minimum support. Each such sequence is called a 
frequent sequence, or a sequential pattern. The support for a se-
quence is the fraction of total data sequences in S that contains this se-
quence.  

Example 20: We use the market basket analysis as an example. Each se-
quence in this context represents an ordered list of transactions of a par-
ticular customer. A transaction is a set of items that the customer pur-
chased at a time (called the transaction time). Then transactions in the 
sequence are ordered by increasing transaction time. Table 2.1 shows a 
transaction database which is already sorted according to customer ID (the 
major key) and transaction time (the minor key). Table 2.2 gives the data 
sequences (also called customer sequences). Table 2.3 gives the output 
sequential patterns with the minimum support of 25%, i.e., two customers. 
 ▀ 
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Table 2.1. A set of transactions sorted by customer ID and transaction time 

Customer ID Transaction Time Transaction (items bought) 
1 July 20, 2005 30 
1 July 25, 2005 90 
2 July 9, 2005 10, 20 
2 July 14, 2005 30 
2 July 20, 2005 10, 40, 60, 70 
3 July 25, 2005 30, 50, 70, 80 
4 July 25, 2005 30 
4 July 29, 2005 30, 40, 70, 80 
4 August 2, 2005 90 
5 July 12, 2005 90 

Table 2.2. The sequence database produced from the transactions in Table 2.1. 

Customer ID Data Sequence 
1 {30} {90} 
2 {10, 20} {30} {10, 40, 60, 70}
3 {30, 50, 70, 80} 
4 {30} {30, 40, 70, 80} {90} 
5 {90} 

Table 2.3. The final output sequential patterns 

 Sequential Patterns with Support  25% 
1-sequences {30}, {40}, {70}, {80}, {90}  
2-sequences {30} {40}, {30} {70}, {30}, {90}, {30, 70}, 

{30, 80}, {40, 70},  {70, 80} 
3-sequences {30} {40, 70}, {30, 70, 80} 

2.7 Mining Sequential Patterns Based on GSP 

This section describes two algorithms for mining sequential patterns based 
on the GSP algorithm in [41]: the original GSP, which uses a single mini-
mum support, and MS-GSP, which uses multiple minimum supports.  

2.7.1 GSP Algorithm 

GSP works in almost the same way as the Apriori algorithm. We still use 
Fk to store the set of all frequent k-sequences, and Ck to store the set of all 
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candidate k-sequences. The algorithm is given in Fig. 2.12. The main dif-
ference is in the candidate generation, candidate-gen-SPM(), which is giv-
en in Fig. 2.13. We use an example to illustrate the function.  

Example 21:  Table 2.4 shows F3, and C4 after the join and prune steps. In 
the join step, the sequence {1, 2}{4} joins with {2}{4, 5} to produce {1, 
2}{4, 5}, and joins with {2}{4}{6} to produce {1, 2}{4} {6}. The other se-
quences cannot be joined. For instance, {1}{4, 5} does not join with any 
sequence since there is no sequence of the form {4, 5}{x} or {4, 5, x}. In 
the prune step, {1, 2}{4} {6} is removed since {1}{4} {6} is not in F3.  ▀ 

Algorithm GSP(S) 
1 C1  init-pass(S);   // the first pass over S  
2 F1  {{f}| f  C1, f.count/n  minsup};  // n is the number of sequences in S 
3 for (k = 2; Fk1  ; k++) do // subsequent passes over S 
4 Ck  candidate-gen-SPM(Fk1); 
5 for each data sequence s  S do // scan the data once 
6 for each candidate c  Ck do    
7 if c is contained in s then  
8  c.count++;  // increment the support count 
9 endfor 
10 endfor 
11 Fk  {c  Ck | c.count/n  minsup} 
12 endfor 
13 return F  ∪k Fk; 

Fig. 2.12. The GSP Algorithm for generating sequential patterns 

Function candidate-gen-SPM(Fk1)  // SPM: Sequential Pattern Mining 
1. Join step. Candidate sequences are generated by joining Fk1 with Fk1. A se-

quence s1 joins with s2 if the subsequence obtained by dropping the first item 
of s1 is the same as the subsequence obtained by dropping the last item of s2. 
The candidate sequence generated by joining s1 with s2 is the sequence s1 ex-
tended with the last item in s2. There are two cases:  
 the added item forms a separate element if it was a separate element in s2, 

and is appended at the end of s1 in the merged sequence, and    
 the added item is part of the last element of s1 in the merged sequence oth-

erwise.  
When joining F1 with F1, we need to add the item in s2 both as part of an 
itemset and as a separate element. That is, joining {x} with {y} gives us 
both {x, y} and {x}{y}. Note that x and y in {x, y} are ordered.  

2. Prune step. A candidate sequence is pruned if any one of its (k1)-
subsequences is infrequent (without minimum support).  

Fig. 2.13. The candidate-gen-SPM function  
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Table 2.4. Candidate generation: an example 

Candidate 4-sequences Frequent 
3-sequences after joining after pruning
{1, 2} {4} {1, 2} {4, 5} {1, 2} {4, 5} 
{1, 2} {5} {1, 2} {4} {6}  
{1} {4, 5}   
{1, 4} {6}   
{2} {4, 5}   
{2} {4} {6}   

2.7.2 Mining with Multiple Minimum Supports 

As in association rule mining, using a single minimum support in sequen-
tial pattern mining is also a limitation for many applications because some 
items appear very frequently in the data, while some others appear rarely.  

Example 22: One of the Web mining tasks is to mine comparative sen-
tences such as “the picture quality of camera X is better than that of cam-
era Y.” from product reviews, forum postings and blogs (see Chap. 11). 
Such a sentence usually contains a comparative indicator word, e.g., better 
in the above sentence. We want to discover linguistic patterns involving a 
set of given comparative indicators, e.g., better, more, less, ahead, win, 
superior, etc. Some of these indicators (e.g., more and better) appear very 
frequently in natural language sentences, while some others (e.g., win and 
ahead) appear rarely. In order to find patterns that contain such rare indi-
cators, we have to use a very low minsup. However, this causes patterns 
involving frequent indicators to generate a huge number of spurious pat-
terns. Moreover, we need a way to tell the algorithm that we want only 
patterns that contain at least one comparative indicator. Using GSP with a 
single minsup is no longer appropriate. The multiple minimum supports 
model solves both problems nicely.  ▀ 

We again use the concept of minimum item supports (MIS). The user 
is allowed to assign each item a MIS value. By providing different MIS 
values for different items, the user essentially expresses different support 
requirements for different sequential patterns. To ease the task of specify-
ing many MIS values by the user, the same strategies as those for mining 
association rules can also be applied here (see Sect. 2.4.2).  

Let MIS(i) be the MIS value of item i. The minimum support of a se-
quential pattern P is the lowest MIS value among the items in the pattern. 
Let the set of items in P be: i1, i2, …, ir. The minimum support for P is:  
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 minsup(P) = min(MIS(i1), MIS(i2), …, MIS(ir)). 

The new algorithm, called MS-GSP, is given in Fig. 2.14. It generalizes 
the GSP algorithm in Fig. 2.12. Like GSP, MS-GSP is also based on level-
wise search. Line 1 sorts the items in ascending order according to their 
MIS values stored in MS. Line 2 makes the first pass over the sequence da-
ta using the function init-pass(), which performs the same function as that 
in MS-Apriori to produce the seeds set L for generating the set of candi-
date sequences of length 2, i.e., C2. Frequent 1-sequences (F1) are obtained 
from L (line 3).  

For each subsequent pass, the algorithm works similarly to MS-Apriori. 
The function level2-candidate-gen-SPM() can be designed based on lev-
el2-candidate-gen in MS-Apriori and the join step in Fig. 2.13. MScandi-
date-gen-SPM() is, however, complex, which we will discuss shortly.  

In line 13, c.minMISItem gives the item that has the lowest MIS value in 
the candidate sequence c. Unlike that in MS-Apriori, where the first item 
in each itemset has the lowest MIS value, in sequential pattern mining the 
item with the lowest MIS value may appear anywhere in a sequence. Simi-
lar to those in MS-Apriori, lines 13 and 14 are used to ensure that all se-
quential rules can be generated after MS-GSP without scanning the origi-
nal data. Note that in traditional sequential pattern mining, sequential rules 
are not defined. We will define several types in Sect. 2.9. 

Algorithm MS-GSP(S, MS) // MS stores all MIS values
1 M  sort(I, MS);  // according to MIS(i)’s stored in MS  
2 L  init-pass(M, S);   // make the first pass over S  
3 F1  {{l} | l  L, l.count/n  MIS(l)};  // n is the size of S 
4 for (k = 2; Fk1  ; k++) do 
5  if k = 2 then   
6 Ck  level2-candidate-gen-SPM(L)  
7 else Ck  MScandidate-gen-SPM(Fk1) 
8 endif 
9 for each data sequence s  S do 
10 for each candidate c  Ck do   
11 if c is contained in s then  
12  c.count++ 
13 if c’ is contained in s, where c’ is c after an occurrence of 

c.minMISItem is removed from c then 
14  c.rest.count++ // c.rest: c without c.minMISItem 
15 endfor 
16 endfor 
17 Fk  {c  Ck | c.count/n  MIS(c.minMISItem)} 
18 endfor 
19 return F  ∪k Fk; 

Fig. 2.14. The MS-GSP algorithm 
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Let us now discuss MScandidate-gen-SPM(). In MS-Apriori, the order-
ing of items is not important and thus we put the item with the lowest MIS 
value in each itemset as the first item of the itemset, which simplifies the 
join step. However, for sequential pattern mining, we cannot artificially 
put the item with the lowest MIS value as the first item in a sequence be-
cause the ordering of items is significant. This causes problems for joining. 

Example 23: Assume we have a sequence s1 = {1, 2}{4} in F3, from 
which we want to generate candidate sequences for the next level. Suppose 
that item 1 has the lowest MIS value in s1. We use the candidate generation 
function in Fig. 2.13. Assume also that the sequence s2 = {2}{4, 5} is not 
in F3 because its minimum support is not satisfied. Then we will not gen-
erate the candidate {1, 2}{4, 5}. However, {1, 2}{4, 5} can be frequent be-
cause items 2, 4, and 5 may have higher MIS values than item 1.  ▀ 

To deal with this problem, let us make an observation. The problem on-
ly occurs when the first item in the sequence s1 or the last item in the se-
quence s2 is the only item with the lowest MIS value, i.e., no other item in 
s1 (or s2) has the same lowest MIS value. If the item (say x) with the lowest 
MIS value is not the first item in s1, then s2 must contain x, and the candi-
date generation function in Fig. 2.13 will still be applicable. The same rea-
soning goes for the last item of s2. Thus, we only need special treatment for 
these two cases.  

Let us see how to deal with the first case, i.e., the first item is the only 
item with the lowest MIS value. We use an example to develop the idea. 
Assume we have the frequent 3-sequence of s1 = {1, 2}{4}. Based on the 
algorithm in Fig. 2.13, s1 may be extended to generate two possible candi-
dates using {2}{4}{x} and {2}{4, x}  

c1 = {1, 2}{4}{x}  and  c2 = {1, 2}{4, x}, 

where x is an item. However, {2}{4}{x} and {2}{4, x} may not be frequent 
because items 2, 4, and x may have higher MIS values than item 1,  but we 
still need to generate c1 and c2 because they can be frequent. A different 
join strategy is thus needed.  

We observe that for c1 to be frequent, the subsequence s2 = {1}{4}{x} 
must be frequent. Then, we can use s1 and s2 to generate c1. c2 can be gen-
erated in a similar manner with s2 = {1}{4, x}. s2 is basically the subse-
quence of c1 (or c2) without the second item. Here we assume that the MIS 
value of x is higher than item 1. Otherwise, it falls into the second case. 

Let us see the same problem for the case where the last item has the on-
ly lowest MIS value. Again, we use an example to illustrate. Assume we 
have the frequent 3-sequence s2 = {3, 5}{1}. It can be extended to produce 
two possible candidates based on the algorithm in Fig. 2.13,  
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c1 = {x}{3, 5}{1}, and c2 = {x, 3, 5}{1}. 

For c1 to be frequent, the subsequence s1 = {x}{3}{1} has to be frequent 
(we assume that the MIS value of x is higher than that of item 1). Thus, we 
can use s1 and s2 to generate c1. c2 can be generated with s1 = {x, 3}{1}. s1 
is basically the subsequence of c1 (or c2) without the second last item.  

The MScandidate-gen-SPM() function is given in Fig. 2.15, which is 
self-explanatory. Some special treatments are needed for 2-sequences be-
cause the same s1 (or s2) may generate two candidate sequences. We use 
two examples to show the working of the function.  

Example 24: Consider the items 1, 2, 3, 4, 5, and 6 with their MIS values,  
MIS(1) = 0.03  MIS(2) = 0.05  MIS(3) = 0.03  
MIS(4) = 0.07  MIS(5) = 0.08  MIS(6) = 0.09. 

Function MScandidate-gen-SPM(Fk1)  
1 Join Step. Candidate sequences are generated by joining Fk1 with Fk1. 
2 if the MIS value of the first item in a sequence (denoted by s1) is less than (<) 

the MIS value of every other item in s1 then // s1 and s2 can be equal  
 Sequence s1 joins with s2 if (1) the subsequences obtained by dropping the 

second item of s1 and the last item of s2 are the same, and (2) the MIS val-
ue of the last item of s2 is greater than that of the first item of s1. Candidate 
sequences are generated by extending s1 with the last item of s2:  
 if the last item l in s2 is a separate element then  
 {l} is appended at the end of s1 as a separate element to form a candi-

date sequence c1. 
if (the length and the size of s1 are both 2) AND (the last item of s2 is 

greater than the last item of s1) then  // maintain lexicographic order 
l is added at the end of the last element of s1 to form another candi-

date sequence c2. 
 else  if ((the length of s1 is 2 and the size of s1 is 1) AND (the last item 

of s2 is greater than the last item of s1)) OR (the length of s1 
is greater than 2) then  

 the last item in s2 is added at the end of the last element of s1 to 
form the candidate sequence c2. 

3 elseif the MIS value of the last item in a sequence (denoted by s2) is less than 
(<) the MIS value of every other item in s2 then 

 A similar method to the one above can be used in the reverse order.  
4  else  use the Join Step in Fig. 2.13  
5 Prune step: A candidate sequence is pruned if any one of its (k1)-

subsequences is infrequent (without minimum support) except the subse-
quence that does not contain the item with strictly the lowest MIS value.  

Fig. 2.15. The MScandidate-gen-SPM function 
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The data set has 100 sequences. The following frequent 3-sequences are in 
F3 with their actual support counts attached after “:”:  

(a). {1}{4}{5}:4  (b). {1}{4}{6}:5  (c). {1}{5}{6}:6 
(d). {1}{5, 6}:5 (e). {1}{6}{3}:4  (f).  {6}{3}{6}:9 
(g). {5, 6}{3}:5  (h). {5}{4}{3}:4 (i).  {4}{5}{3}:7. 

For sequence (a) (= s1), item 1 has the lowest MIS value. It cannot join 
with sequence (b) because condition (1) in Fig. 2.15 is not satisfied. How-
ever, (a) can join with (c) to produce the candidate sequence, {1}{4}{5}{6}. 
(a) can also join with (d) to produce {1}{4}{5, 6}. (b) can join with (e) to 
produce {1}{4}{6}{3}, which is pruned subsequently because {1}{4}{3} is 
infrequent. (d) and (e) can be joined to give {1}{5, 6}{3}, but it is pruned 
because {1}{5}{3} does not exist. (e) can join with (f) to produce 
{1}{6}{3}{6} which is done in line 4 because both item 1 and item 3 in (e) 
have the same MIS value. However, it is pruned because {1}{3}{6} is in-
frequent. We do not join (d) and (g), although they can be joined based on 
the algorithm in Fig. 2.13, because the first item of (d) has the lowest MIS 
value and we use a different join method for such sequences.  

Now we look at 3-sequences whose last item has strictly the lowest MIS 
value. (i) (= s1) can join with (h) (= s2) to produce {4}{5}{4}{3}. However, 
it is pruned because {4}{4}{3} is not in F3. ▀ 

Example 25: Now we consider generating candidates from frequent 2-
sequences, which is special as we noted earlier. We use the same items and 
MIS values in Example 24. The following frequent 2-sequences are in F2 
with their actual support counts attached after “:”:  

(a). {1}{5}:6  (b). {1}{6}:7  (c) {5}{4}:8  
(d). {1, 5}:6 (e). {1, 6}:6.  

(a) can join with (b) to produce both {1}{5}{6} and {1}{5, 6}. (b) can join 
with (d) to produce {1, 5}{6}. (e) can join with (a) to produce {1, 6}{5}. 
Clearly, there are other joins. Again, (a) will not join with (c).  ▀ 

Note that the support difference constraint in Sect. 2.4.1 can also be 
included. We omitted it to simplify the algorithm as it is already complex. 
Also, the user can instruct the algorithm to generate only certain sequential 
patterns or not to generate others by setting the MIS values suitably.  

2.8  Mining Sequential Patterns Based on PrefixSpan 

We now introduce another sequential pattern mining algorithm, called Pre-
fixSpan [33], which does not generate candidates. Different from the GSP 
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algorithm [41], which can be regarded as performing breadth-first search 
to find all sequential patterns, PrefixSpan performs depth-first search.  

2.8.1  PrefixSpan Algorithm 

It is easy to introduce the original PrefixSpan algorithm using an example.  

Example 26: Consider again mining sequential patterns from Table 2.2 
with minsup = 25%. PrefixSpan first sorts all items in each element (or 
itemset) as shown in the table. Then, by one scan of the sequence database, 
it finds all frequent items, i.e., 30, 40, 70, 80 and 90. The corresponding 
length one sequential patterns are {30}, {40}, {70}, {80} and {90}. 

We notice that the complete set of sequential patterns can actually be 
divided into five mutually exclusive subsets: the subset with prefix {30}, 
the subset with prefix {40}, the subset with prefix {70}, the subset with 
prefix {80}, and the subset with prefix {90}. We only need to find the 
five subsets one by one.  

To find sequential patterns having prefix {30}, the algorithm extends 
the prefix by adding items to it one at a time. To add the next item x, there 
are two possibilities, i.e., x joining the last itemset of the prefix (i.e., {30, 
x}) and x forming a separate itemset (i.e., {30}{x}). PrefixSpan performs 
the task by first forming the {30}-projected database and then finding all 
the cases of the two types in the projected database. The projected database 
is produced as follows: If a sequence contains item 30, then the suffix fol-
lowing the first 30 is extracted as a sequence in the projected database. 
Furthermore, since infrequent items cannot appear in a sequential pattern, 
all infrequent items are removed from the projection. The first sequence in 
our example, {30}{90}, is projected to {90}. The second sequence, {10, 
20}{30}{10, 40, 60, 70}, is projected to {40, 70}, where the infrequent 
items 10 and 60 are removed. The third sequence {30, 50, 70, 80} is pro-
jected to {_, 70, 80}, where the infrequent item 50 is removed. Note that 
the underline symbol “_” in this projection denotes that the items (only 30 
in this case) in the last itemset of the prefix are in the same itemset as 
items 50, 70 and 80 in the sequence. The fourth sequence is projected to 
{30, 40, 70, 80}{90}. The projection of the last sequence is empty since it 
does not contain item 30. The final projected database for prefix {30} 
contains the following sequences: 

{90}, {40, 70}, {_, 70, 80}, and {30, 40, 70, 80}{90} 

By scanning the projected database once, PrefixSpan finds all possible 
one item extensions to the prefix, i.e., all x’s for {30, x} and all x’s for 
{30}{x}. Let us discuss the details.   
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Find All Frequent Patterns of the Form {30, x}: Two templates {_, x} 
and {30, x} are used to match each projected sequence to accumulate the 
support count for each possible x (here x matches any item). If in the same 
sequence multiple matches are found with the same x, they are only 
counted once. Note that in general, the second template should use the last 
itemset in the prefix rather than only its last item. In our example, they are 
the same because there is only one item in the last itemset of the prefix. 

Find All Frequent Patterns of the Form {30}{x}: In this case, x’s are 
frequent items in the projected database that are not in the same itemset as 
the last item of the prefix.  

Let us continue with our example. It is easy to check that both items 70 
and 80 are in the same itemset as 30. That is, we have two frequent se-
quences {30, 70} and {30, 80}. The support count of {30, 70} is 2 based 
on the projected database; one from the projected sequence {_, 70, 80} (a 
{_, x} match) and one from the projected sequence {30, 40, 70, 80}{90} (a 
{30, x} match). In both cases, the x’s are the same, i.e., 70. Similarly, the 
support count of {30, 80} is 2 as well and thus frequent.  

It is also easy to check that items 40, 70, and 90 are also frequent but 
not in the same itemset as 30. Thus, {30}{40}, {30}{70}, and {30}{90} 
are three sequential patterns. The set of sequential patterns having prefix 
{30} can be further divided into five mutually exclusive subsets: the ones 
with prefixes {30, 70}, {30, 80}, {30}{40}, {30}{70}, and {30}{90}. 

We can recursively find the five subsets by forming their corresponding 
projected databases. For example, to find sequential patterns having prefix 
{30}{40}, we can form the {30}{40}-projected database containing pro-
jections {_, 70} and {_, 70, 80}{90}. Template {_, x} has two matches 
and in both cases x is 70. Thus, {30}{40, 70} is output as a sequential pat-
tern. Since there is no other frequent item in this projected database, the 
prefix cannot grow longer. The depth-first search returns from this branch. 

After completing the mining of the {30}-projected database, we find all 
sequential patterns with prefix {30}, i.e., {30}, {30}{40}, {30}{40, 70}, 
{30}{70}, {30}{90}, {30, 70}, {30, 80} and {30, 70, 80}  

By forming and mining the {40}-, {70}-, {80}- and {90}-projected 
databases, the remaining sequential patterns can be found.  ▀ 

The pseudo code of PrefixSpan can be found in [33]. Comparing to the 
breadth-first search of GSP, the key advantage of PrefixSpan is that it does 
not generate any candidates. It only counts the frequency of local items. 
With a low minimum support, a huge number of candidates can be gener-
ated by GSP, which can cause memory and computational problems.  
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2.8.2  Mining with Multiple Minimum Supports 

The PrefixSpan algorithm can be adapted to mine with multiple minimum 
supports. Again, let MIS(i) be the user-specified minimum item support 
of item i. Let  be the user-specified support difference threshold in the 
support difference constraint (Sect. 2.4.1), i.e., |sup(i) – sup(j)|  , 
where i and j are items in the same sequential pattern, and sup(x) is the ac-
tual support of item x in the sequence database S. PrefixSpan can be modi-
fied as follows. We call the modified algorithm MS-PS.  
1. Find every item i whose actual support in the sequence database S is at 

least MIS(i). i is called a frequent item.  
2. Sort all the discovered frequent items in ascending order according to 

their MIS values. Let i1, …, iu be the frequent items in the sorted order.  
3. For each item ik in the above sorted order,  

(i) identify all the data sequences in S that contain ik and at the same 
time remove every item j in each sequence that does not satisfy 
|sup(j) – sup(ik)| ≤ . The resulting set of sequences is denoted by Sk. 
Note that we are not using ik as the prefix to project the database S. 

(ii) call the function r-PrefixSpan(ik, Sk, count(MIS(ik))) (restricted Pre-
fixSpan), which finds all sequential patterns that contain ik, i.e., no 
pattern that does not contain ik should be generated. r-PrefixSpan() 
uses count(MIS(ik)) (the minimum support count in terms of the 
number of sequences) as the only minimum support for mining in Sk. 
The sequence count is easier to use than the MIS value in percent-
age, but they are equivalent. Once the complete set of such patterns 
is found from Sk, All occurrences of ik are removed from S.  

r-PrefixSpan() is almost the same as PrefixSpan with one important differ-
ence. During each recursive call, either the prefix or every sequence in the 
projected database must contain ik because, as we stated above, this func-
tion finds only those frequent sequences that contain ik. Another minor dif-
ference is that the support difference constraint needs to be checked during 
each projection as sup(ik) may not be the lowest in the pattern.  

Example 27: Consider mining sequential patterns from Table 2.5. Let 
MIS(20) = 30% (3 sequences in minimum support count), MIS(30) = 20% 
(2 sequences), MIS(40) = 30% (3 sequences), and the MIS values for the 
rest of the items be 15% (2 sequences). We ignore the support difference 
constraint as it is simple. In step 1, we find three frequent items, 20, 30 
and 40. After sorting in step 2, we have (30, 20, 40). We then go to step 3.  

In the first iteration of step 3, we work on i1 = 30. Step 3(i) gives us the 
second, fourth and sixth sequences in Table 2.5, i.e.,  
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S1 = {{40}{30}{40, 60}, {30}{20, 40}{40, 100}, {40}{30}{110}}.  

We then run r-PrefixSpan(30, S1, 2) in step 3(ii). The frequent items in 
S1 are 30, and 40. They both have the support of 3 sequences. The length 
one frequent sequence is only {30}. {40} is not included because we re-
quire that every frequent sequence must contain 30. We next find frequent 
sequences having prefix {30}. The database S1 is projected to give {40} 
and {40}{40}. 20, 60 and 100 have been removed because their supports in 
S1 are less than the required support for item 30 (i.e., 2 sequences). For the 
same reason, the projection of {40}{30}{110} is empty. Thus, we find a 
length two frequent sequence {30}{40}. In this case, there is no item in the 
same itemset as 30 to form a frequent sequence of the form {30, x}. 

Next, we find frequent sequences with prefix {40}. We again project 
S1, which gives us only {30}{40} and {30}. {40, 100} is not included be-
cause it does not contain 30. This projection gives us another length two 
frequent sequence {40}{30}. The first iteration of step 3 ends. 

In the second iteration of step 3, we work on i2 = 20. Step 3(i) gives us 
the first, fourth, fifth and seventh sequences in Table 2.5 with item 30 re-
moved, S2 = {{20, 50}, {20, 40}{40, 100}, {20, 40}{10}, {20}{80}{70}}. 
It is easy to see that only item 20 is frequent, and thus only a length one 
frequent sequence is generated, {20}.  

In the third iteration of step 3, we work on i3 = 40. We can verify that 
again only one frequent sequence, i.e., {40}, is found.  

The final set of sequential patterns generated from the sequence data-
base in Table 2.5 is {{30}, {20}, {40}, {40}{30}, {30}{40}}.  ▀ 

2.9  Generating Rules from Sequential Patterns 

In classic sequential pattern mining, no rules are generated. It is, however, 
possible to define and generate many types of rules. This section intro-

Table 2.5. An example of a sequence database 

Sequence ID Data Sequence 
1 {20, 50} 
2 {40}{30}{40, 60} 
3 {40, 90, 120} 
4 {30}{20, 40}{40, 100} 
5 {20, 40}{10} 
6 {40}{30}{110} 
7 {20}{80}{70} 
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duces only three types, sequential rules, label sequential rules and class 
sequential rules, which have been used in Web usage mining and Web 
content mining (see Chaps. 11 and 12). 

2.9.1  Sequential Rules 

A sequential rule (SR) is an implication of the form, X  Y, where Y is a 
sequence and X is a proper subsequence of Y, i.e., X is a subsequence of Y 
and the length Y is greater than the length of X. The support of a sequen-
tial rule, X  Y, in a sequence database S is the fraction of sequences in S 
that contain Y. The confidence of a sequential rule, X  Y, in S is the pro-
portion of sequences in S that contain X also contain Y.  

Given a minimum support and a minimum confidence, according to the 
downward closure property, all the rules can be generated from frequent 
sequences without going to the original sequence data. Let us see an ex-
ample of a sequential rule found from the data sequences in Table 2.6.  

Table 2.6. An example of a sequence database for mining sequential rules 

 Data Sequence 
1 {1}{3}{5}{7, 8, 9} 
2 {1}{3}{6}{7, 8} 
3 {1, 6}{7} 
4 {1}{3}{5, 6} 
5 {1}{3}{4} 

Example 28: Given the sequence database in Table 2.6, the minimum 
support of 30% and the minimum confidence of 60%, one of the sequential 
rules found is the following,  

{1}{7}  {1}{3}{7, 8}  [sup = 2/5, conf = 2/3] 

Data sequences 1, 2 and 3 contain {1}{7}, and data sequences 1 and 2 con-
tain {1}{3}{7, 8}.  ▀ 

If multiple minimum supports are used, we can employ the results of 
multiple minimum support pattern mining to generate all the rules.  

2.9.2 Label Sequential Rules  

Sequential rules may not be restrictive enough in some applications. We 
introduce a special kind of sequential rules called label sequential rules. 
A label sequential rule (LSR) is of the form, X  Y, where Y is a sequence 
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and X is a sequence produced from Y by replacing some of its items with 
wildcards. A wildcard is denoted by an “*” which matches any item. These 
replaced items are usually very important and are called labels. The labels 
are a small subset of all the items in the data.  

Example 29: Given the sequence database in Table 2.6, the minimum 
support of 30% and the minimum confidence of 60%, one of the label se-
quential rules found is the following,  

{1}{*}{7, *}  {1}{3}{7, 8}  [sup = 2/5, conf = 2/2]. 

Notice the confidence change compared to the rule in Example 28. The 
supports of the two rules are the same. In this case, data sequences 1 and 2 
contain {1}{*}{7, *}, and they also contain {1}{3}{7, 8}. Items 3 and 8 are 
labels.   ▀ 

LSRs are useful because in some applications we need to predict the la-
bels in an input sequence, e.g., items 3 and 8 above. The confidence of the 
rule simply gives us the estimated probability that the two “*”s are 3 and 8 
given that an input sequence contains {1}{*}{7, *}. We will see an applica-
tion of LSRs in Chap. 11, where we want to predict whether a word in a 
comparative sentence is an entity (e.g., a product name), which is a label.  

Note that due to the use of wildcards, frequent sequences alone are not 
sufficient for computing rule confidences. Scanning the data is needed. 
Notice also that the same pattern may appear in a data sequence multiple 
times. Rule confidences thus can be defined in different ways according to 
application needs. The wildcards may also be restricted to match only cer-
tain types of items to make the label prediction meaningful and unambigu-
ous (see some examples in Chap. 11).  

2.9.3 Class Sequential Rules 

Class sequential rules (CSR) are analogous to class association rules 
(CAR). Let S be a set of data sequences. Each sequence is also labeled 
with a class y. Let I be the set of all items in S, and Y be the set of all class 
labels, I  Y = . Thus, the input data D for mining is represented with 
{(s1, y1), (s2, y2), …, (sn, yn)}, where si is a sequence in S and yi  Y is its 
class. A class sequential rule (CSR) is of the form  

 X  y, where X is a sequence, and y  Y.  

A data instance (si, yi) is said to cover a CSR, X  y, if X is a subsequence 
of si. A data instance (si, yi) is said to satisfy a CSR if X is a subsequence 
of si and yi = y.  
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Example 30: Table 2.7 gives an example of a sequence database with five 
data sequences and two classes, c1 and c2. Using the minimum support of 
30% and the minimum confidence of 60%, one of the discovered CSRs is:  

{1}{3}{7, 8}  c1  [sup = 2/5, conf = 2/3]. 

Data sequences 1 and 2 satisfy the rule, and data sequences 1, 2 and 5 cov-
er the rule.  ▀ 

Table 2.7. An example of a sequence database for mining CSRs 

 Data Sequence Class
1 {1}{3}{5}{7, 8, 9} c1 
2 {1}{3}{6}{7, 8} c1 
3 {1, 6}{9} c2 
4 {3}{5, 6} c2 
5 {1}{3}{4}{7, 8} c2 

As in class association rule mining, we can modify the GSP and Prefix-
Span algorithms to produce algorithms for mining all CSRs. Similarly, we 
can also use multiple minimum class supports and/or multiple minimum 
item supports as in class association rule mining.   

Bibliographic Notes 

Association rule mining was introduced in 1993 by Agrawal et al. [2]. 
Since then, thousands of research papers have been published on the topic. 
This short chapter only introduces some basics, and it, by no means, does 
justice to the huge body of literature in the area. The bibliographic notes 
here should help you explore further.  

Since given a data set, a minimum support and a minimum confidence, 
the solution (the set of frequent itemsets or the set of rules) is determined 
and unique, most papers improve the mining efficiency. The most well-
known algorithm is the Apriori algorithm proposed by Agrawal and Sri-
kant [3], which has been described in this chapter. Another important algo-
rithm is FP-growth proposed by Han et al. [17]. The algorithm com-
presses the data and stores it in memory using a frequent pattern tree. It 
then mines all frequent itemsets without candidate generation. Other nota-
ble general algorithms include those by Agarwal et al. [1], Mannila et al. 
[26], Park et al. [31], Zaki et al. [55], etc. An efficiency comparison of var-
ious algorithms was reported by Zheng et al. [56].  

Apart from performance improvements, several variations of the origi-
nal model were also proposed. Srikant and Agrawal [39], and Han and Fu 
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[15] proposed two algorithms to mine generalized association rules or 
multi-level association rules. Liu et al. [23] extended the original model 
to take multiple minimum supports, which was also studied by Wang et 
al. [47], Seno and Karypis [37], Xiong et al. [51], etc. Srikant et al. [42] 
proposed to mine association rules with item constraints. The model re-
stricts the rules that should be generated. Ng et al. [28] generalized the 
idea, which was followed by many subsequent papers on the topic of con-
strained rule mining.  

It is well known that association rule mining often generates a huge 
number of frequent itemsets and rules. Bayardo [6] and Lin and Kedem 
[21] introduced the problem of mining maximal frequent itemsets, which 
are itemsets with no frequent supersets. Improved algorithms are reported 
in many papers, e.g., [1, 10]. Since maximal pattern mining only finds 
longest patterns, the support information of their subsets, which are obvi-
ously also frequent, is not found. As a result, association rules cannot be 
generated. The next significant development was the mining of closed fre-
quent itemsets studied by Pasquier et al. [32], Zaki and Hsiao [54], and 
Wang et al. [46]. Closed itemsets are better than maximal frequent itemsets 
because closed frequent itemsets provide a lossless concise representation 
of all frequent itemsets.  

Other developments on association rules include class association rules 
by Liu et al. [22] and emerging patterns (similar to class association 
rules) by Dong and Li [13], implication rules by Brin et al. [8], cyclic as-
sociation rules by Ozden et al. [29], periodic patterns by Yang et al. 
[52], negative association rules by Savasere [36] and Wu et al. [50], 
weighted association rules by Wang et al. [48], association rules with 
numerical variables by Webb [49], high-performance rule mining by 
Buehrer et al. [9], incremental rule mining by Cheung et al. [11], inte-
grating mining with database systems by Sarawagi et al. [35], sampling 
for rule mining by Toivonen [44], and many others. Cong et al. [12] in-
troduced association rule mining from bioinformatics data, which typically 
have a very large number of attributes (more than ten thousands) but only a 
very small number of records or transactions (e.g., less than 100).  

Another major research area of association rules is the interestingness 
of the discovered rules. Since an association rule miner often generates a 
huge number of rules, it is very difficult, if not impossible, for human us-
ers to inspect them in order to find those truly interesting or useful rules. 
Researchers have proposed many techniques to help users identify such 
rules, e.g., [7, 20, 24, 25, 30, 34, 38, 43]. There are also several data min-
ing query languages [16, 18, 27, 45]. A deployed data mining system that 
uses some of these ideas, class association rules, and OLAP is reported in 
[25], which has been in production use since 2006.  
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Regarding sequential pattern mining, the first algorithm was proposed 
by Agrawal and Srikant [4], which was a direct application of the Apriori 
algorithm. Improvements were made subsequently by several researchers, 
e.g., Ayres et al. [5], Pei et al. [33], Srikant and Agrawal [41], Zaki [53], 
etc. The MS-GSP and MS-PS algorithms for mining sequential patterns 
with multiple minimum supports and the support difference constraint are 
introduced in this book. Label and class sequential rules have been used in 
[19] for mining comparative sentences from text documents. The literature 
on association rule mining and sequential pattern mining is extensive.   

There are several publicly available implementations of algorithms for 
mining frequent itemsets, maximal frequent itemsets, closed frequent item-
sets, and sequential patterns from various research groups, most notably 
from those of Jiawei Han, Johnanne Gehrke, and Mohammed Zaki. There 
were also two workshops dedicated to frequent itemset mining organized 
by Roberto Bayardo, Bart Goethals, and Mohammed J. Zaki, which re-
ported many efficient implementations. The workshop Web sites are 
http://fimi.cs.helsinki.fi/fimi03/ and http://fimi.cs.helsinki.fi/fimi04/.  
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3 Supervised Learning 

Supervised learning has been a great success in real-world applications. It 
is used in almost every domain, including text and Web domains. Super-
vised learning is also called classification or inductive learning in ma-
chine learning. This type of learning is analogous to human learning from 
past experiences to gain new knowledge in order to improve our ability to 
perform real-world tasks. However, since computers do not have “experi-
ences”, machine learning learns from data, which are collected in the past 
and represent past experiences in some real-world applications.  

There are several types of supervised learning tasks. In this chapter, we 
focus on one particular type, namely, learning a target function that can be 
used to predict the values of a discrete class attribute. This type of learning 
has been the focus of the machine learning research and is perhaps also the 
most widely used learning paradigm in practice. This chapter introduces a 
number of such supervised learning techniques. They are used in almost 
every Web mining application. We will see their uses from Chaps. 6–12.  

3.1 Basic Concepts 

A data set used in the learning task consists of a set of data records, which 
are described by a set of attributes A = {A1, A2, …, A|A|}, where |A| denotes 
the number of attributes or the size of the set A. The data set also has a 
special target attribute C, which is called the class attribute. In our subse-
quent discussions, we consider C separately from attributes in A due to its 
special status, i.e., we assume that C is not in A. The class attribute C has a 
set of discrete values, i.e., C = {c1, c2, …, c|C|}, where |C| is the number of 
classes and |C|  2. A class value is also called a class label. A data set for 
learning is simply a relational table. Each data record describes a piece of 
“past experience”. In the machine learning and data mining literature, a da-
ta record is also called an example, an instance, a case or a vector. A data 
set basically consists of a set of examples or instances.  

Given a data set D, the objective of learning is to produce a classifica-
tion/prediction function to relate values of attributes in A and classes in 
C. The function can be used to predict the class values/labels of the future 
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data. The function is also called a classification model, a predictive mod-
el or simply a classifier. We will use these terms interchangeably in this 
book. It should be noted that the function/model can be in any form, e.g., a 
decision tree, a set of rules, a Bayesian model or a hyperplane.  

Example 1: Table 3.1 shows a small loan application data set. It has four 
attributes. The first attribute is Age, which has three possible values, 
young, middle and old. The second attribute is Has_Job, which indicates 
whether an applicant has a job. Its possible values are true (has a job) and 
false (does not have a job). The third attribute is Own_house, which shows 
whether an applicant owns a house. The fourth attribute is Credit_rating, 
which has three possible values, fair, good and excellent. The last column 
is the Class attribute, which shows whether each loan application was ap-
proved (denoted by Yes) or not (denoted by No) in the past.  

Table 3.1. A loan application data set  

ID Age Has_job Own_house Credit_rating Class 
1 young false false fair No 
2 young false false good No 
3 young true false good Yes 
4 young true true fair Yes 
5 young false false fair No 
6 middle false false fair No 
7 middle false false good No 
8 middle true true good Yes 
9 middle false true excellent Yes 

10 middle false true excellent Yes 
11 old false true excellent Yes 
12 old false true good Yes 
13 old true false good Yes 
14 old true false excellent Yes 
15 old false false fair No 

We want to learn a classification model from this data set that can be 
used to classify future loan applications. That is, when a new customer 
comes into the bank to apply for a loan, after inputting his/her age, whether 
he/she has a job, whether he/she owns a house, and his/her credit rating, 
the classification model should predict whether his/her loan application 
should be approved.  ▀ 

Our learning task is called supervised learning because the class labels 
(e.g., Yes and No values of the class attribute in Table 3.1) are provided in 
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the data. It is as if some teacher tells us the classes. This is in contrast to 
the unsupervised learning, where the classes are not known and the learn-
ing algorithm needs to automatically generate classes. Unsupervised learn-
ing is the topic of the next chapter.  

The data set used for learning is called the training data (or the train-
ing set). After a model is learned or built from the training data by a 
learning algorithm, it is evaluated using a set of test data (or unseen da-
ta) to assess the model accuracy.  

It is important to note that the test data is not used in learning the classi-
fication model. The examples in the test data usually also have class labels. 
That is why the test data can be used to assess the accuracy of the learned 
model because we can check whether the class predicted for each test case 
by the model is the same as the actual class of the test case. In order to 
learn and also to test, the available data (which has classes) for learning is 
usually split into two disjoint subsets, the training set (for learning) and the 
test set (for testing). We will discuss this further in Sect. 3.3.  

The accuracy of a classification model on a test set is defined as:  

,
cases test ofnumber  Total

tionsclassificacorrect  ofNumber 
Accuracy  (1) 

where a correct classification means that the learned model predicts the 
same class as the original class of the test case. There are also other meas-
ures that can be used. We will discuss them in Sect. 3.3.  

We pause here to raises two important questions:  
1. What do we mean by learning by a computer system? 
2. What is the relationship between the training and the test data?  
We answer the first question first. Given a data set D representing past 
“experiences”, a task T and a performance measure M, a computer system 
is said to learn from the data to perform the task T if after learning the sys-
tem’s performance on the task T improves as measured by M. In other 
words, the learned model or knowledge helps the system to perform the 
task better as compared to no learning. Learning is the process of building 
the model or extracting the knowledge.  

We use the data set in Example 1 to explain the idea. The task is to pre-
dict whether a loan application should be approved. The performance 
measure M is the accuracy in Equation (1). With the data set in Table 3.1, 
if there is no learning, all we can do is to guess randomly or to simply take 
the majority class (which is the Yes class). Suppose we use the majority 
class and announce that every future instance or case belongs to the class 
Yes. If the future data are drawn from the same distribution as the existing 
training data in Table 3.1, the estimated classification/prediction accuracy 
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on the future data is 9/15 = 0.6 as there are 9 Yes class examples out of the 
total of 15 examples in Table 3.1. The question is: can we do better with 
learning? If the learned model can indeed improve the accuracy, then the 
learning is said to be effective. 

The second question in fact touches the fundamental assumption of 
machine learning, especially the theoretical study of machine learning. 
The assumption is that the distribution of training examples is identical to 
the distribution of test examples (including future unseen examples). In 
practical applications, this assumption is often violated to a certain degree. 
Strong violations will clearly result in poor classification accuracy, which 
is quite intuitive because if the test data behave very differently from the 
training data then the learned model will not perform well on the test data. 
To achieve good accuracy on the test data, training examples must be suf-
ficiently representative of the test data.   

We now illustrate the steps of learning in Fig. 3.1 based on the preced-
ing discussions. In step 1, a learning algorithm uses the training data to 
generate a classification model. This step is also called the training step or 
training phase. In step 2, the learned model is tested using the test set to 
obtain the classification accuracy. This step is called the testing step or 
testing phase. If the accuracy of the learned model on the test data is satis-
factory, the model can be used in real-world tasks to predict classes of new 
cases (which do not have classes). If the accuracy is not satisfactory, we 
need to go back and choose a different learning algorithm and/or do some 
further processing of the data (this step is called data pre-processing, not 
shown in the figure). A practical learning task typically involves many it-
erations of these steps before a satisfactory model is built. It is also possi-
ble that we are unable to build a satisfactory model due to a high degree of 
randomness in the data or limitations of current learning algorithms.  

 
Fig. 3.1. The basic learning process: training and testing 

From the next section onward, we study several supervised learning al-
gorithms, except Sect. 3.3, which focuses on model/classifier evaluation.  

We note that throughout the chapter we assume that the training and test 
data are available for learning. However, in many text and Web page re-
lated learning tasks, this is not true. Usually, we need to collect raw data, 

Learning 
algorithm model Accuracy Test  

data 
Training 

data 

        Step 1: Training    Step 2: Testing 
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design attributes and compute attribute values from the raw data. The rea-
son is that the raw data in text and Web applications are often not suitable 
for learning either because their formats are not right or because there are 
no obvious attributes in the raw text documents or Web pages.  

3.2 Decision Tree Induction 

Decision tree learning is one of the most widely used techniques for classi-
fication. Its classification accuracy is competitive with other learning me-
thods, and it is very efficient. The learned classification model is repre-
sented as a tree, called a decision tree. The techniques presented in this 
section are based on the C4.5 system from Quinlan [49]. 

Example 2: Fig. 3.2 shows a possible decision tree learnt from the data in 
Table 3.1. The tree has two types of nodes, decision nodes (which are in-
ternal nodes) and leaf nodes. A decision node specifies some test (i.e., 
asks a question) on a single attribute. A leaf node indicates a class.  

 
Fig. 3.2. A decision tree for the data in Table 3.1 

The root node of the decision tree in Fig. 3.2 is Age, which basically 
asks the question: what is the age of the applicant? It has three possible an-
swers or outcomes, which are the three possible values of Age. These 
three values form three tree branches/edges. The other internal nodes have 
the same meaning. Each leaf node gives a class value (Yes or No). (x/y) 
below each class means that x out of y training examples that reach this 
leaf node have the class of the leaf. For instance, the class of the left most 
leaf node is Yes. Two training examples (examples 3 and 4 in Table 3.1) 
reach here and both of them are of class Yes.  ▀ 

To use the decision tree in testing, we traverse the tree top-down ac-
cording to the attribute values of the given test instance until we reach a 
leaf node. The class of the leaf is the predicted class of the test instance. 

Age? 

Has_job? Own_house? Credit_rating? 

Young        middle           old

  true    false 

Yes          No 
(2/2) (3/3) 

  true    false 

Yes          No 
(3/3) (2/2) 
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Example 3: We use the tree to predict the class of the following new in-
stance, which describes a new loan applicant.  

Age  Has_job  Own_house  Credit-rating   Class  
young  false  false good  ? 

Going through the decision tree, we find that the predicted class is No as 
we reach the second leaf node from the left.   ▀ 

A decision tree is constructed by partitioning the training data so that the 
resulting subsets are as pure as possible. A pure subset is one that con-
tains only training examples of a single class. If we apply all the training 
data in Table 3.1 on the tree in Fig. 3.2, we will see that the training exam-
ples reaching each leaf node form a subset of examples that have the same 
class as the class of the leaf. In fact, we can see that from the x and y val-
ues in (x/y). We will discuss the decision tree building algorithm in Sect. 
3.2.1. 

An interesting question is: Is the tree in Fig. 3.2 unique for the data in 
Table 3.1? The answer is no. In fact, there are many possible trees that can 
be learned from the data. For example, Fig. 3.3 gives another decision tree, 
which is much smaller and is also able to partition the training data per-
fectly according to their classes.  

 
Fig. 3.3. A smaller tree for the data set in Table 3.1 

In practice, one wants to have a small and accurate tree for many rea-
sons. A smaller tree is more general and also tends to be more accurate (we 
will discuss this later). It is also easier to understand by human users. In 
many applications, the user understanding of the classifier is important. 
For example, in some medical applications, doctors want to understand the 
model that classifies whether a person has a particular disease. It is not sat-
isfactory to simply produce a classification because without understanding 
why the decision is made the doctor may not trust the system and/or does 
not gain useful knowledge.  

It is useful to note that in both Fig. 3.2 and Fig. 3.3, the training exam-
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Own_house? 

  true    false 

Yes          No 
(3/3) (6/6)

  true    false 
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ples that reach each leaf node all have the same class (see the values of 
(x/y) at each leaf node). However, for most real-life data sets, this is usu-
ally not the case. That is, the examples that reach a particular leaf node are 
not of the same class, i.e., x  y. The value of x/y is, in fact, the confidence 
(conf) value used in association rule mining, and x is the support count. 
This suggests that a decision tree can be converted to a set of if-then rules.  

Yes, indeed. The conversion is done as follows: Each path from the root 
to a leaf forms a rule. All the decision nodes along the path form the condi-
tions of the rule and the leaf node or the class forms the consequent. For 
each rule, a support and confidence can be attached. Note that in most 
classification systems, these two values are not provided. We add them 
here to see the connection of association rules and decision trees.  

Example 4: The tree in Fig. 3.3 generates three rules. “,” means “and”.  

Own_house = true  Class =Yes  [sup=6/15, conf=6/6] 
Own_house = false, Has_job = true  Class = Yes [sup=3/15, conf=3/3] 
Own_house = false, Has_job = false  Class = No [sup=6/15, conf=6/6]. 

We can see that these rules are of the same format as association rules. 
However, the rules above are only a small subset of the rules that can be 
found in the data of Table 3.1. For instance, the decision tree in Fig. 3.3 
does not find the following rule:  

Age = young, Has_job = false  Class = No [sup=3/15, conf=3/3]. 

Thus, we say that a decision tree only finds a subset of rules that exist in 
data, which is sufficient for classification. The objective of association rule 
mining is to find all rules subject to some minimum support and minimum 
confidence constraints. Thus, the two methods have different objectives. 
We will discuss these issues again in Sect. 3.5 when we show that associa-
tion rules can be used for classification as well, which is obvious.  

An interesting and important property of a decision tree and its resulting 
set of rules is that the tree paths or the rules are mutually exclusive and 
exhaustive. This means that every data instance is covered by a single rule 
(a tree path) and a single rule only. By covering a data instance, we mean 
that the instance satisfies the conditions of the rule. 

We also say that a decision tree generalizes the data as a tree is a small-
er (more compact) description of the data, i.e., it captures the key regulari-
ties in the data. Then, the problem becomes building the best tree that is 
small and accurate. It turns out that finding the best tree that models the 
data is a NP-complete problem [26]. All existing algorithms use heuristic 
methods for tree building. Below, we study one of the most successful 
techniques.  



70     3 Supervised Learning 

3.2.1 Learning Algorithm 

As indicated earlier, a decision tree T simply partitions the training data set 
D into disjoint subsets so that each subset is as pure as possible (of the 
same class). The learning of a tree is typically done using the divide-and-
conquer strategy that recursively partitions the data to produce the tree. At 
the beginning, all the examples are at the root. As the tree grows, the ex-
amples are sub-divided recursively. A decision tree learning algorithm is 
given in Fig. 3.4. For now, we assume that every attribute in D takes dis-
crete values. This assumption is not necessary as we will see later.  

The stopping criteria of the recursion are in lines 1–4 in Fig. 3.4. The 
algorithm stops when all the training examples in the current data are of 
the same class, or when every attribute has been used along the current tree 

   Algorithm decisionTree(D, A, T) 
1  if D contains only training examples of the same class cj  C then 
2 make T a leaf node labeled with class cj; 
3 elseif A =  then  
4  make T a leaf node labeled with cj, which is the most frequent class in D 
5 else // D contains examples belonging to a mixture of classes. We select a single 
6 // attribute to partition D into subsets so that each subset is purer 
7 p0 = impurityEval-1(D);  
8 for each attribute Ai  A (={A1, A2, …, Ak}) do  
9 pi = impurityEval-2(Ai, D)  
10  endfor 
11 Select Ag  {A1, A2, …, Ak} that gives the biggest impurity reduction, 

computed using p0 – pi; 
12 if p0 – pg < threshold then  // Ag does not significantly reduce impurity p0 
13  make T a leaf node labeled with cj, the most frequent class in D. 
14 else  // Ag is able to reduce impurity p0 
15 Make T a decision node on Ag; 
16 Let the possible values of Ag be v1, v2, …, vm. Partition D into m 

disjoint subsets D1, D2, …, Dm based on the m values of Ag.  
17 for each Dj in {D1, D2, …, Dm} do  
18 if Dj   then 
19 create a branch (edge) node Tj for vj as a child node of T; 
20 decisionTree(Dj, A{Ag}, Tj) // Ag is removed 
21 endif 
22  endfor 
23  endif 
24 endif 

Fig. 3.4. A decision tree learning algorithm 
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path. In tree learning, each successive recursion chooses the best attribute 
to partition the data at the current node according to the values of the at-
tribute. The best attribute is selected based on a function that aims to mi-
nimize the impurity after the partitioning (lines 7–11). In other words, it 
maximizes the purity. The key in decision tree learning is thus the choice 
of the impurity function, which is used in lines 7, 9 and 11 in Fig. 3.4. 
The recursive recall of the algorithm is in line 20, which takes the subset of 
training examples at the node for further partitioning to extend the tree.  

This is a greedy algorithm with no backtracking. Once a node is created, 
it will not be revised or revisited no matter what happens subsequently.  

3.2.2 Impurity Function 

Before presenting the impurity function, we use an example to show what 
the impurity function aims to do intuitively.  

Example 5: Fig. 3.5 shows two possible root nodes for the data in Table 
3.1.  

 
Fig. 3.5. Two possible root nodes or two possible attributes for the root node 

Fig. 3.5(A) uses Age as the root node, and Fig. 3.5(B) uses Own_house 
as the root node. Their possible values (or outcomes) are the branches. At 
each branch, we listed the number of training examples of each class (No 
or Yes) that land or reach there. Fig. 3.5(B) is obviously a better choice for 
the root. From a prediction or classification point of view, Fig. 3.5(B) 
makes fewer mistakes than Fig. 3.5(A). In Fig. 3.5(B), when Own_house = 
true every example has the class Yes. When Own_house = false, if we take 
majority class (the most frequent class), which is No, we make three mis-
takes/errors. If we look at Fig. 3.5(A), the situation is worse. If we take the 
majority class for each branch, we make five mistakes (marked in bold). 
Thus, we say that the impurity of the tree in Fig. 3.5(A) is higher than the 
tree in Fig. 3.5(B). To learn a decision tree, we prefer Own_house to Age 
to be the root node. Instead of counting the number of mistakes or errors, 
C4.5 uses a more principled approach to perform this evaluation on every 
attribute in order to choose the best attribute to build the tree. ▀ 
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The most popular impurity functions used for decision tree learning are 
information gain and information gain ratio, which are used in C4.5 as 
two options. Let us first discuss information gain, which can be extended 
slightly to produce information gain ratio.  

The information gain measure is based on the entropy function from in-
formation theory [55]:  
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where Pr(cj) is the probability of class cj in data set D, which is the number 
of examples of class cj in D divided by the total number of examples in D. 
In the entropy computation, we define 0log0 = 0. The unit of entropy is 
bit. Let us use an example to get a feeling of what this function does. 

Example 6: Assume we have a data set D with only two classes, positive 
and negative. Let us see the entropy values for three different compositions 
of positive and negative examples:  

1.  The data set D has 50% positive examples (Pr(positive) = 0.5) and 50% 
negative examples (Pr(negative) = 0.5). 

.15.0log5.05.0log5.0)( 22 Dentropy   

2.  The data set D has 20% positive examples (Pr(positive) = 0.2) and 80% 
negative examples (Pr(negative) = 0.8). 

.722.08.0log8.02.0log2.0)( 22 Dentropy   

3.  The data set D has 100% positive examples (Pr(positive) = 1) and no 
negative examples, (Pr(negative) = 0). 

.00log01log1)( 22 Dentropy   

We can see a trend: When the data becomes purer and purer, the entropy 
value becomes smaller and smaller. In fact, it can be shown that for this 
binary case (two classes), when Pr(positive) = 0.5 and Pr(negative) = 0.5 
the entropy has the maximum value, i.e., 1 bit. When all the data in D be-
long to one class the entropy has the minimum value, 0 bit. ▀ 

It is clear that the entropy measures the amount of impurity or disorder 
in the data. That is exactly what we need in decision tree learning. We now 
describe the information gain measure, which uses the entropy function.  
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Information Gain 

The idea is the following: 

1. Given a data set D, we first use the entropy function (Equation 2) to 
compute the impurity value of D, which is entropy(D). The impuri-
tyEval-1 function in line 7 of Fig. 3.4 performs this task.  

2. Then, we want to know which attribute can reduce the impurity most if 
it is used to partition D. To find out, every attribute is evaluated (lines 
8–10 in Fig. 3.4). Let the number of possible values of the attribute Ai be 
v. If we are going to use Ai to partition the data D, we will divide D into 
v disjoint subsets D1, D2, …, Dv. The entropy after the partition is 
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 The impurityEval-2 function in line 9 of Fig. 3.4 performs this task.  
3. The information gain of attribute Ai is computed with: 

).()(),( DentropyDentropyADgain
iAi   (4) 

Clearly, the gain criterion measures the reduction in impurity or disorder. 
The gain measure is used in line 11 of Fig. 3.4, which chooses attribute Ag 
resulting in the largest reduction in impurity. If the gain of Ag is too small, 
the algorithm stops for the branch (line 12). Normally a threshold is used 
here. If choosing Ag is able to reduce impurity significantly, Ag is em-
ployed to partition the data to extend the tree further, and so on (lines 15–
21 in Fig. 3.4). The process goes on recursively by building sub-trees using 
D1, D2, …, Dm (line 20). For subsequent tree extensions, we do not need Ag 
any more, as all training examples in each branch has the same Ag value. 

Example 7: Let us compute the gain values for attributes Age, Own_house 
and Credit_Rating using the whole data set D in Table 3.1, i.e., we evaluate 
for the root node of a decision tree.  

First, we compute the entropy of D. Since D has 6 No class training ex-
amples, and 9 Yes class training examples, we have  

.971.0
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We then try Age, which partitions the data into 3 subsets (as Age has 
three possible values) D1 (with Age=young), D2 (with Age=middle), and D3 
(with Age=old). Each subset has five training examples. In Fig. 3.5, we al-
so see the number of No class examples and the number of Yes examples 
in each subset (or in each branch).  
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Likewise, we compute for Own_house, which partitions D into two sub-
sets, D1 (with Own_house=true) and D2 (with Own_house=false). 
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Similarly, we obtain entropyHas_job(D) = 0.647, and entropyCredit_rating(D) 
= 0.608. The gains for the attributes are:  

gain(D, Age) = 0.971  0.888 = 0.083 
gain(D, Own_house) = 0.971  0.551 = 0.420 
gain(D, Has_job) = 0.971  0.647 = 0.324 
gain(D, Credit_rating) = 0.971  0.608 = 0.363. 

Own_house is the best attribute for the root node. Fig. 3.5(B) shows the 
root node using Own_house. Since the left branch has only one class (Yes) 
of data, it results in a leaf node (line 1 in Fig. 3.4). For Own_house = false, 
further extension is needed. The process is the same as above, but we only 
use the subset of the data with Own_house = false, i.e., D2.  ▀ 

Information Gain Ratio 

The gain criterion tends to favor attributes with many possible values. An 
extreme situation is that the data contain an ID attribute that is an identifi-
cation of each example. If we consider using this ID attribute to partition 
the data, each training example will form a subset and has only one class, 
which results in entropyID(D) = 0. So the gain by using this attribute is 
maximal. From a prediction point of review, such a partition is useless.  

Gain ratio (Equation 5) remedies this bias by normalizing the gain us-
ing the entropy of the data with respect to the values of the attribute. Our 
previous entropy computations are done with respect to the class attribute:  
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where s is the number of possible values of Ai, and Dj is the subset of data 
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that has the jth value of Ai. |Dj|/|D| corresponds to the probability of Equa-
tion (2). Using Equation (5), we simply choose the attribute with the high-
est gainRatio value to extend the tree.  

This method works because if Ai has too many values the denominator 
will be large. For instance, in our above example of the ID attribute, the 
denominator will be log2|D|. The denominator is called the split info in 
C4.5. One note is that the split info can be 0 or very small. Some heuristic 
solutions can be devised to deal with it (see [49]).  

3.2.3 Handling of Continuous Attributes 

It seems that the decision tree algorithm can only handle discrete attrib-
utes. In fact, continuous attributes can be dealt with easily as well. In a real 
life data set, there are often both discrete attributes and continuous attrib-
utes. Handling both types in an algorithm is an important advantage.  

To apply the decision tree building method, we can divide the value 
range of attribute Ai into intervals at a particular tree node. Each interval 
can then be considered a discrete value. Based on the intervals, gain or 
gainRatio is evaluated in the same way as in the discrete case. Clearly, we 
can divide Ai into any number of intervals at a tree node. However, two in-
tervals are usually sufficient. This binary split is used in C4.5. We need to 
find a threshold value for the division.  

Clearly, we should choose the threshold that maximizes the gain (or 
gainRatio). We need to examine all possible thresholds. This is not a prob-
lem because although for a continuous attribute Ai the number of possible 
values that it can take is infinite, the number of actual values that appear in 
the data is always finite. Let the set of distinctive values of attribute Ai that 
occur in the data be {v1, v2, …, vr}, which are sorted in ascending order. 
Clearly, any threshold value lying between vi and vi+1 will have the same 
effect of dividing the training examples into those whose value of attribute 
Ai lies in {v1, v2, …, vi} and those whose value lies in {vi+1, vi+2, …, vr}. 
There are thus only r1 possible splits on Ai, which can all be evaluated.   

The threshold value can be the middle point between vi and vi+1, or just 
on the “right side” of value vi, which results in two intervals Ai  vi and Ai 
> vi. This latter approach is used in C4.5. The advantage of this approach is 
that the values appearing in the tree actually occur in the data. The thresh-
old value that maximizes the gain (gainRatio) value is selected. We can 
modify the algorithm in Fig. 3.4 (lines 8–11) easily to accommodate this 
computation so that both discrete and continuous attributes are considered.  

A change to line 20 of the algorithm in Fig. 3.4 is also needed. For a 
continuous attribute, we do not remove attribute Ag because an interval can 
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be further split recursively in subsequent tree extensions. Thus, the same 
continuous attribute may appear multiple times in a tree path (see Example 
9), which does not happen for a discrete attribute.  

From a geometric point of view, a decision tree built with only continu-
ous attributes represents a partitioning of the data space. A series of splits 
from the root node to a leaf node represents a hyper-rectangle. Each side of 
the hyper-rectangle is an axis-parallel hyperplane. 

Example 8: The hyper-rectangular regions in Fig. 3.6(A), which partitions 
the space, are produced by the decision tree in Fig. 3.6(B). There are two 
classes in the data, represented by empty circles and filled rectangles.  ▀ 

 
Fig. 3.6. A partitioning of the data space and its corresponding decision tree  

Handling of continuous (numeric) attributes has an impact on the effi-
ciency of the decision tree algorithm. With only discrete attributes the al-
gorithm grows linearly with the size of the data set D. However, sorting of 
a continuous attribute takes |D|log|D| time, which can dominate the tree 
learning process. Sorting is important as it ensures that gain or gainRatio 
can be computed in one pass of the data.  

3.2.4 Some Other Issues  

We now discuss several other issues in decision tree learning.  

Tree Pruning and Overfitting: A decision tree algorithm recursively par-
titions the data until there is no impurity or there is no attribute left. This 
process may result in trees that are very deep and many tree leaves may 
cover very few training examples. If we use such a tree to predict the train-
ing set, the accuracy will be very high. However, when it is used to clas-
sify unseen test set, the accuracy may be very low. The learning is thus not 
effective, i.e., the decision tree does not generalize the data well. This 
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phenomenon is called overfitting. More specifically, we say that a classi-
fier f1 overfits the data if there is another classifier f2 such that f1 achieves a 
higher accuracy on the training data than f2, but a lower accuracy on the 
unseen test data than f2 [45].  

Overfitting is usually caused by noise in the data, i.e., wrong class val-
ues/labels and/or wrong values of attributes, but it may also be due to the 
complexity and randomness of the application domain. These problems 
cause the decision tree algorithm to refine the tree by extending it to very 
deep using many attributes.  

To reduce overfitting in the context of decision tree learning, we per-
form pruning of the tree, i.e., to delete some branches or sub-trees and re-
place them with leaves of majority classes. There are two main methods to 
do this, stopping early in tree building (which is also called pre-pruning) 
and pruning the tree after it is built (which is called post-pruning). Post-
pruning has been shown more effective. Early-stopping can be dangerous 
because it is not clear what will happen if the tree is extended further 
(without stopping). Post-pruning is more effective because after we have 
extended the tree to the fullest, it becomes clearer which branches/sub-
trees may not be useful (overfit the data). The general idea of post-pruning 
is to estimate the error of each tree node. If the estimated error for a node 
is less than the estimated error of its extended sub-tree, then the sub-tree is 
pruned. Most existing tree learning algorithms take this approach. See [49] 
for a technique called the pessimistic error based pruning.  

Example 9: In Fig. 3.6(B), the sub-tree representing the rectangular region 

 X  2, Y > 2.5, Y  2.6 

in Fig. 3.6(A) is very likely to be overfitting. The region is very small and 
contains only a single data point, which may be an error (or noise) in the 
data collection. If it is pruned, we obtain Fig. 3.7(A) and (B).  ▀ 

 
Fig. 3.7. The data space partition and the decision tree after pruning  
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Another common approach to pruning is to use a separate set of data 
called the validation set, which is not used in training and neither in test-
ing. After a tree is built, it is used to classify the validation set. Then, we 
can find the errors at each node on the validation set. This enables us to 
know what to prune based on the errors at each node.  

Rule Pruning: We noted earlier that a decision tree can be converted to a 
set of rules. In fact, C4.5 also prunes the rules to simplify them and to re-
duce overfitting. First, the tree (C4.5 uses the unpruned tree) is converted 
to a set of rules in the way discussed in Example 4. Rule pruning is then 
performed by removing some conditions to make the rules shorter and 
fewer (after pruning some rules may become redundant). In most cases, 
pruning results in a more accurate rule set as shorter rules are less likely to 
overfit the training data. Pruning is also called generalization as it makes 
rules more general (with fewer conditions). A rule with more conditions is 
more specific than a rule with fewer conditions.  

Example 10: The sub-tree below X  2 in Fig. 3.6(B) produces these rules: 

Rule 1:  X  2, Y > 2.5, Y > 2.6   
Rule 2:  X  2, Y > 2.5, Y  2.6  O 
Rule 3:  X  2, Y  2.5   

Note that Y > 2.5 in Rule 1 is not useful because of Y > 2.6, and thus Rule 
1 should be  

Rule 1:  X  2, Y > 2.6   

In pruning, we may be able to delete the conditions Y > 2.6 from Rule 1 to 
produce:  

X  2   

Then Rule 2 and Rule 3 become redundant and can be removed.  ▀ 

A useful point to note is that after pruning the resulting set of rules may 
no longer be mutually exclusive and exhaustive. There may be data 
points that satisfy the conditions of more than one rule, and if inaccurate 
rules are discarded, of no rules. An ordering of the rules is thus needed to 
ensure that when classifying a test case only one rule will be applied to de-
termine the class of the test case. To deal with the situation that a test case 
does not satisfy the conditions of any rule, a default class is used, which is 
usually the majority class.  

Handling Missing Attribute Values: In many practical data sets, some at-
tribute values are missing or not available due to various reasons. There 
are many ways to deal with the problem. For example, we can fill each 
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missing value with the special value “unknown” or the most frequent value 
of the attribute if the attribute is discrete. If the attribute is continuous, use 
the mean of the attribute for each missing value.  

The decision tree algorithm in C4.5 takes another approach. At a tree 
node, it distributes the training example with missing value for the attrib-
ute to each branch of the tree proportionally according to the distribution 
of the training examples that have values for the attribute.  

Handling Skewed Class Distribution: In many applications, the propor-
tions of data for different classes can be very different. For instance, in a 
data set of intrusion detection in computer networks, the proportion of in-
trusion cases is extremely small (< 1%) compared with normal cases. Di-
rectly applying the decision tree algorithm for classification or prediction 
of intrusions is usually not effective. The resulting decision tree often con-
sists of a single leaf node “normal”, which is useless for intrusion detec-
tion. One way to deal with the problem is to over sample the intrusion ex-
amples to increase its proportion. Another solution is to rank the new cases 
according to how likely they may be intrusions. The human users can then 
investigate the top ranked cases.  

3.3 Classifier Evaluation 

After a classifier is constructed, it needs to be evaluated for accuracy. Ef-
fective evaluation is crucial because without knowing the approximate ac-
curacy of a classifier, it cannot be used in real-world tasks.  

There are many ways to evaluate a classifier, and there are also many 
measures. The main measure is the classification accuracy (Equation 1), 
which is the number of correctly classified instances in the test set divided 
by the total number of instances in the test set. Some researchers also use 
the error rate, which is 1 – accuracy. Clearly, if we have several classifi-
ers, the one with the highest accuracy is preferred. Statistical significance 
tests may be used to check whether one classifier’s accuracy is signifi-
cantly better than that of another given the same training and test data sets. 
Below, we first present several common methods for classifier evaluation, 
and then introduce some other evaluation measures.  

3.3.1 Evaluation Methods 

Holdout Set: The available data D is divided into two disjoint subsets, the 
training set Dtrain and the test set Dtest, D = Dtrain  Dtest and Dtrain  Dtest = 
. The test set is also called the holdout set. This method is mainly used 
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when the data set D is large. Note that the examples in the original data set 
D are all labeled with classes.  

As we discussed earlier, the training set is used for learning a classifier 
and the test set is used for evaluating the classifier. The training set should 
not be used in the evaluation as the classifier is biased toward the training 
set. That is, the classifier may overfit the training data, which results in 
very high accuracy on the training set but low accuracy on the test set. Us-
ing the unseen test set gives an unbiased estimate of the classification ac-
curacy. As for what percentage of the data should be used for training and 
what percentage for testing, it depends on the data set size. 50–50 and two 
thirds for training and one third for testing are commonly used.  

To partition D into training and test sets, we can use a few approaches: 

1. We randomly sample a set of training examples from D for learning and 
use the rest for testing.  

2. If the data is collected over time, then we can use the earlier part of the 
data for training/learning and the later part of the data for testing. In 
many applications, this is a more suitable approach because when the 
classifier is used in the real-world the data are from the future. This ap-
proach thus better reflects the dynamic aspects of applications. 

Multiple Random Sampling: When the available data set is small, using 
the above methods can be unreliable because the test set would be too 
small to be representative. One approach to deal with the problem is to 
perform the above random sampling n times. Each time a different training 
set and a different test set are produced. This produces n accuracies. The 
final estimated accuracy on the data is the average of the n accuracies.  

Cross-Validation: When the data set is small, the n-fold cross-validation 
method is very commonly used. In this method, the available data is parti-
tioned into n equal-size disjoint subsets. Each subset is then used as the 
test set and the remaining n1 subsets are combined as the training set to 
learn a classifier. This procedure is then run n times, which gives n accura-
cies. The final estimated accuracy of learning from this data set is the aver-
age of the n accuracies. 10-fold and 5-fold cross-validations are often used.  

A special case of cross-validation is the leave-one-out cross-validation. 
In this method, each fold of the cross validation has only a single test ex-
ample and all the rest of the data is used in training. That is, if the original 
data has m examples, then this is m-fold cross-validation. This method is 
normally used when the available data is very small. It is not efficient for a 
large data set as m classifiers need to be built. 

In Sect. 3.2.4, we mentioned that a validation set can be used to prune a 
decision tree or a set of rules. If a validation set is employed for that pur-
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pose, it should not be used in testing. In that case, the available data is di-
vided into three subsets, a training set, a validation set and a test set. Apart 
from using a validation set to help tree or rule pruning, a validation set is 
also used frequently to estimate parameters in learning algorithms. In such 
cases, the values that give the best accuracy on the validation set are used 
as the final values of the parameters. Cross-validation can be used for pa-
rameter estimating as well. Then a separate validation set is not needed. 
Instead, the whole training set is used in cross-validation.  

3.3.2 Precision, Recall, F-score and Breakeven Point 

In some applications, we are only interested in one class. This is particu-
larly true for text and Web applications. For example, we may be inter-
ested in only the documents or web pages of a particular topic. Also, in 
classification involving skewed or highly imbalanced data, e.g., network 
intrusion and financial fraud detection, we are typically interested in only 
the minority class. The class that the user is interested in is commonly 
called the positive class, and the rest negative classes (the negative classes 
may be combined into one negative class). Accuracy is not a suitable 
measure in such cases because we may achieve a very high accuracy, but 
may not identify a single intrusion. For instance, 99% of the cases are 
normal in an intrusion detection data set. Then a classifier can achieve 
99% accuracy (without doing anything) by simply classifying every test 
case as “not intrusion”. This is, however, useless.  

Precision and recall are more suitable in such applications because they 
measure how precise and how complete the classification is on the positive 
class. It is convenient to introduce these measures using a confusion ma-
trix (Table 3.2). A confusion matrix contains information about actual and 
predicted results given by a classifier.  

Table 3.2. Confusion matrix of a classifier 

 Classified positive Classified negative 
Actual positive TP FN 
Actual negative FP TN 

where 
TP: the number of correct classifications of the positive examples (true positive)  
FN: the number of incorrect classifications of positive examples (false negative) 
FP: the number of incorrect classifications of negative examples (false positive)  
TN: the number of correct classifications of negative examples (true negative)  

Based on the confusion matrix, the precision (p) and recall (r) of the posi-
tive class are defined as follows:  



82     3 Supervised Learning 

.       .
FNTP

TP
 r

FPTP

TP
p





  (6) 

In words, precision p is the number of correctly classified positive ex-
amples divided by the total number of examples that are classified as posi-
tive. Recall r is the number of correctly classified positive examples di-
vided by the total number of actual positive examples in the test set. The 
intuitive meanings of these two measures are quite obvious.  

However, it is hard to compare classifiers based on two measures, which 
are not functionally related. For a test set, the precision may be very high 
but the recall can be very low, and vice versa.  

Example 11: A test data set has 100 positive examples and 1000 negative 
examples. After classification using a classifier, we have the following 
confusion matrix (Table 3.3), 

Table 3.3. Confusion matrix of a classifier 

 Classified positive Classified negative 
Actual positive 1 99 
Actual negative 0 1000 

This confusion matrix gives the precision p = 100% and the recall r = 1% 
because we only classified one positive example correctly and classified 
no negative examples wrongly. ▀ 

Although in theory precision and recall are not related, in practice high 
precision is achieved almost always at the expense of recall and high recall 
is achieved at the expense of precision. In an application, which measure is 
more important depends on the nature of the application. If we need a sin-
gle measure to compare different classifiers, the F-score is often used:  

.2
rp

pr
F


  (7) 

The F-score (also called the F1-score) is the harmonic mean of precision 
and recall.  
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The harmonic mean of two numbers tends to be closer to the smaller of 
the two. Thus, for the F-score to be high, both p and r must be high.  

There is also another measure, called precision and recall breakeven 
point, which is used in the information retrieval community. The break-
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even point is when the precision and the recall are equal. This measure as-
sumes that the test cases can be ranked by the classifier based on their like-
lihoods of being positive. For instance, in decision tree classification, we 
can use the confidence of each leaf node as the value to rank test cases.  

Example 12: We have the following ranking of 20 test documents. 1 
represents the highest rank and 20 represents the lowest rank. “+” (“”) 
represents an actual positive (negative) document.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
+ + +  +  +  + +   +    +   + 

Assume that the test set has 10 positive examples.  
At rank 1:   p = 1/1 = 100%  r = 1/10 = 10% 
At rank 2:  p = 2/2 = 100%  r = 2/10 = 20% 
… … … 
At rank 9:   p = 6/9 = 66.7%  r = 6/10 = 60% 
At rank 10:   p = 7/10 = 70%  r = 7/10 = 70% 

The breakeven point is p = r = 70%. Note that interpolation is needed if 
such a point cannot be found.  ▀ 

3.3.3 Receiver Operating Characteristic Curve 

A receiver operating characteristic (ROC) curve is a plot of the true posi-
tive rate against the false positive rate. It is also commonly used to evalu-
ate classification results on the positive class in two-class classification 
problems. The classifier needs to rank the test cases according to their like-
lihoods of belonging to the positive class with the most likely positive case 
ranked at the top. The true positive rate (TPR) is defined as the fraction of 
actual positive cases that are correctly classified,  
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The false positive rate (FPR) is defined as the fraction of actual negative 
cases that are classified to the positive class,  
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TPR is basically the recall of the positive class and is also called sensitiv-
ity in statistics. There is also another measure in statistics called specific-
ity, which is the true negative rate (TNR), or the recall of the negative 
class. TNR is defined as follows:  
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From Equations (10) and (11), we can see the following relationship,  

.1 yspecificitFPR   (12) 

Fig. 3.8 shows the ROC curves of two example classifiers (C1 and C2) on 
the same test data. Each curve starts from (0, 0) and ends at (1, 1). (0, 0) 
represents the situation where every test case is classified as negative, and 
(1, 1) represents the situation where every test case is classified as positive. 
This is the case because we can treat the classification result as a ranking 
of the test cases in the positive class, and we can partition the ranked list at 
any point into two parts with the upper part assigned to the positive class 
and the lower part assigned to the negative class. We will see shortly that 
an ROC curve is drawn based on such partitions. In Fig. 3.8, we also see 
the main diagonal line, which represents random guessing, i.e., predicting 
each case to be positive with a fixed probability. In this case, it is clear that 
for every FPR value, TPR has the same value, i.e., TPR = FPT.  

  

For classifier evaluation using the ROC curves in Fig. 3.8, we want to 
know which classifier is better. The answer is that when FPR is less than 
0.43, C1 is better, and when FPR is greater than 0.43, C2 is better.  

However, sometimes this is not a satisfactory answer because we cannot 
say any one of the classifiers is strictly better than the other. For an overall 
comparison, researchers often use the area under the ROC curve (AUC). 
If the AUC value for a classifier Ci is greater than that of another classifier 
Cj, it is said that Ci is better than Cj. If a classifier is perfect, its AUC value 
is 1. If a classifier makes all random guesses, its AUC value is 0.5.  

C2 

C1

Fig. 3.8. ROC curves for two classifiers (C1 and C2) on the same data 
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Let us now describe how to draw an ROC curve given the classification 
result as a ranking of test cases. The ranking is obtained by sorting the test 
cases in decreasing order of the classifier’s output values (e.g., posterior 
probabilities). We then partition the rank list into two subsets (or parts) at 
every test case and regard every test case in the upper part (with higher 
classifier output value) as a positive case and every test case in the lower 
part as a negative case. For each such partition, we compute a pair of TPR 
and FPR values. When the upper part is empty, we obtain the point (0, 0) 
on the ROC and when the lower part is empty, we obtain the point (1, 1). 
Finally, we simply connect the adjacent points.  

Example 13: We have 10 test cases. A classifier has been built, and it has 
ranked the 10 test cases as shown in the second row of Table 3.4 (the num-
bers in row 1 are the rank positions, with 1 being the highest rank and 10 
the lowest). The second row shows the actual class of each test case. “+” 
means that the test case is from the positive class, and “–” means that it is 
from the negative class. All the results needed for drawing the ROC curve 
are shown in rows 3–8 in Table 3.4. The ROC curve is given in Fig. 3.9.  

Table 3.4. Computations for drawing an ROC curve  

Rank  1 2 3 4 5 6 7 8 9 10 
Actual class  + + – – + – – + – – 

TP 0 1 2 2 2 3 3 3 4 4 4 
FP 0 0 0 1 2 2 3 4 4 5 6 
TN 6 6 6 5 4 4 3 2 2 1 0 
FN 4 3 2 2 2 1 1 1 0 0 0 

TPR 0 0.25 0.5 0.5 0.5 0.75 0.75 0.75 1 1 1 
FPR 0 0 0 0.17 0.33 0.33 0.50 0.67 0.67 0.83 1 

 
Fig. 3.9. ROC curve for the data shown in Table 3.4  ▀ 



86     3 Supervised Learning 

3.3.4 Lift Curve 

The lift curve (also called the lift chart) is similar to the ROC curve. It is 
also for evaluation of two-class classification tasks, where the positive 
class is the target of interest and usually the rare class. It is often used in 
direct marketing applications to link classification results to costs and prof-
its. For example, a mail order company wants to send promotional materi-
als to potential customers to sell an expensive watch. Since printing and 
postage cost money, the company needs to build a classifier to identify 
likely buyers, and only sends the promotional materials to them. The ques-
tion is how many should be sent. To make the decision, the company needs 
to balance the cost and profit (if a watch is sold, the company makes a cer-
tain profit, but to send each letter there is a fixed cost). The lift curve pro-
vides a nice tool to enable the marketer to make the decision.  

Like an ROC curve, to draw a lift curve, the classifier needs to produce 
a ranking of the test cases according to their likelihoods of belonging to the 
positive class with the most likely positive case ranked at the top. After the 
ranking, the test cases are divided into N equal-sized bins (N is usually 10 
– 20). The actual positive cases in each bin are then counted. A lift curve is 
drawn with the x-axis being the percentages of test data (or bins) and the y-
axis being the percentages of cumulative positive cases from the first bin 
to the current bin. A lift curve usually also includes a line (called the base-
line) along the main diagonal [from (0, 0) to (100, 100)] which represents 
the situation where the positive cases in the test set are uniformly (or ran-
domly) distributed in the N bins (no learning), i.e., each bin contains 100/N 
percent of the positive cases. If the lift curve is above this baseline, learn-
ing is said to be effective. The greater the area between the lift curve and 
the baseline, the better the classifier.  

Example 14: A company wants to send promotional materials to potential 
buyers to sell an expensive brand of watches. It builds a classification 
model and tests it on a test data of 10,000 people (test cases) that they col-
lected in the past. After classification and ranking, it decides to divide the 
test data into 10 bins with each bin containing 10% of the test cases or 
1,000 cases. Out of the 1,000 cases in each bin, there are a certain number 
of positive cases (e.g., past buyers). The detailed results are listed in Table 
3.5, which includes the number (#) of positive cases and the percentage 
(%) of positive cases in each bin, and the cumulative percentage for that 
bin. The cumulative percentages are used in drawing the lift curve which is 
given in Fig. 3.10. We can see that the lift curve is way above the baseline, 
which means that the learning is highly effective.  

Suppose printing and postage cost $1.00 for each letter, and the sale of 
each watch makes $100 (assuming that each buyer only buys one watch). 
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If the company wants to send promotional letters to 3000 people, it will 
make $36,000, i.e.,  

 $100 × (210 + 120 + 60)  $3,000 = $36,000  

Table 3.5. Classification results for the 10 bins  

Bin 1 2 3 4 5 6 7 8 9 10 
# of test cases 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

# of positive cases 210 120 60 40 22 18 12 7 6 5 
% of positive cases 42.0% 24.0% 12% 8% 4.4% 3.6% 2.4% 1.4% 1.2% 1.0% 

% cumulative 42.0% 66.0% 78.0% 86.0% 90.4% 94.0% 96.4% 97.8% 99.0% 100.0% 

 
Fig. 3.10. Lift curve for the data shown in Table 3.5 ▀ 

3.4 Rule Induction 

In Sect. 3.2, we showed that a decision tree can be converted to a set of 
rules. Clearly, the set of rules can be used for classification as the tree. A 
natural question is whether it is possible to learn classification rules di-
rectly. The answer is yes. The process of learning such rules is called rule 
induction or rule learning. We study two approaches in the section. 

3.4.1 Sequential Covering 

Most rule induction systems use a learning strategy called sequential cov-
ering. A rule-based classifier built with this strategy typically consists of a 
list of rules, which is also called a decision list [51]. In the list, the order-
ing of the rules is significant.  
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The basic idea of sequential covering is to learn a list of rules sequen-
tially, one at a time, to cover the training data. After each rule is learned, 
the training examples covered by the rule are removed. Only the remaining 
data are used to find subsequent rules. Recall that a rule covers an example 
if the example satisfies the conditions of the rule. We study two specific 
algorithms based on this general strategy. The first algorithm is based on 
the CN2 system [9], and the second algorithm is based on the ideas in 
FOIL [50], I-REP [21], REP [7], and RIPPER [106] systems. Many ideas 
are also taken from [45].  

Algorithm 1 (Ordered Rules) 

This algorithm learns each rule without pre-fixing a class. That is, in each 
iteration, a rule of any class may be found. Thus rules of different classes 
may intermix in the final rule list. The ordering of rules is important. 

This algorithm is given in Fig. 3.11. D is the training data. RuleList is 
the list of rules, which is initialized to empty set (line 1). Rule is the best 
rule found in each iteration. The function learn-one-rule-1() learns the Rule 
(lines 2 and 6). The stopping criteria for the while-loop can be of various 
kinds. Here we use D =  or Rule is NULL (a rule is not learned). Once a 
rule is learned from the data, it is inserted into RuleList at the end (line 4). 
All the training examples that are covered by the rule are removed from 
the data (line 5). The remaining data is used to find the next rule and so on. 
After rule learning ends, a default class is inserted at the end of RuleList. 
This is because there may still be some training examples that are not cov-
ered by any rule as no good rule can be found from them, or because some 
test cases may not be covered by any rule and thus cannot be classified. 
The final list of rules is as follows:  

<r1, r2, …, rk, default-class> (13) 

where ri is a rule.  

Algorithm 2 (Ordered Classes) 

This algorithm learns all rules for each class together. After rule learning 
for one class is completed, it moves to the next class. Thus all rules for 
each class appear together in the rule list. The sequence of rules for each 
class is unimportant, but the rule subsets for different classes are ordered. 
Typically, the algorithm finds rules for the least frequent class first, then 
the second least frequent class and so on. This ensures that some rules are 
learned for rare classes. Otherwise, they may be dominated by frequent 
classes and end up with no rules if considered after frequent classes.  
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The algorithm is given in Fig. 3.12. The data set D is split into two sub-
sets, Pos and Neg, where Pos contains all the examples of class c from D, 
and Neg the rest of the examples in D (line 3). c is the class that the algo-
rithm is working on now. Two stopping conditions for rule learning of 
each class are in line 4 and line 6. The other parts of the algorithm are 
quite similar to those of the first algorithm in Fig. 3.11. Both learn-one-
rule-1() and learn-one-rule-2() functions are described in Sect. 3.4.2. 

Use of Rules for Classification 

To use a list of rules for classification is straightforward. For a test case, 
we simply try each rule in the list sequentially. The class of the first rule 

Algorithm sequential-covering-1(D) 
1 RuleList   ;   
2 Rule  learn-one-rule-1(D); 
3 while Rule is not NULL AND D   do  
4 RuleList  insert Rule at the end of RuleList;  
5 Remove from D the examples covered by Rule; 
6  Rule  learn-one-rule-1(D)  
7 endwhile 
8 insert a default class c at the end of RuleList, where c is the majority class 

in D; 
9 return RuleList 

Fig. 3.11. The first rule learning algorithm based on sequential covering 

Algorithm sequential-covering-2(D, C) 
1 RuleList   ; // empty rule set at the beginning 
2 for each class c  C do 
3 prepare data (Pos, Neg), where Pos contains all the examples of class 

c from D, and Neg contains the rest of the examples in D; 
4 while Pos   do  
5 Rule  learn-one-rule-2(Pos, Neg, c);  
6 if Rule is NULL then  
7 exit-while-loop  
8 else RuleList  insert Rule at the end of RuleList;  
9  Remove examples covered by Rule from (Pos, Neg) 
10 endif 
11 endwhile 
12 endfor 
13 return RuleList 

Fig. 3.12. The second rule learning algorithm based on sequential covering 
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that covers this test case is assigned as the class of the test case. Clearly, if 
no rule applies to the test case, the default class is used.  

3.4.2 Rule Learning: Learn-One-Rule Function 

We now present the function learn-one-rule(), which works as follows: It 
starts with an empty set of conditions. In the first iteration, one condition is 
added. In order to find the best condition to add, all possible conditions are 
tried, which form candidate rules. A condition is of the form Ai op v, 
where Ai is an attribute and v is a value of Ai. We also called it an attrib-
ute-value pair. For a discrete attribute, op is “=”. For a continuous attrib-
ute, op  {>, }. The algorithm evaluates all the candidates to find the best 
one (the rest are discarded). After the first best condition is added, it tries 
to add the second condition and so on in the same fashion until some stop-
ping condition is satisfied. Note that we omit the rule class here because it 
is implied, i.e., the majority class of the data covered by the conditions.  

This is a heuristic and greedy algorithm in that after a condition is add-
ed, it will not be changed or removed through backtracking. Ideally, we 
would want to try all possible combinations of attributes and values. How-
ever, this is not practical as the number of possibilities grows exponen-
tially. Hence, in practice, the above greedy algorithm is used. However, in-
stead of keeping only the best set of conditions, we can improve the 
function a little by keeping k best sets of conditions (k > 1) in each itera-
tion. This is called the beam search (k beams), which ensures that a larger 
space is explored. Below, we present two specific implementations of the 
algorithm, namely learn-one-rule-1() and learn-one-rule-2(). learn-one-
rule-1() is used in the sequential-covering-1 algorithm, and learn-one-rule-
2() is used in the sequential-covering-2 algorithm.  

Learn-One-Rule-1 
This function uses beam search (Fig. 3.13). The number of beams is k. 
BestCond stores the conditions of the rule to be returned. The class is omit-
ted as it is the majority class of the data covered by BestCond. candidate-
CondSet stores the current best condition sets (which are the frontier 
beams) and its size is less than or equal to k. Each condition set contains a 
set of conditions connected by “and” (conjunction). newCandidateCondSet 
stores all the new candidate condition sets after adding each attribute-value 
pair (a possible condition) to every candidate in candidateCondSet (lines 
5–11). Lines 13–17 update the BestCond. Specifically, an evaluation func-
tion is used to assess whether each new candidate condition set is better 
than the existing best condition set BestCond (line 14). If so, it replaces the 
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current BestCond (line 15). Line 18 updates candidateCondSet, which se-
lects k new best condition sets (new beams).  

Once the final BestCond is found, it is evaluated to see if it is signifi-
cantly better than without any condition () using a threshold (line 20). If 
yes, a rule will be formed using BestCond and the most frequent (or the 
majority) class of the data covered by BestCond (line 21). If not, NULL is 
returned to indicate that no significant rule is found. 

Function learn-one-rule-1(D)  
1 BestCond  ; // rule with no condition.  
2 candidateCondSet  {BestCond}; 
3 attributeValuePairs  the set of all attribute-value pairs in D of the form 

(Ai op v), where Ai is an attribute and v is a value or an interval; 
4 while candidateCondSet   do 
5 newCandidateCondSet  ; 
6 for each candidate cond in candidateCondSet do 
7 for each attribute-value pair a in attributeValuePairs do 
8 newCond  cond  {a};  
9 newCandidateCondSet  newCandidateCondSet  {newCond} 
10 endfor 
11 endfor 
12 remove duplicates and inconsistencies, e.g., {Ai = v1, Ai = v2}; 
13 for each candidate newCond in newCandidateCondSet do  
14 if  evaluation(newCond, D) > evaluation(BestCond, D)  then 
15 BestCond  newCond 
16 endif 
17 endfor 
18 candidateCondSet  the k best members of newCandidateCondSet 

according to the results of the evaluation function; 
19 endwhile 
20 if evaluation(BestCond, D) – evaluation(, D) > threshold then 
21  return the rule: “BestCond  c” where is c the majority class of the data 

covered by BestCond 
22 else  return NULL  
23 endif 

Fig. 3.13. The learn-one-rule-1 function 

Function evaluation(BestCond, D) 
1 D  the subset of training examples in D covered by BestCond; 
2  


||

1 2 )Pr(log)Pr()'( C

j
jj ccDentropy ; 

3 return  – entropy(D’) // since entropy measures impurity.  

Fig. 3.14. The entropy based evaluation function 
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The evaluation() function (Fig. 3.14) uses the entropy function as in the 
decision tree learning. Other evaluation functions are possible too. Note 
that when BestCond = , it covers every example in D, i.e., D = D. 

Learn-One-Rule-2 

In the learn-one-rule-2() function (Fig. 3.14), a rule is first generated and 
then it is pruned. This method starts by splitting the positive and negative 
training data Pos and Neg, into growing and pruning sets. The growing 
sets, GrowPos and GrowNeg, are used to generate a rule, called BestRule. 
The pruning sets, PrunePos and PruneNeg are used to prune the rule be-
cause BestRule may overfit the data. Note that PrunePos and PruneNeg 
are actually validation sets discussed in Sects. 3.2.4 and 3.3.1.  

growRule() function: growRule() generates a rule (called BestRule) by 
repeatedly adding a condition to its condition set that maximizes an 
evaluation function until the rule covers only some positive examples in 
GrowPos but no negative examples in GrowNeg. This is basically the 
same as lines 4–17 in Fig. 3.13, but without beam search (i.e., only the best 
rule is kept in each iteration). Let the current partially developed rule be R: 

R:  av1, .., avk  class 

where each avj is a condition (an attribute-value pair). By adding a new 
condition avk+1, we obtain the rule R+: av1, .., avk, avk+1 class. The evalu-
ation function for R+ is the following information gain criterion (which is 
different from the gain function used in decision tree learning): 
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where p0 (respectively, n0) is the number of positive (negative) examples 
covered by R in Pos (Neg), and p1 (n1) is the number of positive (negative) 
examples covered by R+ in Pos (Neg). The GrowRule() function simply re-

Function learn-one-rule-2(Pos, Neg, class) 
1 split (Pos, Neg) into (GrowPos, GrowNeg) and (PrunePos, PruneNeg) 
2 BestRule  GrowRule(GrowPos, GrowNeg, class) // grow a new rule 
3 BestRule  PruneRule(BestRule, PrunePos, PruneNeg) // prune the rule 
4 if the error rate of BestRule on (PrunePos, PruneNeg) exceeds 50% then  
5 return NULL 
6 endif 
7 return BestRule 

Fig. 3.15. The learn-one-rule-2() function 
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turns the rule R+ that maximizes the gain.  

PruneRule() function: To prune a rule, we consider deleting every subset 
of conditions from the BestRule, and choose the deletion that maximizes:  

,),,(
np

np
PruneNegPrunePosBestRulev




  (15) 

where p (respectively n) is the number of examples in PrunePos (Prune-
Neg) covered by the current rule (after a deletion).  

3.4.3 Discussion 

Separate-and-Conquer vs. Divide-and-Conquer: Decision tree learning 
is said to use the divide-and-conquer strategy. At each step, all attributes 
are evaluated and one is selected to partition/divide the data into m disjoint 
subsets, where m is the number of values of the attribute. Rule induction 
discussed in this section is said to use the separate-and-conquer strategy, 
which evaluates all attribute-value pairs (conditions) (which are much lar-
ger in number than the number of attributes) and selects only one. Thus, 
each step of divide-and-conquer expands m rules, while each step of sepa-
rate-and-conquer expands only one rule. Due to both effects, the separate-
and-conquer strategy is much slower than the divide-and-conquer strategy.  
Rule Understandability: If-then rules are easy to understand by human 
users. However, a word of caution about rules generated by sequential 
covering is in order. Such rules can be misleading because the covered da-
ta are removed after each rule is generated. Thus the rules in the rule list 
are not independent of each other. A rule r may be of high quality in the 
context of the data D from which r was generated. However, it may be a 
weak rule with a very low accuracy (confidence) in the context of the 
whole data set D (D  D) because many training examples that can be 
covered by r have already been removed by rules generated before r. If 
you want to understand the rules and possibly use them in some real-world 
tasks, you should be aware of this fact.  

3.5 Classification Based on Associations 

In Sect. 3.2, we showed that a decision tree can be converted to a set of 
rules, and in Sect. 3.4, we saw that a set of rules may also be found directly 
for classification. It is thus only natural to expect that association rules, in 
particular class association rules (CAR), may be used for classification 
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too. Yes, indeed! In fact, normal association rules can be employed for 
classification as well as we will see in Sect. 3.5.3. CBA, which stands for 
Classification Based on Associations, is the first reported system that uses 
association rules for classification [39]. Classifiers built using association 
rules are often called associative classifiers. In this section, we describe 
three approaches to employing association rules for classification:  

1. Using class association rules for classification directly.  
2. Using class association rules as features or attributes. 
3. Using normal (or classic) association rules for classification.  

The first two approaches can be applied to tabular data or transactional 
data. The last approach is usually employed for transactional data only. All 
these methods are useful in the Web environment as many types of Web 
data are in the form of transactions, e.g., search queries issued by users, 
and Web pages clicked by visitors. Transactional data sets are difficult to 
handle by traditional classification techniques, but are very natural for as-
sociation rules. Below, we describe the three approaches in turn. We 
should note that various sequential rules can be used for classification in 
similar ways as well if sequential data sets are involved.  

3.5.1 Classification Using Class Association Rules 

Recall that a class association rule (CAR) is an association rule with only a 
class label on the right-hand side of the rule as its consequent (Sect. 2.5). 
For instance, from the data in Table 3.1, the following rule can be found: 

Own_house = false, Has_job = true  Class = Yes [sup=3/15, conf=3/3], 

which was also a rule from the decision tree in Fig. 3.3. In fact, there is no 
difference between rules from a decision tree (or a rule induction system) 
and CARs if we consider only categorical (or discrete) attributes (more on 
this later). The differences are in the mining processes and the final rule 
sets. CAR mining finds all rules in data that satisfy the user-specified min-
imum support (minsup) and minimum confidence (minconf) constraints. A 
decision tree or a rule induction system finds only a subset of the rules 
(expressed as a tree or a list of rules) for classification. 

Example 15: Recall that the decision tree in Fig. 3.3 gives the following 
three rules:  

Own_house = true  Class =Yes  [sup=6/15, conf=6/6] 
Own_house = false, Has_job = true  Class=Yes [sup=3/15, conf=3/3] 
Own_house = false, Has_job = false  Class=No [sup=6/15, conf=6/6]. 
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However, there are many other rules that exist in data, e.g.,  

Age = young, Has_job = true  Class=Yes [sup=2/15, conf=2/2] 
Age = young, Has_job = false  Class=No [sup=3/15, conf=3/3] 
Credit_rating = fair  Class=No [sup=4/15, conf=4/5] 

and many more, if we use minsup = 2/15 = 13.3% and minconf = 70%. ▀ 

In many cases, rules that are not in the decision tree (or a rule list) may 
be able to perform classification more accurately. Empirical comparisons 
reported by several researchers show that classification using CARs can 
perform more accurately on many data sets than decision trees and rule in-
duction systems (see Bibliographic Notes for references).  
 The complete set of rules from CAR mining is also beneficial from a 
rule usage point of view. In some applications, the user wants to act on 
some interesting rules. For example, in an application for finding causes of 
product problems, more rules are preferred to fewer rules because with 
more rules, the user is more likely to find rules that indicate causes of the 
problems. Such rules may not be generated by a decision tree or a rule in-
duction system. A deployed data mining system based on CARs is re-
ported in [41]. We should, however, also bear in mind of the following:  

1. Decision tree learning and rule induction do not use the minsup or min-
conf constraint. Thus, some rules that they find can have very low sup-
ports, which, of course, are likely to be pruned because the chance that 
they overfit the training data is high. Although we can set a low minsup 
for CAR mining, it may cause combinatorial explosion. In practice, in 
addition to minsup and minconf, a limit on the total number of rules to 
be generated may be used to further control the CAR generation proc-
ess. When the number of generated rules reaches the limit, the algorithm 
stops. However, with this limit, we may not be able to generate long 
rules (with many conditions). Recall that the Apriori algorithm works in 
a level-wise fashion, i.e., short rules are generated before long rules. In 
some applications, this might not be an issue as short rules are often pre-
ferred and are sufficient for classification or for action. Long rules nor-
mally have very low supports and tend to overfit the data. However, in 
some other applications, long rules can be useful.  

2. CAR mining does not use continuous (numeric) attributes, while deci-
sion trees deal with continuous attributes naturally. Rule induction can 
use continuous attributes as well. There is still no satisfactory method to 
deal with such attributes directly in association rule mining. Fortunately, 
many attribute discretization algorithms exist that can automatically dis-
cretize the value range of a continuous attribute into suitable intervals 
[16, 19], which are then considered as discrete values.  
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Mining Class Association Rules for Classification 
There are many techniques that use CARs to build classifiers. Before de-
scribing them, let us first discuss some issues related to CAR mining for 
classification. Since a CAR mining algorithm has been discussed in Sect. 
2.5, we will not repeat it here.  

Rule Pruning: CAR rules are highly redundant, and many of them are not 
statistically significant (which can cause overfitting). Rule pruning is thus 
needed. The idea of pruning CARs is basically the same as that in decision 
tree building or rule induction. Thus, we will not discuss it further (see [36, 
39] for some of the pruning methods).  

Multiple Minimum Class Supports: As discussed in Sect. 2.5.3, a single 
minsup is inadequate for mining CARs because many practical classifica-
tion data sets have uneven class distributions, i.e., some classes cover a 
large proportion of the data, while others cover only a very small propor-
tion (which are called rare or infrequent classes).  

Example 16: Suppose we have a dataset with two classes, Y and N. 99% of 
the data belong to the Y class, and only 1% of the data belong to the N 
class. If we set minsup = 1.5%, we will not find any rule for class N. To 
solve the problem, we need to lower down the minsup. Suppose we set 
minsup = 0.2%. Then, we may find a huge number of overfitting rules for 
class Y because minsup = 0.2% is too low for class Y.  ▀ 

Multiple minimum class supports can be applied to deal with the prob-
lem. We can assign a different minimum class support minsupi for each 
class ci, i.e., all the rules of class ci must satisfy minsupi. Alternatively, we 
can provide one single total minsup, denoted by t_minsup, which is then 
distributed to each class according to the class distribution: 

minsupi = t_minsup  sup(ci) (16) 

where sup(ci) is the support of class ci in training data. The formula gives 
frequent classes higher minsups and infrequent classes lower minsups.  
Parameter Selection: The parameters used in CAR mining are the mini-
mum supports and the minimum confidences. Note that a different mini-
mum confidence may also be used for each class. However, minimum con-
fidences do not affect the classification much because classifiers tend to 
use high confidence rules. One minimum confidence is sufficient as long 
as it is not set too high. To determine the best minsupi for each class ci, we 
can try a range of values to build classifiers and then use a validation set to 
select the final value. Cross-validation may be used as well.   
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Data Formats: The algorithm for CAR mining given in Sect. 2.5.2 is for 
mining transaction data sets. However, many classification data sets are in 
the table format. As we discussed in Sect. 2.3, a tabular data set can be eas-
ily converted to a transaction data set.  

Classifier Building  

After all CAR rules are found, a classifier is built using the rules. There are 
many existing approaches, which can be grouped into three categories. 

Use the Strongest Rule: This is perhaps the simplest strategy. It simply 
uses CARs directly for classification. For each test instance, it finds the 
strongest rule that covers the instance. Recall that a rule covers an instance 
if the instance satisfies the conditions of the rule. The class of the strongest 
rule is then assigned as the class of the test instance. The strength of a rule 
can be measured in various ways, e.g., based on confidence, 2 test, or a 
combination of both support and confidence values.  

Select a Subset of the Rules to Build a Classifier: The representative me-
thod of this category is the one used in the CBA system. The method is 
similar to the sequential covering method, but applied to class association 
rules with additional enhancements as discussed above. 

Let the set of all discovered CARs be S. Let the training data set be D. 
The basic idea is to select a subset L ( S) of high confidence rules to cov-
er the training data D. The set of selected rules, including a default class, is 
then used as the classifier. The selection of rules is based on a total order 
defined on the rules in S.  

Definition: Given two rules, ri and rj, ri  rj (also called ri precedes rj or ri 

has a higher precedence than rj) if  
1. the confidence of ri is greater than that of rj, or 
2. their confidences are the same, but the support of ri is greater than 

that of rj, or  
3. both the confidences and supports of ri and rj are the same, but ri is 

generated earlier than rj. 

A CBA classifier L is of the form:  
 L = <r1, r2, …, rk, default-class> 

where ri  S, ra  rb if b > a. In classifying a test case, the first rule that 
satisfies the case classifies it. If no rule applies to the case, it takes the de-
fault class (default-class). A simplified version of the algorithm for build-
ing such a classifier is given in Fig. 3.16. The classifier is the RuleList. 
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This algorithm can be easily implemented by making one pass through 
the training data for every rule. However, this is extremely inefficient for 
large data sets. An efficient algorithm that makes at most two passes over 
the data is given in [39].  

Combine Multiple Rules: Like the first approach, this approach does not 
take any additional step to build a classifier. At the classification time, for 
each test instance, the system first finds the subset of rules that covers the 
instance. If all the rules in the subset have the same class, the class is as-
signed to the test instance. If the rules have different classes, the system 
divides the rules into groups according to their classes, i.e., all rules of the 
same class are in the same group. The system then compares the aggre-
gated effects of the rule groups and finds the strongest group. The class la-
bel of the strongest group is assigned to the test instance. To measure the 
strength of each rule group, there again can be many possible techniques. 
For example, the CMAR system uses a weighted 2 measure [36].  

3.5.2 Class Association Rules as Features 

In the above two methods, rules are directly used for classification. In this 
method, rules are used as features to augment the original data or simply 
form a new data set, which is then fed to a classification algorithm, e.g., 
decision trees or the naïve Bayesian method. Such features were found to 
be particularly effective for text-based classification applications.  

To use CARs as features, only the conditional part of each CAR rule is 
needed, and it is often treated as a Boolean feature/attribute. If a data in-
stance in the original data contains the conditional part, the value of the 
feature/attribute is set to 1, otherwise it is set to 0. Several applications of 
this method have been reported [2, 13, 27, 31]. The reason that such CAR-
based features are helpful is that they capture multi-attribute or multi-item 

Algorithm CBA(S, D) 
1 S = sort(S);   // sorting is done according to the precedence   
2 RuleList = ;  // the rule list classifier 
3 for each rule r  S in sequence do  
4 if D   AND r classifies at least one example in D correctly then  
5 delete from D all training examples covered by r; 
6 add r at the end of RuleList 
7 endif 
8 endfor 
9 add the majority class as the default class at the end of RuleList 

Fig. 3.16. A simple classifier building algorithm 
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correlations with class labels, which are useful for classification but are not 
considered by many classification algorithms (e.g., naïve Bayesian).  

3.5.3 Classification Using Normal Association Rules  

Not only can class association rules be used for classification, but also 
normal association rules. For example, association rules are commonly 
used in e-commerce Web sites for product recommendations, which work 
as follows: When a customer purchases some products, the system will 
recommend him/her some other related products based on what he/she has 
already purchased (see Chap. 12).  

Recommendation is essentially a classification or prediction problem. It 
predicts what a customer is likely to buy. Association rules are naturally 
applicable to such applications. The classification process is as follows: 

1. The system first uses previous purchase transactions (the same as mar-
ket basket transactions) to mine association rules. In this case, there are 
no fixed classes. Any item can appear on the left-hand side or the right-
hand side of a rule. For recommendation purposes, usually only one 
item appears on the right-hand side of a rule. 

2. At the prediction (e.g., recommendation) time, given a transaction (e.g., 
a set of items already purchased by a customer), all the rules that cover 
the transaction are selected. The strongest rule is chosen and the item on 
the right-hand side of the rule (i.e., the consequent) is then the predicted 
item and is recommended to the user. If multiple rules are very strong, 
multiple items can be recommended.  

This method is basically the same as the “use the strongest rule” method 
described in Sect. 3.5.1. Again, the rule strength can be measured in vari-
ous ways, e.g., confidence, 2 test, or a combination of both support and 
confidence. For example, in [38], the product of support and confidence is 
used as the rule strength. Clearly, the other two methods discussed in Sect. 
3.5.1 can be applied as well.  

The key advantage of using association rules for recommendation is that 
they can predict any item since any item can be the class item on the right-
hand side. Traditional classification algorithms only work with a single 
fixed class attribute, and are not easily applicable to recommendations.  

Finally, we note that multiple minimum supports (Sect. 2.4) can be of 
significant help. Otherwise, rare items will never be recommended, which 
causes the coverage problem (see Sect. 12.3.3). It is shown in [46] that us-
ing multiple minimum supports can dramatically increase the coverage.  
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3.6 Naïve Bayesian Classification 

Supervised learning can be naturally studied from a probabilistic point of 
view. The task of classification can be regarded as estimating the class 
posterior probabilities given a test example d, i.e.,  

Pr(C= cj | d). (17) 

We then see which class cj is more probable. The class with the highest 
probability is assigned to the example d.  

Formally, let A1, A2, …, A|A| be the set of attributes with discrete values 
in the data set D. Let C be the class attribute with |C| values, c1, c2, …, c|C|. 
Given a test example d with observed attribute values a1 through a|A|, 
where ai is a possible value of Ai (or a member of the domain of Ai), i.e.,  

 d = <A1=a1, , A|A|=a|A|>.  

The prediction is the class cj such that Pr(C=cj | A1=a1, , A|A|=a|A|) is 
maximal. cj is called a maximum a posteriori (MAP) hypothesis.  

By Bayes’ rule, the above quantity (17) can be expressed as 
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Pr(C=cj) is the class prior probability of cj, which can be estimated from 
the training data. It is simply the fraction of the data in D with class cj.  

If we are only interested in making a classification, Pr(A1=a1, ..., 
A|A|=a|A|) is irrelevant for decision making because it is the same for every 
class. Thus, only Pr(A1=a1, ..., A|A|=a|A| | C=cj) needs to be computed, 
which can be written as  

Pr(A1=a1, ..., A|A|=a|A| | C=cj) 
= Pr(A1=a1 | A2=a2, ..., A|A|=a|A|, C=cj)Pr(A2=a2, ..., A|A|=a|A| | C=cj). 

(19) 

Recursively, the second term above (i.e., Pr(A2=a2, ..., A|A|=a|A||C=cj)) 
can be written in the same way (i.e., Pr(A2=a2|A3=a3 ..., A|A|=a|A|, C=cj) 
Pr(A3=a3, ..., A|A|=a|A||C=cj)), and so on. However, to further our derivation, 
we need to make an important assumption.  
Conditional independence assumption: We assume that all attributes are 
conditionally independent given the class C = cj. Formally, we assume, 
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Pr(A1=a1 | A2=a2, ..., A|A|=a|A|, C=cj) = Pr(A1=a1 | C=cj) (20) 

and similarly for A2 through A|A|. We then obtain  
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(22) 

Next, we need to estimate the prior probabilities Pr(C=cj) and the conditional 
probabilities Pr(Ai=ai | C=cj) from the training data, which are straightforward.  
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If we only need a decision on the most probable class for each test in-
stance, we only need the numerator of Equation (22) since the denominator 
is the same for every class. Thus, given a test case, we compute the follow-
ing to decide the most probable class for the test case:  
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Example 17: Suppose that we have the training data set in Fig. 3.17, 
which has two attributes A and B, and the class C. We can compute all the 
probability values required to learn a naïve Bayesian classifier.  

A B C 
m b t 
m s t 
g q t 
h s t 
g q t 
g q f 
g s f 
h b f 
h q f 
m b f 

Fig. 3.17. An example of a training data set 
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Pr(C = t) = 1/2,         Pr(C= f) = 1/2 

Pr(A=m | C=t) = 2/5  Pr(A=g | C=t) = 2/5  Pr(A=h | C=t) = 1/5 
Pr(A=m | C=f) = 1/5  Pr(A=g | C=f) = 2/5  Pr(A=h | C=f) =2/5 
Pr(B=b | C=t) = 1/5  Pr(B=s | C=t) = 2/5  Pr(B=q | C=t) = 2/5 
Pr(B=b | C=f) = 2/5  Pr(B=s | C=f) = 1/5  Pr(B=q | C=f) = 2/5 

Now we have a test example:  
 A = m B = q C = ? 

We want to know its class. Equation (25) is applied. For C = t, we have 
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For class C = f, we have 
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Since C = t is more probable, t is the predicted class of the test case.   ▀ 

It is easy to see that the probabilities (i.e., Pr(C=cj) and Pr(Ai=ai | C=cj)) 
required to build a naïve Bayesian classifier can be found in one scan of 
the data. Thus, the algorithm is linear in the number of training examples, 
which is one of the great strengths of the naïve Bayes, i.e., it is extremely 
efficient. In terms of classification accuracy, although the algorithm makes 
the strong assumption of conditional independence, several researchers 
have shown that its classification accuracies are surprisingly strong. See 
experimental comparisons of various techniques in [15, 29, 40].  

To learn practical naïve Bayesian classifiers, we still need to address 
some additional issues: how to handle numeric attributes, zero counts, and 
missing values. Below, we deal with each of them in turn.  

Numeric Attributes: The above formulation of the naïve Bayesian learn-
ing assumes that all attributes are categorical. However, most real-life data 
sets have numeric attributes. Therefore, in order to use the naïve Bayeisan 
algorithm, each numeric attribute needs to be discretized into intervals. 
This is the same as for class association rule mining. Existing discretiza-
tion algorithms in [16, 19] can be used.   

Zero Counts: It is possible that a particular attribute value in the test set 
never occurs together with a class in the training set. This is problematic 
because it will result in a 0 probability, which wipes out all the other prob-
abilities Pr(Ai=ai | C=cj) when they are multiplied according to Equation 
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(25) or Equation (22). A principled solution to this problem is to incorpo-
rate a small-sample correction into all probabilities.  

Let nij be the number of examples that have both Ai = ai and C = cj. Let nj 
be the total number of examples with C=cj in the training data set. The un-
corrected estimate of Pr(Ai=ai | C=cj) is nij/nj, and the corrected estimate is  

ij

ij
jii mn

n
cCaA
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

 )|Pr(  (26) 

where mi is the number of values of attribute Ai (e.g., 2 for a Boolean at-
tribute), and  is a multiplicative factor, which is commonly set to  = 1/n, 
where n is the total number of examples in the training set D [15, 29]. 
When  = 1, we get the well known Laplace’s law of succession [23]. The 
general form of correction (also called smoothing) in Equation (26) is 
called the Lidstone’s law of succession [37]. Applying the correction  = 
1/n, the probabilities of Example 17 are revised. For example,  

Pr(A=m | C=t) = (2+1/10) / (5 + 3*1/10) = 2.1/5.3 = 0.396 
Pr(B=b | C=t) = (1+1/10) / (5 + 3*1/10) = 1.1/5.3 = 0.208. 

Missing Values: Missing values are ignored, both in computing the prob-
ability estimates in training and in classifying test instances.  

3.7 Naïve Bayesian Text Classification 

Text classification or categorization is the problem of learning classifica-
tion models from training documents labeled with pre-defined classes. 
That learned models are then used to classify future documents. For exam-
ple, we have a set of news articles of three classes or topics, Sport, Politics, 
and Science. We want to learn a classifier that is able to classify future 
news articles into these classes.   

Due to the rapid growth of online documents in organizations and on the 
Web, automated document classification is an important problem. Al-
though the techniques discussed in the previous sections can be applied to 
text classification, it has been shown that they are not as effective as the 
methods presented in this section and in the next two sections. In this sec-
tion, we study a naïve Bayesian learning method that is specifically formu-
lated for texts, which makes use of text specific characteristics. However, 
the ideas are similar to those in Sect. 3.6. Below, we first present a prob-
abilistic framework for texts, and then study the naïve Bayesian equations 
for their classification. There are several slight variations of this model. 
This section is mainly based on the formulation given in [42].  
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3.7.1  Probabilistic Framework 

The naïve Bayesian learning method for text classification is derived based 
on a probabilistic generative model. It assumes that each document is 
generated by a parametric distribution governed by a set of hidden pa-
rameters. Training data is used to estimate these parameters. The parame-
ters are then applied to classify each test document using Bayes rule by 
calculating the posterior probability that the distribution associated with 
a class (represented by the unobserved class variable) would have gener-
ated the given document. Classification then becomes a simple matter of 
selecting the most probable class.  

The generative model is based on two assumptions:  

1. The data (or the text documents) are generated by a mixture model.  
2. There is a one-to-one correspondence between mixture components and 

document classes.   

A mixture model models the data with a number of statistical distribu-
tions. Intuitively, each distribution corresponds to a data cluster and the pa-
rameters of the distribution provide a description of the corresponding 
cluster. Each distribution in a mixture model is also called a mixture 
component (the distribution can be of any kind). Fig. 3.15 plots two 
probability density functions of a mixture of two Gaussian distributions 
that generate a 1-dimensional data set of two classes, one distribution per 
class, whose parameters (denoted by i) are the mean (i) and the standard 
deviation (i), i.e., i = (i, i).  

 

Fig. 3.18. Probability density functions of two distributions in a mixture model  

Let the number of mixture components (or distributions) in a mixture 
model be K, and the jth distribution has the parameters j. Let  be the set 
of parameters of all components,  = {1, 2, …, K, 1, 2, …, K}, where 
j is the mixture weight (or mixture probability) of the mixture compo-
nent j and j is the set of parameters of component j. The mixture weights 

class 1  class 2 
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are subject to the constraint .11  
K

j j  The meaning of mixture weights (or 
probabilities) will be clear below.  

Let us see how the mixture model generates a collection of documents. 
Recall the classes C in our classification problem are c1, c2, …, c|C|. Since 
we assume that there is a one-to-one correspondence between mixture 
components and classes, each class corresponds to a mixture component. 
Thus |C| = K, and the jth mixture component can be represented by its cor-
responding class cj and is parameterized by j. The mixture weights are 
class prior probabilities, i.e., j = Pr(cj|). The mixture model generates 
each document di by:  

1. first selecting a mixture component (or class) according to class prior 
probabilities (i.e., mixture weights), j = Pr(cj|);  

2. then having this selected mixture component (cj) generate a document di 
according to its parameters, with distribution Pr(di|cj; ) or more pre-
cisely Pr(di|cj; j).  

The probability that a document di is generated by the mixture model can 
be written as the sum of total probability over all mixture components. 
Note that to simplify the notation, we use cj instead of C = cj as in the pre-
vious section:  
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Since each document is attached with its class label, we can now derive the 
naïve Bayesian model for text classification. Note that in the above prob-
ability expressions, we include  to represent their dependency on  as we 
employ a generative model. In an actual implementation, we need not be 
concerned with , i.e., it can be ignored.  

3.7.2  Naïve Bayesian Model 

A text document consists of a sequence of sentences, and each sentence 
consists of a sequence of words. However, due to the complexity of mod-
eling words sequence and their relationships, several assumptions are 
made in the derivation of the Bayesian classifier. That is also why we call 
the final classification model, the naïve Bayesian classification model.  

Specifically, the naïve Bayesian classification treats each document as a 
“bag” of words. Apart from the mixture model assumptions described 
above, the generative model also makes the following words and document 
length based assumptions: 
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1. Words of a document are generated independently of their context, that 
is, independently of the other words in the same document given the 
class label. This is the familiar naïve Bayesian assumption used before.   

2. The probability of a word is independent of its position in the document. 
For example, the probability of seeing the word “student” in the first po-
sition of the document is the same as seeing it in any other position.  

3. Document length is independent of the document class.  

With these assumptions, each document can be regarded as generated by a 
multinomial distribution. In other words, each document is drawn from a 
multinomial distribution of words with as many independent trials as the 
length of the document. The words are from a given vocabulary V = {w1, 
w2, …, w|V|}, |V| being the number of words in the vocabulary. To see why 
this is a multinomial distribution, we give a short introduction to the multi-
nomial distribution.  

A multinomial trial is a process that can result in any of k outcomes, 
where k  2. Each outcome of a multinomial trial has a probability of oc-
currence. The probabilities of the k outcomes are denoted by p1, p2, …, pk. 
For example, the rolling of a die is a multinomial trial, with six possible 
outcomes 1, 2, 3, 4, 5, 6. For a fair die, p1 = p2 = … = pk = 1/6. 

Now assume n independent trials are conducted, each with the k possi-
ble outcomes and the k probabilities, p1, p2, …, pk. Let us number the out-
comes 1, 2, 3, …, k. For each outcome, let Xt denote the number of trials 
that result in that outcome. Then, X1, X2, …, Xk are discrete random vari-
ables. The collection of X1, X2, …, Xk is said to have the multinomial dis-
tribution with parameters, n, p1, p2, …, pk.  

In our context, n corresponds to the length of a document, and the out-
comes correspond to all the words in the vocabulary V (k = |V|). p1, p2, …, 
pk correspond to the probabilities of occurrence of the words in V in a doc-
ument, which are Pr(wt|cj; ). Xt is a random variable representing the 
number of times that word wt appears in a document. We can thus directly 
apply the probability function of the multinomial distribution to find the 
probability of a document given its class (including the probability of doc-
ument length, Pr(|di|), which is assumed to be independent of the class):  
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where Nti is the number of times that word wt occurs in document di,  
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The parameters j of the generative component for each class cj are the 
probabilities of all words wt in V, written as Pr(wt|cj; ), and the probabili-
ties of document lengths, which are the same for all classes (or mixture 
components) due to our assumption.  

Parameter Estimation: The parameters can be estimated from the train-
ing data D = {D1, D2, …, D|C|}, where Dj is the subset of documents for 
class cj (recall |C| is the number of classes). The vocabulary V is the set of 
all distinctive words in D. Note that we do not need to estimate the prob-
ability of each document length as it is not used in our final classifier. The 
estimate of  is written as ̂ . The parameters are estimated based on em-
pirical counts.  

The estimated probability of word wt given class cj is simply the number 
of times that wt occurs in the training data Dj (of class cj) divided by the to-
tal number of word occurrences in the training data for that class:  
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In Equation (30), we do not use Dj explicitly. Instead, we include Pr(cj|di) 
to achieve the same effect because Pr(cj|di) = 1 for each document in Dj 
and Pr(cj|di) = 0 for documents of other classes. Again, Nti is the number of 
times that word wt occurs in document di.  

In order to handle 0 counts for infrequently occurring words that do not 
appear in the training set, but may appear in the test set, we need to smooth 
the probability to avoid probabilities of 0 or 1. This is the same problem as 
in Sect. 3.6. The standard way of doing this is to augment the count of 
each distinctive word with a small quantity  (0    1) or a fraction of a 
word in both the numerator and the denominator. Thus, any word will have 
at least a very small probability of occurrence.  
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This is called the Lidstone smoothing (Lidstone’s law of succession). 
When  = 1, the smoothing is known as the Laplace smoothing. Many 
experiments have shown that  < 1 works better for text classification [1]. 
The best  value for a data set can be found through experiments using a 
validation set or through cross-validation.  

Finally, class prior probabilities, which are mixture weights j, can be 
easily estimated using the training data as well,  
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Classification: Given the estimated parameters, at the classification time, 
we need to compute the probability of each class cj for the test document 
di. That is, we compute the probability that a particular mixture component 
cj generated the given document di. Using the Bayes rule and Equations 
(27), (28), (31), and (32), we have 
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where wdi,k is the word in position k of document di (which is the same as 
using wt and Nti). If the final classifier is to classify each document into a 
single class, the class with the highest posterior probability is selected: 

).ˆ;|Pr(maxarg  ijCc dc
j

 (34) 

3.7.3 Discussion 

Most assumptions made by naïve Bayesian learning are violated in prac-
tice. For example, words in a document are clearly not independent of each 
other. The mixture model assumption of one-to-one correspondence be-
tween classes and mixture components may not be true either because a 
class may contain documents from multiple topics. Despite such viola-
tions, researchers have shown that naïve Bayesian learning produces very 
accurate models.  

Naïve Bayesian learning is also very efficient. It scans the training data 
only once to estimate all the probabilities required for classification. It can 
be used as an incremental algorithm as well. The model can be updated 
easily as new data comes in because the probabilities can be conveniently 
revised. Naïve Bayesian learning is thus widely used for text classification.  

The naïve Bayesian formulation presented here is based on a mixture of 
multinomial distributions. There is also a formulation based on multi-
variate Bernoulli distributions in which each word in the vocabulary is a 
binary feature, i.e., it either appears or does not appear in a document. 
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Thus, it does not consider the number of times that a word occurs in a doc-
ument. Experimental comparisons show that multinomial formulation con-
sistently produces more accurate classifiers [42].  

3.8 Support Vector Machines 

Support vector machines (SVM) is another type of learning system [57], 
which has many desirable qualities that make it one of most popular algo-
rithms. It not only has a solid theoretical foundation, but also performs 
classification more accurately than most other algorithms in many applica-
tions, especially those applications involving very high dimensional data. 
For instance, it has been shown by several researchers that SVM is perhaps 
the most accurate algorithm for text classification. It is also widely used in 
Web page classification and bioinformatics applications.  

In general, SVM is a linear learning system that builds two-class clas-
sifiers. Let the set of training examples D be  

{(x1, y1), (x2, y2), …, (xn, yn)},  

where xi = (xi1, xi2, …, xir) is a r-dimensional input vector in a real-valued 
space X   

r, yi is its class label (output value) and yi  {1, -1}. 1 denotes 

the positive class and -1 denotes the negative class. Note that we use 
slightly different notations in this section. We use y instead of c to repre-
sent a class because y is commonly used to represent a class in the SVM 
literature. Similarly, each data instance is called an input vector and de-
noted by a bold face letter. In the following, we use bold face letters for all 
vectors.  

To build a classifier, SVM finds a linear function of the form  

f(x) = w  x + b (35) 

so that an input vector xi is assigned to the positive class if f(xi)  0, and to 
the negative class otherwise, i.e.,  









0if1
0if1

b

b
y

i

i
i xw

xw
 (36) 

Hence, f(x) is a real-valued function f: X   r . w = (w1, w2, …, wr)  
 r is called the weight vector. b   is called the bias. w  x is the dot 
product of w and x (or Euclidean inner product). Without using vector 
notation, Equation (35) can be written as: 
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f(x1, x2, …, xr) = w1x1+w2x2 + … + wrxr + b, 

where xi is the variable representing the ith coordinate of the vector x. For 
convenience, we will use the vector notation from now on.  

In essence, SVM finds a hyperplane  

w  x + b = 0 (37) 

that separates positive and negative training examples. This hyperplane is 
called the decision boundary or decision surface.  

Geometrically, the hyperplane w  x + b = 0 divides the input space in-
to two half spaces: one half for positive examples and the other half for 
negative examples. Recall that a hyperplane is commonly called a line in a 
2-dimensional space and a plane in a 3-dimensional space.  

Fig. 3.19(A) shows an example in a 2-dimensional space. Positive in-
stances (also called positive data points or simply positive points) are rep-
resented with small filled rectangles, and negative examples are repre-
sented with small empty circles. The thick line in the middle is the 
decision boundary hyperplane (a line in this case), which separates positive 
(above the line) and negative (below the line) data points. Equation (35), 
which is also called the decision rule of the SVM classifier, is used to 
make classification decisions on test instances.  

 
 (A) (B) 

Fig. 3.19. (A) A linearly separable data set and (B) possible decision boundaries 

Fig. 3.19(A) raises two interesting questions: 

1. There are an infinite number of lines that can separate the positive and 
negative data points as illustrated by Fig. 3.19(B). Which line should we 
choose?  

2. A hyperplane classifier is only applicable if the positive and negative 
data can be linearly separated. How can we deal with nonlinear separa-
tions or data sets that require nonlinear decision boundaries?  

w  x + b = 0 

y = 1 

y = -1 
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The SVM framework provides good answers to both questions. Briefly, for 
question 1, SVM chooses the hyperplane that maximizes the margin (the 
gap) between positive and negative data points, which will be defined for-
mally shortly. For question 2, SVM uses kernel functions. Before we dive 
into the details, we want to stress that SVM requires numeric data and only 
builds two-class classifiers. At the end of the section, we will discuss how 
these limitations may be addressed.   

3.8.1  Linear SVM: Separable Case 

This sub-section studies the simplest case of linear SVM. It is assumed that 
the positive and negative data points are linearly separable.  

From linear algebra, we know that in w  x + b = 0, w defines a direc-
tion perpendicular to the hyperplane (see Fig. 3.20). w is also called the 
normal vector (or simply normal) of the hyperplane. Without changing 
the normal vector w, varying b moves the hyperplane parallel to itself. 
Note also that w  x + b = 0 has an inherent degree of freedom. We can 
rescale the hyperplane to w  x + b = 0 for    + (positive real num-
bers) without changing the function/hyperplane.   

 
Fig. 3.20. Separating hyperplanes and margin of SVM: Support vectors are circled 

Since SVM maximizes the margin between positive and negative data 
points, let us find the margin. Let d+ (respectively d) be the shortest dis-
tance from the separating hyperplane (w  x + b = 0) to the closest posi-
tive (negative) data point. The margin of the separating hyperplane is 
d++d. SVM looks for the separating hyperplane with the largest margin, 
which is also called the maximal margin hyperplane, as the final deci-
sion boundary. The reason for choosing this hyperplane to be the decision 

w  x + b = 0 
y = 1 

y = -1 

w

||||
||

w

b  
H+: w  x + b = 1 

H----: w  x + b = -1 

x---- 

x+ 
d d+ 

margin 
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boundary is because theoretical results from structural risk minimization in 
computational learning theory show that maximizing the margin mini-
mizes the upper bound of classification errors.  

Let us consider a positive data point (x+, 1) and a negative data point (x----, 

-1) that are closest to the hyperplane <w  x> + b = 0. We define two paral-

lel hyperplanes, H+ and H----, that pass through x+ and x---- respectively. H+ and 

H---- are also parallel to <w  x> + b = 0. We can rescale w and b to obtain  

H+: w  x+ + b = 1 (38) 

H----: w  x---- + b = -1 (39) 

such that  w  xi + b  1  if yi = 1 
 w  xi + b  -1 if yi = -1, 

which indicate that no training data fall between hyperplanes H+ and H----.  
Now let us compute the distance between the two margin hyperplanes 

H+ and H----. Their distance is the margin (d+ + d). Recall from vector space 
in linear algebra that the (perpendicular) Euclidean distance from a point xi 
to a hyperplane w  x + b = 0 is:  

||||
||

w

xw bi  , (40) 

where ||w|| is the Euclidean norm of w,  

22
2

2
1 ...|||| rwww  www . (41) 

To compute d+, instead of computing the distance from x+ to the separat-
ing hyperplane w  x + b = 0, we pick up any point xs on w  x + b = 0 
and compute the distance from xs to w  x+ + b = 1 by applying Equation 
(40) and noticing that w  xs + b = 0, 

||||
1

||||
|1|

ww

xw s 



b

d . (42) 

Likewise, we can compute the distance from xs to w  x+ + b = -1 to ob-
tain d = 1/||w||. Thus, the decision boundary w  x + b = 0 lies half way 
between H+ and H----. The margin is thus 
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||||
2
w

  ddmargin  (43) 

In fact, we can compute the margin in many ways. For example, it can 
be computed by finding the distances from the origin to the three hyper-
planes, or by projecting the vector (x2---- x1

+) to the normal vector w. 
Since SVM looks for the separating hyperplane that maximizes the mar-

gin, this gives us an optimization problem. Since maximizing the margin is 
the same as minimizing ||w||2/2 = w  w/2. We have the following linear 
separable SVM formulation. 

Definition (Linear SVM: Separable Case): Given a set of linearly sepa-
rable training examples,  

D = {(x1, y1), (x2, y2), …, (xn, yn)}, 

learning is to solve the following constrained minimization problem, 

niby ii  ..., 2, 1,   ,1)(  :Subject to
2

   :Minimize





xw

ww
 (44) 

Note that the constraint niby ii  ..., 2, 1,   ,1)(  xw  summarizes:  

 w  xi + b  1  for yi = 1 
 w  xi + b  -1 for yi = -1. 

Solving the problem (44) will produce the solutions for w and b, which in turn 
give us the maximal margin hyperplane w  x + b = 0 with the margin 2/||w||.  

A full description of the solution method requires a significant amount 
of optimization theory, which is beyond the scope of this book. We will 
only use those relevant results from optimization without giving formal de-
finitions, theorems, or proofs.  

Since the objective function is quadratic and convex and the constraints 
are linear in the parameters w and b, we can use the standard Lagrange 
multiplier method to solve it.  

Instead of optimizing only the objective function (which is called un-
constrained optimization), we need to optimize the Lagrangian of the prob-
lem, which considers the constraints at the same time. The need to con-
sider constraints is obvious because they restrict the feasible solutions. 
Since our inequality constraints are expressed using “”, the Lagrangian 
is formed by the constraints multiplied by positive Lagrange multipliers 
and subtracted from the objective function, i.e.,     
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iiP xwww  , (45) 

where i  0 are the Lagrange multipliers.  
The optimization theory says that an optimal solution to (45) must sat-

isfy certain conditions, called Kuhn–Tucker conditions, which play a 
central role in constrained optimization. Here, we give a brief introduction 
to these conditions. Let the general optimization problem be 

nibg

f

ii  ..., 2, 1,   ,)(  :Subject to
)(   :Minimize

x

x  (46) 

where f is the objective function and gi is a constraint function (which is 
different from yi in (44) as yi is not a function but a class label of 1 or -1). 
The Lagrangian of (46) is,  

)])([)(
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i

n

i
iiP bgfL  



xx   (47) 

An optimal solution to the problem in (46) must satisfy the following 
necessary (but not sufficient) conditions: 

rj
x

L

j

P  ..., ,2 ,1  ,0 

  (48) 

nibg ii  ..., 2, 1,   ,0)( x  (49) 
nii  ..., 2, 1,   ,0   (50) 

nigb iiii  ..., 2, 1,   ,0))((  x  (51) 

These conditions are called the Kuhn–Tucker conditions. Note that 
(49) is simply the original set of constraints in (46). The condition (51) is 
called the complementarity condition, which implies that at the solution 
point,  

If  i > 0  then  gi(x) = bi. 
If  gi(x) > bi  then  i = 0. 

These mean that for active constraints, i > 0, whereas for inactive con-
straints, i = 0. As we will see later, they give some very desirable proper-
ties to SVM.  

Let us come back to our problem. For the minimization problem (44), 
the Kuhn–Tucker conditions are (52)–(56): 
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niby ii  ..., 2, 1,   ,01)(  xw  (54) 
nii  ..., 2, 1,   ,0   (55) 

niby iii  ..., 2, 1,   ,0)1)((  xw  (56) 

Inequality (54) is the original set of constraints. We also note that although 
there is a Lagrange multiplier i for each training data point, the comple-
mentarity condition (56) shows that only those data points on the margin 
hyperplanes (i.e., H+ and H----) can have i > 0 since for them yi(w  xi + b) 
– 1 = 0. These data points are called support vectors, which give the name 
to the algorithm, support vector machines. All the other data points have  
i = 0.  

In general, Kuhn–Tucker conditions are necessary for an optimal solu-
tion, but not sufficient. However, for our minimization problem with a 
convex objective function and a set of linear constraints, the Kuhn–Tucker 
conditions are both necessary and sufficient for an optimal solution. 

Solving the optimization problem is still a difficult task due to the ine-
quality constraints. However, the Lagrangian treatment of the convex op-
timization problem leads to an alternative dual formulation of the problem, 
which is easier to solve than the original problem, which is called the pri-
mal problem (LP is called the primal Lagrangian).  

The concept of duality is widely used in the optimization literature. The 
aim is to provide an alternative formulation of the problem which is more 
convenient to solve computationally and/or has some theoretical signifi-
cance. In the context of SVM, the dual problem is not only easy to solve 
computationally, but also crucial for using kernel functions to deal with 
nonlinear decision boundaries as we do not need to compute w explicitly 
(which will be clear later).  

Transforming from the primal to its corresponding dual can be done by 
setting to zero the partial derivatives of the Lagrangian (45) with respect to 
the primal variables (i.e., w and b), and substituting the resulting relations 
back into the Lagrangian. This is to simply substitute (52), which is 
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and (53), which is 
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into the original Lagrangian (45) to eliminate the primal variables, which 
gives us the dual objective function (denoted by LD),  
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LD contains only dual variables and must be maximized under the simpler 
constraints, (52) and (53), and i  0. Note that (52) is not needed as it has 
already been substituted into the objective function LD. Hence, the dual of 
the primal Equation (44) is 

Maximize: .
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(60) 

This dual formulation is called the Wolfe dual. For our convex objec-
tive function and linear constraints of the primal, it has the property that 
the i’s at the maximum of LD gives w and b occurring at the minimum of 
LP (the primal).  

Solving (60) requires numerical techniques and clever strategies beyond 
the scope of this book. After solving (60), we obtain the values for i, 
which are used to compute the weight vector w and the bias b using Equa-
tions (52) and (56) respectively. Instead of depending on one support vec-
tor (i > 0) to compute b, in practice all support vectors are used to com-
pute b, and then take their average as the final value for b. This is because 
the values of i are computed numerically and can have numerical errors. 
Our final decision boundary (maximal margin hyperplane) is 

0 


byb
svi

iii xxxw  , (61) 

where sv is the set of indices of the support vectors in the training data.  
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Testing: We apply (61) for classification. Given a test instance z, we clas-
sify it using the following:  

.)( 







 

svi
iii bysignbsign zxzw   (62) 

If (62) returns 1, then the test instance z is classified as positive; otherwise, 
it is classified as negative.  

3.8.2 Linear SVM: Non-separable Case 

The linear separable case is the ideal situation. In practice, however, the 
training data is almost always noisy, i.e., containing errors due to various 
reasons. For example, some examples may be labeled incorrectly. Fur-
thermore, practical problems may have some degree of randomness. Even 
for two identical input vectors, their labels may be different.  

For SVM to be useful, it must allow noise in the training data. However, 
with noisy data the linear separable SVM will not find a solution because 
the constraints cannot be satisfied. For example, in Fig. 3.21, there is a 
negative point (circled) in the positive region, and a positive point in the 
negative region. Clearly, no solution can be found for the problem.  

Recall that the primal for the linear separable case was: 

. ..., 2, 1,   ,1)(  :Subject to
2

   :Minimize

niby ii 



xw

ww
 (63) 

To allow errors in data, we can relax the margin constraints by introduc-
ing slack variables, i ( 0) as follows:  

 w  xi + b  1  i for yi = 1 
 w  xi + b  1 + i for yi = -1. 

Thus we have the new constraints: 

Subject to:  yi(w  xi + b)  1  i, i =1, 2, …, n, 
  i  0,  i =1, 2, …, n. 

The geometric interpretation is shown in Fig. 3.21, which has two error da-
ta points xa and xb (circled) in wrong regions.  
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Fig. 3.21. The non-separable case: xa and xb are error data points 

We also need to penalize the errors in the objective function. A natural 
way is to assign an extra cost for errors to change the objective function to  
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where C  0 is a user specified parameter. The resulting optimization prob-
lem is still a convex programming problem. k = 1 is commonly used, 
which has the advantage that neither i nor its Lagrangian multipliers ap-
pear in the dual formulation. We only discuss the k = 1 case below.  

The new optimization problem becomes:  
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(65) 

This formulation is called the soft-margin SVM. The primal Lagrangian 
(denoted by LP) of this formulation is as follows     
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where i, i  0 are the Lagrange multipliers. The Kuhn–Tucker condi-
tions for optimality are the following:  
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w  x + b = 0 
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niby iii  ..., 2, 1,   ,01)(  xw  (70) 
nii  ..., 2, 1,   ,0   (71) 
nii  ..., 2, 1,   ,0   (72) 
nii  ..., 2, 1,   ,0   (73) 

niby iiii  ..., 2, 1,   ,0)1)((   xw  (74) 
niii  ..., 2, 1,   ,0   (75) 

As the linear separable case, we then transform the primal to its dual by 
setting to zero the partial derivatives of the Lagrangian (66) with respect to 
the primal variables (i.e., w, b and i), and substituting the resulting rela-
tions back into the Lagrangian. That is, we substitute Equations (67), (68) 
and (69) into the primal Lagrangian (66). From Equation (69), C  i  i 
= 0, we can deduce that i  C because i  0. Thus, the dual of (65) is 

Maximize:  


ji

n

ji
jiji

n

i
iD yyL xxα

1,1 2
1)(   

Subject to: 
. ..., ,2 ,1   ,0

0
1

niC

y

i

n

i
ii









 

(76) 

Interestingly, i and its Lagrange multipliers i are not in the dual and the 
objective function is identical to that for the separable case. The only dif-
ference is the constraint i  C (inferred from Cii = 0 and i  0). 

The dual problem (76) can also be solved numerically, and the resulting 
i values are then used to compute w and b. w is computed using Equation 
(67) and b is computed using the Kuhn–Tucker complementarity condi-
tions (74) and (75). Since we do not have values for i, we need to get around 
it. From Equations (69), (74) and (75), we observe that if 0 < i < C then both 
i = 0 and .0)1)(  iii by xw  Thus, we can use any training data 
point for which 0 < i < C and Equation (74) (with i = 0) to compute b:  
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Again, due to numerical errors, we can compute all possible b’s and 
then take their average as the final b value. 

Note that Equations (69), (74) and (75) in fact tell us more:  

i = 0   yi(w  xi + b)  1  and i = 0 
0 < i < C   yi(w  xi + b) = 1  and i = 0 
i = C   yi(w  xi + b)  1  and i  0 

(78) 

Similar to support vectors for the separable case, (78) shows one of the 
most important properties of SVM: the solution is sparse in i. Most train-
ing data points are outside the margin area and their i’s in the solution are 
0. Only those data points that are on the margin (i.e., yi(w  xi + b) = 1, 
which are support vectors in the separable case), inside the margin (i.e., i 
= C and yi(w  xi + b) < 1), or errors are non-zero. Without this sparsity 
property, SVM would not be practical for large data sets.  

The final decision boundary is (we note that many i’s are 0) 

.0
1

 


byb
n

i
iii xxxw   (79) 

The decision rule for classification (testing) is the same as the separable 
case, i.e., sign(w  x + b). We notice that for both Equations (79) and 
(77), w does not need to be explicitly computed. This is crucial for using 
kernel functions to handle nonlinear decision boundaries.  

Finally, we still have the problem of determining the parameter C. The 
value of C is usually chosen by trying a range of values on the training set 
to build multiple classifiers and then to test them on a validation set before 
selecting the one that gives the best classification result on the validation 
set. Cross-validation is commonly used as well. 

3.8.3 Nonlinear SVM: Kernel Functions 

The SVM formulations discussed so far require that positive and negative 
examples can be linearly separated, i.e., the decision boundary must be a 
hyperplane. However, for many real-life data sets, the decision boundaries 
are nonlinear. To deal with nonlinearly separable data, the same formula-
tion and solution techniques as for the linear case are still used. We only 
transform the input data from its original space into another space (usually 
a much higher dimensional space) so that a linear decision boundary can 
separate positive and negative examples in the transformed space, which is 
called the feature space. The original data space is called the input space.  

Thus, the basic idea is to map the data in the input space X to a feature 
space F via a nonlinear mapping , 
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After the mapping, the original training data set {(x1, y1), (x2, y2), …, 
(xn, yn)} becomes:  

{((x1), y1), ((x2), y2), …, ((xn), yn)}. (81) 

The same linear SVM solution method is then applied to F. Fig. 3.19 illus-
trates the process. In the input space (figure on the left), the training exam-
ples cannot be linearly separated. In the transformed feature space (figure 
on the right), they can be separated linearly.   

 
Fig. 3.22. Transformation from the input space to the feature space 

With the transformation, the optimization problem in (65) becomes 
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Its corresponding dual is  
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The final decision rule for classification (testing) is  
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Example 18: Suppose our input space is 2-dimensional, and we choose the 
following transformation (mapping):  

)2 , ,() ,( 21
2

2
2

121 xxxxxx  (85) 

The training example ((2, 3), -1) in the input space is transformed to the 
following training example in the feature space:  

 ((4, 9, 8.5), -1).  ▀ 

The potential problem with this approach of transforming the input data 
explicitly to a feature space and then applying the linear SVM is that it 
may suffer from the curse of dimensionality. The number of dimensions in 
the feature space can be huge with some useful transformations (see be-
low) even with reasonable numbers of attributes in the input space. This 
makes it computationally infeasible to handle.  

Fortunately, explicit transformations can be avoided if we notice that in 
the dual representation both the construction of the optimal hyperplane 
(83) in F and the evaluation of the corresponding decision/classification 
function (84) only require the evaluation of dot products (x)  (z) and 
never the mapped vector (x) in its explicit form. This is a crucial point.  

Thus, if we have a way to compute the dot product (x)  (z) in the 
feature space F using the input vectors x and z directly, then we would not 
need to know the feature vector (x) or even the mapping function  itself. 
In SVM, this is done through the use of kernel functions, denoted by K,  

K(x, z) = (x)  (z), (86) 

which are exactly the functions for computing dot products in the trans-
formed feature space using input vectors x and z. An example of a kernel 
function is the polynomial kernel, 

K(x, z) = x  zd. (87) 

Example 19: Let us compute this kernel with degree d = 2 in a 2-
dimensional space. Let x = (x1, x2) and z = (z1, z2).  
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where ),2()( 21
2

2
2

1 xx,x,x  x  which shows that the kernel x  z2 is a 
dot product in the transformed feature space. The number of dimensions in 
the feature space is 3. Note that (x) is actually the mapping function used 
in Example 18. Incidentally, in general the number of dimensions in the 
feature space for the polynomial kernel function x  zd is 







 
d

dr 1 , which 

is a huge number even with a reasonable number (r) of attributes in the in-
put space. Fortunately, by using the kernel function in (87), the huge num-
ber of dimensions in the feature space does not matter. ▀ 

The derivation in (88) is only for illustration purposes. In fact, we do not 
need to find the mapping function. We can simply apply the kernel func-
tion directly. That is, we replace all the dot products (x)  (z) in (83) 
and (84) with the kernel function K(x, z) (e.g., the polynomial kernel in 
(87)). This strategy of directly using a kernel function to replace dot prod-
ucts in the feature space is called the kernel trick. We never need to ex-
plicitly know what  is.   

However, the question is, how do we know whether a function is a ker-
nel without performing the derivation such as that in (88)? That is, how do 
we know that a kernel function is indeed a dot product in some feature 
space? This question is answered by a theorem called the Mercer’s theo-
rem, which we will not discuss here. See [12] for details.  

It is clear that the idea of kernel generalizes the dot product in the input 
space. The dot product is also a kernel with the feature map being the identity  

K(x, z) = x  z. (89) 

Commonly used kernels include 

Polynomial:      dK )(),(  zxzx  (90) 

Gaussian RBF: 2|||| 2
),( zxzx  eK  (91) 

where   , d  N, and  > 0.  

Summary 

SVM is a linear learning system that finds the maximal margin decision 
boundary to separate positive and negative examples. Learning is formu-
lated as a quadratic optimization problem. Nonlinear decision boundaries 
are found via a transformation of the original data to a much higher dimen-
sional feature space. However, this transformation is never explicitly done. 
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Instead, kernel functions are used to compute dot products required in 
learning without the need to even know the transformation function.  

Due to the separation of the learning algorithm and kernel functions, 
kernels can be studied independently from the learning algorithm. One can 
design and experiment with different kernel functions without touching the 
underlying learning algorithm.  

SVM also has some limitations:  

1. It works only in real-valued space. For a categorical attribute, we need 
to convert its categorical values to numeric values. One way to do this is 
to create an extra binary attribute for each categorical value, and set the 
attribute value to 1 if the categorical value appears, and 0 otherwise.  

2. It allows only two classes, i.e., binary classification. For multiple class 
classification problems, several strategies can be applied, e.g., one-
against-rest, and error-correcting output coding [14]. 

3. The hyperplane produced by SVM is hard to understand by users. It is 
difficult to picture where the hyperplane is in a high-dimensional space. 
The matter is made worse by kernels. Thus, SVM is commonly used in 
applications that do not required human understanding.  

3.9 K-Nearest Neighbor Learning 

All the previous learning methods learn some kinds of models from the 
training data, e.g., decision trees, sets of rules, posterior probabilities, and 
hyperplanes. These learning methods are often called eager learning me-
thods as they learn models of the data before testing. In contrast, k-nearest 
neighbor (kNN) is a lazy learning method in the sense that no model is 
learned from the training data. Learning only occurs when a test example 
needs to be classified. The idea of kNN is extremely simple and yet quite 
effective in many applications, e.g., text classification.  

It works as follows: Again let D be the training data set. Nothing will be 
done on the training examples. When a test instance d is presented, the al-
gorithm compares d with every training example in D to compute the simi-
larity or distance between them. The k most similar (closest) examples in 
D are then selected. This set of examples is called the k nearest neighbors 
of d. d then takes the most frequent class among the k nearest neighbors. 
Note that k = 1 is usually not sufficient for determining the class of d due 
to noise and outliers in the data. A set of nearest neighbors is needed to ac-
curately decide the class. The general kNN algorithm is given in Fig. 3.23. 
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2 Choose the k examples in D that are nearest to d, denote the set by P ( D); 
3 Assign d the class that is the most frequent class in P (or the majority class).  

Fig. 3.23. The k-nearest neighbor algorithm 

The key component of a kNN algorithm is the distance/similarity func-
tion, which is chosen based on applications and the nature of the data. For 
relational data, the Euclidean distance is commonly used. For text docu-
ments, cosine similarity is a popular choice. We will introduce these dis-
tance functions and many others in the next chapter.  

The number of nearest neighbors k is usually determined by using a va-
lidation set, or through cross validation on the training data. That is, a 
range of k values are tried, and the k value that gives the best accuracy on 
the validation set (or cross validation) is selected. Fig. 3.21 illustrates the 
importance of choosing the right k.  

Example 20: In Fig. 3.24, we have two classes of data, positive (filled 
squares) and negative (empty circles). If 1-nearest neighbor is used, the 
test data point  will be classified as negative, and if 2-nearest neighbors 
are used, the class cannot be decided. If 3-nearest neighbors are used, the 
class is positive as two positive examples are in the 3-nearest neighbors.  

 
Fig. 3.24. An illustration of k-nearest neighbor classification 

Despite its simplicity, researchers have showed that the classification 
accuracy of kNN can be quite strong and in many cases as accurate as 
those elaborated methods. For instance, it is showed in [62] that kNN per-
forms equally well as SVM for some text classification tasks. kNN is also 
very flexible. It can work with any arbitrarily shaped decision boundaries.  

kNN is, however, slow at the classification time. Due to the fact that 
there is no model building, each test instance is compared with every train-
ing example at the classification time, which can be quite time consuming 
especially when the training set D and the test set are large. Another disad-
vantage is that kNN does not produce an understandable model. It is thus 
not applicable if an understandable model is required in the application.  

1-nearst neighbor 
2-nearst neighbor 
3-nearst neighbor 

Algorithm kNN(D, d, k) 
1 Compute the distance between d and every example in D; 
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3.10 Ensemble of Classifiers  

So far, we have studied many individual classifier building techniques. A 
natural question to ask is: can we build many classifiers and then combine 
them to produce a better classifier? Yes, in many cases. This section de-
scribes two well known ensemble techniques, bagging and boosting. In 
both these methods, many classifiers are built and the final classification 
decision for each test instance is made based on some forms of voting of 
the committee of classifiers.  

3.10.1 Bagging 

Given a training set D with n examples and a base learning algorithm, bag-
ging (for Bootstrap Aggregating) works as follows [4]:  

Training:  

1. Create k bootstrap samples S1, S2, and Sk. Each sample is produced by 
drawing n examples at random from D with replacement. Such a sample 
is called a bootstrap replicate of the original training set D. On aver-
age, each sample Si contains 63.2% of the original examples in D, with 
some examples appearing multiple times.  

2. Build a classifier based on each sample Si. This gives us k classifiers. 
All the classifiers are built using the same base learning algorithm. 

Testing: Classify each test (or new) instance by voting of the k classifiers 
(equal weights). The majority class is assigned as the class of the instance.  

Bagging can improve the accuracy significantly for unstable learning 
algorithms, i.e., a slight change in the training data resulting in a major 
change in the output classifier. Decision tree and rule induction methods 
are examples of unstable learning methods. k-nearest neighbor and naïve 
Bayesian methods are examples of stable techniques. For stable classifiers, 
Bagging may sometime degrade the accuracy. 

3.10.2 Boosting 

Boosting is a family of ensemble techniques, which, like bagging, also 
manipulates the training examples and produces multiple classifiers to im-
prove the classification accuracy [53]. Here we only describe the popular 
AdaBoost algorithm given in [20]. Unlike bagging, AdaBoost assigns a 
weight to each training example.  
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Training: AdaBoost produces a sequence of classifiers (also using the 
same base learner). Each classifier is dependent on the previous one, and 
focuses on the previous one’s errors. Training examples that are incor-
rectly classified by the previous classifiers are given higher weights.  

Let the original training set D be {(x1, y1), (x2, y2), …, (xn, yn)}, where xi 
is an input vector, yi is its class label and yi  Y (the set of class labels). 
With a weight attached to each example, we have, {(x1, y1, w1), (x2, y2, w2), 
…, (xn, yn, wn)}, and i wi = 1. The AdaBoost algorithm is given in Fig. 3.25. 

The algorithm builds a sequence of k classifiers (k is specified by the 
user) using a base learner, called BaseLeaner in line 3. Initially, the weight 
for each training example is 1/n (line 1). In each iteration, the training data 
set becomes Dt, which is the same as D but with different weights. Each it-
eration builds a new classifier ft (line 3). The error of ft is calculated in line 
4. If it is too large, delete the iteration and exit (lines 5–7). Lines 9–11 up-
date and normalize the weights for building the next classifier.  

AdaBoost(D, Y, BaseLeaner, k) 
1.  Initialize D1(wi)  1/n for all i; // initialize the weights 
2.  for t = 1 to k do  
3.  ft  BaseLearner(Dt); // build a new classifier ft 
4.  




iitt yDfi

itt wDe
))((:

)(
x

; // compute the error of ft 

5.  if et > ½ then  // if the error is too large, 
6. k  k – 1; // remove the iteration and 
7. exit-loop // exit 
8. else 
9. t  et / (1 et); 

10 Dt+1(wi)  Dt(wi)  ;
            otherwise1

))(( if



  iittt yDf x  // update the weights 

11. Dt+1(wi)  
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)(  // normalize the weights 

12. endif 
13. endfor 

14.  
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)(:

1logmaxarg )(
x

x


 // the final output classifier 

Fig. 3.25. The AdaBoost algorithm 
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Testing: For each test case, the results of the series of classifiers are com-
bined to determine the final class of the test case, which is shown in line 
14 of Fig. 3.25 (a weighted voting).  

Boosting works better than bagging in most cases as shown in [48]. It 
also tends to improve performance more when the base learner is unstable.  

Bibliographic Notes 

Supervised learning has been studied extensively by the machine learning 
community. The book by Mitchell [45] covers most learning techniques 
and is easy to read. Duda et al.’s pattern classification book is also a great 
reference [17]. Most data mining books have one or two chapters on su-
pervised learning, e.g., those by Han and Kamber [24], Hand et al. [25], 
Tan et al. [56], and Witten and Frank [59]. 

For decision tree induction, Quinlan’s book [49] has all the details and 
the code of his popular decision tree system C4.5. Other well-known sys-
tems include CART by Breiman et al. [6] and CHAD by Kass [28]. Scal-
ing up of decision tree algorithms was also studied in several papers. These 
algorithms can have the data on disk, and are thus able to run with huge 
data sets. See [22] for an algorithm and also additional references.  

Rule induction algorithms generate rules directly from the data. Well-
known systems include AQ by Michalski et al. [44], CN2 by Clark and 
Niblett [9], FOIL by Quinlan [50], FOCL by Pazzani et al. [47], I-REP by 
Furnkranz and Widmer [21], and RIPPER by Cohen [10]. 

Using association rules to build classifiers was proposed by Liu et al. in 
[39], which also reported the CBA system. CBA selects a small subset of 
class association rules as the classifier. Other classifier building techniques 
include combining multiple rules by Li et al. [36], using rules as features 
by Meretakis and Wüthrich [43], Antonie and Zaiane [2], Deshpande and 
Karypis [13], and Lesh et al. [31], generating a subset of rules by Cong et 
al. [11], Wang et al. [58], Yin and Han [63], and Zaki and Aggarwal [64]. 
Additional systems include those by Li et al. [35], Yang et al. [61], etc.   

The naïve Bayesian classification model described in Sect. 3.6 is based 
on the papers by Domingos and Pazzani [15], Kohavi et al. [29] and Lang-
ley et al [30]. The naïve Bayesian classification for text discussed in Sect. 
3.7 is based on the multinomial formulation given by McCallum and Ni-
gam [42]. This model was also used earlier by Lewis and Gale [33], and Li 
and Yamanishi [34]. Another formulation of naïve Bayesian classification 
is based on the multivariate Bernoulli model, which was used by Lewis 
[32], and Robertson and Sparck-Jones [52]. 
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Support vector machines (SVM) was first introduced by Vapnik and his 
colleagues in 1992 [3]. Further details are given in his 1995 book [57]. 
Two other books on SVM and kernel methods are those by Cristianini and 
Shawe-Taylor [12] and Scholkopf and Smola [54]. The discussion on 
SVM in this chapter is heavily influenced by Cristianini and Shawe-
Taylor’s book and the tutorial paper by Burges [8]. Two popular SVM sys-
tems are SVMLight (available at http://svmlight.joachims.org/) and LIBSVM 
(available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/).  

Existing classifier ensemble methods include bagging by Breiman [4], 
boosting by Schapire [53] and Freund and Schapire [20], random forest al-
so by Breiman [5], stacking by Wolpert [60], random trees by Fan [18], 
and many others.  
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4 Unsupervised Learning 

Supervised learning discovers patterns in the data that relate data attributes 
to a class attribute. These patterns are then utilized to predict the values of 
the class attribute of future data instances. These classes indicate some 
real-world predictive or classification tasks such as determining whether a 
news article belongs to the category of sports or politics, or whether a pa-
tient has a particular disease. However, in some other applications, the data 
have no class attributes. The user wants to explore the data to find some in-
trinsic structures in them. Clustering is one technology for finding such 
structures. It organizes data instances into similarity groups, called clus-
ters such that the data instances in the same cluster are similar to each oth-
er and data instances in different clusters are very different from each oth-
er. Clustering is often called unsupervised learning, because unlike 
supervised learning, class values denoting an a priori partition or grouping 
of the data are not given. Note that according to this definition, we can also 
say that association rule mining is an unsupervised learning task. However, 
due to historical reasons, clustering is closely associated and even syn-
onymous with unsupervised learning while association rule mining is not. 
We follow this convention, and describe some main clustering techniques 
in this chapter.  

Clustering has been shown to be one of the most commonly used data 
analysis techniques. It also has a long history, and has been used in almost 
every field, e.g., medicine, psychology, botany, sociology, biology, arche-
ology, marketing, insurance, library science, etc. In recent years, due to the 
rapid increase of online documents and the expansion of the Web, text 
document clustering too has become a very important task. In Chap. 12, 
we will also see that clustering is very useful in Web usage mining.  

4.1 Basic Concepts  

Clustering is the process of organizing data instances into groups whose 
members are similar in some way. A cluster is therefore a collection of da-
ta instances which are “similar” to each other and are “dissimilar” to data 
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Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_4, 
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instances in other clusters. In the clustering literature, a data instance is al-
so called an object as the instance may represent an object in the real-
world. It is also called a data point as it can be seen as a point in an r-
dimension space, where r is the number of attributes in the data.  

Fig. 4.1 shows a 2-dimensional data set. We can clearly see three groups 
of data points. Each group is a cluster. The task of clustering is to find the 
three clusters hidden in the data. Although it is easy for a human to visu-
ally detect clusters in a 2-dimensional or even 3-demensional space, it be-
comes very hard, if not impossible, to detect clusters visually as the num-
ber of dimensions increases. Additionally, in many applications, clusters 
are not as clear-cut or well separated as the three clusters in Fig. 4.1. Au-
tomatic techniques are thus needed for clustering. 

 
Fig. 4.1. Three natural groups or clusters of data points 

After seeing the example in Fig. 4.1, you may ask the question: What is 
clustering for? To answer it, let us see some application examples from 
different domains.   

Example 1: A company wants to conduct a marketing campaign to pro-
mote its products. The most effective strategy is to design a set of person-
alized marketing materials for each individual customer according to 
his/her profile and financial situation. However, this is too expensive for a 
large number of customers. At the other extreme, the company designs 
only one set of marketing materials to be used for all customers. This one-
size-fits-all approach, however, may not be effective. The most cost-
effective approach is to segment the customers into a small number of 
groups according to their similarities and design some targeted marketing 
materials for each group. This segmentation task is commonly done using 
clustering algorithms, which partition customers into similarity groups. In 
marketing research, clustering is often called segmentation.  ▀ 

Example 2: A company wants to produce and sell T-shirts. Similar to the 
case above, on one extreme, for each customer it can measure his/her size 
and have a T-shirt tailor-made for him/her. Obviously, this T-shirt is going 
to be expensive. On the other extreme, only one size of T-shirts is made. 
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Since this size may not fit most people, the company might not be able to 
sell as many T-shirts. Again, the most cost effective way is to group people 
based on their sizes and make a different generalized size of T-shirts for 
each group. This is why we see small, medium and large size T-shirts in 
shopping malls, and seldom see T-shirts with only a single size. The me-
thod used to group people according to their sizes is clustering. The proc-
ess is usually as follows: The T-shirt manufacturer first samples a large 
number of people and measure their sizes to produce a measurement data-
base. It then clusters the data, which partitions the data into some similar-
ity subsets, i.e., clusters. For each cluster, it computes the average of the 
sizes and then uses the average to mass-produce T-shirts for all people of 
similar size.  ▀ 

Example 3: Everyday, news agencies around the world generate a large 
number of news articles. If a Web site wants to collect these news articles 
to provide an integrated news service, it has to organize the collected arti-
cles according to some topic hierarchy. The question is: What should the 
topics be, and how should they be organized? One possibility is to employ 
a group of human editors to do the job. However, the manual organization 
is costly and very time consuming, which makes it unsuitable for news and 
other time sensitive information. Throwing all the news articles to the 
readers with no organization is clearly not an option. Although classifica-
tion is able to classify news articles according to predefined topics, it is not 
applicable here because classification needs training data, which have to be 
manually labeled with topic classes. Since news topics change constantly 
and rapidly, the training data would need to change constantly as well, 
which is infeasible via manual labeling. Clustering is clearly a solution for 
this problem because it automatically groups a stream of news articles 
based on their content similarities. Hierarchical clustering algorithms 
can also organize documents hierarchically, i.e., each topic may contain 
sub-topics and so on. Topic hierarchies are particularly useful for texts. ▀ 

The above three examples indicate two types of clustering, partitional 
and hierarchical. Indeed, these are the two most important types of clus-
tering approaches. We will study some specific algorithms of these two 
types of clustering.  

Our discussion and examples above also indicate that clustering needs a 
similarity function to measure how similar two data points (or objects) are, 
or alternatively a distance function to measure the distance between two 
data points. We will use distance functions in this chapter. The goal of 
clustering is thus to discover the intrinsic grouping of the input data 
through the use of a clustering algorithm and a distance function.  
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4.2 K-means Clustering  

The k-means algorithm is the best known partitional clustering algo-
rithm. It is perhaps also the most widely used among all clustering algo-
rithms due to its simplicity and efficiency. Given a set of data points and 
the required number of k clusters (k is specified by the user), this algorithm 
iteratively partitions the data into k clusters based on a distance function.  

4.2.1 K-means Algorithm 

Let the set of data points (or instances) D be  

{x1, x2, …, xn},  

where xi = (xi1, xi2, …, xir) is a vector in a real-valued space X   
r, and r 

is the number of attributes in the data (or the number of dimensions of the 
data space). The k-means algorithm partitions the given data into k clus-
ters. Each cluster has a cluster center, which is also called the cluster cen-
troid. The centroid, usually used to represent the cluster, is simply the 
mean of all the data points in the cluster, which gives the name to the algo-
rithm, i.e., since there are k clusters, thus k means. Fig. 4.2 gives the k-
means clustering algorithm.  

At the beginning, the algorithm randomly selects k data points as the 
seed centroids. It then computes the distance between each seed centroid 
and every data point. Each data point is assigned to the centroid that is 
closest to it. A centroid and its data points therefore represent a cluster. 
Once all the data points in the data are assigned, the centroid for each clus-
ter is re-computed using the data points in the current cluster. This process 
repeats until a stopping criterion is met. The stopping (or convergence) cri-
terion can be any one of the following: 

Algorithm k-means(k, D) 
1 choose k data points as the initial centroids (cluster centers)   
2 repeat 
3 for each data point x  D do 
4 compute the distance from x to each centroid; 
5 assign x to the closest centroid // a centroid represents a cluster 
6 endfor 
7 re-compute the centroid using the current cluster memberships 
8 until the stopping criterion is met 

Fig. 4.2. The k-means algorithm 
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1. no (or minimum) re-assignments of data points to different clusters.  
2. no (or minimum) change of centroids. 
3. minimum decrease in the sum of squared error (SSE),  
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where k is the number of required clusters, Cj is the jth cluster, mj is the 
centroid of cluster Cj (the mean vector of all the data points in Cj), and 
dist(x, mj) is the distance between data point x and centroid mj. 

The k-means algorithm can be used for any application data set where the 
mean can be defined and computed. In Euclidean space, the mean of a 
cluster is computed with:  
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where |Cj| is the number of data points in cluster Cj. The distance from a 
data point xi to a cluster mean (centroid) mj is computed with 
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Example 4: Fig. 4.3(A) shows a set of data points in a 2-dimensional 
space. We want to find 2 clusters from the data, i.e., k = 2. First, two data 
points (each marked with a cross) are randomly selected to be the initial 
centroids (or seeds) shown in Fig. 4.3(A). The algorithm then goes to the 
first iteration (the repeat-loop). 

Iteration 1: Each data point is assigned to its closest centroid to form 2 
clusters. The resulting clusters are given in Fig. 4.3(B). Then the cen-
troids are re-computed based on the data points in the current clusters 
(Fig. 4.3(C)). This leads to iteration 2.  

Iteration 2: Again, each data point is assigned to its closest new centroid to 
form two new clusters shown in Fig. 4.3(D). The centroids are then re-
computed. The new centroids are shown in Fig. 4.3(E).  

Iteration 3: The same operations are performed as in the first two itera-
tions. Since there is no re-assignment of data points to different clusters 
in this iteration, the algorithm ends.  

The final clusters are those given in Fig. 4.3(G). The set of data points in 
each cluster and its centroid are output to the user.  
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Fig. 4.3. The working of the k-means algorithm through an example ▀ 

One problem with the k-means algorithm is that some clusters may be-
come empty during the clustering process since no data point is assigned to 
them. Such clusters are called empty clusters. To deal with an empty clus-
ter, we can choose a data point as the replacement centroid, e.g., a data 
point that is furthest from the centroid of a large cluster. If the sum of the 
squared error (SSE) is used as the stopping criterion, the cluster with the 
largest squared error may be used to find another centroid. 
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(A). Random selection of k seeds (or centroids) 

+
+

+ +

+ +

Iteration 2:  (D). Cluster assignment (E). Re-compute centroids 

+ +

Iteration 3:  (F). Cluster assignment (G). Re-compute centroids 

Iteration 1:  (B). Cluster assignment (C). Re-compute centroids 
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4.2.2 Disk Version of the K-means Algorithm 

The k-means algorithm may be implemented in such a way that it does not 
need to load the entire data set into the main memory, which is useful for 
large data sets. Notice that the centroids for the k clusters can be computed 
incrementally in each iteration because the summation in Equation (2) can 
be calculated separately first. During the clustering process, the number of 
data points in each cluster can be counted incrementally as well. This gives 
us a disk based implementation of the algorithm (Fig. 4.4), which produces 
exactly the same clusters as that in Fig. 4.2, but with the data on disk. In 
each for-loop, the algorithm simply scans the data once.  

The whole clustering process thus scans the data t times, where t is the 
number of iterations before convergence, which is usually not very large 
(< 50). In applications, it is quite common to set a limit on the number of 
iterations because later iterations typically result in only minor changes to 
the clusters. Thus, this algorithm may be used to cluster large data sets 
which cannot be loaded into the main memory. Although there are several 
special algorithms that scale-up clustering algorithms to large data sets, 
they all require sophisticated techniques.  

Algorithm disk-k-means(k, D) 
1 Choose k data points as the initial centriods mj, j = 1, …, k;  
2 repeat 
3 initialize sj  0, j = 1, …, k; // 0 is a vector with all 0’s 
4 initialize nj  0, j = 1, …, k; // nj is the number of points in cluster j 
5 for each data point x  D do 
6 );,(minarg

},...2,1{
i

ki
distj mx


  

7 assign x to the cluster j; 
8 sj  sj + x; 
9 nj  nj + 1; 
10 endfor 
11 mj  sj/nj, j = 1, …, k; 
12 until the stopping criterion is met 

Fig. 4.4. A simple disk version of the k-means algorithm 

Let us give some explanations of this algorithm. Line 1 does exactly the 
same thing as the algorithm in Fig. 4.2. Line 3 initializes vector sj which is 
used to incrementally compute the sum in Equation (2) (line 8). Line 4 ini-
tializes nj which records the number of data points assigned to cluster j 
(line 9). Lines 6 and 7 perform exactly the same tasks as lines 4 and 5 in 
the original algorithm in Fig. 4.2. Line 11 re-computes the centroids, 
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which are used in the next iteration. Any of the three stopping criteria may 
be used here. If the sum of squared error is applied, we can modify the al-
gorithm slightly to compute the sum of square error incrementally.  

4.2.3 Strengths and Weaknesses  

The main strengths of the k-means algorithm are its simplicity and effi-
ciency. It is easy to understand and easy to implement. Its time complexity 
is O(tkn), where n is the number of data points, k is the number of clusters, 
and t is the number of iterations. Since both k and t are normally much 
smaller than n, the k-means algorithm is considered a linear algorithm in 
the number of data points.  

The weaknesses and ways to address them are as follows:  

1. The algorithm is only applicable to data sets where the notion of the 
mean is defined. Thus, it is difficult to apply to categorical data sets. 
There is, however, a variation of the k-means algorithm called k-modes, 
which clusters categorical data. The algorithm uses the mode instead of 
the mean as the centroid. Assuming that the data instances are described 
by r categorical attributes, the mode of a cluster Cj is a tuple mj = (mj1, 
mj2, …, mjr) where mji is the most frequent value of the ith attribute of 
the data instances in cluster Cj. The similarity (or distance) between a 
data instance and a mode is the number of values that they match (or do 
not match).  

2. The user needs to specify the number of clusters k in advance. In prac-
tice, several k values are tried and the one that gives the most desirable 
result is selected. We will discuss the evaluation of clusters later.  

3. The algorithm is sensitive to outliers. Outliers are data points that are 
very far away from other data points. Outliers could be errors in the data 
recording or some special data points with very different values. For ex-
ample, in an employee data set, the salary of the Chief-Executive-
Officer (CEO) of the company may be considered as an outlier because 
its value could be many times larger than everyone else. Since the k-
means algorithm uses the mean as the centroid of each cluster, outliers 
may result in undesirable clusters as the following example shows. 

Example 5: In Fig. 4.5(A), due to an outlier data point, the two result-
ing clusters do not reflect the natural groupings in the data. The ideal 
clusters are shown in Fig. 4.5(B). The outlier should be identified and 
reported to the user.   ▀ 

There are several methods for dealing with outliers. One simple me-
thod is to remove some data points in the clustering process that are 
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much further away from the centroids than other data points. To be safe, 
we may want to monitor these possible outliers over a few iterations and 
then decide whether to remove them. It is possible that a very small 
cluster of data points may be outliers. Usually, a threshold value is used 
to make the decision.  

 
Fig. 4.5. Clustering with and without the effect of outliers ▀ 

Another method is to perform random sampling. Since in sampling 
we only choose a small subset of the data points, the chance of selecting 
an outlier is very small. We can use the sample to do a pre-clustering 
and then assign the rest of the data points to these clusters, which may 
be done in any of the three ways below: 
 Assign each remaining data point to the centroid closest to it. This is 

the simplest method.   
 Use the clusters produced from the sample to perform supervised 

learning (classification). Each cluster is regarded as a class. The clus-
tered sample is thus treated as the training data for learning. The re-
sulting classifier is then applied to classify the remaining data points 
into appropriate classes or clusters.  

 Use the clusters produced from the sample as seeds to perform semi-
supervised learning. Semi-supervised learning is a new learning 
model that learns from a small set of labeled examples (with classes) 
and a large set of unlabeled examples (without classes). In our case, 
the clustered sample data are used as the labeled set and the remain-
ing data points are used as the unlabeled set. The results of the learn-

++
outlier 

++

outlier 

(A): Undesirable clusters 

(B): Ideal clusters 
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ing naturally cluster all the remaining data points.  We will study this 
technique in the next chapter.  

4. The algorithm is sensitive to initial seeds, which are the initially se-
lected centroids. Different initial seeds may result in different clusters. 
Thus, if the sum of squared error is used as the stopping criterion, the 
algorithm only achieves local optimal. The global optimal is computa-
tionally infeasible for large data sets.  

Example 6: Fig. 4.6 shows the clustering process of a 2-dimensional da-
ta set. The goal is to find two clusters. The randomly selected initial 
seeds are marked with crosses in Fig. 4.6(A). Fig. 4.6(B) gives the clus-
tering result of the first iteration. Fig. 4.6(C) gives the result of the sec-
ond iteration. Since there is no re-assignment of data points, the algo-
rithm stops.  

 
Fig. 4.6. Poor initial seeds (centroids) 

If the initial seeds are different, we may obtain entirely different clus-
ters as Fig. 4.7 shows. Fig. 4.7 uses the same data as Fig. 4.6, but differ-
ent initial seeds (Fig. 4.7(A)). After two iterations, the algorithm ends, 
and the final clusters are given in Fig. 4.7(C). These two clusters are 
more reasonable than the two clusters in Fig. 4.6(C), which indicates 
that the choice of the initial seeds in Fig. 4.6(A) is poor.  

To select good initial seeds, researchers have proposed several meth-
ods. One simple method is to first compute the mean m (the centroid) of 
the entire data set (any random data point rather than the mean can be 
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(A). Random selection of seeds (centroids) 

 (B). Iteration 1 (C). Iteration 2 
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used as well). Then the first seed data point x1 is selected to be the fur-
thest from the mean m. The second data point x2 is selected to be the 
furthest from x1. Each subsequent data point xi is selected such that the 
sum of distances from xi to those already selected data points is the larg-
est. However, if the data has outliers, the method will not work well. To 
deal with outliers, again, we can randomly select a small sample of the 
data and perform the same operation on the sample. As we discussed 
above, since the number of outliers is small, the chance that they show 
up in the sample is very small.  

 
Fig. 4.7. Good initial seeds (centroids)  ▀ 

Another method is to sample the data and use the sample to perform 
hierarchical clustering, which we will discuss in Sect. 4.4. The centroids 
of the resulting k clusters are used as the initial seeds.  

Yet another approach is to manually select seeds. This may not be a 
difficult task for text clustering applications because it is easy for human 
users to read some documents and pick some good seeds. These seeds 
may help improve the clustering result significantly and also enable the 
system to produce clusters that meet the user’s needs.   

5. The k-means algorithm is not suitable for discovering clusters that are 
not hyper-ellipsoids (or hyper-spheres).  

Example 7: Fig. 4.8(A) shows a 2-dimensional data set. There are two 
irregular shaped clusters. However, the two clusters are not hyper-

(A). Random selection of k seeds (centroids)

 (B). Iteration 1 (C). Iteration 2 
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ellipsoids, which means that the k-means algorithm will not be able to 
find them. Instead, it may find the two clusters shown in Fig. 4.8(B).  

The question is: are the two clusters in Fig. 4.8(B) necessarily bad? 
The answer is no. It depends on the application. It is not true that a clus-
tering algorithm that is able to find arbitrarily shaped clusters is always 
better. We will discuss this issue in Sect. 4.3.2. 

 
Fig. 4.8. Natural (but irregular) clusters and k-means clusters ▀ 

Despite these weaknesses, k-means is still the most popular algorithm in 
practice due to its simplicity, efficiency and the fact that other clustering 
algorithms have their own lists of weaknesses. There is no clear evidence 
showing that any other clustering algorithm performs better than the k-
means algorithm in general, although it may be more suitable for some 
specific types of data or applications than k-means. Note also that compar-
ing different clustering algorithms is a very difficult task because unlike 
supervised learning, nobody knows what the correct clusters are, especially 
in high dimensional spaces. Although there are several cluster evaluation 
methods, they all have drawbacks. We will discuss the evaluation issue in 
Sect. 4.9.  

4.3 Representation of Clusters  

Once a set of clusters is found, the next task is to find a way to represent 
the clusters. In some applications, outputting the set of data points that 
makes up the cluster to the user is sufficient. However, in other applica-
tions that involve decision making, the resulting clusters need to be repre-
sented in a compact and understandable way, which also facilitates the 
evaluation of the resulting clusters.   

   (A): Two natural clusters (B): k-means clusters 

+ 

+ 
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4.3.1 Common Ways of Representing Clusters 

There are three main ways to represent clusters: 

1. Use the centroid of each cluster to represent the cluster. This is the most 
popular way. The centroid tells where the center of the cluster is. One 
may also compute the radius and standard deviation of the cluster to de-
termine the spread in each dimension. The centroid representation alone 
works well if the clusters are of the hyper-spherical shape. If clusters are 
elongated or are of other shapes, centroids may not be suitable.  

2. Use classification models to represent clusters. In this method, we treat 
each cluster as a class. That is, all the data points in a cluster are re-
garded as having the same class label, e.g., the cluster ID. We then run a 
supervised learning algorithm on the data to find a classification model. 
For example, we may use the decision tree learning to distinguish the 
clusters. The resulting tree or set of rules provide an understandable rep-
resentation of the clusters.  

Fig. 4.9 shows a partitioning produced by a decision tree algorithm. 
The original clustering gave three clusters. Data points in cluster 1 are 
represented by 1’s, data points in cluster 2 are represented by 2’s, and 
data points in cluster 3 are represented by 3’s. We can see that the three 
clusters are separated and each can be represented with a rule. 

x ≤ 2  cluster 1 
x > 2, y > 1.5  cluster 2 
x > 2, y ≤ 1.5  cluster 3 

 
Fig. 4.9. Description of clusters using rules 

We make two remarks about this representation method: 

 The partitioning in Fig. 4.9 is an ideal case as each cluster is repre-
sented by a single rectangle (or rule). However, in most applications, 
the situation may not be so ideal. A cluster may be split into a few 
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hyper-rectangles or rules. However, there is usually a dominant or 
large rule which covers most of the data points in the cluster.  

 One can use the set of rules to evaluate the clusters to see whether 
they conform to some existing domain knowledge or intuition.  

3. Use frequent values in each cluster to represent it. This method is main-
ly for clustering of categorical data (e.g., in the k-modes clustering). It is 
also the key method used in text clustering, where a small set of fre-
quent words in each cluster is selected to represent the cluster.  

4.3.2 Clusters of Arbitrary Shapes 

Hyper-elliptical and hyper-spherical clusters are usually easy to represent, 
using their centroids together with spreads (e.g., standard deviations), 
rules, or a combination of both. However, other arbitrary shaped clusters, 
like the natural clusters shown in Fig. 4.8(A), are hard to represent espe-
cially in high dimensional spaces.  

A common criticism about an algorithm like k-means is that it is not 
able to find arbitrarily shaped clusters. However, this criticism may not be 
as bad as it sounds because whether one type of clustering is desirable or 
not depends on the application. Let us use the natural clusters in Fig. 
4.8(A) to discuss this issue together with an artificial application.  

Example 8: Assume that the data shown in Fig. 4.8(A) is the measurement 
data of people’s physical sizes. We want to group people based on their 
sizes into only two groups in order to mass-produce T-shirts of only 2 sizes 
(say large and small). Even if the measurement data indicate two natural 
clusters as in Fig. 4.8(A), it is difficult to use the clusters because we need 
centroids of the clusters to design T-shirts. The clusters in Fig. 4.8(B) are 
in fact better because they provide us the centroids that are representative 
of the surrounding data points. If we use the centroids of the two natural 
clusters as shown in Fig. 4.10 to make T-shirts, it is clearly inappropriate 
because they are too near to each other in this case. In general, it does not 
make sense to define the concept of center or centroid for an irregularly 
shaped cluster. ▀ 

Note that clusters of arbitrary shapes can be found by neighborhood 
search algorithms such as some hierarchical clustering methods (see the 
next section), and density-based clustering methods [17]. Due to the diffi-
culty of representing an arbitrarily shaped cluster, an algorithm that finds 
such clusters may only output a list of data points in each cluster, which 
are not as easy to use. These kinds of clusters are more useful in spatial 
and image processing applications, but less useful in others.  



4.4 Hierarchical Clustering      147 

 
Fig. 4.10. Two natural clusters and their centroids 

4.4 Hierarchical Clustering  

Hierarchical clustering is another major clustering approach. It has a num-
ber of desirable properties which make it popular. It clusters by producing 
a nested sequence of clusters like a tree (also called a dendrogram). Sin-
gleton clusters (individual data points) are at the bottom of the tree and one 
root cluster is at the top, which covers all data points. Each internal cluster 
node contains child cluster nodes. Sibling clusters partition the data points 
covered by their common parent. Fig. 4.11 shows an example. 

 
Fig. 4.11. An illustration of hierarchical clustering 

At the bottom of the tree, there are 5 clusters (5 data points). At the next 
level, cluster 6 contains data points 1 and 2, and cluster 7 contains data 
points 4 and 5. As we move up the tree, we have fewer and fewer clusters. 
Since the whole clustering tree is stored, the user can choose to view clus-
ters at any level of the tree.  
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There are two main types of hierarchical clustering methods: 

Agglomerative (bottom up) clustering: It builds the dendrogram (tree) 
from the bottom level, and merges the most similar (or nearest) pair of 
clusters at each level to go one level up. The process continues until all 
the data points are merged into a single cluster (i.e., the root cluster).  

Divisive (top down) clustering: It starts with all data points in one cluster, 
the root. It then splits the root into a set of child clusters. Each child 
cluster is recursively divided further until only singleton clusters of in-
dividual data points remain, i.e., each cluster with only a single point.    

Agglomerative methods are much more popular than divisive methods. We 
will focus on agglomerative hierarchical clustering. The general agglom-
erative algorithm is given in Fig. 4.12.  

Algorithm Agglomerative(D) 
1 Make each data point in the data set D a cluster,  
2 Compute all pair-wise distances of x1, x2, …, xn  D; 
2 repeat 
3 find two clusters that are nearest to each other; 
4 merge the two clusters form a new cluster c;  
5 compute the distance from c to all other clusters;  
12 until there is only one cluster left 

Fig. 4.12. The agglomerative hierarchical clustering algorithm 

Example 9: Fig. 4.13 illustrates the working of the algorithm. The data 
points are in a 2-dimensional space. Fig. 4.13(A) shows the sequence of 
nested clusters, and Fig. 4.13(B) gives the dendrogram.  ▀ 

 
Fig. 4.13. The working of an agglomerative hierarchical clustering algorithm  
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Unlike the k-means algorithm, which uses only the centroids in distance 
computation, hierarchical clustering may use anyone of several methods to 
determine the distance between two clusters. We introduce them next.  

4.4.1 Single-Link Method 

In single-link (or single linkage) hierarchical clustering, the distance be-
tween two clusters is the distance between two closest data points in the 
two clusters (one data point from each cluster). In other words, the single-
link clustering merges the two clusters in each step whose two nearest data 
points (or members) have the smallest distance, i.e., the two clusters with 
the smallest minimum pair-wise distance. The single-link method is suit-
able for finding non-elliptical shape clusters. However, it can be sensitive 
to noise in the data, which may cause the chain effect and produce strag-
gly clusters. Fig. 4.14 illustrates this situation. The noisy data points (rep-
resented with filled circles) in the middle connect two natural clusters and 
split one of them.  

 
Fig. 4.14. The chain effect of the single-link method 

With suitable data structures, single-link hierarchical clustering can be 
done in O(n2) time, where n is the number of data points. This is much 
slower than the k-means method, which performs clustering in linear time.  

4.4.2  Complete-Link Method 

In complete-link (or complete linkage) clustering, the distance between 
two clusters is the maximum of all pair-wise distances between the data 
points in the two clusters. In other words, the complete-link clustering 
merges the two clusters in each step whose two furthest data points have 
the smallest distance, i.e., the two clusters with the smallest maximum 
pair-wise distance. Fig. 4.15 shows the clusters produced by complete-link 
clustering using the same data as in Fig. 4.14.   
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Fig. 4.15. Clustering using the complete-link method 

Although the complete-link method does not have the problem of chain 
effects, it can be sensitive to outliers. Despite this limitation, it has been 
observed that the complete-link method usually produces better clusters 
than the single-link method. The worse case time complexity of the com-
plete-link clustering is O(n2log n), where n is the number of data points.  

4.4.3  Average-Link Method 

This is a compromise between the sensitivity of complete-link clustering to 
outliers and the tendency of single-link clustering to form long chains that 
do not correspond to the intuitive notion of clusters as compact, spherical 
objects. In this method, the distance between two clusters is the average 
distance of all pair-wise distances between the data points in two clusters. 
The time complexity of this method is also O(n2log n).  

Apart from the above three popular methods, there are several others. 
The following two methods are also commonly used: 

Centroid method: In this method, the distance between two clusters is the 
distance between their centroids.  

Ward's method: In this method, the distance between two clusters is de-
fined as the increase in the sum of squared error (distances) from that of 
two clusters to that of one merged cluster. Thus, the clusters to be merged 
in the next step are the ones that will increase the sum the least. Recall that 
the sum of squared error (SSE) is one of the measures used in the k-means 
clustering (Equation (1)).  

4.4.4. Strengths and Weaknesses  

Hierarchical clustering has several advantages compared to the k-means 
and other partitioning clustering methods. It is able to take any form of dis-
tance or similarity function. Moreover, unlike the k-means algorithm 
which only gives k clusters at the end, the hierarchy of clusters from hier-
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archical clustering enables the user to explore clusters at any level of detail 
(or granularity). In many applications, this resulting hierarchy can be very 
useful in its own right. For example, in text document clustering, the clus-
ter hierarchy may represent a topic hierarchy in the documents.  

Some studies have shown that agglomerative hierarchical clustering of-
ten produces better clusters than the k-means method. It can also find clus-
ters of arbitrary shapes, e.g., using the single-link method.  

Hierarchical clustering also has several weaknesses. As we discussed 
with the individual methods, the single-link method may suffer from the 
chain effect, and the complete-link method is sensitive to outliers. The 
main shortcomings of all hierarchical clustering methods are their compu-
tation complexities and space requirements, which are at least quadratic. 
Compared to the k-means algorithm, this is very inefficient and not practi-
cal for large data sets. One can use sampling to deal with the problems. A 
small sample is taken to do clustering and then the rest of the data points 
are assigned to each cluster either by distance comparison or by supervised 
learning (see Sect. 4.3.1). Some scale-up methods may also be applied to 
large data sets. The main idea of the scale-up methods is to find many 
small clusters first using an efficient algorithm, and then to use the cen-
troids of these small clusters to represent the clusters to perform the final 
hierarchical clustering (see the BIRCH method in [54]).  

4.5 Distance Functions 

Distance or similarity functions play a central role in all clustering algo-
rithms. Numerous distance functions have been reported in the literature 
and used in applications. Different distance functions are also used for dif-
ferent types of attributes (also called variables).  

4.5.1  Numeric Attributes 

The most commonly used distance functions for numeric attributes are the 
Euclidean distance and Manhattan (city block) distance. Both distance 
measures are special cases of a more general distance function called the 
Minkowski distance. We use dist(xi, xj) to denote the distance between 
two data points of r dimensions. The Minkowski distance is: 
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where h is a positive integer.  
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If h = 2, it is the Euclidean distance,  
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If h = 1, it is the Manhattan distance,  
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Other common distance functions include: 

Weighted Euclidean distance: A weight is associated with each attribute 
to express its importance in relation to other attributes. 
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Squared Euclidean distance: the standard Euclidean distance is squared 
in order to place progressively greater weights on data points that are fur-
ther apart. The distance is  
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Chebychev distance: This distance measure is appropriate in cases where 
one wants to define two data points as “different” if they are different on 
any one of the attributes. The Chebychev distance is  
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4.5.2 Binary and Nominal Attributes 

The above distance measures are only appropriate for numeric attributes. 
For binary and nominal attributes (also called unordered categorical at-
tributes), we need different functions. We discuss binary attributes first.  

A binary attribute has two states or values, usually represented by 1 
and 0. The two states have no numerical ordering. For example, Gender 
has two values, male and female, which have no ordering relations but are 
just different. Existing distance functions for binary attributes are based on 
the proportion of value matches in two data points. A match means that, 
for a particular attribute, both data points have the same value. It is easy to 
use a confusion matrix to introduce these measures. Given the ith and jth 
data points, xi and xj, we can construct the confusion matrix in Fig. 4.16. 

To give the distance functions, we further divide binary attributes into 
symmetric and asymmetric attributes. For different types of attributes, 
different distance functions need to be used [31]: 
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a:  the number of attributes with the value of 1 for both data points. 
b:  the number of attributes for which xif = 1 and xjf = 0, where xif (xjf) is 

the value of the fth attribute of the data point xi (xj). 
c:  the number of attributes for which xif = 0 and xjf = 1. 
d:  the number of attributes with the value of 0 for both data points. 

Fig. 4.16. Confusion matrix of two data points with only binary attributes 

Symmetric attributes: A binary attribute is symmetric if both of its states 
(0 and 1) have equal importance, and carry the same weight, e.g., male and 
female of the attribute Gender. The most commonly used distance function 
for symmetric attributes is the simple matching distance, which is the 
proportion of mismatches (Equation (10)) of their values. We assume that 
every attribute in the data set is a symmetric attribute. 
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We can also weight some components in Equation (10) according to ap-
plication needs. For example, we may want mismatches to carry twice the 
weight of matches, or vice versa: 
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Example 10: Given the following two data points, where each attribute is 
a symmetric binary attribute,  

x1 1 1 1 0 1 0 0 
x2 0 1 1 0 0 1 0 

the distance computed based on the simple matching distance is 

     Data point xj 
 1 0  

1 a b a+b 

0 c d c+d 

 a+c b+d a+b+c+d 

Data point xi 
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▀ 
Asymmetric attributes: A binary attribute is asymmetric if one of the 
states is more important or valuable than the other. By convention, we use 
state 1 to represent the more important state, which is typically the rare or 
infrequent state. The most commonly used distance measure for asymmet-
ric attributes is the Jaccard distance:  
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Similarly, we can vary the Jaccard distance by giving more weight to 

(b+c) or more weight to a to express different emphases.  
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Note that there is also a Jaccard coefficient, which measures similarity 
(rather than distance) and is defined as a / (a+b+c).  

For general nominal attributes with more than two states or values, the 
commonly used distance measure is also based on the simple matching dis-
tance. Given two data points xi and xj, let the number of attributes be r, and 
the number of values that match in xi and xj be q:  

.),(
r

qr
dist ji


xx  (17) 

As that for binary attributes, we can give higher weights to different com-
ponents in Equation (17) according to different application characteristics.  

4.5.3 Text Documents 

Although a text document consists of a sequence of sentences and each 
sentence consists of a sequence of words, a document is usually considered 
as a “bag” of words in document clustering. The sequence and the position 
information of words are ignored. Thus a document can be represented as a 
vector just like a normal data point. However, we use similarity to com-
pare two documents rather than distance. The most commonly used simi-
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larity function is the cosine similarity. We will study this similarity meas-
ure in Sect. 6.2.2 when we discuss information retrieval and Web search.  

4.6 Data Standardization 

One of the most important steps in data pre-processing for clustering is to 
standardize the data. For example, using the Euclidean distance, standardi-
zation of attributes is highly recommended so that all attributes can have 
equal impact on the distance computation. This is to avoid obtaining clus-
ters that are dominated by attributes with the largest amounts of variation.  

Example 11: In a 2-dimensional data set, the value range of one attribute 
is from 0 to 1, while the value range of the other attribute is from 0 to 
1000. Consider the following pair of data points xi: (0.1, 20) and xj: (0.9, 
720). The Euclidean distance between the two points is 

,700.000457)20720()1.09.0(),( 22 jidist xx  (18) 

which is almost completely dominated by (72020) = 700. To deal with 
the problem, we standardize the attributes, e.g., to force the attributes to 
have a common value range. If both attributes are forced to have a scale 
within the range 01, the values 20 and 720 become 0.02 and 0.72. The 
distance on the first dimension becomes 0.8 and the distance on the second 
dimension 0.7, which are more equitable. Then, dist(xi, xj) = 1.063.  ▀ 

This example shows that standardizing attributes is important. In fact, 
different types of attributes require different treatments. We list these 
treatments below.  

Interval-scaled attributes: These are numeric/continuous attributes. Their 
values are real numbers following a linear scale. Examples of such attrib-
utes are age, height, weight, cost, etc. The idea is that intervals keep the 
same importance through out the scale. For example, the difference in age 
between 10 and 20 is the same as that between 40 and 50.  

There are two main approaches to standardize interval scaled attributes, 
range and z-score. The range method divides each value by the range of 
valid values of the attribute so that the transformed value ranges between 0 
and 1. Given the value xif of the fth attribute of the ith data point, the new 
value rg(xif) is, 
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where min(f) and max(f) are the minimum value and maximum value of at-
tribute f respectively. max(f)  min(f) is the value range of the valid values 
of attribute f.  

The z-score method transforms an attribute value based on the mean and 
the standard deviation of the attribute. That is, the z-score of the value in-
dicates how far and in what direction the value deviates from the mean of 
the attribute, expressed in units of the standard deviation of the attribute. 
The standard deviation of attribute f, denoted by f, is computed with:  
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where n is the number of data points in the data set, xif is the same as 
above, and f is the mean of attribute f, which is computed with: 
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Given the value xif, its z-score (the new value after transformation) is z(xif),  
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Ratio-Scaled Attributes: These are also numeric attributes taking real 
values. However, unlike interval-scaled attributes, their scales are not lin-
ear. For example, the total amount of microorganisms that evolve in a time 
t is approximately given by  

 AeBt, 

where A and B are some positive constants. This formula is referred to as 
exponential growth. If we have such attributes in a data set for clustering, 
we have one of the following two options: 

1. Treat it as an interval-scaled attribute. This is often not recommended 
due to scale distortion.  

2. Perform logarithmic transformation to each value, xif, i.e., 

).log( ifx  (23) 

After the transformation, the attribute can be treated as an interval-
scaled attribute. 

Nominal (Unordered Categorical) Attributes: As we discussed in Sect. 
4.5.2, the value of such an attribute can take anyone of a set of states (also 
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called categories). The states have no logical or numerical ordering. For 
example, the attribute fruit may have the possible values, Apple, Orange, 
and Pear, which have no ordering. A binary attribute is a special case of 
a nominal attribute with only two states or values.  

Although nominal attributes are not standardized as numeric attributes, 
it is sometime useful to convert a nominal attribute to a set of binary at-
tributes. Let the number of values of a nominal attribute be v. We can then 
create v binary attributes to represent them, i.e., one binary attribute for 
each value. If a data instance for the nominal attribute takes a particular 
value, the value of its corresponding binary attribute is set to 1, otherwise 
it is set to 0. The resulting binary attributes can be used as numeric attrib-
utes. We will discuss this again in Sect. 4.7.  
Example 12: For the nominal attribute fruit, we create three binary attrib-
utes called, Apple, Orange, and Pear in the new data. If a particular data 
instance in the original data has Apple as the value for fruit, then in the 
transformed data, we set the value of the attribute Apple to 1, and the val-
ues of attributes Orange and Pear to 0.  ▀ 

Ordinal (Ordered Categorical) Attributes: An ordinal attribute is like a 
nominal attribute, but its values have a numerical ordering. For example, 
the age attribute may have the values, Young, Middle-Age and Old. The 
common approach to distance computation is to treat ordinal attributes as 
interval-scaled attributes and use the same methods as for interval-scaled 
attributes to standardize the values of ordinal attributes. 

4.7 Handling of Mixed Attributes 

So far, we have assumed that a data set contains only one type of attrib-
utes. However, in practice, a data set may contain mixed attributes. That is, 
it may contain any subset of the six types of attributes, interval-scaled, 
symmetric binary, asymmetric binary, ratio-scaled, ordinal and nomi-
nal attributes. Clustering a data set involving mixed attributes is a chal-
lenging problem.  

One way to deal with such a data set is to choose a dominant attribute 
type and then convert the attributes of other types to this type. For exam-
ple, if most attributes in a data set are interval-scaled, we can convert ordi-
nal attributes and ratio-scaled attributes to interval-scaled attributes as dis-
cussed above. It is also appropriate to treat symmetric binary attributes as 
interval-scaled attributes. However, it does not make much sense to con-
vert a nominal attribute with more than two values or an asymmetric bi-
nary attribute to an interval-scaled attribute, but it is still frequently done in 
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practice by assigning some numbers to them according to some hidden or-
dering. For instance, in the example of Apple, Orange, and Pear, one may 
order them according to their prices, and thus make the attribute fruit an 
ordinal attribute or even an interval-scaled attribute. In the previous sec-
tion, we also saw that a nominal attribute can be converted to a set of 
(symmetric) binary attributes, which in turn can be regarded as interval-
scaled attributes.  

Another method of handling mixed attributes is to compute the distance 
of each attribute of the two data points separately and then combine all the 
individual distances to produce an overall distance. We describe one such 
method, which is due to Gower [22] and is also described in [25, 31]. We 
describe the combination formula first (Equation (24)) and then present the 
methods to compute individual distances.  

.),(
1

1






 r

f

f
ij

f
ij

r

f

f
ij

ji

d
dist




xx  (24) 

This distance value is between 0 and 1. r is the number of attributes in the 
data set. The indicator f

ij  is 1 if both values xif and xjf for attribute f are 
non-missing, and it is set to 0 otherwise. It is also set to 0 if attribute f is 
asymmetric and the match is 0–0. Equation (24) cannot be computed if all 

f
ij ’s are 0. In such a case, some default value may be used or one of the 

data points is removed. f
ijd is the distance contributed by attribute f, and it 
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If all the attributes are nominal, Equation (24) reduces to Equation (17). 
The same is true for symmetric binary attributes, in which we recover the 
simple matching distance (Equation (10)). When the attributes are all 
asymmetric, we obtain the Jaccard distance (Equation (14)).  

If attribute f is interval-scaled, we use  
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where Rf is the value range of attribute f, which is  
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Ordinal attributes and ratio-scaled attributes are handled in the same way 
after conversion.  

If all the attributes are interval-scaled, Equation (24) becomes the Man-
hattan distance assuming that all attribute values are standardized by divid-
ing their values with the ranges of their corresponding attributes.  

4.8 Which Clustering Algorithm to Use? 

Clustering research and application has a long history. Over the years, a 
vast collection of clustering algorithms has been designed. This chapter 
only introduced several of the main algorithms.  

Given an application data set, choosing the “best” clustering algorithm 
to cluster the data is a challenge. Every clustering algorithm has limitations 
and works well with only certain data distributions. However, it is very 
hard, if not impossible, to know what distribution the application data fol-
lows. Worse still, the application data set may not fully follow any “ideal” 
structure or distribution required by the algorithms. Apart from choosing a 
suitable clustering algorithm from a large collection of available algo-
rithms, deciding how to standardize the data, to choose a suitable distance 
function and to select other parameter values (e.g., k in the k-means algo-
rithm) are complex as well. Due to these complexities, the common prac-
tice is to run several algorithms using different distance functions and pa-
rameter settings, and then to carefully analyze and compare the results.  

The interpretation of the results should be based on insight into the 
meaning of the original data together with knowledge of the algorithms 
used. That is, it is crucial that the user of a clustering algorithm fully un-
derstands the algorithm and its limitations. He/she should also have the 
domain expertise to examine the clustering results. In many cases, generat-
ing cluster descriptions using a supervised learning method (e.g., decision 
tree induction) can be particularly helpful to the analysis and comparison. 

4.9 Cluster Evaluation 

After a set of clusters is found, we need to assess the goodness of the clus-
ters. Unlike classification, where it is easy to measure accuracy using la-
beled test data, for clustering nobody knows what the correct clusters are 
given a data set. Thus, the quality of a clustering is much harder to evalu-
ate. We introduce a few commonly used evaluation methods below.  
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User Inspection: A panel of experts is asked to inspect the resulting clus-
ters and to score them. Since this process is subjective, we take the average 
of the scores from all the experts as the final score of the clustering. This 
manual inspection is obviously a labor intensive and time consuming task. 
It is subjective as well. However, in most applications, some level of man-
ual inspection is necessary because no other existing evaluation methods 
are able to guarantee the quality of the final clusters. It should be noted 
that direct user inspection may be easy for certain types of data, but not for 
others. For example, user inspection is not hard for text documents because 
one can read them easily. However, for a relational table with only num-
bers, staring at the data instances in each cluster makes no sense. The user 
can only meaningfully study the centroids of the clusters, or rules that cha-
racterize the clusters generated by a decision tree algorithm or some other 
supervised learning methods (see Sect. 4.3.1).  

Ground Truth: In this method, classification data sets are used to evalu-
ate clustering algorithms. Recall that a classification data set has several 
classes, and each data instance/point is labeled with one class. Using such 
a data set for cluster evaluation, we make the assumption that each class 
corresponds to a cluster. For example, if a data set has three classes, we as-
sume that it has three clusters, and we request the clustering algorithm to 
also produce three clusters. After clustering, we compare the cluster mem-
berships with the class memberships to determine how good the clustering 
is. A variety of measures can be used to assess the clustering quality, e.g., 
entropy, purity, precision, recall, and F-score.  

To facilitate evaluation, a confusion matrix can be constructed from the 
resulting clusters. From the matrix, various measurements can be com-
puted. Let the set of classes in the data set D be C = (c1, c2, …, ck). The 
clustering method also produces k clusters, which partition D into k dis-
joint subsets, D1, D2, …, Dk.  

Entropy: For each cluster, we can measure its entropy as follows:  
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where Pri(cj) is the proportion of class cj data points in cluster i or Di. The 
total entropy of the whole clustering (which considers all clusters) is 
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Purity: This measures the extent that a cluster contains only one class of 
data. The purity of each cluster is computed with 
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The total purity of the whole clustering (considering all clusters) is  
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Precision, recall, and F-score can be computed as well for each cluster 
based on the class that is the most frequent in the cluster. Note that these 
measures are based on a single class (see Sect. 3.3.2).  

Example 13: Assume we have a text collection D of 900 documents from 
three topics (or three classes), Science, Sports, and Politics. Each class has 
300 documents, and each document is labeled with one of the topics 
(classes). We use this collection to perform clustering to find three clus-
ters. Class/topic labels are not used in clustering. After clustering, we want 
to measure the effectiveness of the clustering algorithm.  

First, a confusion matrix (Fig. 4.17) is constructed based on the cluster-
ing results. From Fig. 4.17, we see that cluster 1 has 250 Science docu-
ments, 20 Sports documents, and 10 Politics documents. The entries of the 
other rows have similar meanings. The last two columns list the entropy 
and purity values of each cluster and also the total entropy and purity of 
the whole clustering (last row). We observe that cluster 1, which contains 
mainly Science documents, is a much better (or purer) cluster than the oth-
er two. This fact is also reflected by both their entropy and purity values. 

Cluster Science Sports Politics  Entropy Purity 

1 250 20 10  0.589 0.893 
2 20 180 80  1.198 0.643 
3 30 100 210  1.257 0.617 

Total 300 300 300  1.031 0.711 

Fig. 4.17. Confusion matrix with entropy and purity values 

Obviously, we can use the total entropy or the total purity to compare 
different clustering results from the same algorithm with different parame-
ter settings or from different algorithms.  

Precision and recall may be computed similarly for each cluster. For ex-
ample, the precision of Science documents in cluster 1 is 0.89. The recall 
of Science documents in cluster 1 is 0.83. The F-score for Science docu-
ments is thus 0.86.  ▀ 
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A final remark about this evaluation method is that although an algo-
rithm may perform well on some labeled data sets, there is no guarantee 
that it will perform well on the actual application data at hand, which has 
no class labels. However, the fact that it performs well on some labeled da-
ta sets does give us some confidence on the quality of the algorithm. This 
evaluation method is said to be based on external data or information.  

There are also methods that evaluate clusters based on the internal in-
formation in the clusters (without using external data with class labels). 
These methods measure intra-cluster cohesion (compactness) and inter-
cluster separation (isolation). Cohesion measures how near the data points in 
a cluster are to the cluster centroid. Sum of squared error (SSE) is a com-
monly used measure. Separation measures how far apart different cluster 
centroids are from one another. Any distance functions can be used for the 
purpose. We should note, however, that good values for these measurements 
do not always mean good clusters. In most applications, expert judgments 
are still the key. Clustering evaluation remains to be a very difficult problem. 
Indirect Evaluation: In some applications, clustering is not the primary 
task. Instead, it is used to help perform another more important task. Then, 
we can use the performance on the primary task to determine which clus-
tering method is the best for the task. For instance, in a Web usage mining 
application, the primary task is to recommend books to online shoppers. If 
the shoppers can be clustered according to their profiles and their past pur-
chasing history, we may be able to provide better recommendations. A few 
clustering methods can be tried, and their results are then evaluated based 
on how well they help with the recommendation task. Of course, here we 
assume that the recommendation results can be reliably evaluated. 

4.10 Discovering Holes and Data Regions 

In this section, we wander a little to discuss something related but quite 
different from the preceding algorithms. We show that unsupervised learn-
ing tasks may be performed by using supervised learning techniques [35].  

In clustering, data points are grouped into clusters according to their dis-
tances (or similarities). However, clusters only represent one aspect of the 
hidden knowledge in data. Another aspect that we have not studied is the 
holes. If we treat data instances as points in an r-dimensional space, a hole 
is simply a region in the space that contains no or few data points. The ex-
istence of holes is due to the following two reasons:  

1. insufficient data in certain areas, and/or  
2. certain attribute-value combinations are not possible or seldom occur. 
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Although clusters are important, holes in the space can be quite useful 
too. For example, in a disease database we may find that certain symptoms 
and/or test values do not occur together, or when a certain medicine is 
used, some test values never go beyond certain ranges. Discovery of such 
information can be of great importance in medical domains because it 
could mean the discovery of a cure to a disease or some biological laws. 

The technique discussed in this section aims to divide the data space in-
to two types of regions, data regions (also called dense regions) and 
empty regions (also called sparse regions). A data region is an area in the 
space that contains a concentration of data points and can be regarded as a 
cluster. An empty region is a hole. A supervised learning technique similar 
to decision tree induction is used to separate the two types of regions. The 
algorithm (called CLTree for CLuster Tree) works for numeric attributes, 
but can be extended to discrete or categorical attributes.  

Decision tree learning is a popular technique for classifying data of var-
ious classes. For a decision tree algorithm to work, we need at least two 
classes of data. A clustering data set, however, has no class label for each 
data point. Thus, the technique is not directly applicable. However, the 
problem can be dealt with by a simple idea.   

We can regard each data instance/point in the data set as having a class 
label Y. We assume that the data space is uniformly distributed with an-
other type of points, called non-existing points, which we will label N. 
With the N points added to the original data space, our problem of parti-
tioning the data space into data regions and empty regions becomes a su-
pervised classification problem. The decision tree algorithm can be 
adapted to solve the problem. Let us use an example to illustrate the idea.  

Example 14: Fig. 4.18(A) gives a 2-dimensional space with 24 data (Y) 
points. Two data regions (clusters) exist in the space. We then add some 
uniformly distributed N points (represented by “o”) to the data space (Fig. 
4.18(B)). With the augmented data set, we can run a decision tree algo-
rithm to obtain the partitioning of the space in Fig. 4.18(B). Data regions 
and empty regions are separated. Each region is a rectangle, which can be 
expressed as a rule.   ▀ 

The reason that this technique works is that if there are clusters (or 
dense data regions) in the data space, the data points cannot be uniformly 
distributed in the entire space. By adding some uniformly distributed N 
points, we can isolate data regions because within each data region there 
are significantly more Y points than N points. The decision tree technique 
is well known for this partitioning task.  
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Fig. 4.18. Separating data and empty regions using a decision tree  

An interesting question is: can the task be performed without physically 
adding the N points to the original data? The answer is yes. Physically add-
ing N points increases the size of the data and thus the running time. A 
more important issue is that it is unlikely that we can have points truly uni-
formly distributed in a high-dimensional space as we would need an expo-
nential number of them. Fortunately, we do not need to physically add any 
N points. We can compute them when needed. The CLTree method is able 
to produce the partitioning in Fig. 4.18(C) with no N points added. The de-
tails are quite involved. Interested readers can refer to [35]. This method 
has some interesting characteristics:  

 It provides descriptions or representations of the resulting data regions 
and empty regions in terms of hyper-rectangles, which can be expressed 
as rules as we have seen in Sect. 3.2 of Chap. 3 and in Sect. 4.3.1. Many 
applications require such descriptions, which can be easily interpreted 
by users.  

 It automatically detects outliers, which are data points in empty regions.  
 It may not use all attributes in the data just as in decision tree building 

for supervised learning. That is, it can automatically determine what at-
tributes are important and what are not. This means that it can perform 
subspace clustering, i.e., finding clusters that exist in some subspaces 
(represented by some subsets of the attributes) of the original space.  

(A): The original data space 

 (B). Partitioning with added  (C). Partitioning without adding  
N points N points. 
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This method also has limitations. The main limitation is that data re-
gions of irregular shapes are hard to handle since decision tree learning on-
ly generates hyper-rectangles (formed by axis-parallel hyper-planes), 
which are rules. Hence, an irregularly shaped data or empty region may be 
split into several hyper-rectangles. Post-processing is needed to join them 
if desired (see [35] for additional details).  

Bibliographic Notes 

Clustering or unsupervised learning has a long history and a very large 
body of work. This chapter described only some widely used core algo-
rithms. Most other algorithms are variations or extensions of these meth-
ods. For a comprehensive coverage of clustering, please refer to several 
books dedicated to clustering, e.g., those by Everitt [18], Hartigan [26], 
Jain and Dubes [30], and Kaufman and Rousseeuw [31]. Most data mining 
texts also have excellent coverage of clustering techniques, e.g., Han and 
Kamber [25] and Tan et al. [43], which have influenced the writing of this 
chapter. Below, we review some more recent developments on clustering 
and give some further readings.  

A density-based clustering algorithm based on local data densities was 
proposed by Ester et al. [17] and Xu et al. [48] for finding clusters of arbi-
trary shapes. Hinneburg and Keim [29], Sheikholeslami et al. [40] and 
Wang et al. [46] proposed several grid-based clustering methods which 
first partition the space into small grids. A popular neural network cluster-
ing algorithm is the Self-Organizing Map (SOM) by Kohonen [32]. Fuzzy 
clustering (e.g., fuzzy c-means) was studied by Bezdek [7] and Dunn [16]. 
Cheeseman et al. [9] and Moore [36] studied clustering using mixture 
models. The method assumes that clusters are a mixture of Gaussians and 
uses the EM algorithm [12] to learn a mixture density. We will see in 
Chap. 5 that EM based partially supervised learning algorithms are basi-
cally clustering methods with some given initial seeds.  

Most clustering algorithms work on numeric data. Categorical data 
and/or transaction data clustering were investigated by Barbará et al. [5], 
Ganti et al. [20], Gibson et al. [21], Guha et al. [24], Wang et al. [45], etc. 
A related area in artificial intelligence is the conceptual clustering, which 
was studied by Fisher [19], and others.  

Many clustering algorithms, e.g., hierarchical clustering algorithms, 
have high time complexities and are thus not suitable for large data sets. 
Scaling up such algorithms becomes an important issue for large applica-
tions. Several researchers have designed techniques to scale up clustering 
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algorithms, e.g., Bradley et al. [8], Guha et al. [23], Ng and Han [38], and 
Zhang et al. [54].  

In recent years, there were quite a few new developments in clustering. 
The first one is subspace clustering. Traditional clustering algorithms use 
the whole space to find clusters, but natural clusters may exist in only 
some sub-spaces. That is, some clusters may only use certain subsets of the 
attributes. This problem was investigated by Agrawal et al. [3], Aggarwal 
et al. [1], Aggarwal and Yu [2], Cheng et al. [10], Liu et al. [35], Zaki et al. 
[49], and many others.  

The second new research is semi-supervised clustering, which means 
that the user can provide some initial information to guide the clustering 
process. For example, the user can select some initial seeds [6] and/or spe-
cify some constraints, e.g., must-link (two points must be in the same 
cluster) and cannot-link (two points cannot be in the same cluster) [44]. 

The third is the spectral clustering, which emerged from several fields, 
e.g., VLSI [4] and computer vision [39, 41, 47]. It clusters data points by 
computing eigenvectors of the similarity matrix. Recently, it was also stud-
ied in machine learning and data mining [15, 37, 53].  

Yet another new research is co-clustering, which simultaneously clus-
ters both rows and columns. This approach was studied by Cheng and 
Church [11], Dhillon [13], Dhillon et al. [14], and Hartigan [27].  

Regarding document and Web page clustering, most implementations 
are still based on k-means and hierarchical clustering methods or their var-
iations but using text specific similarity or distance functions. Steinbach et 
al. [42], and Zhao and Karypis [55, 56] experimented with k-means and 
agglomerative hierarchical clustering methods and also proposed some 
improvements. Many researchers also worked on clustering of search en-
gine results (or snippets) to organize search results into different topics, 
e.g., Hearst and Pedersen [28], Kummamuru et al. [33], Leouski and Croft 
[34], Zamir and Etzioni [50, 51], and Zeng et al. [52].  
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5 Partially Supervised Learning 

In supervised learning, the learning algorithm uses labeled training exam-
ples from every class to generate a classification function. One of the 
drawbacks of this classic paradigm is that a large number of labeled exam-
ples are needed in order to learn accurately. Since labeling is often done 
manually, it can be very labor intensive and time consuming. In this chap-
ter, we study two partially supervised learning problems. As their names 
suggest, these two learning problems do not need full supervision, and thus are 
able to reduce the labeling effort. The first is the problem of learning from la-
beled and unlabeled examples, which is commonly known as semi-
supervised learning. In this chapter, we also call it LU learning (L and U 
stand for “labeled” and “unlabeled” respectively). In this learning setting, 
there is a small set of labeled examples of every class, and a large set of 
unlabeled examples. The objective is to make use of the unlabeled exam-
ples to improve learning.  

The second is the problem of learning from positive and unlabeled exam-
ples. This problem assumes two-class classification. However, the training 
data only has a set of labeled positive examples and a set of unlabeled ex-
amples, but no labeled negative examples. In this chapter, we also call this 
problem PU learning (P and U stand for “positive” and “unlabeled” re-
spectively). The objective is to build an accurate classifier without labeling 
any negative examples. We study these two problems in the context of text 
classification and Web page classification in this chapter. However, the 
general ideas and the algorithms are also applicable to other kinds of clas-
sification tasks.  

5.1 Learning from Labeled and Unlabeled Examples 

As we described in Chap. 3, the common approach to learning a classifica-
tion function is to label a set of examples with some pre-defined categories 
or classes, and then use a learning algorithm to produce a classifier. This 
classifier is applied to assign classes to future instances (or test data). In 
the context of text classification and Web page classification, the examples 
are text documents and Web pages. This approach to building a classifier 
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is called supervised learning because the training documents/pages have 
been labeled with pre-defined classes.  

The main bottleneck of building such a classifier is that a large, often 
prohibitive, number of labeled training documents are needed to build ac-
curate classifiers. In text classification, the labeling is typically done ma-
nually by reading the documents, which is a time consuming task. How-
ever, we cannot eliminate labeling completely because without it a 
machine learning algorithm will not know what the user is interested in. 
Although unsupervised learning or clustering may help to some extent, 
clustering does not guarantee to produce the categorization results required 
by the user. This raises an important question: Can the manual labeling ef-
fort be reduced, and can other sources of information be used so that the 
number of labeled examples required for learning would not be too large?  

This section addresses the problem of learning from a small set of la-
beled examples and a large set of unlabeled examples, i.e., LU learning. 
Thus, in this setting only a small set of examples needs to be labeled for 
each class. However, since a small set of labeled examples is not sufficient 
for building an accurate classifier, a large number of unlabeled examples 
are utilized to help. One key point to note is that although the number may 
be small, every class must have some labeled examples.  

In many applications, unlabeled examples are easy to come by. This is 
especially true for online documents. For example, if we want to build a 
classifier to classify news articles into different categories or classes, it is 
fairly easy to collect a huge number of unlabeled news articles from the 
Web. In fact, in many cases, the new data that need to be classified (which 
have no class labels) can be used as the unlabeled examples.  

The question is: why do the unlabeled data help? In the context of text 
classification, one reason is that the unlabeled data provide information on 
the joint probability distribution over words. For example, using only the 
labeled data we find that documents containing the word “homework” tend 
to belong to a particular class. If we use this fact to classify the unlabeled 
documents, we may find that “lecture” co-occurs with “homework” fre-
quently in the unlabeled set. Then, “lecture” may also be an indicative 
word for the class. Such correlations provide a helpful source of informa-
tion to increase classification accuracy, especially when the labeled data 
are scarce.  

Several researchers have shown that unlabeled data help learning. That 
is, under certain conditions using both labeled and unlabeled data in learn-
ing is better than using a small set of labeled data alone. Their techniques 
can thus alleviate the labor-intensive labeling effort. We now study some 
of these learning techniques, and also discuss their limitations.  
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5.1.1 EM Algorithm with Naïve Bayesian Classification 

One of the LU learning techniques uses the Expectation–Maximization 
(EM) algorithm [11]. EM is a popular iterative algorithm for maximum li-
kelihood estimation in problems with missing data. The EM algorithm 
consists of two steps, the Expectation step (or E-step), and the Maximi-
zation step (or M-step). The E-step basically fills in the missing data 
based on the current estimation of the parameters. The M-step, which max-
imizes the likelihood, re-estimates the parameters. This leads to the next it-
eration of the algorithm, and so on. EM converges to a local minimum 
when the model parameters stabilize.  

The ability of EM to work with missing data is exactly what is needed 
for learning from labeled and unlabeled examples. The documents in the 
labeled set (denoted by L) all have class labels (or values). The documents 
in the unlabeled set (denoted by U) can be regarded as having missing 
class labels. We can use EM to estimate them based on the current model, 
i.e., to assign probabilistic class labels to each document di in U, i.e., 
Pr(cj|di). After a number of iterations, all probabilities will converge.  

Note that the EM algorithm is not really a specific “algorithm”, but is a 
framework or strategy. It simply runs a base algorithm iteratively. We will 
use the naïve Bayesian (NB) algorithm discussed in Sect. 3.7 as the base 
algorithm, and run it iteratively. The parameters that EM estimates in this 
case are the probability of each word given a class and the class prior 
probabilities (see Equations (31) and (

Although it is quite involved to derive the EM algorithm with the NB 
classifier, it is fairly straightforward to implement and to apply the algo-
rithm. That is, we use a NB classifier in each iteration of EM, Equation 
(33) in Chap. 3 for the E-step, and Equations (31) and (32) in Chap. 3 for 
the M-step. Specifically, we first build a NB classifier f using the labeled 
examples in L. We then use f to classify the unlabeled examples in U, more 
accurately to assign a probability to each class for every unlabeled exam-
ple, i.e., Pr(cj|di), which takes the value in [0, 1] instead of {0, 1}. Some 
explanations are in order here.  

Let the set of classes be C = {c1, c2, …, c|C|}. Each iteration of EM will 
assign every example di in U a probability distribution on the classes that it 
may belong to. That is, it assigns di the class probabilities of Pr(c1|di), 
Pr(c2|di), …, Pr(c|C||di). This is different from the example in the labeled set 
L, where each document belongs to only a single class ck, i.e., Pr(ck|di) = 1 
and Pr(cj|di) = 0 for j  k.  

Based on the assignments of Pr(cj|di) to each document in U, a new NB 
classifier can be constructed. This new classifier can use both the labeled 
set L and the unlabeled set U as the examples in U now have probabilistic 

32) in Sect. 3.7 of Chap. 3).  
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labels, Pr(cj|di). This leads to the next iteration. The process continues until 
the classifier parameters (Pr(wt|cj) and Pr(cj)) no longer change (or have 
minimum changes).  

The EM algorithm with the NB classification was proposed for LU 
learning by Nigam et al. [34]. The algorithm is shown in Fig. 5.1. EM here 
can also be seen as a clustering method with some initial seeds (labeled da-
ta) in each cluster. The class labels of the seeds indicate the class labels of 
the resulting clusters.  

The derivation of the EM algorithm in Fig. 5.1 is quite involved and is 
given as an appendix at the end of this chapter. Two assumptions are made 
in the derivation. They are in fact the two mixture model assumptions in 
Sect. 3.7 of Chap. 3 for deriving the naïve Bayesian classifier for text clas-
sification, i.e.,  

1. the data is generated by a mixture model, and  
2. there is a one-to-one correspondence between mixture components and 

classes. 

It has been shown that the EM algorithm in Fig. 5.1 works well if the 
two mixture model assumptions for a particular data set are true. Note that 
although naïve Bayesian classification makes additional assumptions as we 
discussed in Sect. 3.7 of Chap. 3, it performs surprisingly well despite the 
obvious violation of the assumptions. The two mixture model assumptions, 
however, can cause major problems when they do not hold. In many real-
life situations, they may be violated. It is often the case that a class (or top-
ic) contains a number of sub-classes (or sub-topics). For example, the class 
Sports may contain documents about different sub-classes of sports, e.g., 

Algorithm EM(L, U)  
1 Learn an initial naïve Bayesian classifier f from only the labeled set L (us-

ing Equations (31) and (32) in Chap. 3); 
2 repeat  

 // E-Step 
3 for each example di in U do   
4 Using the current classifier f to compute Pr(cj|di) (using Equation 

(33) in Chap. 3).  
5 end 

  // M-Step 
6 learn a new naïve Bayesian classifier f from L  U by computing Pr(cj) 

and Pr(wt|cj) (using Equations (31) and (32) in Chap. 3).  
7 until the classifier parameters stabilize 
Return the classifier f from the last iteration.  

Fig. 5.1. The EM algorithm with naïve Bayesian classification 



5.1 Learning from Labeled and Unlabeled Examples      175 

Baseball, Basketball, Tennis, and Softball. Worse still, a class cj may even 
contain documents from completely different topics, e.g., Science, Politics, 
and Sports. The first assumption above is usually not a problem. The sec-
ond assumption is critical. If the condition holds, EM works very well and 
is particularly useful when the labeled set is very small, e.g., fewer than 
five labeled documents per class. In such cases, every iteration of EM is 
able to improve the classifier dramatically. However, if the second condi-
tion does not hold, the classifier from each iteration can become worse and 
worse. That is, the unlabeled set hurts learning instead of helping it.  

Two methods are proposed to remedy the situation. 

Weighting the Unlabeled Data: In LU learning, the labeled set is small, 
but the unlabeled set is very large. So the EM’s parameter estimation is 
almost completely determined by the unlabeled set after the first iteration. 
This means that EM essentially performs unsupervised clustering. When 
the two mixture model assumptions are true, the natural clusters of the data 
are in correspondence with the class labels. The resulting clusters can be 
used as the classifier. However, when the assumptions are not true, the 
clustering can go very wrong, i.e., the clustering may not converge to mix-
ture components corresponding to the given classes, and are therefore det-
rimental to classification accuracy. In order to reduce the effect of the 
problem, we can weight down the unlabeled data during parameter estima-
tion (EM iterations). Specifically, we change the computation of Pr(wt|cj) 
(Equation (31) in Chap. 3) to the following, where the counts of the unla-
beled documents are decreased by a factor of , 0    1:  
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When  = 1, each unlabeled document is weighted the same as a labeled 
document. When  = 0, the unlabeled data are not considered. The value of 
 can be chosen based on leave-one-out cross-validation accuracy on the 
labeled training data. The  value that gives the best result is used.  

Finding Mixture Components: Instead of weighting unlabeled data low, 
we can attack the problem head on, i.e., by finding the mixture compo-
nents (sub-classes) of the class. For example, the original class Sports may 
consist of documents from Baseball, Tennis, and Basketball, which are 
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three mixture components (sub-classes or sub-topics) of Sports. Instead of 
using the original class, we try to find these components and treat each of 
them as a class. That is, if we can find the three mixture components, we 
can use them to replace the class Sports. There are several automatic ap-
proaches for identifying mixture components. For example, a hierarchical 
clustering technique was proposed in [8] to find the mixture components, 
which showed good performances. A simple approach based on leave-one-
out cross-validation on the labeled training set was also given in [34].  

Manually identifying different components may not be a bad option for 
text documents because one only needs to read the documents in the la-
beled set (or some sampled unlabeled documents), which is very small.  

5.1.2 Co-Training 

Co-training is another approach to learning from labeled and unlabeled ex-
amples. This approach assumes that the set of attributes (or features) in the 
data can be partitioned into two subsets. Each of them is sufficient for 
learning the target classification function. For example, in Web page clas-
sification, one can build a classifier using either the text appearing on the 
page itself, or the anchor text attached to hyperlinks pointing to the page 
from other pages on the Web. This means that we can use the same train-
ing data to build two classifiers using two subsets of features.  

Traditional learning algorithms do not consider this division of features, 
or feature redundancy. All the features are pooled together in learning. In 
some cases, feature selection algorithms are applied to remove redundant 
features. Co-training exploits this feature division to learn separate classi-
fiers over each of the feature sets, and utilizes the fact that the two classifi-
ers must agree on their labeling of the unlabeled data to do LU learning.  

Blum and Mitchell [3] formalize the co-training setting and provide a 
theoretical guarantee for accurate learning subject to certain assumptions. 
In the formalization, we have an example (data) space X = X1  X2, where 
X1 and X2 provide two different “views” of the example. That is, each ex-
ample x (represented as a vector) is given as a pair (x1, x2). This simply 
means that the set of features (or attributes) is partitioned into two subsets. 
Each “view” or feature subset is sufficient for correct classification. Under 
some further assumptions, it was proven that co-training algorithms can 
learn from unlabeled data starting from only a weak classifier built using 
the small set of labeled training documents.  

The first assumption is that the example distribution is compatible with 
the target functions; that is, for most examples, the target classification 
functions over the feature sets predict the same label. In other words, if f 
denotes the combined classifier, f1 denotes the classifier learned from X1, f2 



5.1 Learning from Labeled and Unlabeled Examples      177 

denotes the classifier learned from X2 and c is the actual class label of ex-
ample x, then f(x) = f1(x1) = f2(x2) = c for most examples.  

The second assumption is that the features in one set of an example are 
conditionally independent of the features in the other set, given the class 
of the example. In the case of Web page classification, this assumes that 
the words on a Web page are not related to the words on its incoming hy-
perlinks, except through the class of the Web page. This is a somewhat un-
realistic assumption in practice.  

The co-training algorithm explicitly uses the feature split to learn from 
labeled and unlabeled data. The algorithm is iterative. The main idea is 
that in each iteration, it learns a classifier from the labeled set L with each 
subset of the features, and then applies the classifier to classify (or label) 
the unlabeled examples in U. A number (ni) of most confidently classified 
examples in U from each class ci are added to L. This process ends when U 
becomes empty (or a fixed number of iterations is reached). In practice, we 
can set a different ni for a different class ci depending on class distribu-
tions. For example, if a data set has one third of class 1 examples and two 
thirds of class 2 examples, we can set n1 = 1 and n2 = 2.  

The whole co-training algorithm is shown in Fig. 5.2. Lines 2 and 3 
build two classifiers f1 and f2 from the two “views” of the data respectively. 
f1 and f2 are then applied to classify the unlabeled examples in U (lines 4 
and 5). Some most confidently classified examples are removed from U 
and added to L. The algorithm then goes to the next iteration.  

Algorithm co-training(L, U)   
1 repeat 
2 Learn a classifier f1 using L based on only x1 portion of the examples x.  
3 Learn a classifier f2 using L based on only x2 portion of the examples x. 
4 Apply f1 to classify the examples in U, for each class ci, pick ni examples 

that f1 most confidently classifies as class ci, and add them to L.  
5 Apply f2 to classify the examples in U, for each class ci, pick ni examples 

that f2 most confidently classifies as class ci, and add them to L.  
6 until U becomes empty or a fixed number of iterations are reached  

Fig. 5.2. A co-training algorithm 

When the co-training algorithm ends, it returns two classifiers. At classi-
fication time, for each test example the two classifiers are applied sepa-
rately and their scores are combined to decide the class. For naïve Bayes-
ian classifiers, we multiply the two probability scores, i.e.,  

Pr(cj|x) = Pr(cj|x1)Pr(cj|x2) (3) 

The key idea of co-training is that classifier f1 adds examples to the la-
beled set that are used for learning f2 based on the X2 view, and vice versa. 
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Due to the conditional independence assumption, the examples added by f1 
can be considered as new and random examples for learning f2 based on the 
X2 view. Then the learning will progress. The situation is illustrated in Fig. 
5.3. This example has classes, positive and negative, and assumes linear 
separation of the two classes. In the X1 view (Fig. 5.3(A)), the circled ex-
amples are most confident positive and negative examples classified (or 
labeled) by f1 in the unlabeled set U. In the X2 view (Fig. 5.3(B)), these cir-
cled examples appear randomly. With these random examples from U add-
ed to L, a better f2 will be learned in the next iteration. 

 
Fig. 5.3. Two views of co-training.  

However, if the added examples to L are not random examples in the X2 
space but very similar to the situation in Fig. 5.3(A), then these examples 
are not informative to learning. That is, if the two subsets of features are 
correlated given the class or the conditional independence assumption is 
violated, the added examples will not be random but isolated in a specific 
region similar to those in Fig. 5.3(A). Then they will not be as useful or in-
formative to learning. Consequently, co-training will not be effective.  

In [33], it is shown that co-training produces more accurate classifiers 
than the EM algorithm presented in the previous section, even for data sets 
whose feature division does not completely satisfy the strict requirements 
of compatibility and conditional independence.  

5.1.3 Self-Training 

Self-training, which is similar to both EM and co-training, is another me-
thod for LU learning. It is an incremental algorithm that does not use the 
split of features. Initially, a classifier (e.g., naïve Bayesian classifier) is 
trained with the small labeled set considering all features. The classifier is 
then applied to classify the unlabeled set. Those most confidently classi-
fied (or unlabeled) documents of each class, together with their predicted 
class labels, are added to the labeled set. The classifier is then re-trained 
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and the procedure is repeated. This process iterates until all the unlabeled 
documents are given class labels. The basic idea of this method is that the 
classifier uses its own predictions to teach itself.  

5.1.4 Transductive Support Vector Machines 

Support vector machines (SVM) is one of the most effective methods for 
text classification. One way to use unlabeled data in training SVM is by 
selecting the labels of the unlabeled data in such a way that the resulting 
margin of the classifier is maximized. Training for the purpose of labeling 
known (unlabeled) test instances is referred to as transduction, giving rise 
to the name transductive SVM [41]. An example of how transduction can 
change the decision boundary is shown in Fig. 5.4. In this example, the old 
decision boundary, constructed using only labeled data, would have a very 
small margin on the unlabeled data. By utilizing the unlabeled data in the 
training process, a classifier that has the largest margin on both the labeled 
and unlabeled data can be obtained. 

 

y = 1 

y = - 1
x----  

x+ 

Old decision boundary

New decision 
boundary 

 
Fig. 5.4. The old decision boundary (before the addition of unlabeled data) and the 
new decision boundary created by transductive SVM. The unlabeled data are indi-
cated by circles around them 

The main difficulty with applying transductive SVM is the computa-
tional complexity. When all the labels are observed, training SVM is a 
convex optimization problem that can be solved efficiently. The problem 
of assigning labels to unlabeled examples in such a way that the resulting 
margin of the classifier is maximized can no longer be solved efficiently.   

To solve the problem, Joachims [20] used a sub-optimal iterative me-
thod that starts by learning a classifier using only the labeled data. The me-
thod then treats a subset of unlabeled instances that are most confidently 
labeled positive by the learned classifier as initial positive examples while 
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the rest of the unlabeled examples are treated as initial negative examples. 
The number of instances to label as positive can be specified by the user to 
change the precision–recall trade-off and is maintained throughout the it-
erations. The method then tries to improve the soft margin cost function by 
iteratively changing the labels of some of the instances and retraining the 
SVM. The ratio of positive to negative instances is maintained by selecting 
one positively labeled instance p and one negatively labeled instance q to 
change in each iteration. It was shown in [20] that if the two instances are 
selected such that the slack variables p > 0, q > 0 and p + q > 2, the soft 
margin cost function will decrease at each iteration. Further improvements 
described in [20] include allowing the soft margin error of unlabeled ex-
amples to be penalized differently from the soft margin error of the labeled 
examples and penalizing the soft margin error on the positive unlabeled 
examples differently from the soft margin error on the negative unlabeled 
examples. The penalty on the unlabeled examples is also iteratively in-
creased from a small value to the desired value. This may improve the 
chances of finding a good local optimum as it may be easier to improve the 
cost function when the penalty is small. The method was applied success-
fully to text classification problems.  

Like other methods of learning from labeled and unlabeled examples, 
transductive SVM can be sensitive to its assumptions. When the large 
margin assumption is correct on the dataset, it may improve performance 
but when the assumption is incorrect, it can decrease performance com-
pared to supervised learning. As an example, the transductive SVM per-
formed poorly using small labeled data sets when separating Project Web 
pages from other types of university Web pages in [20]. It was conjectured 
that, with a small number of labeled data, separating the Web pages ac-
cording to some of the underlying topics of the Web pages may give a lar-
ger margin than separating them according to whether the Web pages are 
Project pages or not. 

5.1.5 Graph-Based Methods  

Graph-based LU learning methods can be viewed as extensions of nearest 
neighbor supervised learning algorithms that work with both labeled and 
unlabeled instances. The basic idea in these methods is to treat labeled and 
unlabeled instances as vertices in a graph where a similarity function is 
used to define the edge weights between instances. The graph, with similar 
instances connected by larger weights, is then used to help label the unla-
beled instances in such a way that labels of vertices connected by edges 
with large weights tend to agree with each other. Methods used for con-
structing the graphs include connecting each instance to its k-nearest 
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neighbors, connecting each instance to other instances within a certain dis-
tance  and using a fully connected graph with an exponentially decreasing 
similarity function such as the Gaussian function to assign the weights. 
The assumptions used in these methods are similar to those of the nearest 
neighbor classifier, that is, near neighbors should have the same labels and 
we have a good measure of similarity between instances. We discuss three 
types of graph-based LU learning methods below: mincut, Gaussian 
fields and spectral graph transducer. All three methods work on binary 
classification problems but, like the support vector machines, can be used 
with strategies such as one-against-rest for solving multiple class classifi-
cation problems. 

Mincut: This method was proposed by Blum and Chalwa [2]. A weighted 
graph G = (V, E, W) is constructed first, where V consists of the labeled 
and unlabeled instances, E consists of edges between the instances and W 
is a function on the edges with W(i, j) = wij denoting the similarity of in-
stances i and j. The vertices associated with labeled instances are then giv-
en values from {0, 1} consistent with their binary labels. The idea in the 
mincut algorithm is to find an assignment of values vi from the set {0, 1} 
to the unlabeled instances in V such that the cost function  


Eji jiij vvw

),(
||  

is minimized. The advantage of this formulation is that the problem can be 
solved in polynomial time even though it is a combinatorial optimization 
problem. One way to do this is to transform the problem into a max-flow 
problem (see [9] for a description of the max-flow problem). To do that, 
we convert the graph into a flow network by introducing a source vertex v+ 
and a sink vertex v, where the source vertex is connected by edges with 
infinite capacities to the positive labeled instances while the sink vertex is 
connected by edges with infinite capacities to the negative labeled in-
stances. The other edge weights in the graph are also treated as edge ca-
pacities in the flow network. A cut of the network is a partition of the ver-
tices into two subsets V+ and V such that v+  V+ and v  V. A minimum 
cut is a partition that has the smallest sum of capacities in the edges con-
necting V+ and V. Finding a minimum cut is equivalent to minimizing the 
function  


Eji jiij vvw

),(
||  since all the vertices are assigned values from {0, 

1}. Max-flow algorithms can be used to efficiently find a mincut of the 
network in time O(|V|3). 

Gaussian Fields: Instead of minimizing  


Eji jiij vvw
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|| , Zhu et al. [46] 

proposed minimizing  

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2)(  with the value of the vertices being 

selected from [0, 1] instead of {0, 1}. The advantage of using this formulation  
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is that it allows the solution to be obtained using linear algebra. Let W be 
the weight matrix corresponding to the graph,  


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
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LULL
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where WLL , WLU , WUL and WUU are sub-matrices with the subscript L de-
noting labeled instances and the subscript U denoting the unlabeled in-
stances. Let D be a diagonal matrix where  j ijii wD is the sum of the en-

tries in row (or column) i. We also form a vector v, consisting of values 
assigned to the labeled and unlabeled instances. The labeled instances are 
assigned fixed values in {0, 1} consistent with their labels while the values 
vi assigned to the unlabeled instances are chosen to minimize 
 


Eji jiij vvw

),(
2.)(  The solution can be written as 

,)( 1
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where vU is the part of the vector v that contains values assigned to the un-
labeled instances, vL is the part of the vector that contains values assigned 
to labeled instances and DUU is the sub-matrix of D consisting of sum of 
entries of rows in W associated with unlabeled instances. 

The optimization problem  


Eji jiij vvw
),(

2)(  can also be written in ma-

trix form as vTv where  = D  W is known as the combinatorial Lapla-
cian of the graph. The matrix  is known to be positive semidefinite, so it 
can be viewed as an inverse covariance matrix of a multivariate Gaussian 
random variable, giving rise to the name Gaussian field.  

Spectral Graph Transducer: One potential problem with the mincut 
formulation is that the mincut cost function tends to prefer unbalanced cuts 
where the number of instances in either the positive or negative class vast-
ly outnumbers the number of instances in the other class. Unbalanced cuts 
tend to have a lower cost in the mincut formulation because the number of 
edges between V+ and V  is maximized when the sizes of V+ and V  are 
equal and is small when either one of them is small.  For example, if we 
have n vertices and V+ contains a single element, then there are potentially 
n1 edges between V+ and V . In contrast, if V+ and V  are the same size, 
then there are potentially n2/4 edges between the two sets of vertices.  

Let cut(V+, V) be the sum of the edge weights connecting V+ and V. To 
mitigate the effect of preferring unbalanced cut, Joachims [21] proposed to 
minimize a cost function of normalized cut 
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is normalized by the number of edges between the two sets. Minimizing 
this cost function is computationally difficult, so Joachims [21] proposed 
minimizing a relaxed version of the problem.  

Let  be the combinatorial Laplacian of the graph. It can be shown that 
minimizing the normalized cut (with no labeled data) using  and  num-
ber of instances ( and  are specified by the user) in the two partitions is 
equivalent to minimizing vTv for vi  {+, }, where 


      and    


  . (6) 

Instead of using vi  {+, }, Joachims [21] proposed to allow vi to take 
real values under the constraint vT1=0 and vTv=n, where 1 is the all one 
vector. To make sure that the labeled instances are properly classified, a 
term (v)TC(v) is added to the cost function, where C is a diagonal ma-
trix with non-zero entries only for labeled instances and  is the target vec-
tor for approximation by v. The components of  that correspond to posi-
tive and negative instances are set to + and  respectively, while the 
components of   that correspond to unlabeled instances do not affect the 
cost function because their corresponding diagonal entries of C are set to 
zero. The values of the non-zero entries of C can be set by the user to give 
different misclassification costs to each instance. This gives the combined 
optimization problem of  
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where c gives a trade-off between the cost for the labeled and unlabeled 
parts. The solution of Equation (7) is obtained using spectral methods. 

The Gaussian field method and spectral graph transduction have been 
applied to the natural language processing problem of word sense disam-
biguation in [35, 37]. Word sense disambiguation is the problem of assign-
ing appropriate meanings to words (which may have multiple meanings) 
according to the context that they appear in. Although some improvements 
are observed, the success of these methods is still limited. 

5.1.6 Discussion 

We discuss two issues: (1) whether the unlabeled set U is always helpful 
and (2) the evaluation of LU learning.  

Does the Unlabeled Set Always Help? The answer is no. As we have 
seen, all approaches make strong assumptions. For example, EM makes 
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two mixture model assumptions, and co-training makes the feature split as-
sumption. When the assumptions are true for an application data set, unla-
beled data can help learning (even dramatically). When the assumptions 
are not true, the unlabeled data may harm learning. Automatically detect-
ing bad match of the problem structure with the model assumptions in ad-
vance is, however, very hard and remains an open problem.  

A related issue is that researchers have not shown that when the labeled 
set is sufficiently large, the unlabeled data still help. Manual labeling more 
documents may not be as difficult as it seems in some applications, espe-
cially when the number of classes is small. In most cases, to label a docu-
ment one does not even need to read the entire document (if it is long). 
Typically, the first few sentences can already tell its class. Compounded 
with the problem of inability to decide whether the unlabeled data indeed 
help classification, practical applications of LU learning are still limited.   

Evaluation: The evaluation of LU learning is commonly done in the same 
way as traditional classification. However, there is a problem with the 
availability of sufficient test data. In practice, users always want to have a 
reasonable guarantee on the predictive accuracy of a classification system 
before they use the system. This means that test data sets have to be used 
to evaluate the system. Existing algorithms for LU learning assume that 
there is a large set of labeled test data for this purpose. However, this con-
tradicts the LU learning problem statement, which says that the labeled set 
is very small. If we can ask the user to label more data, then we do not 
need LU learning because some examples of the test set can be used in 
training. Evaluation without more labeled data is also an open problem.  

One may look at this problem in another way. We first use the classifier 
generated by LU learning to classify the unlabeled set or a new test set and 
then sample some classified documents to be checked manually in order to 
estimate the classification accuracy. If classification is sufficiently accu-
rate, the results of the classifier will be used. Otherwise, improvements 
need to be made. In this case, additional labeled data obtained during man-
ual inspection can be added to the original labeled set. You see we end up 
doing more labeling! Hopefully, we do not have to do too much labeling.  

5.2 Learning from Positive and Unlabeled Examples 

In some applications, the problem is to identify a particular class P of doc-
uments from a set of mixed documents, which contains documents of class 
P and also other kinds of documents. We call the class of documents that 
one is interested in the positive class documents, or simply positive docu-
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ments. We call the rest of the documents the negative class documents or 
simply negative documents.  

This problem can be seen as a classification problem with two classes, 
positive and negative. However, there are no labeled negative documents 
for training. The problem is stated more formally as follows,  

Problem Statement: Given a set P of positive documents that we are in-
terested in, and a set U of unlabeled documents (the mixed set), which 
contains both positive documents and negative documents, we want to 
build a classifier using P and U that can identify positive documents in U 
or in a separate test set  in other words, we want to accurately classify 
positive and negative documents in U or in the test (or future) data set. 

This problem is called PU learning. Note that the set U can be used in 
both training and testing because U is unlabeled.  

The key feature of this problem is that there is no labeled negative doc-
ument for learning. Traditional supervised learning algorithms are thus not 
directly applicable because they all require both labeled positive and la-
beled negative documents to build a classifier. This is also the case for LU 
learning, although the labeled set for each class may be very small. 

5.2.1 Applications of PU Learning 

The PU learning problem occurs frequently in Web and text retrieval ap-
plications, because most of the time the user is only interested in Web pag-
es or text documents of a particular topic. For example, one may be inter-
ested in only travel-related pages (positive pages). Then all the other types 
of pages are negative pages. Let us use a concrete example to show the ac-
tual setting of a PU learning application.   

Example 1: We want to build a repository of data mining research papers. 
We can start with an initial set of papers from a data mining conference or 
journal, which are positive examples. We then want to find data mining 
papers from online journals and conference series in the fields of databases 
and artificial intelligence. Journals and conferences in these fields all con-
tain some data mining papers. They also contain many other types of pa-
pers. The problem is how to extract data mining papers from such confer-
ences and journals, or in other words, how to classify the papers from these 
sources into data mining papers and non-data mining papers without label-
ing any negative papers in any source.  ▀ 

In practical applications, positive documents are usually available be-
cause if one has worked on a particular task for some time one should have 
accumulated many related documents. Even if no positive document is 
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available initially, collecting some from the Web or any other source is 
relatively easy. One can then use this set to find the same class of docu-
ments from other sources without manually labeling any negative docu-
ments. PU learning is particularly useful in the following situations: 

1. Learning with multiple unlabeled sets: In some applications, one 
needs to find positive documents from a large number of document col-
lections. For example, we want to identify Web pages that sell printers. 
We can easily obtain a set of positive pages from an online merchant, 
e.g., amazon.com. Then we want to find printer pages from other mer-
chants. We can crawl each site one by one and extract printer pages 
from each site using PU learning. We do not need to manually label 
negative pages (non-printer pages) from any site.  

Although it may not be hard to label some negative pages from a sin-
gle site, it is difficult to label for every site. Note that in general the 
classifier built based on the negative pages from one site s1 may not be 
used to classify pages from another site s2 because the negative pages in 
s2 can be very different from the negative pages in s1. The reason is that 
although both sites sell printers, the other products that they sell can be 
quite different. Thus using the classifier built for s1 to classify pages in 
s2 may violate the fundamental assumption of machine learning: the dis-
tribution of training examples is identical to the distribution of test ex-
amples. As a consequence, we may obtain poor accuracy results.   

2. Learning with unreliable negative examples: This situation often oc-
curs in experimental sciences. For example, in biology, biologists per-
form experiments to determine some biological functions. They are of-
ten quite confident about positive cases that they have discovered. 
However, they may not be confident about negative cases because labo-
ratory results can be affected by all kinds of conditions. The negative 
cases are thus unreliable. It is perhaps more appropriate to treat such 
negative cases as unlabeled examples than negative examples. 

PU learning is also useful for modeling and solving the following prob-
lems, which have been dealt with traditionally using other techniques:  

Set expansion: Given a set S of seeds or examples of a particular class, 
and a set D of candidate instances, we wish to determine which of the can-
didates in D belong to S. In other words, we “expand” the set S based on 
the given seeds. This is clearly a classification problem which requires ar-
riving at a binary decision for each candidate in D (belonging to S or not). 
However, in practice, the problem is often solved as a ranking problem, 
i.e., ranking the instances in D based on their likelihoods of belonging to S.  

It is shown in [28] that the set expansion problem can be modeled by PU 
learning exactly, with S and D as P and U respectively. The paper uses a 
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PU learning method called S-EM [30] to solve an entity set expansion 
problem in text mining, i.e., to expand a set of given named entities (seeds) 
based on a text corpus. The classic methods for solving this problem in 
text mining and natural language processing were based on distributional 
similarity [23, 36]. The approach works by comparing the similarity of the 
surrounding word distributions of each candidate with those of the seeds, 
and then ranking the candidates using their similarity scores. However, it is 
shown in [28] that S-EM outperforms distributional similarity significantly 
for the problem. In machine learning, there is also a technique called 
Bayesian Sets [16] which was specifically designed for solving the set ex-
pansion problem. However, it does not perform as well as S-EM. The rea-
son given in the paper is as follows: Distributional similarity does not use 
any information in the candidate set (or the unlabeled set U) to separate 
positive and negative instances. It ranks the candidates solely through 
similarity comparisons with the given seeds (or positive cases). Bayesian 
Sets is better because it considers U. Its learning method produces a weight 
vector for features based on their occurrence differences in the positive set 
P and the unlabeled set U. This weight vector is then used in computing 
the final scores for ranking. S-EM also considers these differences and in 
addition, it uses automatically identified reliable negative instances to help 
distinguish negative and positive cases, which both Bayesian Sets and dis-
tributional similarity do not do. This balanced approach by S-EM to sepa-
rate the positive and negative cases is the reason for its higher accuracy. 

Covariate shift or sample selection bias: Most machine learning methods 
assume that the training and the test data have identical distributions. 
However, this assumption may not hold in practice, i.e., the training and 
the test distributions can be different. The problem is called covariate 
shift or sample selection bias [18, 19, 40, 44]. In general, this problem is 
not solvable because the two distributions can be arbitrarily far apart from 
each other. Various assumptions were made to solve some special cases.  

A special case of the problem is studied in [27], where the positive train-
ing and test samples have identical distributions, but the negative training 
and test samples may have different distributions. This scenario occurs in 
many binary text classification problems. It is shown that PU learning pro-
vides a good solution, which does not need the negative training data.  

5.2.2 Theoretical Foundation 

Before discussing the theoretical foundation of PU learning, let us first de-
velop some intuition on why PU learning is possible and why unlabeled 
data are helpful. Fig. 5.5 shows the idea.  
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Fig. 5.5. Unlabeled data are helpful 

In Fig. 5.5(A), we see only positive documents (data points) represented 
with +’s. We assume that a linear classifier is sufficient for the classifica-
tion task. In this case, it is hard to know where to draw the line to separate 
positive and negative examples because we do not know where the nega-
tive examples might be. There are infinite possibilities. However, if the un-
labeled data (represented by small circles) are added to the space (Fig. 
5.5(B)), it is very clear where the separation line should be. Let us now 
discuss a theoretical result of PU learning.  

Let (xi, yi) be random variables drawn independently from probability 
distribution D(x,y) where y  {1, 1} is the conditional random variable that 
we wish to estimate given x. xi represents a document, and yi is its class, 
which can be 1 (positive) or –1 (negative). Let Dx|y=1 be the conditional 
distribution from which the positive examples are independently drawn 
and let Dx be the marginal distribution from which unlabeled examples are 
independently drawn. Our objective is to learn a classification function f 
that can separate positive and negative documents. Since learning is to 
produce a classifier that has the minimum probability of error, Pr(f(x)y), 
let us rewrite it into a more useful form, 

Pr(f(x)y) = Pr(f(x)=1 and y=1) + Pr(f(x)= 1 and y=1). (8) 

The first term can be rewritten as   

Pr(f(x)=1 and y=1) 
= Pr(f(x)=1) – Pr(f(x)=1 and y=1) 
= Pr(f(x)=1) – (Pr(y=1) – Pr(f(x)= 1 and y=1)). 

(9) 

Substituting (9) into Equation (8), we obtain 

Pr(f(x)y)  
= Pr(f(x)=1) – Pr(y=1) + 2Pr(f(x)= 1|y=1)Pr(y=1). 

(10) 

Since Pr(y = 1) is constant (although it is unknown), we can minimize the 
probability of error by minimizing  

(A) With only positive data (B) With both positive and unlabeled data 
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Pr(f(x)=1) + 2Pr(f(x)= 1|y =1)Pr(y=1). (11) 

If we can hold Pr(f(x)= 1|y=1) small, then learning is approximately 
the same as minimizing Pr(f(x)=1). Holding Pr(f(x)= 1|y=1) small while 
minimizing Pr(f(x)=1) is approximately the same as minimizing Pru(f(x)=1) 
(on the unlabeled set U) while holding PrP(f(x)=1) ≥ r (on the positive set 
P), where r is the recall, i.e., Pr(f(x)=1|y=1). Note that (PrP(f(x)=1) ≥ r) is 
the same as (PrP(f(x)= 1) ≤ 1–r).  

Two theorems given by Liu et al. [30] state these formally and show that 
in both the noiseless case (P has no error) and the noisy case (P contains 
errors, i.e., some negative documents) reasonably good learning results can 
be achieved if  

 the problem is posed as a constrained optimization problem where the 
algorithm tries to minimize the number of unlabeled examples labeled 
positive subject to the constraint that the fraction of errors on the posi-
tive examples is no more than 1 r.  

Example 2: Fig. 5.6 illustrates the constrained optimization problem. As-
sume that positive and negative documents can be linearly separated. Posi-
tive documents are represented with +’s, and unlabeled documents with 
small circles. Assume also that the positive set has no error and we want 
the recall r on the positive set to be 100%. Each line in the figure is a pos-
sible linear classifier. Every document on the left of each line will be la-
beled (classified) by the line as positive, and every document on the right 
will be labeled as negative. Lines 1 and 2 are clearly not solutions because 
the constraint “the fraction of errors on the positive examples must be no 
more than 1 r (= 0)” is violated, although the number of unlabeled exam-
ples labeled (classified) as positive is minimized by line 1. Lines 4, 5, and 
6 are poor solutions too because the number of unlabeled examples labeled 
as positive is not minimized by any of them. Line 3 is the optimal solution. 
Under the constraint that no positive example is labeled negative, line 3 
minimizes the number of unlabeled examples labeled as positive.  ▀ 

 

Fig. 5.6. An illustration of the constrained optimization problem  
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Based on the constrained optimization idea, two kinds of approaches 
have been proposed to build PU classifiers: the two-step approach and the 
direct approach. In the actual learning algorithms, the user may not need 
to specify a desired recall level r on the positive set because some of these 
algorithms have their evaluation methods that can automatically determine 
whether a good solution has been found.    

5.2.3 Building Classifiers: Two-Step Approach 

As its name suggests the two-step approach works in two steps:   

1. Identifying a set of reliable negative documents (denoted by RN) from 
the unlabeled set U.  

2. Building a classifier using P, RN and U  RN. This step may apply an 
existing learning algorithm once or iteratively depending on the quality 
and the size of the RN set.  

 
Fig. 5.7. An illustration of the two-step approach 

This two-step approach is illustrated in Fig. 5.7. Here, we assume that 
step 2 uses an iterative algorithm. In step 1, a set of reliable negative doc-
uments (RN) is found from the unlabeled set U, which divides U into two 
subsets, RN and Q (= U  RN). Q is called the likely positive set. In step 2, 
the algorithm iteratively improves the results by adding more documents to 
RN until a convergence criterion is met. We can see that the process is try-
ing to minimize the number of unlabeled examples labeled positive since 
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Q becomes smaller and smaller while RN becomes larger and larger. In 
other words, it tries to iteratively increase the number of unlabeled exam-
ples that are labeled negative while maintaining the positive examples in P 
correctly classified. We present several techniques for each step below. 

 
Techniques for Step 1 

We introduce four methods to extract reliable negative documents from the 
unlabeled set U.  

Spy Technique: This technique works by sending some “spy” documents 
from the positive set P to the unlabeled set U. Fig. 5.8 gives the algorithm 
of the technique, which is used in the S-EM system [30]. The algorithm 
has three sub-steps: 

1. It randomly samples a set S of positive documents from P and put them 
in U (lines 2 and 3). The default sampling ratio of s% is 15% in S-EM. 
The documents in S act as “spy” documents from the positive set to the 
unlabeled set U. Since the spies behave similarly to the unknown posi-
tive documents in U, they allow the algorithm to infer the behavior of 
the unknown positive documents in U.  

2. It runs the naïve Bayesian (NB) algorithm using the set P  S as positive 
and the set U  S as negative (lines 3–7). The NB classifier is then ap-
plied to classify each document d in U  S (or Us), i.e., to assign it a 
probabilistic class label Pr(1|d), where 1 represents the positive class.  

3. It uses the probabilistic labels of the spies to decide which documents 
are most likely to be negative. A threshold t is employed to make the 

Algorithm Spy(P, U) 
1.  RN  ;  
2.  S  Sample(P, s%);  
3. Us  U  S; 
4. Ps  P – S; 
5. Assign each document in Ps the class label 1; 
6. Assign each document in Us the class label 1; 
7. NB(Us, Ps);  // This produces a NB classifier. 
8. Classify each document in Us using the NB classifier; 
9. Determine a probability threshold t using S;  
10. for each document d  Us do 
11.  if its probability Pr(1|d) < t then 
12.  RN  RN  {d}; 
13. endif 
14. endfor 

Fig. 5.8. The spy technique for step 1.  
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decision. Those documents in U with lower probabilities (Pr(1|d)) than t 
are the most likely negative documents, denoted by RN (lines 10–14).  

We now discuss how to determine t using spies (line 9). Let the set of 
spies be S = {s1, s2, …, sk}, and the probabilistic labels assigned to each 
si be Pr(1|si). Intuitively, we can use the minimum probability in S as the 
threshold value t, i.e., t = min{Pr(1|s1), Pr(1|s2), …, Pr(1|sk)}, which 
means that we want to retrieve all spy documents. In a noiseless case, 
using the minimum probability is acceptable. However, most real-life 
document collections have outliers and noise. Using the minimum prob-
ability is unreliable. The reason is that the posterior probability Pr(1|si) 
of an outlier document si in S could be 0  or smaller than most (or even 
all) actual negative documents. However, we do not know the noise lev-
el of the data. To be safe, the S-EM system uses a large noise level l = 
15% as the default. The final classification result is not very sensitive to 
l as long it is not too small. To determine t, we first sort the documents 
in S according to their Pr(1|si) values. We then use the selected noise 
level l to decide t: we select t such that l percent of documents in S have 
probability less than t. Hence, t is not a fixed value. The actual parame-
ter is in fact l.  

Note that the reliable negative set RN can also be found through multiple 
iterations. That is, we run the spy algorithm multiple times. Each time a 
new random set of spies S is selected from P and a different set of reliable 
negative documents is obtained, denoted by RNi. The final set of reliable 
negative documents is the intersection of all RNi. This may be a better 
technique because we do not need to worry that one set of random spies S 
may not be chosen well, especially when the set P is not large. 

Cosine-Rocchio (CR) Technique: This method (Fig. 5.9) is used in [27]. 
It consists of two sub-steps:  

Sub-step 1 (lines 1–9, Fig. 5.9): This sub-step extracts a set of potential 
negatives PN from U by computing similarities of the unlabeled docu-
ments in U with the positive documents in P. Those documents in U that 
are very dissimilar to the documents in P are likely to be negative (lines 
7–9). To make the decisions, a similarity measure and a similarity thre-
shold are needed. The similarity measure is the well-known cosine simi-
larity (see Sect. 6.2.2). To compute the similarity, each document in P 
and U is first converted to a vector d using the TF-IDF scheme (see Sect. 
6.2.2). Note that we use a lower case bold letter to represent a vector 
here. The positive documents in P are used to compute the threshold 
value. First, a positive representative vector (vP) is constructed by sum-
ming up the documents in P (line 3). The similarity of each document d 
in P with vP is calculated using the cosine measure, cos(vP, d), in line 4. 



5.2 Learning from Positive and Unlabeled Examples      193 

Line 5 sorts the documents in P according to their cos(vP, d) values, 
which helps to determine the similarity threshold. The threshold is used 
to filter out as many as possible hidden positive documents from U so 
that a very pure negative set PN can be obtained. Since the hidden posi-
tives in U should have the same behaviors as the positives in P in terms 
of their similarities to vP, ideally we should set the minimum similarity 
value of all documents d  P and vP as the threshold value ω. However, 
as in the spy technique, we need to consider possible noise in P. It would 
therefore be prudent to ignore a small percentage l of documents in P 
that are most dissimilar to vP and assume them to be noise or outliers. 
The default noise level of l = 5% is used in [27]. In line 6, l is used to 
decide the similarity threshold ω. Then, for each document d in U, if its 
cosine similarity cos(vP, d) is less then ω, it is regarded as a potential 
negative and stored in PN (lines 8–9). PN, however, is still not sufficient 
for accurate learning. Using PN, sub-step 2 produces the final RN. 

Sub-step 2 (line 10–14, Fig. 5.9): To extract the final reliable negatives, the 
algorithm employs the Rocchio classification method to build a classifier 
f using P and PN. Those documents in U that are classified as negatives 
by f are regarded as the final reliable negatives and stored in set RN. Fol-
lowing the Rocchio formula in Sect. 6.3, the classifier f actually consists 
of a positive and a negative prototype vectors cP and cPN (lines 11 and 

Algorithm CR(P, U) 
1. PN = ; RN = ;  
2. Represent each document d  P and U as a vector using the TF-IDF scheme; 

3. 



P

P P d d

d

||
v

||||
1 ; 

4. Compute cos(vp, d) for each d  P; 
5. Sort all the documents dP according to cos(vp, d) in a decreasing order; 
6. ω = cos(vp, d) where d is ranked in the position of (1- l)*|P|; 
7. for each d  U  do 
8. if cos(vp, d) < ω then 
9. PN = PN ∪ {d} 

10. 

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P PNP dd d

d
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12. for each d  U  do 
13. if cos(cPN, d) > cos(cP, d) then 
14. RN  = RN ∪ {d} 

Fig. 5.9. The CR technique for step 1 
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12). α and β are parameters for adjusting the relative impact of the ex-
amples in P and PN. As suggested in [4], α = 16 and β = 4 are used in 
[27]. The classification is done in lines 12–14. Details about Rocchio 
classification can be found in Sect. 6.3.  

1DNF Technique: The 1DNF method (Fig. 5.10) is used in [43]. It first 
builds a positive feature set PF containing words that occur in the positive 
set P more frequently than in the unlabeled set U (lines 1–7). Line 1 col-
lects all the words in U  P to obtain a vocabulary V. Lines 8–13 try to 
identify reliable negative documents from U. A document in U that does 
not contain any feature in PF is regarded as a reliable negative document.  

NB Technique: This method is employed in [29]. It simply uses a naïve 
Bayesian classifier to identify a set of reliable negative documents RN 
from the unlabeled set U. The algorithm is given in Fig. 5.11. 

This method may also be run multiple times. Each time we randomly 
remove a few documents from P to obtain a different set of reliable nega-
tive documents, denoted by RNi. The final set of reliable negative docu-
ments RN is the intersection of all RNi. 

Rocchio technique: This method is employed in [26]. The algorithm is the 
same as that in Fig. 5.11 except that NB is replaced with Rocchio. The 
Rocchio classification method is described in Sect. 6.3. 

Techniques for Step 2 

There are two approaches for this step.  

1. Run a learning algorithm (e.g., NB or SVM) using P and RN. The set of 
documents in URN is discarded. This method works well if the reliable 
negative set RN is sufficiently large and contains mostly negative docu-
ments. The spy technique, NB and Rocchio in step 1 are often able to 
produce a sufficiently large set of negative documents. The 1DNF tech-
nique may only identify a very small set of negative documents. Then 
running a learning algorithm will not be able to build a good classifier.   

2. Run a learning algorithm iteratively till it converges or some stopping 
criterion is met. This method is used when the set RN is small.  

We will not discuss the first approach as it is straightforward. SVM usually 
does very well. Below, we introduce two techniques for the second ap-
proach, which are based on EM and SVM respectively.  

EM Algorithm with Naïve Bayesian Classification: The EM algorithm 
can be used naturally here [30]. As in LU learning, the Expectation step 
basically fills in the missing data. In our case, it produces and revises the 
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probabilistic labels of the documents in URN (see below). The parameters 
are estimated in the Maximization step after the missing data are filled. 
This leads to the next iteration of the algorithm. EM converges when its 
parameters stabilize. Using NB in each iteration, EM employs the same 
equations as those used in building a NB classifier (Equation (33) for the 
Expectation step, and Equations (31) and (32) for the Maximization step). 
The class probability given to each document in URN takes the value in 
[0, 1] instead of {0, 1}. The algorithm is given in Fig. 5.12.  

The EM algorithm here makes the same mixture model assumptions as 
in LU learning. Thus, it has the same problem of model mismatch. See the 
discussions in Sect. 5.1.1.  

Iterative SVM: In this method, SVM is run iteratively using P, RN and Q 
(= URN). The algorithm, called I-SVM, is given in Fig. 5.13. The basic 
idea is as follows: In each iteration, a new SVM classifier f is constructed 
from P and RN (line 4). Here RN is regarded as the set of negative exam-
ples (line 2). The classifier f is then applied to classify the documents in Q 
(line 5). The set W of documents in Q that are classified as negative (line 
6) is removed from Q (line 8) and added to RN (line 9). The iteration stops 

Algorithm 1DNF(P, U)  
1. Assume the word feature set be V = {w1,…, wn}, wi U  P;  
2. Let positive feature set PF  ; 
3. for each wi  V do // freq(wi, P): number of times 
4.      if (freq(wi, P) / |P| > freq(wi, U) / |U|) then // that wi appears in P 
5. PF  PF  {wi}; 
6. endif 
7. endfor; 
8. RN  U; 
9. for each document d  U do 
10. if wj freq(wj, d) > 0 and wj  PF then 
11.    RN  RN – {d} 
12. endif 
13. endfor 

Fig. 5.10. The 1DNF technique for step 1 

1. Assign each document in P the class label 1; 
2. Assign each document in U the class label 1;  
3. Build a NB classifier using P and U; 
4. Use the classifier to classify U. Those documents in U that are classified as 

negative form the reliable negative set RN.  

Fig. 5.11. The NB method for Step 1 
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when no document in Q is classified as negative, i.e., W =  (line 7). The 
final classifier is the result. This method is used in [26] [42, 43].  

Finally, we note again that if the first step is able to identify a large 
number of reliable negative documents from U, running SVM once in step 
2 is sufficient. Iterative approaches may not be necessary, which are also 
less efficient. The Spy, NB and Rocchio methods for step 1 are often able 
to identify a large number of reliable negative documents. See [29] for an 
evaluation of various methods based on two benchmark text collections.  

Classifier Selection 

The iterative methods discussed above produce a new classifier at each it-
eration. However, the classifier at the convergence may not be the best 

Algorithm EM(P, U, RN)  
1. Each document in P is assigned the class label 1; 
2. Each document in RN is assigned the class label 1; 
3. Learn an initial NB classifier f from P and RN (using Equations (31) and 

(32) in Chap. 3); 
4 repeat  
 // E-Step 
5 for each example di in URN do   
6 Using the current classifier f to compute Pr(cj|di) using Equation (33) 

in Chap. 3.  
7 end 
  // M-Step 
8 learn a new NB classifier f from P, RN and URN by computing Pr(cj) 

and Pr(wt|cj) (using Equations (31) and (32) in Chap. 3).  
9 until the classifier parameters stabilize 
10. Return the classifier f from the last iteration.  

Fig. 5.12. EM algorithm with the NB classifier 

Algorithm I-SVM(P, RN, Q)  
1. Every document in P is assigned the class label 1; 
2. Every document in RN is assigned the class label –1; 
3. loop  
4.       Use P and RN to train a SVM classifier f; 
5.       Classify Q using f; 
6.       Let W be the set of documents in Q that is classified as negative; 
7.       if W =  then  exit-loop // convergence  
8.       else Q  Q – W; 
9.         RN  RN  W; 
10. endif; 

Fig. 5.13. Running SVM iteratively 
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classifier. In general, each iteration of the algorithm gives a classifier that 
may potentially be a better classifier than the classifier produced at con-
vergence. This is true for both EM and SVM.  

The main problem with EM is that classes and topics may not have one-
to-one correspondence. This is the same problem as in LU learning. SVM 
may also produce poor classifiers at the convergence because SVM is sen-
sitive to noise. If the RN set is not chosen well or in an iteration some posi-
tive documents are classified as negative, then the subsequent iterations 
may produce very poor results. In such cases, it is often better to stop at an 
earlier iteration. One simple method is to apply the theory directly. That is, 
each classifier is applied to classify a positive validation set, Pv. If many 
documents from Pv (e.g., > 5%) are classified as negative, the algorithm 
should stop (that is a recall of 95%). If the set P is small, the method can 
also be applied to P directly. A principled method is given in the next sub-
section, i.e., Equation (14).  

5.2.4 Building Classifiers: Biased-SVM 

We now present a direct approach, called biased-SVM. This approach modi-
fies the SVM formulation slightly so that it is suitable for PU learning. Let the 
set of training examples be {(x1, y1), (x2, y2), …, (xn, yn)}, where xi is an input 
vector and yi is its class label, yi  {1, 1}. Assume that the first k1 examples 
are positive examples P (labeled 1), while the rest are unlabeled examples U, 
which are treated as negative and labeled 1. Thus, the negative set has errors, 
i.e., containing positive documents. We consider two cases.  

1. Noiseless case: There is no error in the positive examples but only in 
unlabeled examples. The theoretical result in Sect. 5.2.2 states that if the 
sample size is large enough, minimizing the number of unlabeled exam-
ples classified as positive while constraining the positive examples to be 
correctly classified will give a good classifier. Following the theory, in 
this noiseless case, we have this following SVM formulation  
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In this formulation, we do not allow any error in the positive set P, 
which is the first constraint, but allow errors for the negative set (the 
original unlabeled set), which is the second constraint. Clearly, the for-
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mulation follows the theory exactly due to the second term in the objec-
tive function. The subscript in the second term starts from k, which is 
the index of the first unlabeled example. To distinguish this formulation 
from the classic SVM, we call it the biased-SVM [29].  

2. Noisy case: In practice, the positive set may also contain some errors. 
Thus, if we allow noise (or error) in positive examples, we have the fol-
lowing soft margin version of the biased-SVM which uses two parame-
ters C+ and C to weight positive errors and negative errors differently.  
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We can vary C+ and C to achieve our objective. Intuitively, we give a 
bigger value for C+ and a smaller value for C because the unlabeled set, 
which is assumed to be negative, contains positive data.  

We now focus on Equation (13) as it is more realistic in practice. We need 
to choose values for C+ and C. The common practice is to try a range of 
values for both C+ and C and use a separate validation set to verify the 
performance of the resulting classifier. The C+ and C values that give the 
best classification results on the validation set are selected as the final pa-
rameter values for them. Cross-validation is another possible technique for 
the purpose. Since the need to learn from positive and unlabeled examples 
often arises in retrieval situations (retrieving positive documents from the 
unlabeled set), we employ the commonly used F-score as the performance 
measure, F = 2pr/(p+r), where p is the precision and r is the recall.  

Unfortunately it is not clear how to estimate the F-score without labeled 
negative examples. In [24], Lee and Liu proposed an alternative perform-
ance measure to compare different classifiers. It behaves similarly to the F-
score but can be estimated directly from the validation set without the need 
of labeled negative examples. The measure is  

,
)1)(Pr(

2

xf

r  (14) 

where f is the classifier and Pr(f(x)=1) is the probability that a document is 
classified as positive. It is not easy to see why Equation (14) behaves simi-
larly to the F-score, but we can show that r2/Pr(f(x)=1) = pr/Pr(y=1), where 
Pr(y=1) is the probability of positive documents. pr/Pr(y=1) behaves simi-
larly to the F-score in the sense that it is large when both p and r are large 
and is small when either p or r is small.  



5.2 Learning from Positive and Unlabeled Examples      199 

We first write recall (r) and precision (p) in terms of probability:  

r = Pr(f(x)=1| y=1), (15) 

p = Pr(y=1| f(x)=1). (16) 

According to probability theory, we have 

Pr(f(x)=1|y=1)Pr(y=1) = Pr(y=1| f(x)=1)Pr(f(x)=1), (17) 

which can be written as  
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Multiplying both sides by r, we obtain the result: 
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The quantity r2/Pr(f(x)=1) can be estimated based on the validation set, 
which contains both positive and unlabeled documents. r can be estimated 
using the positive examples in the validation set and Pr(f(x) = 1) can be es-
timated from the whole validation set.  

This criterion in fact reflects the theory in Sect. 5.2.2 very well. The 
quantity is large when r is large and Pr(f(x) = 1) is small, which means that 
the number of unlabeled examples labeled as positive should be small. In 
[29], it is shown that biased-SVM works better than two-step techniques.  

5.2.5 Building Classifiers: Probability Estimation 

We now present another direct approach, which is proposed in [14] and is 
based on a probabilistic formulation. We use similar notations as in Sect. 
5.2.4. Let x be an example and y  {1, 1} be a binary class label. Let s = 
1 if the example x is labeled, and let s = 0 if x is unlabeled. Only positive 
examples are labeled, so y = 1 is certain when s = 1 (i.e., every labeled ex-
ample must be positive), but when s = 0, then either y = 1 or y = -1 may be 
true (i.e., an unlabelled example can be positive or negative). The fact that 
only positive examples are labeled can be stated formally as follows,  

Pr(s = 1|x, y = 1) = 0. (20) 

In words, the probability that x appears in the labeled set is zero if y = 1. 
Our goal is to learn a classification function f(x) such that f(x) = Pr(y = 

1|x) as closely as possible. To achieve this goal, an assumption called se-
lected completely at random is made which states that the labeled posi-
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tive examples are chosen randomly from all positive examples. What this 
means is that if y = 1, the probability that a positive example is labeled is 
the same constant regardless of x. Stated formally, the assumption is that  

Pr(s = 1|x, y = 1) = Pr(s = 1|y = 1). (21) 
Here, c = Pr(s = 1|y = 1) is the constant probability that a positive exam-

ple is labeled.  
For learning, a training sample, which consists of two subsets, the “la-

beled” (s = 1) set P and the “unlabeled” (s = 0) set U, is randomly drawn 
from a distribution Pr(x, y, s) that satisfies Equations (20) and (21). If these 
two sets are given to a standard learning algorithm, the algorithm will yield 
a function g(x) such that g(x) = Pr(s = 1|x) approximately. The main result 
of [14] is the following lemma which shows how to obtain f(x) from g(x). 

Lemma 1: Suppose the “selected completely at random” assumption 
holds. Then, 

c

g
f

)()( x
x  , (22) 

where c = Pr(s = 1|y = 1). 

Proof: We consider g(x), which is Pr(s = 1|x). Due to the assumption Pr(s 
= 1|y =1, x) = Pr(s = 1|y = 1), we have  

 g(x)  =  Pr(s = 1|x)   
 =  Pr(y = 1  s = 1|x) 
 =  Pr(y = 1|x)Pr(s = 1|y = 1, x) 
 =  Pr(y = 1|x)Pr(s = 1|y = 1) 
 =  f(x)Pr(s = 1|y = 1) 

The result follows by dividing each side by Pr(s = 1|y = 1), which is c.  ▀ 

The value of the constant c = Pr(s = 1|y = 1) can be estimated using a 
trained classifier g and a validation set of examples. Let V be such a vali-
dation set that is drawn from the overall distribution Pr(x, y, s) in the same 
manner as the training set. Let VP be the subset of examples in V that is la-
beled (and hence positive). The estimator of c (= Pr(s = 1|y = 1)) is the av-
erage value of g(x) for all x in P. Formally, the estimator is  





PVxP

xg
V

c )(
||

1ˆ . (23) 

This is a reasonable estimator of c because theoretically g(x) = c for all 
x  VP,  
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 g(x)  = Pr(s = 1|x) 
 = Pr(s = 1|x, y = 1)Pr(y = 1|x) + Pr(s = 1|x, y = 1)Pr(y = 1|x) 
 = Pr(s = 1|x, y = 1) × 1 + 0 × 0 since x  VP 
 = Pr(s = 1|y = 1). 

With this estimator, Equation (22) can be used to build a PU classifier f. 
In [14], the classifier g was built using SVM, and the scaling method in 
[38] was used to get probability estimates from the SVM output.  

It is also worth noting that an interesting consequence of Lemma 1 is 
that f is an increasing function of g. This means that if the classifier f is on-
ly used to rank examples x according to the chance that they belong to 
class y = 1, then the classifier g can be used directly instead of f.  

5.2.6 Discussion 

Does PU Learning Always Work? Theoretical results show that it should 
if the positive set and the unlabeled set are sufficiently large [30]. This has 
been confirmed by many experimental studies. Interested readers can find 
the detailed results in [29, 30], which we summarize below:  
1. PU learning can achieve about the same classification results as fully 

supervised learning when the positive set and the unlabeled set are suf-
ficiently large. This implies that labeled negative examples do not pro-
vide much information for learning. When the positive set is very small, 
PU learning is poorer than fully supervised learning.  

2. For the two-step approaches, using SVM for the second step performs 
better than EM. SVM needs to be run only once if step 1 can extract a 
large number of reliable negative documents. Both Spy and Rocchio are 
able to do that. Thus, the iterative method in step 2 is not necessary.  
 The generative model of naïve Bayes with EM in the second step can 
perform very well if the mixture model assumption holds [30]. How-
ever, if the mixture model assumption does not hold, the classification 
results can be very poor [29]. Note that SVM is called a discriminative 
model (or classifier) because it does not make any model assumptions. 
It simply finds a surface to separate positive and negative examples.  

3. Biased-SVM performs slightly better than the 2-step approaches. How-
ever, it is slow in training because SVM needs to be run a large number 
of times in order to select the best values for C+ and C.  

Evaluation: Unlike LU learning, here we do not even have labeled nega-
tive examples, which makes the evaluation difficult. Although Equation 
(14) and other heuristics allow a system to choose a “better” classifier 
among a set of classifiers, it is unable to give the actual accuracy, precision 
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or recall of each classifier. Evaluation is an open problem. The results re-
ported in the literature assume that a set of labeled positive and negative 
test examples is available, which, of source, is unrealistic because the PU 
learning model states that no labeled negative example is available.   

In some cases, the evaluation can be done with some confidence. For 
example, if the user needs to extract positive documents from many unla-
beled sets (document sources) as in the example of identifying printer pag-
es from multiple Web sites, a PU learning algorithm can be applied to one 
site and then the user manually checks the classification result to see 
whether it is satisfactory. If the result is satisfactory, the algorithm can be 
applied to the rest of the sites without further manual evaluation.  

Appendix: Derivation of EM for Naïve Bayesian Classification 

EM is a method for performing a classical statistical estimation technique 
called maximum likelihood estimation. In maximum likelihood estima-
tion, the aim is to find the model parameter ̂  that maximizes the likeli-
hood function Pr(Do; ) for observed data Do. In other words, maximum 
likelihood estimation aims to select the model that is most likely to have 
generated the observed data. In many cases, such as in the naïve Bayesian 
classification model, the maximum likelihood estimator is easy to find and 
has a closed form solution when all components of the data D are ob-
served. However, the problem becomes difficult when the data D actually 
consists of an observed component Do and an unobserved component Du. 
In such cases, iterative methods that converge only to a local maximum, 
such as the EM method, are usually used. 

Maximizing the log likelihood function logPr(Do; ) produces the same 
solution as maximizing the likelihood function and is easier to handle mathe-
matically. In the presence of unobserved data Du, the log likelihood function 
becomes ).;,Pr(log);Pr(log   uoDo DDD

u

 Instead of maximizing the 

log likelihood  
uD uo DD );,Pr(log  directly, at each iteration T, the EM al-

gorithm finds the value  that maximizes the expected complete log likelihood  
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where T1 is the parameter that was produced in iteration T1. In many 
cases, such as in the naïve Bayesian model, the expected log likelihood is 
easy to maximize and has a closed form solution. It can be shown (see 
[11]) that the log likelihood increases monotonically with each iteration of 
the EM algorithm. 
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We now derive the EM update for the naïve Bayesian model. We first 
consider the complete log likelihood, that is, the log likelihood when all 
variables are observed. The conditional probability of a document given its 
class is (see Sect. 3.7.2 in Chap. 3) 
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Each document and its class label are assumed to have been sampled 
independently. Let c(i) be the class label of document i. The likelihood 
function can hence be written as 
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Taking logs, we have the complete log likelihood function 
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where  is a constant containing the terms unaffected by . To facilitate 
the process of taking expectation when some of the class labels are not ob-
served, we introduce indicator variables, hik, that take the value 1 when 
document i takes the label k and the value 0 otherwise. The complete log 
likelihood can be written in the following equivalent form 
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When some of the labels are not observed, we take the conditional expec-
tation for the unobserved variables hik with respect to T1 to get the ex-
pected complete log likelihood 
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where, for the observed labels c(i), we use the convention that Pr(ck|di;T1) 
takes the value one for ck = c(i) and zero otherwise. We maximize the ex-
pected complete log likelihood subject to the coefficients summing to one 
using the Lagrange multiplier method. The Lagrangian is  
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Differentiating the Lagrangian with respect to , we get .1);Pr(
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Summing the left and right-hand side over k and using ,1);Pr(
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Working similarly, we can get the update equation for Pr(wt|cj; T), 
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To handle the 0 count problem (see Sect. 3.7.2 in Chap. 3), we can use 
Lidstone smoothing (Equation (31) in Chap. 3). 

Bibliographic Notes 

Learning with labeled and unlabeled examples (LU learning) using naïve 
Bayes and EM was proposed by Nigam et al. [34]. They also noted the 
problem of having mixtures of subclasses in the classes and proposed to 
identify and use such subclasses as a possible solution. A hierarchical clus-
tering technique was also proposed by Cong et al. [8] for handling the mix-
ture of subclasses problem. Castelli and Cover [5] presented a theoretical 
study of LU learning using mixture models. 
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Co-training was introduced by Blum and Mitchell [3]. Follow-on works 
include those by Collins and Singer [7], Goldman and Zhou [17], etc. Gen-
eralization error bounds within the Probably Approximately Correct (PAC) 
framework was given in [10] by Dasgupta et al. Nigam and Ghani [33] ex-
amined the importance of feature division in co-training and compared it to 
the EM algorithm and self-training. 

Transduction was proposed by Vapnik [41] as learning when the test in-
stances are known. Joachims described a heuristic algorithm and built a 
system for performing transduction using SVM [20]. The transductive 
SVM given in [20] can also be used for induction, i.e. classifying future 
unseen instances. In contrast, most graph-based methods are more suited 
for transduction. The graph-based mincut algorithm was introduced by 
Blum and Chalwa [2]. The graph-based Gaussian field method was pro-
posed by Zhu et al. [46] while the spectral graph transducer was proposed 
by Joachims [21]. The edited book by Chapelle et al. [6] gives a compre-
hensive coverage of various LU learning algorithms. 

On learning from positive and unlabeled examples (or PU learning), 
Denis [13] reported a theoretical study of PAC learning in this setting un-
der the statistical query model [22], which assumes that the proportion of 
positive instances in the unlabeled set is known. Letouzey et al. [25] pre-
sented a learning algorithm based on a modified decision tree method in 
this model. Liu et al. [30] gives another theoretical study. It was concluded 
that learning can be achieved if the problem is posed as a constrained op-
timization problem (see Sect. 5.2.2). Most existing algorithms for solving 
the problem are based on this constrained optimization model.  

Over the years, several practical algorithms were proposed. The first 
class of algorithms deals with the problem in two steps. These algorithms 
include S-EM [30], PEBL [42, 43], and Roc-SVM [26], which have been 
studied in this chapter. The second class of algorithm follows the theoreti-
cal result directly. Lee and Liu [24] described a weighted logistic regres-
sion technique. Liu et al. [29] described a biased-SVM technique. A com-
prehensive comparison of various techniques was also reported in [29]. It 
was shown that biased-SVM performed better than other techniques. Re-
cently, Elkan and Noto proposed a new probabilistic model [14], which 
has also been applied to a real-life bioinformatics problem [31] with prom-
ising results. Some other works on PU learning include those of Barbara et 
al. [1], Deng et al. [12], Fung, et al. [15], Zhang and Lee [45], etc. 

A closely related work to PU learning is one-class SVM, which uses on-
ly positive examples to build a classifier. This method was proposed by 
Scholkopf et al. [39]. Manevitz and Yousef [32] studied text classification 
using one-class SVM. Li and Liu [26] showed that its accuracy results 
were poorer than PU learning for text classification.  
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6 Information Retrieval and Web Search 

Web search needs no introduction. Due to its convenience and the richness 
of information on the Web, searching the Web is increasingly becoming 
the dominant information seeking method. People make fewer and fewer 
trips to libraries, but more and more searches on the Web. In fact, without 
effective search engines and rich Web contents, writing this book would 
have been much harder.  

Web search has its root in information retrieval (or IR for short), a 
field of study that helps the user find needed information from a large 
collection of text documents. Traditional IR assumes that the basic 
information unit is a document, and a large collection of documents is 
available to form the text database. On the Web, the documents are Web 
pages.  

Retrieving information simply means finding a set of documents that is 
relevant to the user query. A ranking of the set of documents is usually 
also performed according to their relevance scores to the query. The most 
commonly used query format is a list of keywords, which are also called 
terms. IR is different from data retrieval in databases using SQL queries 
because the data in databases are highly structured and stored in relational 
tables, while information in text is unstructured. There is no structured 
query language like SQL for text retrieval.   

It is safe to say that Web search is the single most important application 
of IR. To a great extent, Web search also helped IR. Indeed, the 
tremendous success of search engines has pushed IR to the center stage. 
Search is, however, not simply a straightforward application of traditional 
IR models. It uses some IR results, but it also has its unique techniques and 
presents many new problems for IR research.  

First of all, efficiency is a paramount issue for Web search, but is only 
secondary in traditional IR systems mainly due to the fact that document 
collections in most IR systems are not very large. However, the number of 
pages on the Web is huge. For example, Google indexed more than 8 
billion pages when this book was written. Web users also demand very fast 
responses. No matter how effective an algorithm is, if the retrieval cannot 
be done efficiently, few people will use it. 

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_6, 
© Springer-Verlag Berlin Heidelberg 2011 
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Web pages are also quite different from conventional text documents 
used in traditional IR systems. First, Web pages have hyperlinks and 
anchor texts, which do not exist in traditional documents (except citations 
in research publications). Hyperlinks are extremely important for search 
and play a central role in search ranking algorithms as we will see in the 
next chapter. Anchor texts associated with hyperlinks too are crucial 
because a piece of anchor text is often a more accurate description of the 
page that its hyperlink points to. Second, Web pages are semi-structured. 
A Web page is not simply a few paragraphs of text like in a traditional 
document. A Web page has different fields, e.g., title, metadata, body, etc. 
The information contained in certain fields (e.g., the title field) is more 
important than in others. Furthermore, the content in a page is typically 
organized and presented in several structured blocks (of rectangular 
shapes). Some blocks are important and some are not (e.g., advertisements, 
privacy policy, copyright notices, etc). Effectively detecting the main 
content block(s) of a Web page is useful to Web search because terms 
appearing in such blocks are more important.  

Finally, spamming is a major issue on the Web, but not a concern for 
traditional IR. This is so because the rank position of a page returned by a 
search engine is extremely important. If a page is relevant to a query but is 
ranked very low (e.g., below top 30), then the user is unlikely to look at the 
page. If the page sells a product, then this is bad for the business. In order 
to improve the ranking of some target pages, “illegitimate” means, called 
spamming, are often used to boost their rank positions. Detecting and 
fighting Web spam is a critical issue as it can push low quality (even 
irrelevant) pages to the top of the search rank, which harms the quality of 
the search results and the user’s search experience.  

In this chapter, we first study some information retrieval models and 
methods that are closely related to Web search. We then dive into some 
Web search specific issues.  

6.1 Basic Concepts of Information Retrieval  

Information retrieval (IR) is the study of helping users to find information 
that matches their information needs. Technically, IR studies the acquisition, 
organization, storage, retrieval, and distribution of information. Historically, 
IR is about document retrieval, emphasizing document as the basic unit. 
Fig. 6.1 gives a general architecture of an IR system.  

In Fig. 6.1, the user with information need issues a query (user query) 
to the retrieval system through the query operations module. The 
retrieval module uses the document index to retrieve those documents that 
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contain some query terms (such documents are likely to be relevant to the 
query), compute relevance scores for them, and then rank the retrieved 
documents according to the scores. The ranked documents are then 
presented to the user. The document collection is also called the text 
database, which is indexed by the indexer for efficient retrieval.  

 

Fig. 6.1. A general IR system architecture 

A user query represents the user’s information needs, which is in one of 
the following forms:  

1. Keyword queries: The user expresses his/her information needs with a 
list of (at least one) keywords (or terms) aiming to find documents that 
contain some (at least one) or all the query terms. The terms in the list 
are assumed to be connected with a “soft” version of the logical AND. 
For example, if one is interested in finding information about Web 
mining, one may issue the query ‘Web mining’ to an IR or search engine 
system. ‘Web mining’ is retreated as ‘Web AND mining’. The retrieval 
system then finds those likely relevant documents and ranks them 
suitably to present to the user. Note that a retrieved document does not 
have to contain all the terms in the query. In some IR systems, the 
ordering of the words is also significant and will affect the retrieval 
results.  

2. Boolean queries: The user can use Boolean operators, AND, OR, and 
NOT to construct complex queries. Thus, such queries consist of terms 
and Boolean operators. For example, ‘data OR Web’ is a Boolean 
query, which requests documents that contain the word ‘data’ or ‘Web. 
A page is returned for a Boolean query if the query is logically true in 
the page (i.e., exact match). Although one can write complex Boolean 
queries using the three operators, users seldom write such queries. 
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Search engines usually support a restricted version of Boolean queries.  
3. Phrase queries: Such a query consists of a sequence of words that 

makes up a phrase. Each returned document must contain at least one 
instance of the phrase. In a search engine, a phrase query is normally 
enclosed with double quotes. For example, one can issue the following 
phrase query (including the double quotes), “Web mining techniques 
and applications” to find documents that contain the exact phrase.  

4. Proximity queries: The proximity query is a relaxed version of the 
phrase query and can be a combination of terms and phrases. Proximity 
queries seek the query terms within close proximity to each other. The 
closeness is used as a factor in ranking the returned documents or pages. 
For example, a document that contains all query terms close together is 
considered more relevant than a page in which the query terms are far 
apart. Some systems allow the user to specify the maximum allowed 
distance between the query terms. Most search engines consider both 
term proximity and term ordering in retrieval.   

5. Full document queries: When the query is a full document, the user 
wants to find other documents that are similar to the query document. 
Some search engines (e.g., Google) allow the user to issue such a query 
by providing the URL of a query page. Additionally, in the returned 
results of a search engine, each snippet may have a link called “more 
like this” or “similar pages.” When the user clicks on the link, a set of 
pages similar to the page in the snippet is returned.   

6. Natural language questions: This is the most complex case, and also 
the ideal case. The user expresses his/her information need as a natural 
language question. The system then finds the answer. However, such 
queries are still hard to handle due to the difficulty of natural language 
understanding. Nevertheless, this is an active research area, called 
question answering. Some search systems are starting to provide 
question answering services on some specific types of questions, e.g., 
definition questions, which ask for definitions of technical terms. 
Definition questions are usually easier to answer because there are 
strong linguistic patterns indicating definition sentences, e.g., “defined 
as”, “refers to”, etc. Definitions can usually be extracted offline [34, 39]. 

The query operations module can range from very simple to very 
complex. In the simplest case, it does nothing but just pass the query to the 
retrieval engine after some simple pre-processing, e.g., removal of 
stopwords (words that occur very frequently in text but have little 
meaning, e.g., “the”, “a”, “in”, etc). We will discuss text pre-processing in 
Sect. 6.5. In more complex cases, it needs to transform natural language 
queries into executable queries. It may also accept user feedback and use it 
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to expand and refine the original queries. This is usually called relevance 
feedback, which will be discussed in Sect. 6.3.  

The indexer is the module that indexes the original raw documents in 
some data structures to enable efficient retrieval. The result is the document 
index. In Sect. 6.6, we study a particular type of indexing scheme, called 
the inverted index, which is used in search engines and most IR systems. 
An inverted index is easy to build and very efficient to search.  

The retrieval system computes a relevance score for each indexed 
document to the query. According to their relevance scores, the documents 
are ranked and presented to the user. Note that it usually does not compare 
the user query with every document in the collection, which is too 
inefficient. Instead, only a small subset of the documents that contains at 
least one query term is first found from the index and relevance scores 
with the user query are then computed only for this subset of documents.  

6.2 Information Retrieval Models 

An IR model governs how a document and a query are represented and 
how the relevance of a document to a user query is defined. There are four 
main IR models: Boolean model, vector space model, language model and 
probabilistic model. The most commonly used models in IR systems and 
on the Web are the first three models, which we study in this section.  

Although these three models represent documents and queries differently, 
they use the same framework. They all treat each document or query as a 
“bag” of words or terms. Term sequence and position in a sentence or a 
document are ignored. That is, a document is described by a set of 
distinctive terms. A term is simply a word whose semantics helps remember 
the document’s main themes. We should note that the term here may not 
be a natural language word in a dictionary. Each term is associated with a 
weight. Given a collection of documents D, let V = {t1, t2, ..., t|V|} be the set 
of distinctive terms in the collection, where ti is a term. The set V is usually 
called the vocabulary of the collection, and |V| is its size, i.e., the number 
of terms in V. A weight wij > 0 is associated with each term ti of a 
document dj  D. For a term that does not appear in document dj, wij = 0. 
Each document dj is thus represented with a term vector,  

dj = (w1j, w2j, ..., w|V|j),  

where each weight wij corresponds to the term ti  V, and quantifies the 
level of importance of ti in document dj. The sequence of the components 
(or terms) in the vector is not significant. Note that following the convention 
of this book, a bold lower case letter is used to represent a vector.  
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With this vector representation, a collection of documents is simply 
represented as a relational table (or a matrix). Each term is an attribute, and 
each weight is an attribute value. In different retrieval models, wij is 
computed differently.  

6.2.1 Boolean Model 

The Boolean model is one of the earliest and simplest information retrieval 
models. It uses the notion of exact matching to match documents to the 
user query. Both the query and the retrieval are based on Boolean algebra.  

Document Representation: In the Boolean model, documents and queries 
are represented as sets of terms. That is, each term is only considered 
present or absent in a document. Using the vector representation of the 
document above, the weight wij ( {0, 1}) of term ti in document dj is 1 if 
ti appears in document dj, and 0 otherwise, i.e.,  






.otherwise0

in  appears  if1 ji
ij

t
w

d  (1) 

Boolean Queries: As we mentioned in Sect. 6.1, query terms are 
combined logically using the Boolean operators AND, OR, and NOT, 
which have their usual semantics in logic. Thus, a Boolean query has a 
precise semantics. For instance, the query, ((x AND y) AND (NOT z)) says 
that a retrieved document must contain both the terms x and y but not z. As 
another example, the query expression (x OR y) means that at least one of 
these terms must be in each retrieved document. Here, we assume that x, y 
and z are terms. In general, they can be Boolean expressions themselves.  

Document Retrieval: Given a Boolean query, the system retrieves every 
document that makes the query logically true. Thus, the retrieval is based 
on the binary decision criterion, i.e., a document is either relevant or 
irrelevant. Intuitively, this is called exact match. There is no notion of 
partial match or ranking of the retrieved documents. This is one of the 
major disadvantages of the Boolean model, which often leads to poor 
retrieval results. It is quite clear that the frequency of terms and their 
proximity contribute significantly to the relevance of a document.  

Due to this problem, the Boolean model is seldom used alone in practice. 
Most search engines support some limited forms of Boolean retrieval using 
explicit inclusion and exclusion operators. For example, the following 
query can be issued to Google, ‘mining –data +“equipment price”’, where + 
(inclusion) and – (exclusion) are similar to Boolean operators AND and 
NOT respectively. The operator OR may be supported as well.  
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6.2.2 Vector Space Model  

This model is perhaps the best known and most widely used IR model.  

Document Representation 

A document in the vector space model is represented as a weight vector, in 
which each component weight is computed based on some variation of TF 
or TF-IDF scheme. The weight wij of term ti in document dj is no longer in 
{0, 1} as in the Boolean model, but can be any number. 

Term Frequency (TF) Scheme: In this method, the weight of a term ti in 
document dj is the number of times that ti appears in document dj, denoted 
by fij. Normalization may also be applied (see Equation (2)).  

The shortcoming of the TF scheme is that it does not consider the 
situation where a term appears in many documents of the collection. Such 
a term may not be discriminative. 

TF-IDF Scheme: This is the most well known weighting scheme, where 
TF still stands for the term frequency and IDF the inverse document 
frequency. There are several variations of this scheme. Here we only give 
the most basic one.  

Let N be the total number of documents in the system or the collection 
and dfi be the number of documents in which term ti appears at least once. 
Let fij be the raw frequency count of term ti in document dj. Then, the 
normalized term frequency (denoted by tfij) of ti in dj is given by 

,
},...,,max{ ||21 jVjj

ij
ij fff

f
tf   (2) 

where the maximum is computed over all terms that appear in document 
dj. If term ti does not appear in dj then tfij = 0. Recall that |V| is the 
vocabulary size of the collection.  

The inverse document frequency (denoted by idfi) of term ti is given by: 

.log
i

i df

N
idf   (3) 

The intuition here is that if a term appears in a large number of documents 
in the collection, it is probably not important or not discriminative. The 
final TF-IDF term weight is given by: 

.iijij idftfw   (4) 



218      6 Information Retrieval and Web Search 

Queries 

A query q is represented in exactly the same way as a document in the 
document collection. The term weight wiq of each term ti in q can also be 
computed in the same way as in a normal document, or slightly differently. 
For example, Salton and Buckley [52] suggested the following: 
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Document Retrieval and Relevance Ranking 

It is often difficult to make a binary decision on whether a document is 
relevant to a given query. Unlike the Boolean model, the vector space 
model does not make such a decision. Instead, the documents are ranked 
according to their degrees of relevance to the query. One way to compute 
the degree of relevance is to calculate the similarity of the query q to each 
document dj in the document collection D. There are many similarity 
measures. The most well known one is the cosine similarity, which is the 
cosine of the angle between the query vector q and the document vector dj,  
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Cosine similarity is also widely used in text/document clustering.  
The dot product of the two vectors is another similarity measure, 

.),(  qdqd jjsim  (7) 

Ranking of the documents is done using their similarity values. The top 
ranked documents are regarded as more relevant to the query.  

Another way to assess the degree of relevance is to directly compute a 
relevance score for each document to the query. The Okapi method and its 
variations are popular techniques in this setting. The Okapi retrieval 
formula given here is based on that in [51, 55]. It has been shown that 
Okapi variations are more effective than cosine for short query retrieval.  

Since it is easier to present the formula directly using the “bag” of 
words notation of documents than vectors, document dj will be denoted by 
dj and query q will be denoted by q. Additional notations are as follows:  

ti is a term  
fij is the raw frequency count of term ti in document dj 
fiq is the raw frequency count of term ti in query q 
N is the total number of documents in the collection 
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dfi is the number of documents that contain the term ti 
dlj is the document length (in bytes) of dj 
avdl is the average document length of the collection 
The Okapi relevance score of a document dj for a query q is: 
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where k1 (between 1.0-2.0), b (usually 0.75) and k2 (between 1-1000) are 
parameters.  

Yet another score function is the pivoted normalization weighting 
score function, denoted by pnw [55]:   
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where s is a parameter (usually set to 0.2). Note that these are empirical 
functions based on intuitions and experimental evaluations. There are 
many variations of these functions used in practice.  

6.2.3 Statistical Language Model 

Statistical language models (or simply language models) are based on 
probability and have foundations in statistical theory. The basic idea of this 
approach to retrieval is simple. It first estimates a language model for each 
document, and then ranks documents by the likelihood of the query given 
the language model. Similar ideas have previously been used in natural 
language processing and speech recognition. The formulation and discussion 
in this section is based on those in [68, 69]. Information retrieval using 
language models was first proposed by Ponte and Croft [46].  

Let the query q be a sequence of terms, q = q1q2…qm and the document 
collection D be a set of documents, D = {d1, d2, …, dN}. In the language 
modeling approach, we consider the probability of a query q as being 
“generated” by a probabilistic model based on a document dj, i.e., Pr(q|dj). 
To rank documents in retrieval, we are interested in estimating the 
posterior probability Pr(dj|q). Using the Bayes rule, we have  

)Pr(
)Pr()|Pr(
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q

ddq
qd jj

j   (10) 

For ranking, Pr(q) is not needed as it is the same for every document. 
Pr(dj) is usually considered uniform and thus will not affect ranking. We 
only need to compute Pr(q|dj).  
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The language model used in most existing work is based on unigram, 
i.e., only individual terms (words) are considered. That is, the model assumes 
that each term (word) is generated independently, which is essentially a 
multinomial distribution over words. The general case is the n-gram 
model, where the nth term is conditioned on the previous n-1 terms.  

Based on the multinomial distribution and the unigram model, we have  
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where fiq is the number of times that term ti occurs in q, and 
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which can be the relative frequency,  
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Recall that fij is the number of times that term ti occurs in document dj. |dj| 
denotes the total number of words in dj.  

However, one problem with this estimation is that a term that does not 
appear in dj has the probability of 0, which underestimates the probability 
of the unseen term in the document. This situation is similar to text 
classification using the naïve Bayesian model (see Sect. 3.7). A non-zero 
probability is typically assigned to each unseen term in the document, 
which is called smoothing. Smoothing adjusts the estimates of 
probabilities to produce more accurate probabilities. The name smoothing 
comes from the fact that these techniques tend to make distributions more 
uniform, by adjusting low probabilities such as zero probabilities upward, 
and high probabilities downward. Not only do smoothing methods aim to 
prevent zero probabilities, but they also attempt to improve the accuracy of 
the model as a whole. Traditional additive smoothing is     
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When  = 1, it is the Laplace smoothing and when 0 <  < 1, it is the 
Lidstone smoothing. Many other more sophisticated smoothing methods 
can be found in [16, 69].  

6.3 Relevance Feedback 

To improve the retrieval effectiveness, researchers have proposed many 
techniques. Relevance feedback is one of the effective ones. It is a process 



6.3 Relevance Feedback      221 

where the user identifies some relevant and irrelevant documents in the 
initial list of retrieved documents, and the system then creates an expanded 
query by extracting some additional terms from the sample relevant and 
irrelevant documents for a second round of retrieval. The system may also 
produce a classification model using the user-identified relevant and 
irrelevant documents to classify the documents in the document collection 
into relevant and irrelevant documents. The relevance feedback process 
may be repeated until the user is satisfied with the retrieved result. 

The Rocchio Method 

This is one of the early and effective relevance feedback algorithms. It is 
based on the first approach above. That is, it uses the user-identified 
relevant and irrelevant documents to expand the original query. The new 
(or expanded) query is then used to perform retrieval again.  

Let the original query vector be q, the set of relevant documents 
selected by the user be Dr, and the set of irrelevant documents be Dir. The 
expanded query qe is computed as follows, 
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where ,  and  are parameters. Equation (14) simply augments the 
original query vector q with additional terms from relevant documents. 
The original query q is still needed because it directly reflects the user’s 
information need. Relevant documents are considered more important than 
irrelevant documents. The subtraction is used to reduce the influence of 
those terms that are not discriminative (i.e., they appear in both relevant 
and irrelevant documents), and those terms that appear in irrelevant 
documents only. The three parameters are set empirically. Note that a 
slight variation of the algorithm is one without the normalization of |Dr| 
and |Dir|. Both these methods are simple and efficient to compute, and 
usually produce good results. 

Machine Learning Methods 

Since we have a set of relevant and irrelevant documents, we can construct 
a classification model from them. Then the relevance feedback problem 
becomes a learning problem. Any supervised learning method may be 
used, e.g., naïve Bayesian classification and SVM. Similarity comparison 
with the original query is no longer needed. 

In fact, a variation of the Rocchio method above, called the Rocchio 
classification method, can be used for this purpose too. Building a 
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Rocchio classifier is done by constructing a prototype vector ci for each 
class i, which is either relevant or irrelevant in this case (negative elements 
or components of the vector ci are usually set to 0): 
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where Di is the set of documents of class i, and  and  are parameters. Using 
the TF-IDF term weighting scheme,  = 16 and  = 4 usually work quite well.  

In classification, cosine similarity is applied. That is, each test document 
dt is compared with every prototype ci based on cosine similarity. dt is 
assigned to the class with the highest similarity value (Fig. 6.2).   

Algorithm 
1 for each class i do  
2 construct its prototype vector ci using Equation (15) 
3 endfor 
4 for each test document dt do  
5 the class of dt is ),(maxarg iti cosine cd   
6 endfor 
Fig. 6.2. Training and testing of a Rocchio classifier 

Apart from the above classic methods, the following learning techniques 
are also applicable:   
Learning from Labeled and Unlabeled Examples (LU Learning): 
Since the number of user-selected relevant and irrelevant documents may 
be small, it can be difficult to build an accurate classifier. However, 
unlabeled examples, i.e., those documents that are not selected by the user, 
can be utilized to improve learning to produce a more accurate classifier. 
This fits the LU learning model exactly (see Sect. 5.1). The user-selected 
relevant and irrelevant documents form the small labeled training set.  
Learning from Positive and Unlabeled Examples (PU Learning): The 
two learning models mentioned above assume that the user can confidently 
identify both relevant and irrelevant documents. However, in some cases, 
the user only selects (or clicks) documents that he/she feels relevant based 
on the title or summary information (e.g., snippets in Web search), which 
are most likely to be true relevant documents, but does not indicate 
irrelevant documents. Those documents that are not selected by the user 
may not be treated as irrelevant because he/she has not seen them. Thus, 
they can only be regarded as unlabeled documents. This is called implicit 
feedback. In order to learn in this case, we can use PU learning, i.e., 
learning from positive and unlabeled examples (see Sect. 5.2). We regard 
the user-selected documents as positive examples, and unselected documents 
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as unlabeled examples. Researchers have experimented with this approach 
in the Web search context and obtained good results [19].  
Using Ranking SVM and Language Models: In the implicit feedback 
setting, a technique called ranking SVM is proposed in [31] to rank the 
unselected documents based on the selected documents. A language model 
based approach is also proposed in [54]. 

Pseudo-Relevance Feedback 

Pseudo-relevance feedback is another technique used to improve retrieval 
effectiveness. Its basic idea is to extract some terms (usually frequent terms) 
from the top-ranked documents and add them to the original query to form 
a new query for a second round of retrieval. Again, the process can be 
repeated until the user is satisfied with the final results. The main difference 
between this method and the relevance feedback method is that in this 
method, the user is not involved in the process. The approach simply 
assumes that the top-ranked documents are likely to be relevant. Through 
query expansion, some relevant documents missed in the initial round can 
be retrieved to improve the overall performance. Clearly, the effectiveness 
of this method relies on the quality of the selected expansion terms.  

6.4 Evaluation Measures 

Precision and recall measures have been described in Chap. 3 on 
supervised learning, where each document is classified to a specific class. 
In IR and Web search, usually no decision is made on whether a document 
is relevant or irrelevant to a query. Instead, a ranking of the documents is 
produced for the user. This section studies how to evaluate such rankings.  

Again, let the collection of documents in the database be D, and the total 
number of documents in D be N. Given a user query q, the retrieval 
algorithm first computes relevance scores for all documents in D and then 
produce a ranking Rq of the documents based on the relevance scores, i.e.,  

,,...,,   : 21  q
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qq
qR ddd  (16) 

where d1
q  D is the most relevant document to query q and dq

N  D is the 
most irrelevant document to query q.  

Let Dq ( D) be the set of actual relevant documents of query q in D. 
We can compute the precision and recall values at each di

q in the ranking.  
Recall at rank position i or document di

q (denoted by r(i)) is the fraction of 
relevant documents from d1

q to di
q in Rq. Let the number of relevant 

documents from d1
q to di

q in Rq be si (≤ |Dq|) (|Dq| is the size of Dq). Then, 
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Precision at rank position i or document di
q (denoted by p(i)) is the 

fraction of documents from d1
q to di

q in Rq that are relevant: 
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Example 1: We have a document collection D with 20 documents. Given 
a query q, we know that eight documents are relevant to q. A retrieval 
algorithm produces the ranking (of all documents in D) shown in Fig. 6.3.  

Rank i +/ p(i) r(i) 
1 + 1/1 = 100% 1/8 = 13% 
2 + 2/2 = 100% 2/8 = 25% 
3 + 3/3 = 100% 3/8 = 38% 
4  3/4 = 75% 3/8 = 38% 
5 + 4/5 = 80% 4/8 = 50% 
6  4/6 = 67% 4/8 = 50% 
7 + 5/7 = 71% 5/8 = 63% 
8  5/8 = 63% 5/8 = 63% 
9 + 6/9 = 67% 6/8 = 75% 
10 + 7/10 = 70% 7/8 = 88% 
11  7/11 = 63% 7/8 = 88% 
12  7/12 = 58% 7/8 = 88% 
13 + 8/13 = 62% 8/8 = 100% 
14  8/14 = 57% 8/8 = 100% 
15  8/15 = 53% 8/8 = 100% 
16  8/16 = 50% 8/8 = 100% 
17  8/17 = 53% 8/8 = 100% 
18  8/18 = 44% 8/8 = 100% 
19  8/19 = 42% 8/8 = 100% 
20  8/20 = 40% 8/8 = 100% 

Fig. 6.3. Precision and recall values at each rank position 

In column 1 of Fig. 6.3, 1 represents the highest rank and 20 represents 
the lowest rank. “+” and “” in column 2 indicate a relevant document and 
an irrelevant document respectively. The precision (p(i)) and recall (r(i)) 
values at each position i are given in columns 3 and 4.  ▀ 
Average Precision: Sometimes we want a single precision to compare 
different retrieval algorithms on a query q. An average precision (pavg) can be 
computed based on the precision at each relevant document in the ranking,  
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For the ranking in Fig. 6.3 of Example 1, the average precision is 81%:  
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Precision–Recall Curve: Based on the precision and recall values at each 
rank position, we can draw a precision–recall curve where the x-axis is the 
recall and the y-axis is the precision. Instead of using the precision and 
recall at each rank position, the curve is commonly plotted using 11 
standard recall levels, 0%, 10%, 20%, …, 100%. 

Since we may not obtain exactly these recall levels in the ranking, 
interpolation is needed to obtain the precisions at these recall levels, which 
is done as follows: Let ri be a recall level, i  {0, 1, 2, …, 10}, and p(ri) be 
the precision at the recall level ri. p(ri) is computed with  
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That is, to interpolate precision at a particular recall level ri, we take the 
maximum precision of all recalls between level ri and level r10.  

Example 2: Following Example 1, we obtain the interpolated precisions at 
all 11 recall levels in the table of Fig. 6.4. The precision-recall curve is 
shown on the right. 

i p(ri) ri 
0 100% 0% 
1 100% 10% 
2 100% 20% 
3 100% 30% 
4 80% 40% 
5 80% 50% 
6 71% 60% 
7 70% 70% 
8 70% 80% 
9 62% 90% 

10 62% 100% 
 

Fig. 6.4. The precision-recall curve ▀ 

Comparing Different Algorithms: Frequently, we need to compare the 
retrieval results of different algorithms. We can draw their precision-recall 
curves together in the same figure for comparison. Fig. 6.5 shows the 
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curves of two algorithms on the same query and the same document 
collection. We observe that the precisions of one algorithm are better than 
those of the other at low recall levels, but are worse at high recall levels.  
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Fig. 6.5. Comparison of two retrieval algorithms based on their precision-recall curves 

Evaluation Using Multiple Queries: In most retrieval evaluations, we are 
interested in the performance of an algorithm on a large number of queries. 
The overall precision (denoted by )( irp ) at each recall level ri is computed 
as the average of individual precisions at that recall level, i.e.,  
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where Q is the set of all queries and pj(ri) is the precision of query j at the 
recall level ri. Using the average precision at each recall level, we can also 
draw a precision-recall curve.  

Although in theory precision and recall do not depend on each other, in 
practice a high recall is almost always achieved at the expense of 
precision, and a high precision is achieved at the expense of recall. Thus, 
precision and recall has a trade-off. Depending on the application, one may 
want a high precision or a high recall.  

One problem with precision and recall measures is that, in many 
applications, it can be very hard to determine the set of relevant documents 
Dq for each query q. For example, on the Web, Dq is almost impossible to 
determine because there are simply too many pages to manually inspect. 
Without Dq, the recall value cannot be computed. In fact, recall does not 
make much sense for Web search because the user seldom looks at pages 
ranked below 30. However, precision is critical, and it can be estimated for 
top ranked documents. Manual inspection of only the top 30 pages is 
reasonable. The following precision computation is commonly used.  
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Rank Precision: We compute the precision values at some selected rank 
positions. For a Web search engine, we usually compute precisions for the 
top 5, 10, 15, 20, 25 and 30 returned pages (as the user seldom looks at 
more than 30 pages). We assume that the number of relevant pages is more 
than 30. Following Example 1, we have p(5) = 80%, p(10) = 70%, p(15) = 
53%, and p(20) = 40%.  

We should note that precision is not the only measure for evaluating 
search ranking. Reputation or quality of
important as we will see later in this chapter and also in Chap. 7.  

F-score: Another often used evaluation measure is the F-score, which we 
have used in Chap. 3. Here we can compute the F-score at each rank 
position i. Recall that F-score is the harmonic mean of precision and recall:  
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Finally, the precision and recall breakeven point is also a commonly 
used measure, which we have discussed in Sect. 3.3.2 in Chap. 3.  

6.5  Text and Web Page Pre-Processing 

Before the documents in a collection are used for retrieval, some pre-
processing tasks are usually performed. For traditional text documents (no 
HTML tags), the tasks are stopword removal, stemming, and handling of 
digits, hyphens, punctuations, and cases of letters. For Web pages, additional 
tasks such as HTML tag removal and identification of main content blocks 
also require careful considerations. We discuss them in this section.  

6.5.1 Stopword Removal 

Stopwords are frequently occurring and insignificant words in a language 
that help construct sentences but do not represent any content of the 
documents. Articles, prepositions and conjunctions and some pronouns are 
natural candidates. Common stopwords in English include: 

a, about, an, are, as, at, be, by, for, from, how, in, is, of, on, or, 
that, the, these, this, to, was, what, when, where, who, will, with 

Such words should be removed before documents are indexed and stored. 
Stopwords in the query are also removed before retrieval is performed.  

 the top ranked pages is also very 
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6.5.2 Stemming  

In many languages, a word has various syntactical forms depending on the 
contexts that it is used. For example, in English, nouns have plural forms, 
verbs have gerund forms (by adding “ing”), and verbs used in the past 
tense are different from the present tense. These are considered as syntactic 
variations of the same root form. Such variations cause low recall for a 
retrieval system because a relevant document may contain a variation of a 
query word but not the exact word itself. This problem can be partially 
dealt with by stemming.  

Stemming refers to the process of reducing words to their stems or 
roots. A stem is the portion of a word that is left after removing its 
prefixes and suffixes. In English, most variants of a word are generated by 
the introduction of suffixes (rather than prefixes). Thus, stemming in 
English usually means suffix removal, or stripping. For example, 
“computer”, “computing”, and “compute” are reduced to “comput”. 
“walks”, “walking” and “walker” are reduced to “walk”. Stemming enables 
different variations of the word to be considered in retrieval, which 
improves the recall. There are several stemming algorithms, also known as 
stemmers. In English, the most popular stemmer is perhaps the Martin 
Porter's stemming algorithm [47], which uses a set of rules for stemming.  

Over the years, many researchers evaluated the advantages and 
disadvantages of using stemming. Clearly, stemming increases the recall 
and reduces the size of the indexing structure. However, it can hurt precision 
because many irrelevant documents may be considered relevant. For 
example, both “cop” and “cope” are reduced to the stem “cop”. However, 
if one is looking for documents about police, a document that contains 
only “cope” is unlikely to be relevant. Although many experiments have 
been conducted by researchers, there is still no conclusive evidence one 
way or the other. In practice, one should experiment with the document 
collection at hand to see whether stemming helps. 

6.5.3 Other Pre-Processing Tasks for Text 

Digits: Numbers and terms that contain digits are removed in traditional 
IR systems except some specific types, e.g., dates, times, and other pre-
specified types expressed with regular expressions. However, in search 
engines, they are usually indexed. 

Hyphens: Breaking hyphens are usually applied to deal with inconsistency of 
usage. For example, some people use “state-of-the-art”, but others use “state 
of the art”. If the hyphens in the first case are removed, we eliminate the 
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inconsistency problem. However, some words may have a hyphen as an 
integral part of the word, e.g., “Y-21”. Thus, in general, the system can follow 
a general rule (e.g., removing all hyphens) and also have some exceptions. 
Note that there are two types of removal, i.e., (1) each hyphen is replaced with 
a space and (2) each hyphen is simply removed without leaving a space so that 
“state-of-the-art” may be replaced with “state of the art” or “stateoftheart”. In 
some systems both forms are indexed as it is hard to determine which is 
correct, e.g., if “pre-processing” is converted to “pre processing”, then some 
relevant pages will not be found if the query term is “preprocessing”. 

Punctuation Marks: Punctuation can be dealt with similarly as hyphens.  

Case of Letters: All the letters are usually converted to either the upper or 
lower case.   

6.5.4 Web Page Pre-Processing 

We have indicated at the beginning of the section that Web pages are 
different from traditional text documents. Thus, additional pre-processing 
is needed. We describe some important ones below.  

1. Identifying different text fields: In HTML, there are different text 
fields, e.g., title, metadata, and body. Identifying them allows the retrieval 
system to treat terms in different fields differently. For example, in 
search engines terms that appear in the title field of a page are regarded 
as more important than terms that appear in other fields and are assigned 
higher weights because the title is usually a concise description of the 
page. In the body text, those emphasized terms (e.g., under header tags 
<h1>, <h2>, …, bold tag <b>, etc.) are also given higher weights.  

2. Identifying anchor text: Anchor text associated with a hyperlink is 
treated specially in search engines because the anchor text often 
represents a more accurate description of the information contained in 
the page pointed to by its link. In the case that the hyperlink points to an 
external page (not in the same site), it is especially valuable because it is 
a summary description of the page given by other people rather than the 
author/owner of the page, and is thus more trustworthy.  

3. Removing HTML tags: The removal of HTML tags can be dealt with 
similarly to punctuation. One issue needs careful consideration, which 
affects proximity queries and phrase queries. HTML is inherently a 
visual presentation language. In a typical commercial page, information 
is presented in many rectangular blocks (see Fig. 6.6). Simply removing 
HTML tags may cause problems by joining text that should not be 
joined. For example, in Fig. 6.6, “cite this article” at the bottom of the 
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left column will join “Main Page” on the right, but they should not be 
joined. They will cause problems for phrase queries and proximity 
queries. This problem had not been dealt with satisfactorily by search 
engines at the time when this book was written.   

4. Identifying main content blocks: A typical Web page, especially a 
commercial page, contains a large amount of information that is not part 
of the main content of the page. For example, it may contain banner ads, 
navigation bars, copyright notices, etc., which can lead to poor results 
for search and mining. In Fig. 6.6, the main content block of the page is 
the block containing “Today’s featured article.” It is not desirable to 
index anchor texts of the navigation links as a part of the content of this 
page. Several researchers have studied the problem of identifying main 
content blocks. They showed that search and data mining results can be 
improved significantly if only the main content blocks are used. We 
briefly discuss two techniques for finding such blocks in Web pages.   

 Partitioning based on visual cues: This method uses visual information 
to help find main content blocks in a page. Visual or rendering information 
of each HTML element in a page can be obtained from the Web 

 
Fig. 6.6. An example of a Web page from Wikipedia 
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browser. For example, Internet Explorer provides an API that can output 
the X and Y coordinates of each element. A machine learning model can 
then be built based on the location and appearance features for 
identifying main content blocks of pages. Of course, a large number of 
training examples need to be manually labeled (see [12, 56] for details). 

  Tree matching: This method is based on the observation that in most 
commercial Web sites pages are generated by using some fixed 
templates. The method thus aims to find such hidden templates. Since 
HTML has a nested structure, it is thus easy to build a tag tree for each 
page. Tree matching of multiple pages from the same site can be 
performed to find such templates. In Chap. 9, we will describe a tree 
matching algorithm for this purpose. Once a template is found, we can 
identify which blocks are likely to be the main content blocks based on 
the following observation: the text in main content blocks are usually 
quite different across different pages of the same template, but the non-
main content blocks are often quite similar in different pages. To 
determine the text similarity of corresponding blocks (which are sub-
trees), the shingle method described in the next section can be used.  

6.5.5 Duplicate Detection  

Duplicate documents or pages are not a problem in traditional IR. 
However, in the context of the Web, it is a significant issue. There are 
different types of duplication of pages and contents on the Web.  

Copying a page is usually called duplication or replication, and copying 
an entire site is called mirroring. Duplicate pages and mirror sites are 
often used to improve efficiency of browsing and file downloading worldwide 
due to limited bandwidth across different geographic regions and poor or 
unpredictable network performances. Of course, some duplicate pages are 
the results of plagiarism. Detecting such pages and sites can reduce the 
index size and improve search results. 

Several methods can be used to find duplicate information. The simplest 
method is to hash the whole document, e.g., using the MD5 algorithm, or 
computing an aggregated number (e.g., checksum). However, these methods 
are only useful for detecting exact duplicates. On the Web, one seldom finds 
exact duplicates. For example, even different mirror sites may have different 
URLs, different Web masters, different contact information, different 
advertisements to suit local needs, etc.  

One efficient duplicate detection technique is based on n-grams (also 
called shingles). An n-gram is simply a consecutive sequence of words of 
a fixed window size n. For example, the sentence, “John went to school 
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with his brother,” can be represented with five 3-gram phrases “John went 
to”, “went to school”, “to school with”, “school with his”, and “with his 
brother”. Note that 1-gram is simply the individual words.  

Let Sn(d) be the set of distinctive n-grams (or shingles) contained in 
document d. Each n-gram may be coded with a number or a MD5 hash 
(which is usually a 32-digit hexadecimal number). Given the n-gram 
representations of the two documents d1 and d2, Sn(d1) and Sn(d2), the Jaccard 
coefficient can be used to compute the similarity of the two documents,  
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A threshold is used to determine whether d1 and d2 are likely to be 
duplicates of each other. For a particular application, the window size n 
and the similarity threshold are chosen through experiments.  

6.6 Inverted Index and Its Compression 

The basic method of Web search and traditional IR is to find documents 
that contain the terms in the user query. Given a user query, one option is 
to scan the document database sequentially to find the documents that 
contain the query terms. However, this method is obviously impractical for 
a large collection, such as the Web. Another option is to build some data 
structures (called indices) from the document collection to speed up 
retrieval or search. There are many index schemes for text [5]. The 
inverted index, which has been shown superior to most other indexing 
schemes, is a popular one. It is perhaps the most important index method 
used in search engines. This indexing scheme not only allows efficient 
retrieval of documents that contain query terms, but also very fast to build.  

6.6.1 Inverted Index 

In its simplest form, the inverted index of a document collection is 
basically a data structure that attaches each distinctive term with a list of 
all documents that contains the term. Thus, in retrieval, it takes constant 
time to find the documents that contains a query term. Finding documents 
containing multiple query terms is also easy as we will see later.  

Given a set of documents, D = {d1, d2, …, dN}, each document has a 
unique identifier (ID). An inverted index consists of two parts: a 
vocabulary V, containing all the distinct terms in the document set, and for 
each distinct term ti an inverted list of postings. Each posting stores the 



6.6 Inverted Index and Its Compression      233 

ID (denoted by idj) of the document dj that contains term ti and other pieces 
of information about term ti in document dj. Depending on the need of the 
retrieval or ranking algorithm, different pieces of information may be 
included. For example, to support phrase and proximity search, a posting 
for a term ti usually consists of the following, 

<idj, fij, [o1, o2, …, o| fij|]> 

where idj is the ID of document dj that contains the term ti, fij is the 
frequency count of ti in dj, and ok are the offsets (or positions) of term ti in 
dj. Postings of a term are sorted in increasing order based on the idj’s and 
so are the offsets in each posting (see Example 3). This facilitates 
compression of the inverted index as we will see in Sect. 6.6.4.   

Example 3: We have three documents of id1, id2, and id3: 

 id1: Web mining is useful. 
 1 2 3 4 
 id2: Usage mining applications. 
 1 2 3   

 id3: Web structure mining studies the Web hyperlink structure.  
 1 2 3 4 5 6 7 8 

The numbers below each document are the offset position of each word. 
The vocabulary is the set:  

{Web, mining, useful, applications, usage, structure, studies, hyperlink} 

Stopwords “is” and “the” have been removed, but no stemming is applied. 
Fig. 6.7 shows two inverted indices.  

Applications: id2  Applications: <id2, 1, [3]> 
Hyperlink: id3  Hyperlink: <id3, 1, [7]> 
Mining:  id1, id2, id3  Mining:  <id1, 1, [2]>, <id2, 1, [2]>, <id3, 1, [3]> 
Structure: id3  Structure: <id3, 2, [2, 8]> 
Studies: id3  Studies: <id3, 1, [4]> 
Usage: id2  Usage: <id2, 1, [1]> 
Useful: id1  Useful: <id1, 1, [4]> 
Web:  id1, id3  Web:  <id1, 1, [1]>, <id3, 2, [1, 6]> 

(A) (B) 

Fig. 6.7. Two inverted indices: a simple version and a more complex version 

Fig. 6.7(A) is a simple version, where each term is attached with only an 
inverted list of IDs of the documents that contain the term. Each inverted 
list in Fig. 6.7(B) is more complex as it contains additional information, 
i.e., the frequency count of the term and its positions in each document. 
Note that we use idi as the document IDs to distinguish them from offsets. 
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In an actual implementation, they may also be positive integers. Note also 
that a posting can contain other types of information depending on the 
need of the retrieval or search algorithm (see Sect. 6.8).  ▀ 

6.6.2 Search Using an Inverted Index 

Queries are evaluated by first fetching the inverted lists of the query terms, 
and then processing them to find the documents that contain all (or some) 
terms. Specifically, given the query terms, searching for relevant 
documents in the inverted index consists of three main steps: 

Step 1 (vocabulary search): This step finds each query term in the 
vocabulary, which gives the inverted list of each term. To speed up the 
search, the vocabulary usually resides in the main memory. Various 
indexing methods, e.g., hashing, tries or B-tree, can be used to speed up 
the search. Lexicographical ordering may also be employed due to its 
space efficiency. Then the binary search method can be applied. The 
complexity is O(log|V|), where |V| is the vocabulary size.  

If the query contains only a single term, this step gives all the relevant 
documents and the algorithm then goes to step 3. If the query contains 
multiple terms, the algorithm proceeds to step 2.  

Step 2 (results merging): After the inverted list of each term is found, 
merging of the lists is performed to find their intersection, i.e., the set of 
documents containing all query terms. Merging simply traverses all the 
lists in synchronization to check whether each document contains all 
query terms. One main heuristic is to use the shortest list as the base to 
merge with the other longer lists. For each posting in the shortest list, a 
binary search may be applied to find it in each longer list. Note that 
partial match (i.e., documents containing only some of the query terms) can 
be achieved as well in a similar way, which is more useful in practice. 

Usually, the whole inverted index cannot fit in memory, so part of it 
is cached in memory for efficiency. Determining which part to cache 
involves analysis of query logs to find frequent query terms. The 
inverted lists of these frequent query terms can be cached in memory.    

Step 3 (Rank score computation): This step computes a rank (or 
relevance) score for each document based on a relevance function (e.g., 
okapi or cosine), which may also consider the phrase and term proximity 
information. The score is then used in the final ranking.   

Example 4: Using the inverted index built in Fig. 6.7(B), we want to 
search for “web mining” (the query). In step 1, two inverted lists are found:  

Mining:  <id1, 1, [2]>, <id2, 1, [2]>, <id3, 1, [3]> 
Web:  <id1, 1, [1]>, <id3, 2, [1, 6]> 
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In step 2, the algorithm traverses the two lists and finds documents 
containing both words (documents id1 and id3). The word positions are also 
retrieved. In step 3, we compute the rank scores. Considering the 
proximity and the sequence of words, we give id1 a higher rank (or 
relevance) score than id3 as “web” and “mining” are next to each other in id1 
and in the same sequence as that in the query. Different search engines 
may use different algorithms to combine these factors.  ▀ 

6.6.3 Index Construction 

The construction of an inverted index is quite simple and can be done 
efficiently using a trie data structure among many others. The time complexity 
of the index construction is O(T), where T is the number of all terms 
(including duplicates) in the document collection (after pre-processing).  

For each document, the algorithm scans it sequentially and for each 
term, it finds the term in the trie. If it is found, the document ID and other 
information (e.g., the offset of the term) are added to the inverted list of the 
term. If the term is not found, a new leaf is created to represent the term.  

Example 5: Let us build an inverted index for the three documents in 
Example 3, which are reproduced below for easy reference. Fig. 6.8 shows 
the vocabulary trie and the inverted lists for all terms.  
 id1: Web mining is useful. 
 1 2 3 4 
 id2: Usage mining applications. 
 1 2 3   

 id3: Web structure mining studies the Web hyperlink structure  ▀ 
 1 2 3 4 5 6 7 8 

To build the index efficiently, the trie is usually stored in memory. 
However, in the context of the Web, the whole index will not fit in the 
main memory. The following technique can be applied.  

We follow the above algorithm to build the index until the memory is 
full. The partial index I1 obtained so far is written on the disk. Then, we 
process the subsequent documents and build the partial index I2 in 
memory, and so on. After all documents have been processed, we have k 
partial indices, I1, I2, …, Ik, on disk. We then merge the partial indices in a 
hierarchical manner. That is, we first perform pair-wise merges of I1 and I2, 
I3 and I4, and so on. This gives us larger indices I1-2, I3-4 and so on. After 
the first level merging is complete, we proceed to the second level merging, 
i.e., we merge I1-2 and I3-4, I5-6 and I7-8 and so on. This process continues 
until all the partial indices are merged into a single index. Each merge is 
fairly straightforward because the vocabulary in each partial index is 
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sorted by the trie construction. The complexity of each merge is thus linear 
in the number of terms in both partial indices. Since each level needs a 
linear process of the whole index, the complete merging process takes 
O(klog k) time. To reduce the disk space requirement, whenever a new 
partial index is generated, we can merge it with a previously merged index. 
That is, when we have I1 and I2, we can merge them immediately to produce 
I1-2, and when I3 is produced, it is merged with I1-2 to produce I1-2-3 and so on.  

 
Fig. 6.8. The vocabulary trie and the inverted lists  

Instead of using a trie, an alternative method is to use an in-memory 
hash table (or other data structures) for terms. The algorithm is quite 
straightforward and will not be discussed further.  

On the Web, an important issue is that pages are constantly added, 
modified or deleted. It may be quite inefficient to modify the main index 
because a single page change can require updates to a large number of 
records of the index. One simple solution is to construct two additional 
indices, one for added pages and one for deleted pages. Modification can 
be regarded as a deletion and then an addition. Given a user query, it is 
searched in the main index and also in the two auxiliary indices. Let the 
pages returned from the search in the main index be D0, the pages returned 
from the search in the index of added pages be D+ and the pages returned 
from the search in the index of deleted pages be D–. Then, the final results 
returned to the user is (D0  D+) – D. When the two auxiliary indices 
become too large, they can be merged into the main index.       

6.6.4 Index Compression  

An inverted index can be very large. In order to speed up the search, it 
should reside in memory as much as possible to avoid disk I/O. Because of 
this, reducing the index size becomes an important issue. A natural 
solution to this is index compression, which aims to represent the same 
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information with fewer bits or bytes. Using compression, the size of an 
inverted index can be reduced dramatically. In the lossless compression, 
the original index can also be reconstructed exactly using the compressed 
version. Lossless compression methods are the focus of this section.  

The inverted index is quite amiable to compression. Since the main 
space used by an inverted index is for the storage of document IDs and 
offsets of each term, we thus want to reduce this space requirement. Since 
all the information is represented with positive integers, we only discuss 
integer compression techniques in this section. 

Without compression, on most architectures an integer has a fixed-size 
representation of four bytes (32 bits). However, few integers need 4 bytes 
to represent, so a more compact representation (compression) is clearly 
possible. There are generally two classes of compression schemes for 
inverted lists: the variable-bit scheme and the variable-byte scheme.  

In the variable-bit (also called bitwise) scheme, an integer is represented 
with an integral number of bits. Well known bitwise methods include 
unary coding, Elias gamma coding and delta coding [20], and Golomb 
coding [24]. In the variable-byte scheme, an integer is stored in an integral 
number of bytes, where each byte has 8 bits. A simple bytewise scheme is 
the variable-byte coding [58]. These coding schemes basically map integers 
onto self-delimiting binary codewords (bits), i.e., the start bit and the end bit 
of each integer can be detected with no additional delimiters or markers. 

An interesting feature of the inverted index makes compression even 
more effective. Since document IDs in each inverted list are sorted in 
increasing order, we can store the difference between any two adjacent 
document IDs, idi and idi+1, where idi+1> idi, instead of the actual IDs. This 
difference is called the gap between idi and idi+1. The gap is a smaller 
number than idi+1 and thus requires fewer bits. In search, if the algorithm 
linearly traverses each inverted list, document IDs can be recovered easily. 
Since offsets in each posting are also sorted, they can be stored similarly.  

For example, the sorted document IDs are: 4, 10, 300, and 305. They 
can be represented with gaps, 4, 6, 290 and 5. Given the gap list 4, 6, 290 
and 5, it is easy to recover the original document IDs, 4, 10, 300, and 305. 
We note that for frequent terms (which appear in a large number of 
documents) the gaps are small and can be encoded with short codes (fewer 
bits). For infrequent or rare terms, the gaps can be large, but they do not 
use up much space due to the fact that only a small number of documents 
contain them. Storing gaps can significantly reduce the index size. 

We now discuss each of the coding schemes in detail. Each scheme 
includes a method for coding (or compression) and a method for 
decoding (decompression). 
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Unary Coding  

Unary coding is simple. It represents a number x with x1 bits of zeros 
followed by a bit of one. For example, 5 is represented as 00001. The one 
bit is simply the delimitor. Decoding is also straightforward. This scheme 
is effective for very small numbers, but wasteful for large numbers. It is 
thus seldom used alone in practice. 

Table 6.1 shows example codes of different coding schemes for 10 
decimal integers. Column 2 shows the unary code for each integer.  

Table 6.1: Example codes for integers of different coding schemes: Spacing in the 
Elias, Golomb, and variable-byte codes separates the prefix of the code from the suffix. 
   Elias  Elias  Golomb  Golomb  Variable  
Decimal  Unary Gamma  Delta  (b = 3)  (b = 10)  byte 
1  1  1  1  1 10  1 001  0000001 0 
2  01  0 10  0 100  1 11  1 010  0000010 0 
3  001  0 11  0 101  01 0  1 011  0000011 0 
4  0001  00 100  0 1100  01 10  1 100  0000100 0 
5  00001  00 101  0 1101  01 11  1 101  0000101 0 
6  000001  00 110  0 1110  001 0  1 1100  0000110 0 
7  0000001  00 111  0 1111  001 10  1 1101  0000111 0 
8  00000001  000 1000  00 100000  001 11  1 1110  0001000 0 
9  000000001  000 1001  00 100001  0001 0  1 1111  0001001 0 
10  0000000001 000 1010  00 100010  0001 10  01 000  0001010 0 

Elias Gamma Coding 
Coding: In the Elias gamma coding, a positive integer x is represented by: 
1+log2x in unary (i.e., log2x 0-bits followed by a 1-bit), followed by the 
binary representation of x without its most significant bit. Note that 
1+log2x is simply the number of bits of x in binary. The coding can also 
be described with the following two steps:  
1. Write x in binary. 
2. Subtract 1 from the number of bits written in step 1 and prepend that 

many zeros.  
Example 6: The number 9 is represented by 0001001, since 1+log29 = 4, 
or 0001 in unary, and 9 is 001 in binary with the most significant bit 
removed. Alternatively, we first write 9 in binary, which is 1001 with 4 
bits, and then prepend three zeros. In this way, 1 is represented by 1 (in 
one bit), and 2 is represented by 010. Additional examples are shown in 
column 3 of Table 6.1. ▀ 
Decoding: We decode an Elias gamma-coded integer in two steps: 
1. Read and count zeroes from the stream until we reach the first one. Call 

this count of zeroes K.  
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2. Consider the one that was reached to be the first digit of the integer, 
with a value of 2K, read the remaining K bits of the integer. 

Example 7: To decompress 0001001, we first read all zero bits from the 
beginning until we see a bit of 1. We have K = 3 zero bits. We then include 
the 1 bit with the following 3 bits, which give us 1001 (binary for 9).  ▀  

 Gamma coding is efficient for small integers but is not suited to large 
integers for which the parameterized Golomb code or the Elias delta code 
is more suitable. 

Elias Delta Coding 

Elias delta codes are somewhat longer than gamma codes for small 
integers, but for larger integers such as document numbers in an index of 
Web pages, the situation is reversed.  

Coding: In the Elias delta coding, a positive integer x is stored with the 
gamma code representation of 1+log2x, followed by the binary 
representation of x less the most significant bit. 

Example 8: Let us code the number 9. Since 1+log2x = 4, we have its 
gamma code 00100 for 4. Since 9’s binary representation less the most 
significant bit is 001, we have the delta code of 00100001 for 9. Additional 
examples are shown in column 4 of Table 6.1.  ▀ 

Decoding: To decode an Elias delta-coded integer x, we first decode the 
gamma-code part 1+log2x as the magnitude M (the number of bits of x in 
binary), and then retrieve the binary representation of x less the most 
significant bit. Specifically, we use the following steps:  

1. Read and count zeroes from the stream until you reach the first one. Call 
this count of zeroes L.  

2. Considering the one that was reached to be the first bit of an integer, with a 
value of 2L, read the remaining L digits of the integer. This is the integer M.  

3. Put a one in the first place of our final output, representing the value 2M. 
Read and append the following M-1 bits.  

Example 9: We want to decode 00100001. We can see that L = 2 after 
step 1, and after step 2, we have read and consumed 5 bits. We also obtain 
M = 4 (100 in binary). Finally, we prepend 1 to the M-1 bits (which is 001) 
to give 1001, which is 9 in binary.  ▀ 

While Elias codes yield acceptable compression and fast decoding, a 
better performance in both aspects is possible with the Golomb coding.     



240      6 Information Retrieval and Web Search 

Golomb Coding 

The Golomb coding is a form of parameterized coding in which integers to 
be coded are stored as values relative to a constant b. Several variations of 
the original Golomb scheme exist, which save some bits in coding compared 
to the original scheme. We describe one version here.  

Coding: A positive integer x is represented in two parts:  
1. The first part is a unary representation of q+1, where q is the quotient 
(x/b), and  

2. The second part is a special binary representation of the remainder r = 
xqb. Note that there are b possible remainders. For example, if b = 3, 
the possible remainders will be 0, 1, and 2.  

The binary representation of a remainder requires log2b or log2b bits. 
Clearly, it is not possible to write every remainder in log2b bits in binary. 
To save space, we want to write the first few remainders using log2b bits 
and the rest using log2b bits. We must do so such that the decoder knows 
when log2b bits are used and when log2b bits are used. Let i = log2b. 
We code the first d remainders using i bits,  

d  = 2i+1 – b. (25) 

It is worth noting that these d remainders are all less than d. The rest of 
the remainders are coded with log2b bits and are all greater than or equal 
to d. They are coded using a special binary code (also called a fixed prefix 
code) with log2b (or i+1) bits.  

Example 10: For b = 3, to code x = 9, we have the quotient q = 9/3 = 3. 
For remainder, we have i = log2 3 = 1 and d = 1. Note that for b = 3, there 
are three remainders, i.e., 0, 1, and 2, which are coded as 0, 10, and 11 
respectively. The remainder for 9 is r = 9  3  3 = 0. The final code for 9 
is 00010. Additional examples for b = 3 are shown in column 5 of Table 6.1. 

For b = 10, to code x = 9, we have the quotient q = 9/10 = 0. For 
remainder, we have i = log2 10 = 3 and d = 6. Note that for b = 10, there 
are 10 remainders, i.e., 0, 1, 2, …, 10, which are coded as 000, 001, 010, 
011, 100, 101, 1100, 1101, 1110, 1111 respectively. The remainder of 9 is 
r = 9  0  5 = 9. The final code for 9 is 11111. Additional examples for b 
= 10 are shown in column 6 of Table 6.1. ▀ 

We can see that the first d remainders are standard binary codes, but the 
rest are not. They are generated using a tree instead. Fig. 6.9 shows an 
example based on b = 5. The leaves are the five remainders. The first three 
remainders (0, 1, 2) are in the standard binary code, and the rest (3 and 4) 
have an additional bit. It is important to note that the first 2 bits (i = 2) of 
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the remainder 3 (the first remainder coded in i+1 bits) is 11, which is 3 
(i.e., d) in binary. This information is crucial for decoding because it 
enables the algorithm to know when i+1 bits are used. We also notice that 
d is completely determined by b, which helps decoding. 

 
Fig. 6.9. The coding tree for b = 5 

If b is a power of 2 (called Golomb–Rice coding), i.e., b = 2k for integer 
k  0, every remainder is coded with the same number of bits because 
log2b = log2b. This is also easy to see from Equation (25), i.e., d = 2k.  

Decoding: To decode a Golomb-coded integer x, we use the following steps: 
1. Decode unary-coded quotient q (the relevant bits are comsumed). 
2. Compute i = log2 b and d = 2i+1 – b.  
3. Retrieve the next i bits and assign it to r.  
4. If r  d then 
 retrieve one more bit and append it to r at the end; 
 r = r – d.  
5. Return x = qb + r. 

Some explanation is in order for step 4. As we discussed above, if r  d 
we need i+1 bits to code the remainder. The first line of step 4 retrieves the 
additional bit and appends it to r. The second line obtains the true value of 
the remainder r. 

Example 11: We want to decode 11111 for b = 10. We see that q = 0 
because there is no zero at the beginning. The first bit is consumed. We 
know that i = log2 10 = 3 and d = 6. We then retrieve the next three bits, 
111, which is 7 in decimal, and assign it to r (= 111). Since 7 > 6 (which is 
d), we retrieve one more bit, which is 1, and r is now 1111 (15 in decimal). 
The new r = r – d = 15 – 6 = 9. Finally, x = qb + r = 0 + 9 = 9. ▀ 

Now we discuss the selection of b for each term. For gap compression, 
Witten et al. [59] reported that a suitable b is  
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where N is the total number of documents and nt is the number of 
documents that contain term t.  

Variable-Byte Coding  

Coding: In this method, seven bits in each byte are used to code an 
integer, with the least significant bit set to 0 in the last byte, or to 1 if 
further bytes follow. In this way, small integers are represented efficiently. 
For example, 135 is represented in two bytes, since it lies in the range 27 
and 214, as 00000011 00001110. Additional examples are shown in column 
6 of Table 6.1. 

Decoding: Decoding is performed in two steps: 

1. Read all bytes until a byte with the zero last bit is seen.  
2. Remove the least significant bit from each byte read so far and 

concatenate the remaining bits.  

For example, 00000011 00001110 is decoded to 00000010000111, which is 135. 
Finally, experimental results in [58] show that non-parameterized Elias 

coding is generally not as space-efficient or as fast as parameterized 
Golomb coding for retrieval. Gamma coding does not work well. Variable-
byte integers are often faster than variable-bit integers, despite having 
higher storage costs, because fewer CPU operations are required to decode 
variable-byte integers and they are byte-aligned on disk. A suitable 
compression technique can allow retrieval to be up to twice as fast than 
without compression, while the space requirement averages 20% – 25% of 
the cost of storing uncompressed integers.  

6.7 Latent Semantic Indexing 

The retrieval models discussed so far are based on keyword or term matching, 
i.e., matching terms in the user query with those in the documents. However, 
many concepts or objects can be described in multiple ways (using different 
words) due to the context and people’s language habits. If a user query uses 
different words from the words used in a document, the document will not be 
retrieved although it may be relevant because the document uses some 
symonyms of the words in the user query. This causes low recall. For example, 
“picture”, “image” and “photo” are synonyms in the context of digital 
cameras. If the user query only has the word “picture”, relevant documents 
that contain “image” or “photo” but not “picture” will not be retrieved. 

Latent semantic indexing (LSI), proposed by Deerwester et al. [18], 
aims to deal with this problem through the identification of statistical 



6.7 Latent Semantic Indexing      243 

associations of terms. It is assumed that there is some underlying latent 
semantic structure in the data that is partially obscured by the randomness 
of word choice. It then uses a statistical technique, called singular value 
decomposition (SVD) [25], to estimate this latent structure, and to remove 
the “noise”. The results of this decomposition are descriptions of terms and 
documents based on the latent semantic structure derived from SVD. This 
structure is also called the hidden “concept” space, which associates 
syntactically different but semantically similar terms and documents. 
These transformed terms and documents in the “concept” space are then 
used in retrieval, not the original terms or documents. Furthermore, the 
query is also transformed into the “concept” space before retrieval. 

Let D be the text collection, the number of distinctive words in D be m 
and the number of documents in D be n. LSI starts with an mn term-
document matrix A. Each row of A represents a term and each column 
represents a document. The matrix may be computed in various ways, e.g., 
using term frequency or TF-IDF values. We use term frequency as an 
example in this section. Thus, each entry or cell of the matrix A, denoted 
by Aij, is the number of times that term i occurs in document j.  

6.7.1 Singular Value Decomposition  

What SVD does is to factor matrix A (a mn matrix) into the product of 
three matrices, i.e., 

,TVUΣA   (27) 

where  
U is a mr matrix and its columns, called left singular vectors, are 

eigenvectors associated with the r non-zero eigenvalues of AAT. 
Furthermore, the columns of U are unit orthogonal vectors, i.e., UTU 
= I (identity matrix). 

V is an nr matrix and its columns, called right singular vectors, are 
eigenvectors associated with the r non-zero eigenvalues of ATA. The 
columns of V are also unit orthogonal vectors, i.e., VTV = I.  

  is a rr diagonal matrix,  = diag(1, 2, …, r), i > 0. 1, 2, …, 
and r, called singular values, are the non-negative square roots of 
the r (non-zero) eigenvalues of AAT. They are arranged in decreasing 
order, i.e., 1  2  …  r > 0.  

We note that initially U is in fact an mm matrix and V an nn matrix 
and  an mn diagonal matrix.  ’s diagonal consists of nonnegative 
eigenvalues of AAT or ATA. However, due to zero eigenvalues,  has 
zero-valued rows and columns. Matrix multiplication tells us that those 
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zero-valued rows and columns from  can be dropped. Then, the last 
mr columns in U and the last nr columns in V can also be dropped. 

m is the number of row (terms) in A, representing the number of terms. 
n is the number of columns in A, representing the number of documents. 
r is the rank of A, r  min(m, n).  

The singular value decomposition of A always exists and is unique up to 

1. allowable permutations of columns of U and V and elements of   leaving it 
still diagonal; that is, columns i and j of  may be interchanged iff row i and 
j of  are interchanged, and columns i and j of U and V are interchanged. 

2. sign (+/) flip in U and V.  

An important feature of SVD is that we can delete some insignificant 
dimensions in the transformed (or “concept”) space to optimally (in the 
least square sense) approximate matrix A. The significance of the dimensions 
is indicated by the magnitudes of the singular values in , which are 
already sorted. In the context of information retrieval, the insignificant 
dimensions may represent “noise” in the data, and should be removed. Let 
us use only the k largest singular values in  and set the remaining small 
ones to zero. The approximated matrix of A is denoted by Ak. We can also 
reduce the size of the matrices , U and V by deleting the last rk rows 
and columns from , the last rk columns in U and the last rk columns in 
V. We then obtain  

,T
kkkk VΣUA   (28) 

which means that we use the k-largest singular triplets to approximate the 
original (and somewhat “noisy”) term-document matrix A. The new space 
is called the k-concept space. Fig. 6.10 shows the original matrices and 
the reduced matrices schematically. 

 
Fig. 6.10. The schematic representation of A and Ak 
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It is critical that the LSI method does not re-construct the original term-
document matrix A perfectly. The truncated SVD captures most of the 
important underlying structures in the association of terms and documents, 
yet at the same time removes the noise or variability in word usage that 
plagues keyword matching retrieval methods. 

Intuitive Idea of LSI: The intuition of LSI is that SVD rotates the axes of 
m-dimensional space of A such that the first axis runs along the largest 
variation (variance) among the documents, the second axis runs along the 
second largest variation (variance) and so on. Fig. 6.11 shows an example. 

The original x-y space is mapped to the x-y space generated by SVD. 
We can see that x and y are clearly correlated. In our retrieval context, each 
data point represents a document and each axis (x or y) in the original 
space represents a term. Hence, the two terms are correlated or co-occur 
frequently. In the SVD, the direction of x in which the data has the largest 
variation is represented by the first column vector of U, and the direction 
of y is represented by the second column vector of U. VT represents the 
documents in the transformed “concept” space. The singular values in  
are simply scaling factors. 

We observe that y direction is insignificant, and may represent some 
“noise”, so we can remove it. Then, every data point (document) is projected 
to x. We have an outlier document di that contains term x, but not term y. 
However, if it is projected to x, it becomes closer to other points. 

Let us see what happens if we have a query q represented with a star in 
Fig. 6.11, which contains only a single term “y”. Using the traditional 
exact term matching, di is not relevant because “y” does not appear in di. 
However, in the new space after projection, they are quite close or similar.  

 
Fig. 6.11. Intuition of the LSI.  

6.7.2 Query and Retrieval  

Given a user query q (represented by a column vector as those in A), it is 
first converted into a document in the k-concept space, denoted by qk. This 
transformation is necessary because SVD has transformed the original 
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documents into the k-concept space and stored them in Vk. The idea is that 
q is treated as a new document in the original space represented as a 
column in A, and then mapped to qk (a row vector) as an additional 
document (or column) in Vk

T. From Equation (28), it is easy to see that  

  .T
kkk qq ΣU  (29) 

Since the columns in U are unit orthogonal vectors, Uk
TUk = I. Thus,  

 .T
kk

T
k qq ΣU   (30) 

As the inverse of a diagonal matrix is still a diagonal matrix, and each 
entry on the diagonal is 1/i (1  i  k), if it is multiplied on both sides of 
Equation (30), we obtain,  

.1 T
k

T
k

-
k qq UΣ  (31) 

Finally, we get the following (notice that the transpose of a diagonal 
matrix is itself),  

.1-
kk

T
k ΣUqq   (32) 

For retrieval, we simply compare qk with each document (row) in Vk 
using a similarity measure, e.g., the cosine similarity. Recall that each row 
of Vk (or each column of Vk

T ) corresponds to a document (column) in A. 
This method has been used traditionally.  

Alternatively, since kVk
T (not Vk

T) represents the documents in the 
transformed k-concept space, we can compare the similarity of the query 
document in the transformed space, which is kqk

T, and each transformed 
document in kVk

T for retrieval. The difference between the two methods is 
obvious. This latter method considers scaling effects of the singular values 
in k, but the former does not. However, it is not clear which method 
performs better as I know of no reported study on this alternative method.  

6.7.3 An Example 

Example 12: We will use the example in [18] to illustrate the process. The 
document collection has the following nine documents. The first five 
documents are related to human computer interaction, and the last four 
documents are related to graphs. To reduce the size of the problem, only 
the underlined terms are used in our computation.  
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c1:  Human machine interface for Lab ABC computer applications 
c2:  A survey of user opinion of computer system response time 
c3:  The EPS user interface management system 
c4:  System and human system engineering testing of EPS 
c5:  Relation of user-perceived response time to error measurement 
m1:  The generation of random, binary, unordered trees 
m2:  The intersection graph of paths in trees 
m3:  Graph minors IV: Widths of trees and well-quasi-ordering 
m4:  Graph minors: A survey 

The term-document matrix A is given below, which is a 912 matrix.  
 c1  c2  c3  c4  c5  m1  m2  m3  m4 
 1  0  0  1  0  0  0  0  0  human 
 1  0  1  0  0  0  0  0  0  interface 
 1  1  0  0  0  0  0  0  0  computer 
 0  1  1  0  1  0  0  0  0  user 
 0  1  1  2  0  0  0  0  0  system 
 A = 0  1  0  0  1  0  0  0  0  response 
 0  1  0  0  1  0  0  0  0  time 
 0  0  1  1  0  0  0  0  0  EPS 
 0  1  0  0  0  0  0  0  1  survey 
 0  0  0  0  0  1  1  1  0  trees 
 0  0  0  0  0  0  1  1  1  graph 
 0  0  0  0  0  0  0  1  1 minors 

After performing SVD, we obtain three matrices, U,  and VT, which are 
given below. Singular values on the diagonal of  are in decreasing order.  
  0.22  -0.11  0.29  -0.41  -0.11  -0.34  0.52  -0.06  -0.41 
  0.20  -0.07  0.14  -0.55  0.28  0.50  -0.07  -0.01  -0.11 
  0.24  0.04  -0.16  -0.59  -0.11  -0.25  -0.30  0.06  0.49 
  0.40  0.06  -0.34  0.10  0.33  0.38  0.00  0.00  0.01 
  0.64  -0.17  0.36  0.33  -0.16  -0.21  -0.17  0.03  0.27 
 U = 0.27  0.11  -0.43  0.07  0.08  -0.17  0.28  -0.02  -0.05 
  0.27  0.11  -0.43  0.07  0.08  -0.17  0.28  -0.02  -0.05 
  0.30  -0.14  0.33  0.19  0.11  0.27  0.03  -0.02  -0.17 
  0.21  0.27  -0.18  -0.03  -0.54  0.08  -0.47  -0.04  -0.58 
  0.01  0.49  0.23  0.03  0.59  -0.39  -0.29  0.25  -0.23 
  0.04  0.62  0.22  0.00  -0.07  0.11  0.16  -0.68  0.23 
  0.03  0.45  0.14  -0.01  -0.30  0.28  0.34  0.68  0.18 

 3.34  0 0 0 0 0 0 0 0 
 0 2.54 0 0 0 0 0 0 0 

 0 0 2.35 0 0 0 0 0 0 
 0 0 0 1.64 0 0 0 0 0 

 = 0 0 0 0 1.50 0 0 0 0 
 0 0 0 0 0 1.31 0 0 0 
 0 0 0 0 0 0 0.85 0 0 

 0 0 0 0 0 0 0 0.56 0 
 0 0 0 0 0 0 0 0 0.36 
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  0.20   -0.06  0.11  -0.95  0.05  -0.08  0.18  -0.01  -0.06 
  0.61   0.17  -0.50  -0.03  -0.21  -0.26  -0.43  0.05  0.24 
  0.46  -0.13  0.21  0.04  0.38  0.72  -0.24  0.01  0.02 
  0.54  -0.23  0.57  0.27  -0.21  -0.37  0.26  -0.02  -0.08 
 V = 0.28  0.11  -0.51  0.15  0.33  0.03  0.67  -0.06  -0.26 
  0.00  0.19  0.10  0.02  0.39  -0.30  -0.34  0.45  -0.62 
  0.01  0.44  0.19  0.02  0.35  -0.21  -0.15  -0.76  0.02 
  0.02  0.62  0.25  0.01  0.15  0.00  0.25  0.45  0.52 
  0.08  0.53  0.08  -0.03  -0.60  0.36  0.04  -0.07  -0.45 

Now let us choose only two largest singular values from , i.e., k = 2.  
Thus, the concept space has only two dimensions. The other two matrices 
are also truncated accordingly. We obtain the 3 matrix Uk, k and Vk

T: 

 Uk  k      Vk
 T 

 0.22  -0.11  3.34  0 0.20  0.61  0.46  0.54  0.28  0.00  0.02  0.02  0.08 
 0.20  -0.07  0 2.54  -0.06  0.17  -0.13  -0.23  0.11  0.19  0.44  0.62  0.53 
 0.24  0.04 
 0.40  0.06 
 0.64  -0.17 
Ak = 0.27  0.11 
 0.27  0.11 
 0.30  -0.14 
 0.21  0.27 
 0.01  0.49 
 0.04  0.62 
 0.03  0.45 

Now we issue a search query q, “user interface”, to find relevant 
documents. The transformed query document qk of query q in the k-concept 
space is computed below using Equation (32), which is (0.179  -0.004).  
  0 T  0.22  -0.11    
  1  0.20  -0.07    
  0 0.24  0.04 
  1 0.40  0.06 
  0 0.64  -0.17 

   0 0.27  0.11 3.34  0   -1 
  0 0.27  0.11  0 2.54 
  0 0.30  -0.14 
  0 0.21  0.27 
  0 0.01  0.49 
  0 0.04  0.62 
  0 0.03  0.45 

qk is then compared with every document vector in Vk using the cosine 
similarity. The similarity values are as follows:  

c1: 0.964 
c2: 0.957 
c3: 0.968 
c4: 0.928 
c5: 0.922 

= (0.179 0.004) qk = 
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m1: 0.022 
m2: 0.023 
m3: 0.010 
m4: 0.127 

We obtain the final ranking of (c3, c1, c2, c4, c5, m4, m2, m3, m1).  ▀ 

6.7.4 Discussion 

LSI has been shown to perform better than traditional keywords based 
methods. The main drawback is the time complexity of the SVD, which is 
O(m2n). It is thus difficult to use for a large document collection such as 
the Web. Another drawback is that the concept space is not interpretable as 
its description consists of all numbers with little semantic meaning.  

Determining the optimal number of dimensions k of the concept space is 
also a major difficulty. There is no general consensus for an optimal number 
of dimensions. The original paper [18] of LSI suggests 50–350 dimensions. 
In practice, the value of k needs to be determined based on the specific 
document collection via trial and error, which is a very time consuming 
process due to the high time complexity of the SVD.  

To close this section, one can imagine that association rules may be able 
to approximate the results of LSI and avoid its shortcomings. Association 
rules represent term correlations or co-occurrences. Association rule 
mining has two advantages. First, its mining algorithm is very efficient. 
Since we may only need rules with 2-3 terms, which are sufficient for 
practical purposes, the mining algorithm only needs to scan the document 
collection 2-3 times. Second, rules are easy to understand. However, little 
research has been done in this direction so far.  

6.8 Web Search 

We now put it all together and describe the working of a search engine. 
Since it is difficult to know the internal details of a commercial search engine, 
most contents in this section are based on research papers, especially the 
early Google paper [10]. Due to the efficiency problem, latent semantic 
indexing is probably not used in Web search yet. Current search algorithms 
are still mainly based on the vector space model and term matching. 

A search engine starts with the crawling of pages on the Web. The 
crawled pages are then parsed, indexed, and stored. At the query time, the 
index is used for efficient retrieval. We will not discuss crawling here. Its 
details can be found in Chap. 8. The subsequent operations of a search 
engine are described below:  
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Parsing: A parser is used to parse the input HTML page, which produces 
a stream of tokens or terms to be indexed. The parser can be constructed 
using a lexical analyzer generator such as YACC and Flex (which is from 
the GNU project). Some pre-processing tasks described in Sect. 6.5 may 
also be performed before or after parsing.  

Indexing: This step produces an inverted index, which can be done using 
any of the methods described in Sect. 6.6. For retrieval efficiency, a search 
engine may build multiple inverted indices. For example, since the titles 
and anchor texts are often very accurate descriptions of the pages, a small 
inverted index may be constructed based on the terms appeared in them 
alone. Note that here the anchor text is for indexing the page that its link 
points to, not the page containing it. A full index is then built based on all 
the text in each page, including anchor texts (a piece of anchor text is 
indexed both for the page that contains it, and for the page that its link 
points to). In searching, the algorithm may search in the small index first 
and then the full index. If a sufficient number of relevant pages are found 
in the small index, the system may not search in the full index.  

Searching and Ranking: Given a user query, searching involves the 
following steps: 

1. pre-processing the query terms using some of the methods described in 
Sect. 6.5, e.g., stopword removal and stemming; 

2. finding pages that contain all (or most of) the query terms in the 
inverted index; 

3. ranking the pages and returning them to the user.  

The ranking algorithm is the heart of a search engine. However, little is 
known about the algorithms used in commercial search engines. We give a 
general description based on the algorithm in the early Google system.  

As we discussed earlier, traditional IR uses cosine similarity values or 
any other related measures to rank documents. These measures only 
consider the content of each document. For the Web, such content based 
methods are not sufficient. The problem is that on the Web there are too 
many relevant documents for almost any query. For example, using “web 
mining” as the query, the search engine Google estimated that there were 
46,500,000 relevant pages. Clearly, there is no way that any user will look 
at this huge number of pages. Therefore, the issue is how to rank the pages 
and present the user the “best” pages at the top.  

An important ranking factor on the Web is the quality of the pages, 
which was hardly studied in traditional IR because most documents used in 
IR evaluations are from reliable sources. However, on the Web, anyone 
can publish almost anything, so there is no quality control. Although a 
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page may be 100% relevant, it may not be a quality page due to several 
reasons. For example, the author may not be an expert of the query topic, 
the information given in the page may be unreliable or biased, etc.  

However, the Web does have an important mechanism, the hyperlinks 
(links), that can be used to assess the quality of each page to some extent. 
A link from page x to page y is an implicit conveyance of authority of page 
x to page y. That is, the author of page x believes that page y contains 
quality or authoritative information. One can also regard the fact that 
page x points to page y as a vote of page x for page y. This democratic 
nature of the Web can be exploited to assess the quality of each page. In 
general, the more votes a page receives, the more likely it is a quality 
page. The actual algorithms are more involved than simply counting the 
number of votes or links pointing to a page (called in-links). We will 
describe the algorithms in the next chapter. PageRank is the most well 
known such algorithm (see Sect. 7.3). It makes use of the link structure of 
Web pages to compute a quality or reputation score for each page. Thus, a 
Web page can be evaluated based on both its content factors and its 
reputation. Content-based evaluation depends on two kinds of information:   

Occurrence Type: There are several types of occurrences of query terms 
in a page:  

Title: a query term occurs in the title field of the page.  
Anchor text: a query term occurs in the anchor text of a page pointing 

to the current page being evaluated.  
URL: a query term occurs in the URL of the page. Many URL addresses 

contain some descriptions of the page. For example, a page on Web 
mining may have the URL http://www.domain.edu/Web-mining.html.  

Body: a query term occurs in the body field of the page. In this case, the 
prominence of each term is considered. Prominence means whether 
the term is emphasized in the text with a large font, or bold and/or 
italic tags. Different prominence levels can be used in a system. Note 
that anchor texts in the page can be treated as plain texts for the 
evaluation of the page.  

Count: The number of occurrences of a term of each type. For example, a 
query term may appear in the title field of the page 2 times. Then, the 
title count for the term is 2.  

Position: This is the position of each term in each type of occurrence. The 
information is used in proximity evaluation involving multiple query 
terms. Query terms that are near to each other are better than those that 
are far apart. Furthermore, query terms appearing in the page in the 
same sequence as they are in the query are also better.  
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For the computation of the content based score (also called the IR score), 
each occurrence type is given an associated weight. All type weights form 
a fixed vector. Each raw term count is converted to a count weight, and all 
count weights also form a vector.  

The quality or reputation of a page is usually computed based on the 
link structure of Web pages, which we will study in Chap. 7. Here, we 
assume that a reputation score has been computed for each page.  

Let us now look at two kinds of queries, single word queries and 
multi-word queries. A single word query is the simplest case with only a 
single term. After obtaining the pages containing the term from the 
inverted index, we compute the dot product of the type weight vector and 
the count weight vector of each page, which gives us the IR score of the 
page. The IR score of each page is then combined with its reputation 
score to produce the final score of the page.   

For a multi-word query, the situation is similar, but more complex since 
there is now the issue of considering term proximity and ordering. Let us 
simplify the problem by ignoring the term ordering in the page. Clearly, 
terms that occur close to each other in a page should be weighted higher 
than those that occur far apart. Thus multiple occurrences of terms need to 
be matched so that nearby terms can be identified. For every matched set, a 
proximity value is calculated, which is based on how far apart the terms 
are in the page. Counts are also computed for every type and proximity. 
Each type and proximity pair has a type-proximity-weight. The counts are 
converted into count-weights. The dot product of the count-weights and 
the type-proximity-weights gives an IR score to the page. Term ordering 
can be considered similarly and included in the IR score, which is then 
combined with the page reputation score to produce the final rank score.  

6.9 Meta-Search and Combining Multiple Rankings 

In the last section, we described how an individual search engine works. 
We now discuss how several search engines can be used together to 
produce a meta-search engine, which is a search system that does not 
have its own database of Web pages. Instead, it answers the user query by 
combining the results of some other search engines which normally have 
their databases of Web pages. Fig. 6.12 shows a meta-search architecture. 

After receiving a query from the user through the search interface, the 
meta-search engine submits the query to the underlying search engines 
(called its component search engines). The returned results from all these 
search engines are then combined (fused or merged) and sent to the user.   
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A meta-search engine has some intuitive appeals. First of all, it 
increases the search coverage of the Web. The Web is a huge information 
source, and each individual search engine may only cover a small portion 
of it. If we use only one search engine, we will never see those relevant 
pages that are not covered by the search engine. 

 
Fig. 6.12. A meta-search architecture 

Meta-search may also improve the search effectiveness. Each component 
search engine has its ranking algorithm to rank relevant pages, which is 
often biased, i.e., it works well for certain types of pages or queries but not 
for others. By combining the results from multiple search engines, their 
biases can be reduced and thus the search precision can be improved.  

The key operation in meta-search is to combine the ranked results from 
the component search engines to produce a single ranking. The first task is 
to identify whether two pages from different search engines are the same, 
which facilitates combination and duplicate removal. Without 
downloading the full pages (which is too time consuming), this process is 
not simple due to aliases, symbolic links, redirections, etc. Typically, 
several heuristics are used for the purpose, e.g., comparing domain names 
of URLs, titles of the pages, etc.  

The second task is to combine the ranked results from individual search 
engines to produce a single ranking, i.e., to fuse individual rankings. There 
are two main classes of meta-search combination (or fusion) algorithms: 
ones that use similarity scores returned by each component system and 
ones that do not. Some search engines return a similarity score (with the 
query) for each returned page, which can be used to produce a better 
combined ranking. We discuss these two classes of algorithms below.  

It is worth noting that the first class of algorithms can also be used to 
combine scores from different similarity functions in a single IR system or 
in a single search engine. Indeed, the algorithms below were originally 
proposed for this purpose. It is likely that search engines already use some 
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such techniques (or their variations) within their ranking mechanisms 
because a ranking algorithm needs to consider multiple factors. 

6.9.1 Combination Using Similarity Scores 
 

Let the set of candidate documents to be ranked be D = {d1, d2, …, dN}. 
There are k underlying systems (component search engines or ranking 
techniques). The ranking from system or technique i gives document dj the 
similarity score, sij. Some popular and simple combination methods are 
defined by Fox and Shaw in [22].  

CombMIN: The combined similarity score for each document dj is the 
minimum of the similarities from all underlying search engine systems: 

CombMIN(dj) = min(s1j, s2j, …, skj). (33) 

CombMAX: The combined similarity score for each document dj is the 
maximum of the similarities from all underlying search engine systems: 

CombMAX(dj) = max(s1j, s2j, …, skj). (34) 

CombSUM: The combined similarity score for each document dj is the 
sum of the similarities from all underlying search engine systems. 

.)(CombSUM
1 


k

i ijj sd  (35) 

CombANZ: It is defined as  

,
)(CombSUM

)(CombANZ
j

j
j r

d
d   (36) 

where rj is the number of non-zero similarities, or the number of 
systems that retrieved dj.  

CombMNZ: It is defined as 

jjj rdd  )(CombSUM)(CombMNZ  (37) 

where rj is the number of non-zero similarities, or the number of 
systems that retrieved dj.  

It is a common practice to normalize the similarity scores from each 
ranking using the maximum score before combination. Researchers have 
shown that, in general, CombSUM and CombMNZ perform better. 
CombMNZ outperforms CombSUM slightly in most cases.  
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6.9.2 Combination Using Rank Positions 

We now discuss some popular rank combination methods that use only 
rank positions of each search engine. In fact, there is a field of study called 
the social choice theory [33] that studies voting algorithms as techniques 
to make group or social decisions (choices). The algorithms discussed 
below are based on voting in elections.  

In 1770 Jean-Charles de Borda proposed “election by order of merit”.  
Each voter announces a (linear) preference order on the candidates. For 
each voter, the top candidate receives n points (if there are n candidates in 
the election), the second candidate receives n1 points, and so on. The 
points from all voters are summed up to give the final points for each 
candidate. If there are candidates left unranked by a voter, the remaining 
points are divided evenly among the unranked candidates. The candidate 
with the most points wins. This method is called the Borda ranking. 

An alternative method was proposed by Marquis de Condorcet in 1785. 
The Condorcet ranking algorithm is a majoritarian method where the 
winner of the election is the candidate(s) that beats each of the other 
candidates in a pair-wise comparison. If a candidate is not ranked by a 
voter, the candidate loses to all other ranked candidates. All unranked 
candidates tie with one another. 

Yet another simple method, called the reciprocal ranking, sums one 
over the rank of each candidate across all voters. For each voter, the top 
candidate has the score of 1, the second ranked candidate has the score of 
1/2, and the third ranked candidate has the score of 1/3 and so on. If a 
candidate is not ranked by a voter, it is skipped in the computation for this 
voter. The candidates are then ranked according to their final total scores. 
This rank strategy gives much higher weight than Borda ranking to 
candidates that are near the top of a list. 

Example 13: We use an example in the context of meta-search to illustrate 
the working of these methods. Consider a meta-search system with five 
underlying search engine systems, which have ranked four candidate 
documents or pages, a, b, c, and d as follows:  

system 1:  a, b, c, d 
system 2: b, a, d, c 
system 3: c, b, a, d 
system 4: c, b, d 
system 5: c, b 

Let us denote the score of each candidate x by Score(x).  

Borda Ranking: The score for each page is as follows:  
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Score(a) = 4 + 3 + 2 + 1 + 1.5 = 11.5 
Score(b) = 3 + 4 + 3 + 3 + 3 = 16 
Score(c) = 2 + 1 + 4 + 4 + 4 = 15 
Score(d) = 1 + 2 + 1 + 2 + 1.5 = 7.5 

Thus the final ranking is: b, c, a, d. 

Condorcet Ranking: We first build an nn matrix for all pair-wise 
comparisons, where n is the number of pages. Each non-diagonal entry (i, 
j) of the matrix shows the number of wins, loses, and ties of page i over 
page j, respectively. For our example, the matrix is as follows:  

 a b c d 
a - 1:4:0 2:3:0 3:1:1 
b 4:1:0 - 2:3:0 5:0:0 
c 3:2:0 3:2:0 - 4:1:0 
d 1:3:1 0:5:0 1:4:0 - 

Fig. 6.13. The pair-wise comparison matrix for the four candidate pages 

After the matrix is constructed, pair-wise winners are determined, which 
produces a win, lose and tie table. Each pair in Fig. 6.13 is compared, and 
the winner receives one point in its “win” column and the loser receives 
one point in its “lose” column. For a pair-wise tie, both receive one point 
in the “tie” column. For example, for page a, it only beats d because a is 
ranked ahead of d three times out of 5 ranks (Fig. 6.13). The win, lose and 
tie table for Fig. 6.13 is given in Fig. 6.14 below. 

 win lose tie 
a 1 2 0 
b 2 1 0 
c 3 0 0 
d 0 3 0 

Fig. 6.14. The win, lose and tie table for the comparison matrix in Fig. 6.13 

To rank the pages, we use their win and lose values. If the number of 
wins that a page i has is higher than another page j, then i wins over j. If 
their win property is equal, we consider their lose scores, and the page 
which has a lower lose score wins. If both their win and lose scores are the 
same, then the pages are tied. The final ranks of the tied pages are 
randomly assigned. Clearly c is the Condorcet winner in our example. The 
final ranking is: c, b, a, d.  
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Reciprocal Ranking:  

Score(a) = 1 + 1/2 + 1/3 = 1.83 
Score(b) = 1/2 + 1 + 1/2 + 1/2 + 1/2 = 3 
Score(c) = 1/3 + 1/4 + 1 + 1 + 1 = 3.55 
Score(d) = 1/4 + 1/3 + 1/4 + 1/3= 1.17 

The final ranking is: c, b, a, d.  ▀ 

6.10 Web Spamming 

Web search has become very important in the information age. Increased 
exposure of pages on the Web can result in significant financial gains 
and/or fames for organizations and individuals. The rank positions of Web 
pages in search are perhaps the single most important indicator of such 
exposures of pages. If a user searches for information that is relevant to 
your pages but your pages are ranked low by search engines, then the user 
may not see the pages because one seldom clicks a large number of 
returned pages. This is not acceptable for businesses, organizations, and 
even individuals. Thus, it has become very important to understand search 
engine ranking algorithms and to present the information in one’s pages in 
such a way that the pages will be ranked high when terms related to the 
contents of the pages are searched. Unfortunately, this also results in 
spamming, which refers to human activities that deliberately mislead 
search engines to rank some pages higher than they deserve.  

There is a gray area between spamming and legitimate page optimization. 
It is difficult to define precisely what are justifiable and unjustifiable 
actions aimed at boosting the importance and consequently the rank 
positions of one’s pages. 

Assume that, given a user query, each page on the Web can be assigned 
an information value. All the pages are then ranked according to their 
information values. Spamming refers to actions that do not increase the 
information value of a page, but dramatically increase its rank position by 
misleading search algorithms to rank it high. Due to the fact that search 
engine algorithms do not understand the content of each page, they use 
syntactic or surface features to assess the information value of the page. 
Spammers exploit this weakness to boost the ranks of their pages.  

Spamming is annoying for users because it makes it harder to find truly 
useful information and leads to frustrating search experiences. Spamming 
is also bad for search engines because spam pages consume crawling 
bandwidth, pollute the Web, and distort search ranking. 
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There are in fact many companies that are in the business of helping 
others improve their page ranking. These companies are called Search 
Engine Optimization (SEO) companies, and their businesses are thriving. 
Some SEO activities are ethical and some, which generate spam, are not. 

As we mentioned earlier, search algorithms consider both content based 
factors and reputation based factors in scoring each page. In this section, 
we briefly describe some spam methods that exploit these factors. The 
section is mainly based on [28] by Gyongyi and Garcia-Molina.  

6.10.1  Content Spamming  

Most search engines use variations of TF-IDF based measures to assess the 
relevance of a page to a user query. Content-based spamming methods 
basically tailor the contents of the text fields in HTML pages to make 
spam pages more relevant to some queries. Since TF-IDF is computed 
based on terms, content spamming is also called term spamming. Term 
spamming can be placed in any text field:  

Title: Since search engines usually give higher weights to terms in the 
title of a page due to the importance of the title to a page, it is thus 
common to spam the title.  

Meta-Tags: The HTML meta-tags in the page header enable the owner 
to include some meta information of the page, e.g., author, abstract, keywords, 
content language, etc. However, meta-tags are very heavily spammed. Search 
engines now give terms within these tags very low weights or completely 
ignore their contents.   

Body: Clearly spam terms can be placed within the page body to boost 
the page ranking.    

Anchor Text: As we discussed in Sect. 6.8, the anchor text of a 
hyperlink is considered very important by search engines. It is indexed for 
the page containing it and also for the page that it points to, so anchor text 
spam affects the ranking of both pages.   

URL: Some search engines break down the URL of a page into terms 
and consider them in ranking. Thus, spammers can include spam terms in 
the URL. For example, a URL may be http://www.xxx.com/cheap-MP3-
player-case-battery.html 

There are two main term spam techniques, which simply create synthetic 
contents containing spam terms.  

1. Repeating some important terms: This method increases the TF 
scores of the repeated terms in a document and thus increases the 
relevance of the document to these terms. Since plain repetition can be 



6.10 Web Spamming      259 

easily detected by search engines, the spam terms can be weaven into 
some sentences, which may be copied from some other sources. That is, 
the spam terms are randomly placed in these sentences. For example, if 
a spammer wants to repeat the word “mining”, it may add it randomly in 
an unrelated (or related) sentence, e.g., “the picture mining quality of 
this camera mining is amazing,” instead of repeating it many times 
consecutively (next to each other), which is easy to detect. 

2. Dumping of many unrelated terms: This method is used to make the 
page relevant to a large number of queries. In order to create the spam 
content quickly, the spammer may simply copy sentences from related 
pages on the Web and glue them together.  

Advertisers may also take advantage of some frequently searched 
terms on the Web and put them in the target pages so that when users 
search for the frequently search terms, the target pages become relevant. 
For example, to advertise cruise liners or cruise holiday packages, 
spammers put “Tom Cruise” in their advertising pages as “Tom Cruise” 
is a popular film actor in USA and is searched very frequently.  

6.10.2  Link Spamming  

Since hyperlinks play an important role in determining the reputation score 
of a page, spammers also spam on hyperlinks.  

Out-Link Spamming: It is quite easy to add out-links in one’s pages 
pointing to some authoritative pages to boost the hub cores of one’s 
pages. A page is a hub page if it points to many authoritative (or quality) 
pages. The concepts of authority and hub will be formally studied in the 
next chapter (Sect. 7.4). To create massive out-links, spammers may use a 
technique called directory cloning. There are many directories, e.g., Yahoo!, 
DMOZ Open Directory, on the Web which contain a large number of links 
to other Web pages that are organized according to some pre-specified 
topic hierarchies. Spammers simply replicate a large portion of a directory 
in the spam page to create a massive out-link structure quickly.  

In-Link Spamming: In-link spamming is harder to achieve because it is 
not easy to add hyperlinks on the Web pages of others. Spammers typically 
use one or more of the following techniques.  

1. Creating a honey pot: If a page wants to have a high reputation/quality 
score, it needs quality pages pointing to it (see Sect. 7.3 in the next 
chapter). This method basically tries to create some important pages that 
contain links to target spam pages. For example, the spammer can create 
a set of pages that contains some very useful information, e.g., glossary 
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of Web mining terms, or Java FAQ and help pages. The honey pots 
attract people pointing to them because they contain useful information, 
and consequently have high reputation scores (high quality pages). Such 
honey pots contain (hidden) links to target spam pages that the spammers 
want to promote. This strategy can significantly boost the spam pages.  

2. Adding links to Web directories: Many Web directories allow the user to 
submit URLs. Spammers can submit the URLs of spam pages at multiple 
directory sites. Since directory pages often have high quality (or authority) 
and hub scores, they can boost reputation scores of spam pages 
significantly.  

3. Posting links to the user-generated content (reviews, forum discussions, 
blogs, etc): There are numerous sites on the Web that allow the user to 
freely post messages, which are called the user-generated content. 
Spammers can add links pointing to their pages to the seemly innocent 
messages that they post.   

4. Participating in link exchange: In this case, many spammers form a 
group and set up a link exchange scheme so that their sites point to each 
other in order to promote the pages of all the sites.  

5. Creating own spam farm: In this case, the spammer needs to control a 
large number of sites. Then, any link structure can be created to boost 
the ranking of target spam pages. 

6.10.3  Hiding Techniques  

In most situations, spammer wants to conceal or to hide the spamming 
sentences, terms and links so that the Web users do not see them. They can 
use a number of techniques. 

Content Hiding: Spam items are made invisible. One simple method is to 
make the spam terms the same color as the background color. For 
example, one may use the following for hiding, 

<body background = white> 
 <font color = white> spam items</font> 
 … 
 </body> 

To hide a hyperlink, one can also use a very small and blank image, e.g.,  
<a href = target.html”><img src=”blank.gif”> </a> 

A spammer can also use scripts to hide some of the visual elements on 
the page, for instance, by setting the visible HTML style attribute to false.  
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Cloaking: Spam Web servers return a HTML document to the user and a 
different document to a Web crawler. In this way, the spammer can present 
the Web user with the intended content and send a spam page to the search 
engine for indexing.  

Spam Web servers can identify Web crawlers in one of the two ways: 

1. It maintains a list of IP addresses of search engines and identifies search 
engine crawlers by matching IP addresses.  

2. It identifies Web browsers based on the user–agent field in the HTTP 
request message. For instance, the user–agent name of the following HTTP 
request message is the one used by the Microsoft Internet Explorer 6 browser: 

GET /pub/WWW/TheProject.html HTTP/1.1 
Host: www.w3.org 
User–Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)  

User–agent names are not standard, so it is up to the requesting application 
what to include in the corresponding message field. However, search 
engine crawlers usually identify themselves by names distinct from normal 
Web browsers in order to allow well-intended and legitimate optimization. 
For example, some sites serve search engines a version of their pages that 
is free of navigation links and advertisements. 

Redirection: Spammers can also hide a spammed page by automatically 
redirecting the browser to another URL as soon as the page is loaded. 
Thus, the spammed page is given to the search engine for indexing (which 
the user will never see), and the target page is presented to the Web user 
through redirection. One way to achieve redirection is to use the “refresh” 
meta-tag, and set the refresh time to zero. Another way is to use scripts.  

6.10.4 Combating Spam 

Some spamming activities, like redirection using refresh meta-tag, are easy 
to detect. However, redirections by using scripts are hard to identify because 
search engine crawlers do not execute scripts. To prevent cloaking, a 
search engine crawler may identify itself as a regular Web browser.  

Using the terms of anchor texts of links that point to a page to index the 
page is able to fight content spam to some extent because anchor texts 
from other pages are more trustworthy. This method was originally proposed 
to index pages that were not fetched by search engine crawlers [40]. It is 
now a general technique used by search engines as we have seen in Sect. 
6.8, i.e., search engines give terms in such anchor texts higher weights. In 
fact, the terms near a piece of anchor text also offer good editorial 
judgment about the target page.  
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The PageRank algorithm [10] is able to combat content spam to a certain 
degree as it is based on links that point to the target pages, and the pages 
that point to the target pages need to be reputable or with high PageRank 
scores as well (see Chap. 7). However, it does not deal with the in-link 
based spamming methods discussed above.  

Instead of combating each individual type of spam, a method (called 
TrustRank) is proposed in [29] to combat all kinds of spamming methods 
at the same time. It takes advantage of the approximate isolation of 
reputable and non-spam pages, i.e., reputable Web pages seldom pointing 
to spam pages, and spam pages often link to many reputable pages (in an 
attempt to improve their hub scores). Link analysis methods are used to 
separate reputable pages and any form of spam without dealing with each 
spam technique individually. 

Combating spam can also be seen as a classification problem, i.e., 
predicting whether a page is a spam page or not. One can use any supervised 
learning algorithm to train a spam classifier. The key issue is to design 
features used in learning. The following are some example features used in 
[44] to detect content spam. 

1. Number of words in the page: A spam page tends to contain more words 
than a non-spam page so as to cover a large number of popular words.  

2. Average word length: The mean word length for English prose is about 
5 letters. Average word length of synthetic content is often different.  

3. Number of words in the page title: Since search engines usually give 
extra weights to terms appearing in page titles, spammers often put 
many keywords in the titles of the spam pages. 

4. Fraction of visible content: Spam pages often hide spam terms by 
making them invisible to the user.  

Other features used include the amount of anchor text, compressibility, 
fraction of page drawn from globally popular words, independent n-gram 
likelihoods, conditional n-gram likelihoods, etc. Details can be found in 
[44]. Its spam detection classifier gave very good results. Testing on 2364 
spam pages and 14806 non-spam pages (17170 pages in total), the classifier 
was able to correctly identify 2,037 (86.2%) of the 2364 spam pages, while 
misidentifying only 526 spam and non-spam pages. 

Another interesting technique for fighting spam is to partition each Web 
page into different blocks using techniques discussed in Sect. 6.5. Each 
block is given an importance level automatically. To combat link spam, 
links in less important blocks are given lower transition probabilities to be 
used in the PageRank computation. The original PageRank algorithm 
assigns every link in a page an equal transition probability (see Sect. 7.3). 
The non-uniform probability assignment results in lower PageRank scores 
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for pages pointed to by links in less important blocks. This method is 
effective because in the link exchange scheme and the honey pot scheme, 
the spam links are usually placed in unimportant blocks of the page, e.g., at 
the bottom of the page. The technique may also be used to fight term spam 
in a similar way, i.e., giving terms in less important blocks much lower 
weights in rank score computation. This method is proposed in [11]. 

However, sophisticated spam is still hard to detect. Combating spam is 
an on-going process. Once search engines are able to detect certain types 
of spam, spammers invent more sophisticated spamming methods. 

Bibliographic Notes 

Information retrieval (IR) is a major research field. This chapter only gives 
a brief introduction to some commonly used models and techniques. There 
are several text books that have a comprehensive coverage of the field, 
e.g., those by Baeza-Yates and Ribeiro-Neto [5], Grossman and Frieder 
[26], Salton and McGill [53], van Rijsbergen (http://www.dcs.gla.ac.uk 
/Keith/Preface.html), Witten et al. [59], and Yu and Meng [67].  

A similar chapter in the book by Chakrabarti [14] also discusses many 
Web specific issues and has influenced the writing of this chapter. Below, 
we discuss some further readings related to Web search and mining.  

On index compression, Elias coding was introduced by Elias [20] and 
Golomb coding was introduced by Golomb [24]. Their applications to 
index compression was studied by several researchers, e.g., Witten et al. 
[59], Bell et al. [8], Moffat et al. [42], and Williams and Zobel [58]. 
Wikipedia is a great source of information on this topic as well.  

Latent semantic index (LSI) was introduced by Deerwester et al. [18], 
which uses the singular value decomposition technique (SVD) [25]. 
Additional information about LSI and/or SVD can be found in [9, 35, 67]. 
Telcordia Technologies, where LSI was developed, maintains a LSI page at 
http://lsi.research.telcordia.com/ with more references.  

On Web page pre-processing, the focus has been on identifying the main 
content blocks of each page because a typical Web page contains a large 
amount of noise, which can adversely affect the search or mining accuracy. 
Several researchers have attempted the task, e.g., Bar-Yossef et al. [7], Li 
et al. [37], Lin and Ho [38], Yi et al. [65], Debnath et al. [17], Gibson, et 
al. [23], Ramaswamy et al. [49], Song et al. [56], Yin and Lee [66], etc.  

Although search is probably the biggest application on the Web, little is 
known about the actual implementation of a search engine except some 
principal ideas. Sect. 6.8 is largely based on the Google paper by Brin and 
Page [10], and bits and pieces in various other sources. Over the years, a 
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large number of researchers have studied various aspects of Web search, 
e.g., [6, 13, 15, 30, 32, 36, 48, 50, 57, 63, 64, 70].  

For metasearch, the combination methods in Sect. 6.9.1 were proposed 
by Fox and Shaw [22]. Aslam and Montague [3], Montague and Aslam 
[43], and Nuray and Can [45] provide good descriptions of Borda ranking 
and Condorcet ranking. In addition to ranking, Meng et al. [41] discussed 
many other metasearch issues.  

On Web spam, Gyongyi and Garcia-Molina gave an excellent taxonomy 
of different types of spam [28], and the TrustRank algorithm is also due to 
them [29]. An improvement to TrustRank was proposed by Wu et al. [62]. 
General link spam detection was studied by Adali et al. [1], Amitay et al. [2], 
Baeza-Yates et al. [4], Gyongyi and Garcia-Molina [27], Wu and Davison 
[61], etc. Content spam detection was studied by Fetterly et al. [21], and 
Ntoulas et al. [44]. A cloaking detection algorithm is reported in [60].  
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7 Social Network Analysis 

Early search engines retrieved relevant pages for the user based primarily 
on the content similarity of the user query and the indexed pages of the 
search engines. The retrieval and ranking algorithms were simply direct 
implementation of those from information retrieval. Starting from 1996, it 
became clear that content similarity alone was no longer sufficient for 
search due to two reasons. First, the number of Web pages grew rapidly 
during the middle to late 1990s. Given any query, the number of relevant 
pages can be huge. For example, given the search query “classification 
technique”, the Google search engine estimates that there are about 10 
million relevant pages. This abundance of information causes a major 
problem for ranking, i.e., how to choose only 10–30 pages and rank them 
suitably to present to the user. Second, content similarity methods are easily 
spammed. A page owner can repeat some important words and add many 
remotely related words in his/her pages to boost the rankings of the pages 
and/or to make the pages relevant to a large number of possible queries.  

Starting from around 1996, researchers in academia and search engine 
companies began to work on the problem. They resort to hyperlinks. 
Unlike text documents used in traditional information retrieval, which are 
often considered independent of one another (i.e., with no explicit 
relationships or links among them except in citation analysis), Web pages 
are connected through hyperlinks, which carry important information. 
Some hyperlinks are used to organize a large amount of information at the 
same Web site, and thus only point to pages in the same site. Other 
hyperlinks point to pages in other Web sites. Such out-going hyperlinks 
often indicate an implicit conveyance of authority to the pages being 
pointed to. Therefore, those pages that are pointed to by many other pages 
are likely to contain authoritative or quality information. Such linkages 
should obviously be used in page evaluation and ranking in search engines. 

During the period of 1997-1998, two most influential hyperlink based 
search algorithms PageRank [9, 52] and HITS [37] were designed.  
PageRank is the algorithm that powers the successful search engine Google. 
Both PageRank and HITS were originated from social network analysis 
[60]. They both exploit the hyperlink structure of the Web to rank pages 
according to their levels of “prestige” or “authority”. We will study these 

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_7, 
© Springer-Verlag Berlin Heidelberg 2011 
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algorithms in this chapter. We should also note that hyperlink-based page 
evaluation and ranking is not the only method used by search engines. As 
we discussed in Chap. 6, contents and many other factors are also considered 
in producing the final ranking presented to the user.  

Apart from search ranking, hyperlinks are also useful for finding Web 
communities. A Web community is a cluster of densely linked pages 
representing a group of people with a common interest. Beyond explicit 
hyperlinks on the Web, explicit or implicit links in other contexts are 
useful too, e.g., for discovering communities of named entities (e.g., 
people and organizations) in free text documents and for analyzing social 
phenomena in emails and friendship networks on social networking sites.   

7.1 Social Network Analysis 

Social network is the study of social entities (people in an organization, 
called actors), and their interactions and relationships. The interactions 
and relationships can be represented with a network or graph, where each 
vertex (or node) represents an actor and each link represents a relationship. 
From the network we can study the properties of its structure, and the role, 
position and prestige of each social actor. We can also find various kinds 
of sub-graphs, e.g., communities formed by groups of actors.  

Social network analysis is useful for the Web because the Web is 
essentially a virtual society, and thus a virtual social network, where each 
page can be regarded as a social actor and each hyperlink as a relationship. 
Many of the results from social networks can be adapted and extended for 
use in the Web context. The ideas from social network analysis are indeed 
instrumental to the success of Web search engines.   

In this section, we introduce two types of social network analysis, 
centrality and prestige, which are closely related to hyperlink analysis 
and search on the Web. Both centrality and prestige are measures of degree 
of prominence of an actor in a social network. We introduce them below. 
For a more complete treatment of the topics, please refer to the authoritative 
text by Wasserman and Faust [60]. 

7.1.1  Centrality 

Important or prominent actors are those that are linked or involved with 
other actors extensively. In the context of an organization, a person with 
extensive contacts (links) or communications with many other people in 
the organization is considered more important than a person with relatively 
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fewer contacts. The links can also be called ties. A central actor is one 
involved in many ties. Fig. 7.1 shows a simple example using an 
undirected graph. Each node in the social network is an actor and each link 
indicates that the actors on the two ends of the link communicate with each 
other. Intuitively, we see that the actor i is the most central actor because 
he/she can communicate with most other actors.  

 
Fig. 7.1. An example of a social network 

There are different types of links or involvements between actors. Thus, 
several types of centrality are defined on undirected and directed graphs. 
We discuss three popular types below.  

Degree Centrality  

Central actors are the most active actors that have most links or ties with 
other actors. Let the total number of actors in the network be n.  

Undirected Graph: In an undirected graph, the degree centrality of an 
actor i (denoted by CD(i)) is simply the node degree (the number of edges) 
of the actor node, denoted by d(i), normalized with the maximum degree, 
n1. 
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The value of this measure ranges between 0 and 1 as n1 is the maximum 
value of d(i).  

Directed Graph: In this case, we need to distinguish in-links of actor i 
(links pointing to i), and out-links (links pointing out from i). The degree 
centrality is defined based on only the out-degree (the number of out-links 
or edges), do(i). 
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Closeness Centrality 

This view of centrality is based on the closeness or distance. The basic 
idea is that an actor xi is central if it can easily interact with all other actors. 
That is, its distance to all other actors is short. Thus, we can use the shortest 
distance to compute this measure. Let the shortest distance from actor i to 
actor j be d(i, j) (measured as the number of links in a shortest path).  

Undirected Graph: The closeness centrality CC(i) of actor i is defined as  
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The value of this measure also ranges between 0 and 1 as n1 is the minimum 
value of the denominator, which is the sum of the shortest distances from i 
to all other actors. Note that this equation is only meaningful for a 
connected graph.  

Directed Graph: The same equation can be used for a directed graph. The 
distance computation needs to consider directions of links or edges.  

Betweenness Centrality 

If two non-adjacent actors j and k want to interact and actor i is on the path 
between j and k, then i may have some control over their interactions. 
Betweenness measures this control of i over other pairs of actors. Thus, if i 
is on the paths of many such interactions, then i is an important actor.  

Undirected Graph: Let pjk be the number of shortest paths between actors 
j and k. The betweenness of an actor i is defined as the number of shortest 
paths that pass i (denoted by pjk(i), j  i and k  i) normalized by the total 
number of shortest paths of all pairs of actors not including i: 
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Note that there may be multiple shortest paths between actor j and actor k. 
Some pass i and some do not. We assume that all paths are equally likely 
to be used. CB(i) has a minimum of 0, attained when i falls on no shortest 
path. Its maximum is (n1)(n2)/2, which is the number of pairs of actors 
not including i.  

In the network of Fig. 7.2, actor 1 is the most central actor. It lies on all 
15 shortest paths linking the other 6 actors. CB(1) has the maximum value 
of 15, and CB(2) = CB(3) = CB(4) = CB(5) = CB(6) = CB(7) = 0. 
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Fig. 7.2. An example of a network illustrating the betweenness centrality 

If we are to ensure that the value range is between 0 and 1, we can normalize 
it with (n1)(n2)/2, which is the maximum value of CB(i). The standardized 
betweenness of actor i is defined as  
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Unlike the closeness measure, the betweenness can be computed even if 
the graph is not connected.  

Directed Graph: The same equation can be used but must be multiplied 
by 2 because there are now (n1)(n2) pairs considering a path from j to k 
is different from a path from k to j. Likewise, pjk must consider paths from 
both directions.  

7.1.2  Prestige 

Prestige is a more refined measure of prominence of an actor than 
centrality as we will see below. We need to distinguish between ties sent 
(out-links) and ties received (in-links). A prestigious actor is defined as 
one who is object of extensive ties as a recipient. In other words, to 
compute the prestige of an actor, we only look at the ties (links) directed or 
pointed to the actor (in-links). Hence, the prestige cannot be computed 
unless the relation is directional or the graph is directed. The main 
difference between the concepts of centrality and prestige is that centrality 
focuses on out-links while prestige focuses on in-links. We define three 
prestige measures. The third prestige measure (i.e., rank prestige) forms 
the basis of most Web page link analysis algorithms, including PageRank 
and HITS.  
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Degree Prestige 

Based on the definition of the prestige, it is clear that an actor is 
prestigious if it receives many in-links or nominations. Thus, the simplest 
measure of prestige of an actor i (denoted by PD(i)) is its in-degree,  
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where dI(i) is the in-degree of i (the number of in-links of i) and n is the 
total number of actors in the network. As in the degree centrality, dividing 
by n – 1 standardizes the prestige value to the range from 0 and 1. The 
maximum prestige value is 1 when every other actor links to or chooses 
actor i.  

Proximity Prestige 

The degree index of prestige of an actor i only considers the actors that are 
adjacent to i. The proximity prestige generalizes it by considering both the 
actors directly and indirectly linked to actor i. That is, we consider every 
actor j that can reach i, i.e., there is a directed path from j to i.  

Let Ii be the set of actors that can reach actor i, which is also called the 
influence domain of actor i. The proximity is defined as closeness or 
distance of other actors to i. Let d(j, i) denote the shortest path distance 
from actor j to actor i. Each link has the unit distance. To compute the 
proximity prestige, we use the average distance, which is 
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where |Ii| is the size of the set Ii. If we look at the ratio or proportion of 
actors who can reach i to the average distance that these actors are from i, 
we obtain the proximity prestige, which has the value range of [0, 1]: 
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where |Ii|/(n1) is the proportion of actors that can reach actor i. In one 
extreme, every actor can reach actor i, which gives |Ii|/(n1) = 1. The 
denominator is 1 if every actor is adjacent to i. Then, PP(i) = 1. On the 
other extreme, no actor can reach actor i. Then |Ii| = 0, and PP(i) = 0.  
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Rank Prestige 

The above two prestige measures are based on in-degrees and distances. 
However, an important factor that has not been considered is the 
prominence of individual actors who do the “voting” or “choosing.” In the 
real world, a person i chosen by an important person is more prestigious 
than chosen by a less important person. For example, a company CEO 
voting for a person is much more important than a worker voting for the 
person. If one’s circle of influence is full of prestigious actors, then one’s 
own prestige is also high. Thus one’s prestige is affected by the ranks or 
statuses of the involved actors. Based on this intuition, the rank prestige 
PR(i) is defined as a linear combination of links that point to i:  

),(...)2()1()( 21 nPAPAPAiP RniRiRiR   (9) 

where Aji = 1 if j points to i, and 0 otherwise. This equation says that an 
actor’s rank prestige is a function of the ranks of the actors who vote or 
choose the actor, which makes perfect sense.  

Since we have n equations for n actors, we can write them in the matrix 
notation. We use P to represent the vector that contains all the rank 
prestige values, i.e., P = (PR(1), PR(2), …, PR(n))T (T means matrix 
transpose). P is represented as a column vector. We use matrix A (where 
Aij = 1 if i points to j, and 0 otherwise) to represent the adjacency matrix of 
the network or graph. As a notational convention, we use bold italic letters 
to represent matrices. We then have 

PAP T . (10) 

This equation is precisely the characteristic equation used for finding the 
eigensystem of the matrix AT. P is an eigenvector of AT.  

This equation and the idea behind it turn out to be very useful in Web 
search. Indeed, the most well known ranking algorithms for Web search, 
PageRank and HITS, are directly related to this equation. Sect. 7.3 and 7.4 
will focus on these two algorithms and describe how to solve the equation 
to obtain the prestige value of each actor (or each page on the Web).  

7.2 Co-Citation and Bibliographic Coupling 

Another area of research concerned with links is the citation analysis of 
scholarly publications. A scholarly publication usually cites related prior 
work to acknowledge the origins of some ideas in the publication and to 
compare the new proposal with existing work. Citation analysis is an area 
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of bibliometric research, which studies citations to establish the relationships 
between authors and their work.  

When a publication (also called a paper) cites another publication, a 
relationship is established between the publications. Citation analysis uses 
these relationships (links) to perform various types of analysis. A citation can 
represent many types of links, such as links between authors, publications, 
journals and conferences, and fields, or even between countries. We will 
discuss two specific types of citation analysis, co-citation and bibliographic 
coupling. The HITS algorithm of Sect. 7.4 is related to these two types of 
analysis.  

7.2.1 Co-Citation 

Co-citation is used to measure the similarity of two papers (or 
publications). If papers i and j are both cited by paper k, then they may be 
said to be related in some sense to each other, even though they do not 
directly cite each other. Fig. 7.3 shows that papers i and j are co-cited by 
paper k.  If papers i and j are cited together by many papers, it means that i 
and j have a strong relationship or similarity. The more papers they are 
cited by, the stronger their relationship is.  

 
Fig. 7.3. Paper i and paper j are co-cited by paper k 

Let L be the citation matrix. Each cell of the matrix is defined as 
follows: Lij = 1 if paper i cites paper j, and 0 otherwise. Co-citation 
(denoted by Cij) is a similarity measure defined as the number of papers 
that co-cite i and j, and is computed with 
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where n is the total number of papers. Cii is naturally the number of papers 
that cite i. A square matrix C can be formed with Cij, and it is called the co-
citation matrix. Co-citation is symmetric, Cij = Cji, and is commonly used 
as a similarity measure of two papers in clustering to group papers of 
similar topics together. 
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7.2.2 Bibliographic Coupling  

Bibliographic coupling operates on a similar principle, but in a way it is 
the mirror image of co-citation. Bibliographic coupling links papers that 
cite the same articles so that if papers i and j both cite paper k, they may be 
said to be related, even though they do not directly cite each other. The 
more papers they both cite, the stronger their similarity is. Fig. 7.4 shows 
both papers i and j citing (referencing) paper k. 

 
Fig. 7.4. Both paper i and paper j cite paper k 

We use Bij to represent the number of papers that are cited by both 
papers i and j: 
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Bii is naturally the number of references (in the reference list) of paper i. A 
square matrix B can be formed with Bij, and it is called the bibliographic 
coupling matrix. Bibliographic coupling is also symmetric and is 
regarded as a similarity measure of two papers in clustering. 

We will see later that two important types of pages on the Web, hubs 
and authorities, found by the HITS algorithm are directly related to co-
citation and bibliographic coupling matrices.  

7.3 PageRank 

The year 1998 was an important year for Web link analysis and Web 
search. Both the PageRank and the HITS algorithms were reported in that 
year. HITS was presented by Jon Kleinberg in January, 1998 at the Ninth 
Annual ACM-SIAM Symposium on Discrete Algorithms. PageRank was 
presented by Sergey Brin and Larry Page at the Seventh International World 
Wide Web Conference (WWW7) in April, 1998. Based on the algorithm, 
they built the search engine Google. The main ideas of PageRank and 
HITS are really quite similar. However, it is their dissimilarity that made a 
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huge difference as we will see later. Since that year, PageRank has 
emerged as the dominant link analysis model for Web search, partly due to 
its query-independent evaluation of Web pages and its ability to combat 
spamming, and partly due to Google’s business success. In this section, we 
focus on PageRank. In the next section, we discuss HITS. A detailed study 
of these algorithms can also be found in [40]. 

PageRank relies on the democratic nature of the Web by using its vast 
link structure as an indicator of an individual page's quality. In essence, 
PageRank interprets a hyperlink from page x to page y as a vote, by page x, 
for page y. However, PageRank looks at more than just the sheer number 
of votes or links that a page receives. It also analyzes the page that casts 
the vote. Votes casted by pages that are themselves “important” weigh 
more heavily and help to make other pages more “important.” This is 
exactly the idea of rank prestige in social networks (see Sect. 7.1.2).  

7.3.1 PageRank Algorithm 

PageRank is a static ranking of Web pages in the sense that a PageRank 
value is computed for each page off-line and it does not depend on search 
queries. Since PageRank is based on the measure of prestige in social 
networks, the PageRank value of each page can be regarded as its prestige. 
We now derive the PageRank formula. Let us first state some main 
concepts again in the Web context.  

In-links of page i: These are the hyperlinks that point to page i from other 
pages. Usually, hyperlinks from the same site are not considered. 

Out-links of page i: These are the hyperlinks that point out to other pages 
from page i. Usually, links to pages of the same site are not considered. 

From the perspective of prestige, we use the following to derive the 
PageRank algorithm.  

1. A hyperlink from a page pointing to another page is an implicit 
conveyance of authority to the target page. Thus, the more in-links that a 
page i receives, the more prestige the page i has.  

2. Pages that point to page i also have their own prestige scores. A page 
with a higher prestige score pointing to i is more important than a page 
with a lower prestige score pointing to i. In other words, a page is 
important if it is pointed to by other important pages.  

According to rank prestige in social networks, the importance of page i (i’s 
PageRank score) is determined by summing up the PageRank scores of all 
pages that point to i. Since a page may point to many other pages, its 
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prestige score should be shared among all the pages that it points to. 
Notice the difference from rank prestige, where the prestige score is not 
shared.  

To formulate the above ideas, we treat the Web as a directed graph G = 
(V, E), where V is the set of vertices or nodes, i.e., the set of all pages, and 
E is the set of directed edges in the graph, i.e., hyperlinks. Let the total 
number of pages on the Web be n (i.e., n = |V|). The PageRank score of the 
page i (denoted by P(i)) is defined by: 
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where Oj is the number of out-links of page j. Mathematically, we have a 
system of n linear equations (13) with n unknowns. We can use a matrix to 
represent all the equations. Let P be a n-dimensional column vector of 
PageRank values, i.e.,  

P = (P(1), P(2), …, P(n))T. 

Let A be the adjacency matrix of our graph with  
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We can write the system of n equations with (similar to Equation 10) 

PAP T . (15) 

This is the characteristic equation of the eigensystem, where the 
solution to P is an eigenvector with the corresponding eigenvalue of 1.  
Since this is a circular definition, an iterative algorithm is used to solve it. 
It turns out that if some conditions are satisfied (which will be described 
shortly), 1 is the largest eigenvalue and the PageRank vector P is the 
principal eigenvector. A well known mathematical technique called 
power iteration can be used to find P.  

However, the problem is that Equation (15) does not quite suffice 
because the Web graph does not meet the conditions. To introduce these 
conditions and the enhanced equation, let us derive the same Equation (15) 
based on the Markov chain [32].  

In the Markov chain model, each Web page or node in the Web graph is 
regarded as a state. A hyperlink is a transition, which leads from one state 
to another state with a probability. Thus, this framework models Web 
surfing as a stochastic process. It models a Web surfer randomly surfing 
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the Web as a state transition in the Markov chain. Recall that we used Oi to 
denote the number of out-links of a node i. Each transition probability is 
1/Oi if we assume the Web surfer will click the hyperlinks in the page i 
uniformly at random, the “back” button on the browser is not used and the 
surfer does not type in an URL. Let A be the state transition probability 
matrix, a square matrix of the following format, 
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Aij represents the transition probability that the surfer in state i (page i) 
will move to state j (page j). Aij is defined exactly as in Equation (14). 

Given an initial probability distribution vector that a surfer is at each 
state (or page) p0 = (p0(1), p0(2), …, p0(n))T (a column vector) and an nn 
transition probability matrix A, we have  
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Equation (17) is not quite true for some Web pages because they have 
no out-links. If the matrix A satisfies Equation (17), we say that A is the 
stochastic matrix of a Markov chain.  Let us assume A is a stochastic 
matrix for the time being and deal with it not being that later.  

In a Markov chain, a question of common interest is: Given the initial 
probability distribution p0 at the beginning, what is the probability that m 
steps/transitions later that the Markov chain will be at each state j? We can 
determine the probability that the system (or the random surfer) is in state 
j after 1 step (1 state transition) by using the following reasoning:  

,)()1()(
1

01 



n

i
ij ipAjp  (18) 

where Aij(1) is the probability of going from i to j in 1 transition, and Aij(1) 
= Aij. We can write it with a matrix: 
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0pAp T1 . (19) 

In general, the probability distribution after k steps/transitions is: 

1-kk pAp T . (20) 

Equation (20) looks very similar to Equation (15). We are getting there.  
By the Ergodic Theorem of Markov chains [32], a finite Markov chain 

defined by the stochastic transition matrix A has a unique stationary 
probability distribution if A is irreducible and aperiodic. These 
mathematical terms will be defined as we go along.  

The stationary probability distribution means that after a series of 
transitions pk will converge to a steady-state probability vector  regardless 
of the choice of the initial probability vector p0, i.e.,  

πp 


k
k
lim . (21) 

When we reach the steady-state, we have pk = pk+1 =, and thus  =AT. 
 is the principal eigenvector of AT with eigenvalue of 1. In PageRank,  
is used as the PageRank vector P. Thus, we again obtain Equation (15), 
which is re-produced here as Equation (22): 

PAP T . (22) 

 Using the stationary probability distribution  as the PageRank vector 
is reasonable and quite intuitive because it reflects the long-run 
probabilities that a random surfer will visit the pages. A page has a high 
prestige if the probability of visiting it is high.  

Now let us come back to the real Web context and see whether the 
above conditions are satisfied, i.e., whether A is a stochastic matrix and 
whether it is irreducible and aperiodic. In fact, none of them is satisfied. 
Hence, we need to extend the ideal-case Equation (22) to produce the 
“actual PageRank model”. Let us look at each condition below.  

First of all, A is not a stochastic (transition) matrix. A stochastic 
matrix is the transition matrix for a finite Markov chain whose entries in 
each row are non-negative real numbers and sum to 1 (i.e., Equation 17). 
This requires that every Web page must have at least one out-link. This is 
not true on the Web because many pages have no out-links, which are 
reflected in transition matrix A by some rows of complete 0’s. Such pages 
are called the dangling pages (nodes).  

Example 1: Fig. 7.5 shows an example of a hyperlink graph.  
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Fig. 7.5. An example of a hyperlink graph 

If we assume that the Web surfer will click the hyperlinks in a page 
uniformly at random, we have the following transition probability matrix: 















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
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

02121000
000000
313103100

000010
00021021
00021210

A . (23) 

For example A12 = A13 = 1/2 because node 1 has two out-links. We can see 
that A is not a stochstic matrix because the fifth row is all 0’s, i.e., page 5 
is a dangling page.  ▀ 

We can fix this problem in several ways in order to convert A to a 
stochastic transition matrix. We describe only two ways here:  

1. Remove those pages with no out-links from the system during the 
PageRank computation as these pages do not affect the ranking of any 
other page directly. Out-links from other pages pointing to these pages 
are also removed. After PageRanks are computed, these pages and 
hyperlinks pointing to them can be added in. Their PageRanks are easy 
to calculate based on Equation (22). Note that the transition probabilities 
of those pages with removed links will be slightly affected but not 
significantly. This method is suggested in [9].  

2. Add a complete set of outgoing links from each such page i to all the 
pages on the Web. Thus the transition probability of going from i to 
every page is 1/n assuming uniform probability distribution. That is, we 
replace each row containing all 0’s with e/n, where e is n-dimensional 
vector of all 1’s.  

If we use the second method to make A a stochastic matrix by adding a 
link from page 5 to every page, we obtain 

3 4 

6 

1 

2 

5 
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
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(24) 

Below, we assume that either one of the above is done to make A a 
stochastic matrix.  

Second, A is not irreducible. Irreducible means that the Web graph G is 
strongly connected. 

Definition (strongly connected): A directed graph G = (V, E) is strongly 

connected if and only if, for each pair of nodes u, v ∈ V, there is a path 
from u to v.  

 A general Web graph represented by A is not irreducible because for 
some pair of nodes u and v, there is no path from u to v. For example, in 
Fig. 7.5, there is no directed path from node 3 to node 4. The adjustment in 
Equation (24) is not enough to ensure irreducibility. That is, in A , there is 
still no directed path from node 3 to node 4. This problem and the next 
problem can be dealt with using a single strategy (to be described shortly). 

Finally, A is not aperiodic. A state i in a Markov chain being periodic 
means that there exists a directed cycle that the chain has to traverse. 

Definition (aperiodic): A state i is periodic with period k > 1 if k is the 
smallest number such that all paths leading from state i back to state i 
have a length that is a multiple of k. If a state is not periodic (i.e., k = 1), 
it is aperiodic. A Markov chain is aperiodic if all states are aperiodic.  

Example 2: Fig. 7.6 shows a periodic Markov chain with k = 3. The 
transition matrix is given on the left. Each state in this chain has a period 
of 3. For example, if we start from state 1, to come back to state 1 the only 
path is 1-2-3-1 for some number of times, say h. Thus any return to state 1 
will take 3h transitions. In the Web, there could be many such cases.  ▀ 

 
Fig. 7.6. A periodic Markov chain with k = 3.   
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It is easy to deal with the above two problems with a single strategy.  

 We add a link from each page to every page and give each link a small 
transition probability controlled by a parameter d.  

The augmented transition matrix becomes irreducible because it is clearly 
strongly connected. It is also aperiodic because the situation in Fig. 7.6 no 
longer exists as we now have paths of all possible lengths from state i back 
to state i. That is, the random surfer does not have to traverse a fixed cycle 
for any state. After this augmentation, we obtain an improved PageRank 
model. In this model, at a page, the random surfer has two options:  

1. With probability d, he randomly chooses an out-link to follow. 
2. With probability 1d, he jumps to a random page without a link.  

Equation (25) gives the improved model, 

PAEP 





  Td

n
d )1(  (25) 

where E is eeT (e is a column vector of all 1’s) and thus E is a nn square 
matrix of all 1’s. 1/n is the probability of jumping to a particular page. n is 
the total number of nodes in the Web graph. Note that Equation (25) 
assumes that A has already been made a stochastic matrix.  

Example 3: If we follow our example in Fig. 7.5 and Equation (24) (we 
use A for A here), the augmented transition matrix is  
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(26) 

 
 
▀ 

(1d)E/n + dAT is a stochastic matrix (but transposed). It is also 
irreducible and aperiodic as we discussed above. Here we use d = 0.9.  

If we scale Equation (25) so that eTP = n, we obtain 

PAeP Tdd  )1( . (27) 

Before scaling, we have eTP = 1 (i.e., P(1) + P(2) + … + P(n) = 1 if we 
recall that P is the stationary probability vector  of the Markov chain). 
The scaling is equivalent to multiplying n on both sides of Equation (25).  
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This gives us the PageRank formula for each page i as follows:  


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which is equivalent to the formula given in the PageRank papers [9, 52]: 
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The parameter d is called the damping factor which can be set to between 
0 and 1. d = 0.85 is used in [9, 52].  

The computation of PageRank values of the Web pages can be done 
using the well known power iteration method [31], which produces the 
principal eigenvector with the eigenvalue of 1. The algorithm is simple, 
and is given in Fig. 7.7. One can start with any initial assignments of 
PageRank values. The iteration ends when the PageRank values do not 
change much or converge. In Fig. 7.7, the iteration ends after the 1-norm 
of the residual vector is less than a pre-specified threshold . Note that the 
1-norm for a vector is simply the sum of all the components.  

PageRank-Iterate(G) 
P0  e/n 
k  1 
repeat 

;)1( 1-k
T

k dd PAeP   
k  k + 1; 

until ||Pk – Pk-1||1 <  
return Pk 

Fig. 7.7. The power iteration method for PageRank 

Since we are only interested in the ranking of the pages, the actual 
convergence may not be necessary. Thus, fewer iterations are needed. In 
[9], it is reported that on a database of 322 million links the algorithm 
converges to an acceptable tolerance in roughly 52 iterations.  

7.3.2 Strengths and Weaknesses of PageRank 

The main advantage of PageRank is its ability to fight spam. A page is 
important if the pages pointing to it are important. Since it is not easy for 
Web page owner to add in-links into his/her page from other important 
pages, it is thus not easy to influence PageRank. Nevertheless, there are 
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reported ways to influence PageRank. Recognizing and fighting spam is an 
important issue in Web search.  

Another major advantage of PageRank is that it is a global measure and 
is query independent. That is, the PageRank values of all the pages on the 
Web are computed and saved off-line rather than at the query time. At the 
query time, only a lookup is needed to find the value to be integrated with 
other strategies to rank the pages. It is thus very efficient at the query time. 
Both these two advantages contributed greatly to Google’s success.  

The main criticism is also the query-independence nature of PageRank. 
It could not distinguish between pages that are authoritative in general and 
pages that are authoritative on the query topic. Google may have other ways 
to deal with the problem, which we do not know due to the proprietary nature 
of the Google’s search algorithm. Another criticism is that PageRank does 
not consider time, which we discuss in the next sub-section.  

Finally, we note again that the link-based ranking is not the only strategy 
used in a search engine. Many other information retrieval methods, heuristics, 
and empirical parameters are also employed. However, their details are not 
published. We should also note that PageRank is not the only link-based 
static and global ranking algorithm. All major search engines, such as Bing 
and Yahoo!, have their own algorithms. Researchers also proposed other 
ranking methods that are not based on links, e.g., BrowseRank [45], which 
is based on a browsing graph built from the user search log. 

7.3.3 Timed PageRank and Recency Search 

The Web is a dynamic environment. It changes constantly. Quality pages 
in the past may not be quality pages now or in the future. Apart from pages 
that contain well-established facts and classics which do not change 
significantly over time, most contents on the Web change constantly. New 
pages or contents are added, and ideally, outdated contents and pages are 
deleted. However, in practice, many outdated pages and links are not 
deleted. This causes problems for Web search because such outdated pages 
may still be ranked high. Furthermore, the Web also has a huge number of 
time sensitive content pages, e.g., news articles, current events pages, and 
research publications. Thus, search has a temporal dimension. However, 
PageRank favors pages that have many in-links. To some extent, we can 
say that it favors older pages because they have existed on the Web for a 
long time and thus have accumulated many in-links. Then the problem is 
that new pages, which are of high quality and also give the up-to-date 
information, will not be assigned high scores and consequently will not be 
ranked high because they have fewer or no in-links. It is thus difficult for 
users to find the latest information on the Web based on PageRank. 
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Researchers have addressed this problem (called recency search). Here, 
we only describe a time-sensitive ranking algorithm called TS-Rank [43], 
which is an extension to PageRank. The idea of TS-Rank is simple. Instead 
of using a constant damping factor d as a parameter in PageRank, TS-Rank 
uses a function of time f(ti) (0 ≤ f(ti) ≤ 1) to achieve the time sensitive 
purpose, where ti is the difference between the current time and the time 
when page i was created or last updated. f(ti) returns a probability that the 
random surfer will follow an actual link on the page. 1  f(ti) returns the 
probability that the surfer will jump to a random page. Note that the same 
trick as in PageRank of adding artificial links to pages is still used. Thus, 
at a particular page i, the surfer can take one of the two actions:  

1. With probability f(ti), he randomly chooses an out-going link to follow. 
2. With probability 1  f(ti), he jumps to a random page without a link.  

The intuition here is that if the page was created or last updated a long 
time ago, then the pages that it points to are even older and are probably 
out of date. Then the 1  f(ti) value for the page should be large, which 
means that the surfer will have a high probability of jumping to a random 
page. If a page is new, then its 1  f(ti) value should be small, which means 
that the surfer will have a high probability to follow an out-link of the page 
and a small probability of jumping to a random page. Note that in this 
formulation, the age of the page being pointed to is irrelevant. With this 
augmentation, the non-matrix form of Equation (15) becomes:  
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where PT(i) is the TS-Rank value of page i, n is the total number of pages, 
and 1/n is the probability of going to a random page j. In the matrix form, 
Equation (30) is:  
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where F and H are both n  n square matrices defined by 
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It is easy to show that (F + H) is a stochastic transition matrix of the 
augmented Markov chain. (F + H) is also irreducible and aperiodic 
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because of the random jump links. Like PageRank, the Markov chain 
defined by (F + H) thus also has a unique stationary probability 
distribution regardless of the choice of the initial probability of the random 
surfer being at each state/page. The stationary probability distribution is 
the final TS-Rank (column) vector PT. To solve Equation (31), we still use 
the power iteration method. Note that if f(ti) is a constant between 0 and 1 
for every page, TS-Rank becomes PageRank. 

As for how to define f(ti), it is application dependent. For different 
applications, different functions may be needed depending on how the time 
affects the domains. For an application of publication research in [44], the 
following exponential decay function was used:  

.5.0)( 3
it

itf   (34) 

For a complete new page in a Web site, which has few or no in-links, 
we can use the average TS-Rank value of the past pages of the site, which 
represents the reputation of the site.  

7.4 HITS 

HITS stands for Hypertext Induced Topic Search [37]. Unlike PageRank 
which is a static ranking algorithm, HITS is search query dependent. When 
the user issues a search query, HITS first expands the list of relevant pages 
returned by a search engine and then produces two rankings of the 
expanded set of pages, authority ranking and hub ranking.  

An authority is a page with many in-links. The idea is that the page 
may have authoritative content on some topic and thus many people trust it 
and thus link to it. A hub is a page with many out-links. The page serves 
as an organizer of the information on a particular topic and points to many 
good authority pages on the topic. When a user comes to this hub page, 
he/she will find many useful links which take him/her to good content 
pages on the topic. Fig. 7.8 shows an authority page and a hub page.  

The key idea of HITS is that a good hub points to many good authorities 
and a good authority is pointed to by many good hubs. Thus, authorities 
and hubs have a mutual reinforcement relationship. Fig. 7.9 shows a set 
of densely linked authorities and hubs (a bipartite sub-graph).  

Below, we first present the HITS algorithm, and also make a connection 
between HITS and co-citation and bibliographic coupling in bibliometric 
research. We then discuss the strengths and weaknesses of HITS, and 
describe some possible ways to deal with its weaknesses.  
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Fig. 7.8. An authority page and a hub page 

 
Fig. 7.9. A densely linked set of authorities and hubs 

7.4.1 HITS Algorithm 

Before describing the HITS algorithm, let us first describe how HITS 
collects pages to be ranked. Given a broad search query, q, HITS collects a 
set of pages as follows: 

1. It sends the query q to a search engine system. It then collects t (t = 200 
is used in the HITS paper) highest ranked pages, which assume to be 
highly relevant to the search query. This set is called the root set W.  

2. It then grows W by including any page pointed to by a page in W and 
any page that points to a page in W. This gives a larger set called S. 
However, this set can be very large. The algorithm restricts its size by 
allowing each page in W to bring at most k pages (k = 50 is used in the 
HITS paper) pointing to it into S. The set S is called the base set.  

HITS then works on the pages in S, and assigns every page in S an 
authority score and a hub score. Let the number of pages to be studied be 
n. We again use G = (V, E) to denote the (directed) link graph of S. V is the 
set of pages (or nodes) and E is the set of directed edges (or links). We use 
L to denote the adjacency matrix of the graph.  

An authority A hub

 Authorities  Hubs 



290      7 Social Network Analysis 



 


otherwise0

),(if1 Eji
Lij

 
(35) 

Let the authority score of the page i be a(i), and the hub score of page i 
be h(i). The mutual reinforcing relationship of the two scores is 
represented as follows: 
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Writing them in the matrix form, we use a to denote the column vector 
with all the authority scores, a = (a(1), a(2), …, a(n))T, and use h to denote 
the column vector with all the hub scores, h = (h(1), h(2), …, h(n))T, 

a = LTh (38) 

h = La (39) 

The computation of authority scores and hub scores is basically the same 
as the computation of the PageRank scores using the power iteration 
method. If we use ak and hk to denote authority and hub scores at the kth 
iteration, the iterative processes for generating the final solutions are  

ak = LTLak1
 (40) 

hk = LLThk1 (41) 

starting with 
a0 = h0 = (1, 1, …, 1). (42) 

Note that Equation (40) (or Equation 41) does not use the hub (or 
authority) vector due to substitutions of Equation (38) and Equation (39).  

After each iteration, the values are also normalized (to keep them small) 
so that  
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The power iteration algorithm for HITS is given in Fig. 7.10. The 
iteration ends after the 1-norms of the residual vectors are less than some 
thresholds a and h. Hence, the algorithm finds the principal eigenvectors 
at “equilibrium” as in PageRank. The pages with large authority and hub 
scores are better authorities and hubs respectively. HITS will select a few 
top ranked pages as authorities and hubs, and return them to the user.  

Although HITS will always converge, there is a problem with 
uniqueness of limiting (converged) authority and hub vectors. It is shown 
that for certain types of graphs, different initializations to the power 
method produce different final authority and hub vectors. Some results can 
be inconsistent or wrong. Farahat et al. [23] gave several examples. The 
heart of the problem is that there are repeated dominant (principal) 
eigenvalues (several eigenvalues are the same and are dominant 
eigenvalues), which are caused by the problem that LTL (respectively LLT) 
is reducible [39, 40]. The first PageRank solution (Equation (22)) has the 
same problem. However, the PageRank inventors found a way to get 
around the problem. A modification similar to PageRank may be applied 
to HITS.  

7.4.2 Finding Other Eigenvectors 

The HITS algorithm given in Fig. 7.10 finds the principal eigenvectors, 
which in a sense represent the most densely connected authorities and hubs 
in the graph G defined by a query. However, in some cases, we may also 
be interested in finding several densely linked collections of hubs and 
authorities among the same base set of pages. Each of such collections 

HITS-Iterate(G) 
a0  h0  (1, 1, …, 1); 
k  1 
Repeat  

;1 k
T

k LaLa  

;1 k
T

k hLLh    
ak  ak /||ak||1; // normalization 
hk  hk /||hk||1; // normalization  
k  k + 1; 

until ||ak – ak-1||1 < a and ||hk – hk-1||1 < h; 
return ak and hk 

Fig. 7.10. The HITS algorithm based on power iteration 
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could potentially be relevant to the query topic, but they could be well-
separated from one another in the graph G for a variety of reasons. For 
example,  

1. The query string may be ambiguous with several very different 
meanings, e.g., “jaguar”, which could be a cat or a car.  

2. The query string may represent a topic that may arise as a term in the 
multiple communities, e.g. “classification”. 

3. The query string may refer to a highly polarized issue, involving groups 
that are not likely to link to one another, e.g. “abortion”.  

In each of these examples, the relevant pages can be naturally grouped into 
several clusters, also called communities. In general, the top ranked 
authorities and hubs represent the major cluster (or community). The 
smaller clusters (or communities), which are also represented by bipartite 
sub-graphs as that in Fig. 7.9, can be found by computing non-principal 
eigenvectors. Non-principal eigenvectors are calculated in a similar way to 
power iteration using methods such as orthogonal iteration and QR 
iteration. We will not discuss the details of these methods. Interested 
readers can refer to the book by Golub and Van Loan [31].  

7.4.3 Relationships with Co-Citation and Bibliographic 
Coupling 

Authority pages and hub pages have their matches in the bibliometric 
citation context. An authority page is like an influential research paper 
(publication) which is cited by many subsequent papers. A hub page is like 
a survey paper which cites many other papers (including those influential 
papers). It is no surprise that there is a connection between authority and 
hub, and co-citation and bibliographic coupling.  

Recall that co-citation of pages i and j, denoted by Cij, is computed as 
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This shows that the authority matrix (LTL) of HITS is in fact the co-
citation matrix C in the Web context. Likewise, recall that bibliographic 
coupling of two pages i and j, denoted by Bij, is computed as 
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which shows that the hub matrix (LLT) of HITS is the bibliographic 
coupling matrix B in the Web context. 

7.4.4 Strengths and Weaknesses of HITS 

The main strength of HITS is its ability to rank pages according to the 
query topic, which may be able to provide more relevant authority and hub 
pages. The ranking may also be combined with information retrieval based 
rankings. However, HITS has several disadvantages.  

 First of all, it does not have the anti-spam capability of PageRank. It is 
quite easy to influence HITS by adding out-links from one’s own page 
to point to many good authorities. This boosts the hub score of the page. 
Because hub and authority scores are interdependent, it in turn also 
increases the authority score of the page.  

 Another problem of HITS is topic drift. In expanding the root set, it can 
easily collect many pages (including authority pages and hub pages) 
which have nothing to do the search topic because out-links of a page 
may not point to pages that are relevant to the topic and in-links to pages 
in the root set may be irrelevant as well because people put hyperlinks 
for all kinds of reasons, including spamming.  

 The query time evaluation is also a major drawback. Getting the root 
set, expanding it and then performing eigenvector computation are all 
time consuming operations. 
Over the years, many researchers tried to deal with these problems. We 

briefly discuss some of them below.  
It was reported by several researchers in [7, 41, 49] that small changes 

to the Web graph topology can significantly change the final authority and 
hub vectors. Minor perturbations have little effect on PageRank, which is 
more stable than HITS. This is essentially due to the random jump step of 
PageRank. Ng et al. [49] proposed a method by introducing the same 
random jump step to HITS (by jumping to the base set uniformly at 
random with probability d), and showed that it could improve the stability 
of HITS significantly. Lempel and Moran [41] proposed SALSA, a 
stochastic algorithm for link structure analysis. SALSA combines some 
features of both PageRank and HITS to improve the authority and hub 
computation. It casts the problem as two Markov chains, an authority 
Markov chain and a hub Markov chain. SALSA is less susceptible to spam 
since the coupling between hub and authority scores is much less strict. 

Bharat and Henzinger [7] proposed a simple method to fight two site 
nepotistic links. That means that a set of pages on one host points to a 
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single page on a second host. This drives up the hub scores of the pages on 
the first host and the authority score of the page on the second host. A 
similar thing can be done for hubs. These links may be authored by the 
same person and thus are regarded as “nepotistic” links to drive up the 
ranking of the target pages. [7] suggests weighting the links to deal with 
this problem. That is, if there are k edges from documents on a first host to 
a single document on a second host we give each edge an authority 
weight of 1/k. If there are l edges from a single page on a first host to a set 
of pages on a second host, we give each edge a hub weight of 1/l. These 
weights are used in the authority and hub computation. There are much 
more sophisticated spam techniques now involving more than two sites.  

Regarding the topic drifting of HITS, existing fixes are mainly based on 
content similarity comparison during the expansion of the root set. In [12], 
if an expanded page is too different from the pages in the root set in terms 
of content similarity (based on cosine similarity), it is discarded. The 
remaining links are also weighted according to similarity. [12] proposes a 
method that uses the similarity between the anchor text of a link and the 
search topic to weight the link (instead of giving each link 1 as in HITS). 
[11] goes further to segment the page based on the DOM (Document 
Object Model) tree structure to identify the blocks or subtrees that are 
more related to the query topic instead of regarding the whole page as 
relevant to the search query. This is a good way to deal with multi-topic 
pages, which are abundant on the Web. A recent work on this is block-
based link analysis [10], which segments each Web page into different 
blocks. Each block is given a different importance value according to its 
location in the page and other information. The importance value is then 
used to weight the links in the HITS (and also PageRank) computation. 
This will reduce the impact of unimportant links, which usually cause 
topic drifting and may even be a link spam.  

7.5 Community Discovery  

Intuitively, a community is simply a group of entities (e.g., people or 
organizations) that shares a common interest or is involved in an activity 
or event. In Sect. 7.4.2, we showed that the HITS algorithm can be used to 
find communities. The communities are represented by dense bipartite 
sub-graphs. We now describe several other community finding algorithms. 
Apart from the Web, communities also exist in emails and text documents. 
This section describes two community finding algorithms for the Web, one 
community finding algorithm for emails, and one community finding 
algorithm for text documents.  
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There are many reasons for discovering communities. For example, in 
the context of the Web, Kumar et al. [38] listed three reasons:  

1. Communities provide valuable and possibly the most reliable, timely, 
and up-to-date information resources for a user interested in them.  

2. They represent the sociology of the Web: studying them gives insights 
into the evolution of the Web.  

3. They enable target advertising at a very precise level.  

7.5.1 Problem Definition 

Definition (community): Given a finite set of entities S = {s1, s2, …, sn} 
of the same type, a community is a pair C = (T, G), where T is the 
community theme and G  S is the set of all entities in S that shares the 
theme T. If si  G, si is said to be a member of the community C.  

Some remarks about this definition are in order: 

 A theme defines a community. That is, given a theme T, the set of 
members of the community is uniquely determined. Thus, two 
communities are equal if they have the same theme.  

 A theme can be defined arbitrarily. For example, it can be an event (e.g., 
a sport event or a scandal) or a concept (e.g., Web mining). 

 An entity si in S can be in any number of communities. That is, 
communities may overlap, or multiple communities may share 
members.  

 The entities in S are of the same type. For example, this definition does 
not allow people and organizations to be in the same community.  

 By no means does this definition cover every aspect of communities in 
the real world. For example, it does not consider the temporal dimension 
of communities. Usually a community exists within a specific period of 
time. Similarly, an entity may belong to a community during some time 
periods.  

 This is a conceptual definition. In practice, different community mining 
algorithms have their own operational definitions which usually depend 
on how communities manifest themselves in the given data (which we 
will discuss shortly). Furthermore, the algorithms may not be able to 
discover all the members of a community or its precise theme.   

Communities may also have hierarchical structures.  

Definition (sub-community, super-community, and sub-theme): A 
community (T, G) may have a set of sub-communities {(T1, G1), …, 
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(Tm, Gm)}, where Ti is a sub-theme of T and Gi  G. (T, G) is also called 
a super-community of (Ti, Gi). In the same way, each sub-community 
(Ti, Gi) can be further decomposed, which gives us a community 
hierarchy.  

Community Manifestation in Data: Given a data set, which can be a set 
of Web pages, a collection of emails, or a set of text documents, we want 
to find communities of entities in the data. However, the data itself usually 
does not explicitly give us the themes or the entities (community members) 
associated with the themes. The system needs to discover the hidden 
community structures. Thus, the first issue that we need to know is how 
communities manifest themselves. From such manifested evidences, the 
system can discover possible communities. Different types of data may 
have different forms of manifestation. We give three examples.  

Web Pages: 
1. Hyperlinks: A group of content creators sharing a common interest is 

usually inter-connected through hyperlinks. That is, members in a 
community are more likely to be connected among themselves than 
outside the community.  

2. Content words: Web pages of a community usually contain words that 
are related to the community theme.   

Emails: 
1. Email exchange between entities: Members of a community are more 

likely to communicate with one another.  
2. Content words: Email contents of a community also contain words 

related to the theme of the community.   

Text documents: 
1. Co-occurrence of entities: Members of a community are more likely to 

appear together in the same sentence and/or the same document.  
2. Content words: Words in sentences indicate the community theme.    

Clearly, the key form of manifestation of a community is that its members 
are linked in some way. The associated text often contains words that are 
indicative of the community theme.  

Objective of Community Discovery: Given a data set containing entities, 
we want to discover hidden communities of the entities. For each 
community, we want to find the theme and its members. The theme is 
usually represented with a set of keywords.  
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7.5.2 Bipartite Core Communities 

HITS finds dense bipartite graph communities based on broad topic 
queries. The question is whether it is possible to find all such communities 
efficiently from the crawl of the whole Web without using eigenvector 
computation which is relatively inefficient. Kumar et al. [38] presented a 
technique for finding bipartite cores, which are defined as follows. 

Recall that the node set of a bipartite graph can be partitioned into two 
subsets, which we denote as set F and set C. A bipartite core is a 
complete bipartite sub-graph with at least i nodes in F and at least j nodes 
in C. A complete bipartite graph on node sets F and C contains all possible 
edges between the vertices of F and the vertices of C. Note that edges 
within F or within C are allowed here to suit the Web context, which deviate 
from the traditional definition of a complete bipartite graph. Intuitively, the 
core is a small (i, j)-sized complete bipartite sub-graph of the community, 
which contains some core members of the community but not all. 

The cores that we seek are directed, i.e., there is a set of i pages all of 
which link to a set of j pages, while no assumption is made of links out of 
the latter set of j pages.  Intuitively, the former is the set of pages created 
by members of the community, pointing to what they believe are the most 
valuable pages for that community.  For this reason we will refer to the i 
pages that contain the links as fans, and the j pages that are referenced as 
centers (as in community centers). Fans are like specialized hubs, and 
centers are like authorities. Fig. 7.11 shows an example of a bipartite core. 

 
Fig. 7.11. A (4, 3) bipartite core 

In Fig. 7.11, each fan page links to every center page. Since there are 
four fans and three centers, this is called a (4, 3) bipartite core. Such a core 
almost certainly represents a Web community, but a community may have 
multiple bipartite cores.  

Given a large number of pages crawled from the Web, which is 
represented as a graph, the procedure for finding bipartite cores consists of 
two major steps: pruning and core generation. 

 4 Fans  3 Centers 
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Step 1: Pruning 

We describe two types of pruning to remove those unqualified pages to be 
fans or centers. There are also other pruning methods given in [38].  

1. Pruning by in-degree: we can delete all pages that are very highly 
referenced (linked) on the Web, such as homepages of Web portals 
(e.g., Yahoo!, AOL, etc). These pages are referenced for a variety of 
reasons, having little to do with any single emerging community, and 
they can be safely deleted. That is, we delete pages with the number of 
in-links great than k, which is determined empirically (k = 50 in [38]).  

2. Iterative pruning of fans and centers: If we are interested in finding 
(i, j) cores, clearly any potential fan with an out-degree smaller than j 
can be pruned and the associated edges deleted from the graph. 
Similarly, any potential center with an in-degree smaller than i can be 
pruned and the corresponding edges deleted from the graph. This 
process can be done iteratively: when a fan gets pruned, some of the 
centers that it points to may have their in-degrees fall below the 
threshold i and qualify for pruning as a result. Similarly, when a center 
gets pruned, a fan that points to it could have its out-degree fall below 
its threshold of j and qualify for pruning. 

Step 2: Generating all (i, j) Cores 

After pruning, the remaining pages are used to discover cores. The method 
works as follows: Fixing j, we start with all (1, j) cores. This is simply the 
set of all vertices with out-degree at least j. We then construct all (2, j) 
cores by checking every fan which also points to any center in a (1, j) core. 
All (3, j) cores can be found in the same fashion by checking every fan 
which points to any center in a (2, j) core, and so on. The idea is similar to 
the Apriori algorithm for association rule mining (see Chap. 2) as every 
proper subset of the fans in any (i, j) core forms a core of smaller size.  

Based on the algorithm, Kumar et al. found a large number of topic 
coherent cores from a crawl of the Web [38]. We note that this algorithm 
only finds the core pages of the communities, not all members (pages). It 
also does not find the themes of the communities or their hierarchical 
organizations.  

7.5.3 Maximum Flow Communities 

Bipartite cores are usually very small and do not represent full communities. 
In this section, we define and find maximum flow communities based on 
the work of Flake et al. [24, 25]. The algorithm requires the user to give a 
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set of seed pages, which are examples of the community that the user 
wishes to find.  

Given a Web link graph G = (V, E), a maximum flow community is 
defined as a collection C  V of Web pages such that each member page u 
 C has more hyperlinks (in either direction) within the community C than 
outside of the community V-C. Identifying such a community is intractable 
in the general case because it can be mapped into a family of NP-complete 
graph partition problems. Thus, we need to approximate and recast it into a 
framework with less stringent conditions based on the network flow model 
from operations research, specifically the maximum flow model.  

The maximum flow model can be stated as follows: We are given a 
graph G = (V, E), where each edge (u, v) is thought of as having a positive 
capacity c(u, v) that limits the quantity of a product that may be shipped 
through the edge. In such a situation, it is often desirable to have the 
maximum amount of flow from a starting point s (called the source) and a 
terminal point t (called the sink). Intuitively, the maximum flow of the 
graph is determined by the bottleneck edges. For example, given the graph 
in Fig. 7.12 with the source s and the sink t, if every edge has the unit 
capacity, the bottleneck edges are W-X and Y-Z.  

 
Fig. 7.12. A simple flow network.  

The Max Flow-Min Cut theorem of Ford and Fulkerson [26] proves that 
the maximum flow of a network is identical to the minimum cut that 
separates s and t. Many polynomial time algorithms exist for solving the s-
t maximum flow problem. If Fig. 7.12 is a Web link graph, it is natural to 
cut the edges W-X and Y-Z to produce two Web communities.  

The basic idea of the approach in [26] is as follows: It starts with a set S 
of seed pages, which are example pages of the community that the user 
wishes to find. The system then crawls the Web to find more pages using 
the seed pages. A maximum flow algorithm is then applied to separate the 
community C involving the seed pages and the other pages. These steps 
may need to be repeated in order to find the desired community. Fig. 7.13 
gives the algorithm.  

The algorithm Find-Community is the control program. It takes a set S 
of seed Web pages as input, and crawls to a fixed depth including in-links 

W  X 

Y  Z 
s t 
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as well as out-links (with in-links found by querying a search engine). It 
then applies the procedure Max-Flow-Community to the induced graph G 
from the crawl. After a community C is found, it ranks the pages in the 
community by the number of edges that each has inside of the community. 
Some highest ranked non-seed pages are added to the seed set. This is to 
create a big seed set for the next iteration in order to crawl more pages. 
The algorithm then iterates the procedure. Note that the first iteration may 
only identify a very small community. However, when new seeds are 
added, increasingly larger communities are identified. Heuristics are used 
to decide when to stop. 

The procedure Max-Flow-Community finds the actual community from 
G. Since a Web graph has no source and sink, it first augments the web 
graph by adding an artificial source, s, with infinite capacity edges routed 
to all seed vertices in S; making each pre-existing edge bidirectional and 
assigning each edge a constant capacity k. It then adds an artificial sink t 

Algorithm Find-Community (S) 
while number of iteration is less than desired do  
 build G = (V, E) by doing a fixed depth crawl starting from S;  
 k = |S|; 
 C = Max-Flow-Community(G, S, k); 
 rank all v  C by the number of edges in C; 
 add the highest ranked non-seed vertices to S 
end-while 
return all v  V still connected to the source s 
 

Procedure Max-Flow-Community(G, S, k) 
create artificial vertices, s and t and add to V;  // V is the vertex set of G.  
for all v  S do 
 add (s, v) to E with c(s, v) =  // E is the edge set of G. 
endfor 
for all (u, v)  E, u  s do   
 c(u, v) = k; 
 if (v, u)  E then  

add (v, u) to E with c(v, u) = k 
endif 

endfor 
for all v  V, v  S  {s, t} do  
 add (v, t) to E with c(v, t) = 1 
endfor 
Max-Flow(G, s, t); 
return all v  V still connected to s.  

Fig. 7.13. The algorithm for mining maximum flow communities 
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and routes all vertices except the source, the sink, and the seed vertices to t 
with unit capacity. After augmenting the web graph, a residual flow graph 
is produced by a maximum flow procedure (Max-Flow()). All vertices 
accessible from s through non-zero positive edges form the desired result. 
The value k is heuristically chosen to be the size of the set S to ensure that 
after the artificial source and sink are added to the original graph, the same 
cuts will be produced as the original graph (see the proof in [24]). Fig. 7.14 
shows the community finding process.  

Finally, we note that this algorithm does not find the theme of the 
community or the community hierarchy (i.e., sub-communities and so on).  

 
Fig. 7.14. Schematic representation of the community finding process 

7.5.4 Email Communities Based on Betweenness 

Email has become the predominant means of communication in the 
information age. It has been established as an indicator of collaboration 
and knowledge (or information) exchange. Email exchanges provide 
plenty of data on personal communication for the discovery of shared 
interests and relationships between people, which were hard to discover 
previously. 

It is fairly straightforward to construct a graph based on email data. 
People are the vertices and the edges are added between people who 
corresponded through email. Usually, the edge between two people is 
added if a minimum number of messages passed between them. The 
minimum number is controlled by a threshold, which can be tuned.  

To analyze an email graph or network, one can make use of all the 
centrality measures and prestige measures discussed in Sect. 7.1. We now 
focus on community finding only.  

We are interested in people communities, which are subsets of vertices 
that are related. One way to identify communities is by partitioning the 
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graph into discrete clusters such that there are few edges lying between the 
clusters. This definition is similar to that of the maximum flow community. 
Betweenness in social networks is a natural measure for identifying those 
edges in between clusters or communities [59]. The idea is that inter-
community links, which are few, have high betweenness values, while the 
intra-community edges have low betweenness values. However, the 
betweenness discussed in Sect. 7.1 is evaluated on each person in the 
network. Here, we need to evaluate the betweenness of each edge. The 
idea is basically the same and Equation (4) can be used here without 
normalization because we only find communities in a single graph. The 
betweenness of an edge is simply the number of shortest paths that pass it.  

If the graph is not connected, we identify communities from each 
connected component. Given a connected graph, the method works 
iteratively in two steps (Fig. 7.15):  

repeat 
Compute the betweenness of each edge in the remaining graph; 
Remove the edge with the highest betweenness 

until the graph is suitably partitioned.  

Fig. 7.15. Community finding using the betweenness measure.   

Since the removal of an edge can strongly affect the betweenness of many 
other edges, we need to repeatedly re-compute the betweenness of all 
edges. The idea of the method is very similar to the minimum-cut method 
discussed in Sect. 7.5.3.  

The stopping criteria can be designed according to applications. In 
general, we consider that the smallest community is a triangle. The 
algorithm should stop producing more unconnected components if there is 
no way to generate triangle communities. A component of five or fewer 
vertices cannot consist of two viable communities. The smallest such 
component is six, which has two triangles connected by one edge, see Fig. 
7.16. If any discovered community does not have a triangle, it may not be 
considered as a community. Clearly, other stopping criteria can be used.  

 
Fig. 7.16. The smallest possible graph of two viable communities.  
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7.5.5 Overlapping Communities of Named Entities 

Most community discovery algorithms are based on graph partitioning, 
which means that an entity can belong to only a single community. 
However, in real life, a person can be in multiple communities (see the 
definition in Sect. 7.5.1). For example, he/she can be in the community of 
his/her family, the community of his/her colleagues and the community of 
his/her friends. A heuristic technique is presented in [42] for finding 
overlapping communities of entities in text documents.   

In the Web or email context, there are explicit links connecting entities 
and forming communities. In free text documents, no explicit links exist. 
Then the question is: what constitutes a link between two entities in text 
documents? As we indicated earlier, one simple technique is to regard two 
entities as being linked if they co-occur in the same sentence. This method 
is reasonable because if two people are mentioned in a sentence there is 
usually a relationship between them. 

The objective is to find entity communities from a text corpus, which 
could be a set of given documents or the returned pages from a search 
engine using a given entity as the search query. An entity here refers to the 
name of a person or an organization.  

The algorithm in [42] consists of four steps:  

1. Building a link graph: The algorithm first parses each document. For 
each sentence, it identifies named entities contained in the sentence. If a 
sentence has more than one named entities, these entities are pair-wise 
linked. The keywords in the sentence are attached to the linked pairs to 
form their textual contents. All the other sentences are discarded. 

2. Finding all triangles: The algorithm then finds all triangles, which are 
the basic building blocks of communities. A triangle consists of three 
entities bound together. The reason for using triangles is that it has been 
observed by researchers that a community expands predominantly by 
triangles sharing a common edge. 

3. Finding community cores: It next finds community cores. A community 
core is a group of tightly bound triangles, which are relaxed complete 
sub-graphs (or cliques). Intuitively, a core consists of a set of tightly 
connected members of a community. 

4. Clustering around community cores: For those triangles and also entity 
pairs that are not in any core, they are assigned to cores according to 
their textual content similarities with the discovered cores.  

It is clear that in this algorithm a single entity can appear in multiple 
communities because an entity can appear in multiple triangles. To finish 
off, the algorithm also ranks the entities in each community according to 
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degree centrality. Keywords associated with the edges of each community 
are also ranked. The top keywords are assumed to represent the theme of the 
community. The technique has been applied to find communities of political 
figures and celebrities from Web documents with promising results. 

Bibliographic Notes 

Social network analysis has a relative long history. A large number of 
interesting problems were studied in the past 60 years. The book by 
Wasserman and Faust [60] is an authoritative text of the field. There are 
also many other books, e.g., “Social Network Analysis: A Handbook” by 
John Scott, “Networks: An Introduction” by Mark Newman, “Models and 
Methods in Social Network Analysis” by Peter J. Carrington, "Social 
Network Analysis" by David Knoke and Song Yang, "Models and 
Methods in Social Network Analysis" edited by Peter J. Carrington, John 
Scott and Stanley Wasserman, and "Link Analysis: An Information 
Science Approach" by Mike Thelwall. Co-citation [55] and bibliographic 
coupling [36] are from bibliometrics. The book edited by Borgman [8] is a 
good source of information on both the research and applications of 
bibliometrics. 

The use of social network analysis in the Web context (also called link 
analysis) started with the PageRank algorithm proposed by Brin and Page 
[9] and Page et al. [52], and the HITS algorithm proposed by Kleinberg 
[37]. PageRank is also the algorithm that powers the Google search engine. 
Due to several weaknesses of HITS, many researchers have tried to 
improve it. Various enhancements were reported by Lempel and Moran 
[41], Bharat and Henzinger [7], Chakrabarti et al. [13], Cai et al. [10], etc. 
The book by Langville and Meyer [40] contains in-depth analyses of 
PageRank, HITS and many enhancements to HITS. Other works related to 
Web link analysis include those in [14, 35, 46] on improving the PageRank 
computation, in [22] on searching workspace Web, in [15, 27, 28, 51] on 
the evolution of the Web and the search engine influence on the Web, in 
[18, 19, 50, 56] on other link based models, in [5, 47, 48, 54] on Web 
graph and its characteristics, in [4, 6, 33] on sampling of Web pages, and 
in [3, 16, 20, 43, 53, 62, 63] on the temporal dimension of Web search. In 
[45], a new user-browsing based link analysis and ranking method was 
proposed. This method employs search logs and the continuous time 
Markov model for ranking, unlike PageRank which uses the discrete time 
Markov model.  

On community discovery, HITS can find some communities by 
computing non-principal eigenvectors [29, 37]. Kumar et al. [38] proposed 



Bibliography      305 

the algorithm for finding bipartite cores. Flake et al. [25] introduced the 
maximum flow community mining. Ino et al. [34] presented a more strict 
definition of communities. Tyler et al. [59] gave the method for finding 
email communities based on betweenness. The algorithm for finding 
overlapping communities of named entities from texts was given by Li et 
al. [42]. More recent developments on communities and social networks 
on the Web can be found in [1, 2, 17, 21, 30, 57, 58, 61, 64].  

Bibliography 

1. Aleman-Meza, B., M. Nagarajan, C. Ramakrishnan, L. Ding, P. Kolari, A. 
Sheth, I. Arpinar, A. Joshi, and T. Finin. Semantic analytics on social 
networks: experiences in addressing the problem of conflict of interest 
detection. In Proceedings of International Conference on World Wide Web 
(WWW-2006), 2006. 

2. Andersen, R. and K. Lang. Communities from seed sets. In Proceedings of 
International Conference on World Wide Web (WWW-2006), 2006. 

3. Baeza-Yates, R., F. Saint-Jean, and C. Castillo. Web structure, dynamics and 
page quality. In Proceedings of String Processing and Information Retrieval, 
2002: Springer. 

4. Bar-Yossef, Z. and M. Gurevich. Random sampling from a search engine's 
index. Journal of the ACM (JACM), 2008, 55(5): p. 1-74. 

5. Barabasi, L. and R. Albert. Emergence of Scaling in Random Walk. Science, 
1999, 286(5439): p. 509-512. 

6. Bharat, K. and A. Broder. A technique for measuring the relative size and 
overlap of public web search engines. Computer Networks, 1998, 30(1-7): p. 
379-388. 

7. Bharat, K. and M. Henzinger. Improved algorithms for topic distillation in a 
hyperlinked environment. In Proceedings of ACM SIGIR Conf. on Research 
and Development in Information Retrieval (SIGIR-1998), 1998. 

8. Borgman, C. and J. Furner. Scholarly communication and bibliometrics. 
Annual Review of Information Science and Technology, 2002, 36: p. 3-72. 

9. Brin, S. and P. Lawrence. The anatomy of a large-scale hypertextual web 
search engine. Computer Networks, 1998, 30(1-7): p. 107-117. 

10. Cai, D., S. Yu, J. Wen, and W. Ma. Block-based web search. In Proceedings 
of ACM SIGIR Research and Development in Information Retrieval (SIGIR-
2004), 2004. 

11. Chakrabarti, S. Integrating the document object model with hyperlinks for 
enhanced topic distillation and information extraction. In Proceedings of 10th 
international conference on World Wide Web. 2001, ACM: Hong Kong, 
Hong Kong. p. 211-220. 

12. Chakrabarti, S., B. Dom, S. Kumar, P. Raghavan, S. Rajagopalan, A. 
Tomkins, D. Gibson, and J. Kleinberg. Mining the Web's link structure. 
Computer, 2002, 32(8): p. 60-67. 



306      7 Social Network Analysis 

13. Chakrabarti, S., K. Puniyani, and S. Das. Optimizing scoring functions and 
indexes for proximity search in type-annotated corpora. In Proceedings of 
International Conference on World Wide Web (WWW-2006), 2006. 

14. Chen, Y., Q. Gan, and T. Suel. Local methods for estimating pagerank values. 
In Proceedings of ACM International Conference on Information and 
knowledge management (CIKM-2004), 2004. 

15. Cho, J. and S. Roy. Impact of search engines on page popularity. In 
Proceedings of International Conference on World Wide Web (WWW-2004), 
2004. 

16. Diaz, F. Integration of news content into web results. In Proceedings of ACM 
International Conference on Web Search and Data Mining (WSDM-2009), 
2009. 

17. Diesner, J. and K. Carley. Exploration of communication networks from the 
Enron email corpus. In Proceedings of Workshop on Link Analysis, 
Counterterrorism and Security at SDM’05, 2005. 

18. Diligenti, M., M. Gori, and M. Maggini. Web page scoring systems for 
horizontal and vertical search. In Proceedings of International Conference on 
World Wide Web (WWW-2002), 2002. 

19. Ding, C., X. He, P. Husbands, H. Zha, and H. Simon. PageRank, HITS and a 
unified framework for link analysis. In Proceedings of SIAM International 
Conference on Data Mining (SDM-2002), 2002. 

20. Dong, A., Y. Chang, Z. Zheng, G. Mishne, J. Bai, R. Zhang, K. Buchner, C. 
Liao, and F. Diaz. Towards recency ranking in web search. In Proceedings of 
ACM International Conference on Web Search and Data Mining (WSDM-
2010), 2010. 

21. Eckmann, J. and E. Moses. Curvature of co-links uncovers hidden thematic 
layers in the world wide web. Proceedings of the National Academy of 
Sciences of the United States of America, 2002, 99(9): p. 5825. 

22. Fagin, R., R. Kumar, K. McCurley, J. Novak, D. Sivakumar, J. Tomlin, and 
D. Williamson. Searching the workplace web. In Proceedings of International 
Conference on World Wide Web (WWW-2003), 2003. 

23. Farahat, A., T. LoFaro, J. Miller, G. Rae, and L. Ward. Authority rankings 
from HITS, PageRank, and SALSA: Existence, uniqueness, and effect of 
initialization. SIAM Journal on Scientific Computing, 2006, 27(4): p. 1181-
1201. 

24. Flake, G., S. Lawrence, and C. Giles. Efficient identification of web 
communities. In Proceedings of ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining (KDD-2000), 2000. 

25. Flake, G., S. Lawrence, C. Giles, and F. Coetzee. Self-organization of the web 
and identification of communities. IEEE Computer, 2002, 35(3): p. 66-71. 

26. Ford, L. and D. Fulkerson. Maximal flow through a network. Canadian 
Journal of Mathematics, 1956, 8(3): p. 399-404. 

27. Fortunato, S., A. Flammini, and F. Menczer. Scale-free network growth by 
ranking. Physical review letters, 2006, 96(21): p. 218701. 



Bibliography      307 

28. Fortunato, S., A. Flammini, F. Menczer, and A. Vespignani. Topical interests 
and the mitigation of search engine bias. Proceedings of the National 
Academy of Sciences, 2006, 103(34): p. 12684. 

29. Gibson, D., J. Kleinberg, and P. Raghavan. Inferring web communities from 
link topology. In Proceedings of ACM Conference on Hypertext and 
Hypermedia, 1998. 

30. Girvan, M. and M. Newman. Community structure in social and biological 
networks. Proceedings of the National Academy of Sciences of the United 
States of America, 2002, 99(12): p. 7821. 

31. Golub, G. and C. Van Loan. Matrix computations. 1996: Johns Hopkins Univ 
Press. 

32. Grimmet, G. and D. Stirzaker. Probability and Random Process. 1989: 
Oxford University Press. 

33. Henzinger, M., A. Heydon, M. Mitzenmacher, and M. Najork. Measuring 
index quality using random walks on the Web. Computer Networks, 1999, 
31(11-16): p. 1291-1303. 

34. Ino, H., M. Kudo, and A. Nakamura. Partitioning of Web graphs by 
community topology. In Proceedings of International Conference on World 
Wide Web (WWW-2005), 2005. 

35. Kamvar, S., T. Haveliwala, C. Manning, and G. Golub. Extrapolation 
methods for accelerating PageRank computations. In Proceedings of 
International Conference on World Wide Web (WWW-2003), 2003. 

36. Kessler, M. Bibliographic coupling between scientific papers. American 
documentation, 1963, 14(1): p. 10-25. 

37. Kleinberg, J. Authoritative sources in a hyperlinked environment. Journal of 
the ACM (JACM), 1999, 46(5): p. 604-632. 

38. Kumar, R., P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the Web 
for emerging cyber-communities. Computer Networks, 1999, 31(11-16): p. 
1481-1493. 

39. Langville, A. and C. Meyer. Deeper inside pagerank. Internet Mathematics, 
2004, 1(3): p. 335-380. 

40. Langville, A. and C. Meyer. Google's PageRank and beyond: the science of 
search engine rankings. 2006: Princeton University Press. 

41. Lempel, R. and S. Moran. The stochastic approach for link-structure analysis 
(SALSA) and the TKC effect. Computer Networks, 2000, 33(1-6): p. 387-
401. 

42. Li, X., B. Liu, and P. Yu. Discovering overlapping communities of named 
entities. Knowledge Discovery in Databases: PKDD 2006, 2006: p. 593-600. 

43. Li, X., B. Liu, and P. Yu. Time Sensitive Ranking with Application to 
Publication Search. In Proceedings of IEEE International Conference on 
Data Mining (ICDM-2008), 2008. 

44. Li, X., B. Liu, and P. Yu. Time sensitive ranking with application to 
publication search. In Link Mining: Models, Algorithms, and Applications, P. 
Yu, J. Han, and C. Faloutsos, Editors. 2010, Springer. p. 187-209. 

45. Liu, Y., B. Gao, T. Liu, Y. Zhang, Z. Ma, S. He, and H. Li. BrowseRank: 
letting web users vote for page importance. In Proceedings of ACM SIGIR 



308      7 Social Network Analysis 

Conf. on Research and Development in Information Retrieval (SIGIR-2008), 
2008. 

46. McSherry, F. A uniform approach to accelerated PageRank computation. In 
Proceedings of International Conference on World Wide Web (WWW-2005), 
2005. 

47. Menczer, F. Evolution of document networks. Proceedings of the National 
Academy of Sciences of the United States of America, 2004, 101(Suppl 1): p. 
5261. 

48. Menczer, F. Growing and navigating the small world web by local content. 
Proceedings of the National Academy of Sciences of the United States of 
America, 2002, 99(22): p. 14014. 

49. Ng, A., A. Zheng, and M. Jordan. Stable algorithms for link analysis. In 
Proceedings of ACM SIGIR Conf. on Research and Development in 
Information Retrieval (SIGIR-2001), 2001. 

50. Nie, Z., Y. Zhang, J. Wen, and W. Ma. Object-level ranking: bringing order 
to web objects. In Proceedings of International Conference on World Wide 
Web (WWW-2005), 2005. 

51. Ntoulas, A., J. Cho, and C. Olston. What's new on the web?: the evolution of 
the web from a search engine perspective. In Proceedings of International 
Conference on World Wide Web (WWW-2004), 2004. 

52. Page, L., S. Brin, R. Motwani, and T. Winograd. The pagerank citation 
ranking: Bringing order to the web. In Technical Report 1999–0120. 1998, 
Computer Science Department, Stanford University. 

53. Pandey, S., S. Roy, C. Olston, J. Cho, and S. Chakrabarti. Shuffling a stacked 
deck: The case for partially randomized ranking of search engine results. In 
Proceedings of International Conference on Very Large Data Bases (VLDB-
2005), 2005. 

54. Pennock, D., G. Flake, S. Lawrence, E. Glover, and C. Giles. Winners don't 
take all: Characterizing the competition for links on the web. Proceedings of 
the National Academy of Sciences of the United States of America, 2002, 
99(8): p. 5207. 

55. Small, H. Co citation in the scientific literature: A new measure of the 
relationship between two documents. Journal of the American Society for 
Information Science, 1973, 24(4): p. 265-269. 

56. Tomlin, J. A new paradigm for ranking pages on the world wide web. In 
Proceedings of International Conference on World Wide Web (WWW-2003), 
2003. 

57. Toyoda, M. and M. Kitsuregawa. Creating a Web community chart for 
navigating related communities. In Proceedings of ACM Conf. on Hypertext 
and Hypermedia, 2001. 

58. Toyoda, M. and M. Kitsuregawa. Extracting evolution of web communities 
from a series of web archives. In Proceedings of ACM Conf. on Hypertext and 
Hypermedia, 2003. 

59. Tyler, J.R., D.M. Wilkinson, and B.A. Huberman. Email as Spectroscopy: 
Automated Discovery of Community Structure within Organizations. 
Communities and Technologies, 2003. 



Bibliography      309 

60. Wasserman, S. and K. Faust. Social Network Analysis. 1994: Cambridge 
University Press. 

61. Wu, X., L. Zhang, and Y. Yu. Exploring social annotations for the semantic 
web. In Proceedings of International Conference on World Wide Web 
(WWW-2006), 2006. 

62. Yu, P.S., X. Li, and B. Liu. Adding the Temporal Dimension to Search – A 
Case Study in Publication Search. In Proceedings of International Conference 
on Web Intelligence, 2005. 

63. Zhang, R., Y. Chang, Z. Zheng, D. Metzler, and J. Nie. Search result re-
ranking by feedback control adjustment for time-sensitive query. In 
Proceedings of Human Language Technologies: The 2009 Annual 
Conference of the North American Chapter of the Association for 
Computational Linguistics, 2009. 

64. Zhou, D., E. Manavoglu, J. Li, C. Giles, and H. Zha. Probabilistic models for 
discovering e-communities. In Proceedings of International Conference on 
World Wide Web (WWW-2006), 2006. 

 
 





 

8 Web Crawling  

Web crawlers, also known as spiders or robots, are programs that auto-
matically download Web pages. Since information on the Web is scattered 
among billions of pages served by millions of servers around the globe, 
users who browse the Web can follow hyperlinks to access information, 
virtually moving from one page to the next. A crawler can visit many sites 
to collect information that can be analyzed and mined in a central location, 
either online (as it is downloaded) or off-line (after it is stored). 

Were the Web a static collection of pages, we would have little long term 
use for crawling. Once all the pages are fetched and saved in a repository, 
we are done. However, the Web is a dynamic entity evolving at rapid rates. 
Hence there is a continuous need for crawlers to help applications stay 
current as pages and links are added, deleted, moved or modified. 

There are many applications for Web crawlers. One is business intelligence, 
whereby organizations collect information about their competitors and 
potential collaborators. Another use is to monitor Web sites and pages of 
interest, so that a user or community can be notified when new information 
appears in certain places. There are also malicious applications of crawlers, 
for example, that harvest email addresses to be used by spammers or 
collect personal information to be used in phishing and other identity theft 
attacks. The most widespread use of crawlers is, however, in support of search 
engines. In fact, crawlers are the main consumers of Internet bandwidth. They 
collect pages for search engines to build their indexes. Well known search 
engines such as Google, Yahoo! and MSN run very efficient universal 
crawlers designed to gather all pages irrespective of their content. Other 
crawlers, sometimes called preferential crawlers, are more targeted. They 
attempt to download only pages of certain types or topics.  

This chapter introduces the main concepts, algorithms and data structures 
behind Web crawlers. After discussing the implementation issues that all 
crawlers have to address, we describe different types of crawlers: universal, 
focused, and topical. We also discuss some of the ethical issues around 
crawlers. Finally, we peek at possible future uses of crawlers in support of 
alternative models where crawling and searching activities are distributed 
among a large community of users connected by a dynamic and adaptive 
peer network.  

By Filippo Menczer 

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_8, 
© Springer-Verlag Berlin Heidelberg 2011 
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8.1 A Basic Crawler Algorithm 

In its simplest form, a crawler starts from a set of seed pages (URLs) and 
then uses the links within them to fetch other pages. The links in these 
pages are, in turn, extracted and the corresponding pages are visited. The 
process repeats until a sufficient number of pages are visited or some other 
objective is achieved. This simple description hides many delicate issues 
related to network connections, spider traps, URL canonicalization, page 
parsing, and crawling ethics. In fact, Google founders Sergey Brin and 
Lawrence Page, in their seminal paper, identified the Web crawler as the 
most sophisticated yet fragile component of a search engine [6]. 

Figure 8.1 shows the flow of a basic sequential crawler. Such a crawler 
fetches one page at a time, making inefficient use of its resources. Later in 
the chapter we discuss how efficiency can be improved by the use of 
multiple processes, threads, and asynchronous access to resources. The 
crawler maintains a list of unvisited URLs called the frontier. The list is 
initialized with seed URLs which may be provided by the user or another 
program. In each iteration of its main loop, the crawler picks the next URL 
from the frontier, fetches the page corresponding to the URL through 
HTTP, parses the retrieved page to extract its URLs, adds newly 
discovered URLs to the frontier, and stores the page (or other extracted 
information, possibly index terms) in a local disk repository. The crawling 
process may be terminated when a certain number of pages have been 
crawled. The crawler may also be forced to stop if the frontier becomes 
empty, although this rarely happens in practice due to the high average 
number of links (on the order of ten out-links per page across the Web).  

A crawler is, in essence, a graph search algorithm. The Web can be seen 
as a large graph with pages as its nodes and hyperlinks as its edges. A 
crawler starts from a few of the nodes (seeds) and then follows the edges 
to reach other nodes. The process of fetching a page and extracting the 
links within it is analogous to expanding a node in graph search.  

The frontier is the main data structure, which contains the URLs of 
unvisited pages. Typical crawlers attempt to store the frontier in the main 
memory for efficiency. Based on the declining price of memory and the 
spread of 64-bit processors, quite a large frontier size is feasible. Yet the 
crawler designer must decide which URLs have low priority and thus get 
discarded when the frontier is filled up. Note that given some maximum 
size, the frontier will fill up quickly due to the high fan-out of pages. Even 
more importantly, the crawler algorithm must specify the order in which 
new URLs are extracted from the frontier to be visited. These mechanisms 
determine the graph search algorithm implemented by the crawler.  
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Fig. 8.1. Flow chart of a basic sequential crawler. The main data operations are 
shown on the left, with dashed arrows. 

8.1.1 Breadth-First Crawlers 

The frontier may be implemented as a first-in-first-out (FIFO) queue, 
corresponding to a breadth-first crawler. The URL to crawl next comes 
from the head of the queue and new URLs are added to the tail of the 
queue.  Once the frontier reaches its maximum size, the breadth-first crawler 
can add to the queue only one unvisited URL from each new page crawled. 
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The breadth-first strategy does not imply that pages are visited in 
“random” order. To understand why, we have to consider the highly 
skewed, long-tailed distribution of indegree in the Web graph. Some pages 
have a number of links pointing to them that are orders of magnitude larger 
than the mean. Indeed, the mean indegree is not statistically significant 
when the indegree k is distributed according to a power law Pr(k)  k 
with exponent  < 3 [49]. For the Web graph, this is the case, with   2.1 
[7]. This means that the fluctuations of indegree are unbounded, i.e., the 
standard deviation is bounded only by the finite size of the graph. 
Intuitively, popular pages have so many incoming links that they act like 
attractors for breadth-first crawlers. It is therefore not surprising that the 
order in which pages are visited by a breadth-first crawler is highly 
correlated with their PageRank or indegree values. An important 
implication of this phenomenon is an intrinsic bias of search engines to 
index well connected pages.  

Another reason that breadth-first crawlers are not “random” is that they 
are greatly affected by the choice of seed pages. Topical locality measures 
indicate that pages in the link neighborhood of a seed page are much more 
likely to be related to the seed pages than randomly selected pages.  These 
and other types of bias are important to universal crawlers (Sect. 8.3).  

As mentioned earlier, only unvisited URLs are to be added to the 
frontier. This requires some data structure to be maintained with visited 
URLs. The crawl history is a time-stamped list of URLs fetched by the 
crawler tracking its path through the Web. A URL is entered into the 
history only after the corresponding page is fetched. This history may be 
used for post-crawl analysis and evaluation. For example, we want to see if 
the most relevant or important resources are found early in the crawl 
process. While history may be stored on disk, it is also maintained as an 
in-memory data structure for fast look-up, to check whether a page has 
been crawled or not. This check is required to avoid revisiting pages or 
wasting space in the limited-size frontier. Typically a hash table is appropriate 
to obtain quick URL insertion and look-up times (O(1)). The look-up 
process assumes that one can identify two URLs effectively pointing to the 
same page. This introduces the need for canonical URLs (see Sect. 8.2).  

Another important detail is the need to prevent duplicate URLs from being 
added to the frontier. A separate hash table can be maintained to store the 
frontier URLs for fast look-up to check whether a URL is already in it.  

8.1.2 Preferential Crawlers 

A different crawling strategy is obtained if the frontier is implemented as a 
priority queue rather than a FIFO queue. Typically, preferential crawlers 
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assign each unvisited link a priority based on an estimate of the value of 
the linked page. The estimate can be based on topological properties (e.g., 
the indegree of the target page), content properties (e.g., the similarity 
between a user query and the source page), or any other combination of 
measurable features. For example, the goal of a topical crawler is to follow 
edges that are expected to lead to portions of the Web graph that are 
relevant to a user-selected topic. The choice of seeds is even more 
important in this case than for breadth-first crawlers. We will discuss 
various preferential crawling algorithms in Sects. 8.4 and 8.5. For now let 
us simply assume that some function exists to assign a priority value or 
score to each unvisited URL. If pages are visited in the order specified by 
the priority values in the frontier, then we have a best-first crawler.  

The priority queue may be a dynamic array that is always kept sorted by 
URL scores. At each step, the best URL is picked from the head of the 
queue.  Once the corresponding page is fetched, the URLs extracted from 
it must, in turn, be scored. They are then added to the frontier in such a 
manner that the sorting order of the priority queue is maintained. As for 
breadth-first, best-first crawlers also need to avoid duplicate URLs in the 
frontier. Keeping a separate hash table for look-up is an efficient way to 
achieve this. The time complexity of inserting a URL into the priority 
queue is O(logF), where F is the frontier size (looking up the hash requires 
constant time). To dequeue a URL, it must first be removed from the 
priority queue (O(logF)) and then from the hash table (again O(1)). Thus 
the parallel use of the two data structures yields a logarithmic total cost per 
URL. Once the frontier’s maximum size is reached, only the best URLs 
are kept; the frontier must be pruned after each new set of links is added.  

8.2 Implementation Issues 

8.2.1 Fetching 

To fetch pages, a crawler acts as a Web client; it sends an HTTP request to 
the server hosting the page and reads the response. The client needs to 
timeout connections to prevent spending unnecessary time waiting for 
responses from slow servers or reading huge pages. In fact, it is typical to 
restrict downloads to only the first 10-100 KB of data for each page. The 
client parses the response headers for status codes and redirections. 
Redirect loops are to be detected and broken by storing URLs from a 
redirection chain in a hash table and halting if the same URL is 
encountered twice. One may also parse and store the last-modified header 
to determine the age of the document, although this information is known 
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to be unreliable. Error-checking and exception handling is important 
during the page fetching process since the same code must deal with 
potentially millions of remote servers. In addition, it may be beneficial to 
collect statistics on timeouts and status codes to identify problems or 
automatically adjust timeout values. Programming languages such as Java, 
Python and Perl provide simple programmatic interfaces for fetching pages 
from the Web.  However, one must be careful in using high-level interfaces 
where it may be harder to detect lower-level problems. For example, a 
robust crawler in Perl should use the Socket module to send HTTP requests 
rather than the higher-level LWP library (the World-Wide Web library for 
Perl). The latter does not allow fine control of connection timeouts. 

8.2.2 Parsing 

Once (or while) a page is downloaded, the crawler parses its content, i.e., 
the HTTP payload, and extracts information both to support the crawler’s 
master application (e.g., indexing the page if the crawler supports a search 
engine) and to allow the crawler to keep running (extracting links to be 
added to the frontier). Parsing may imply simple URL extraction from 
hyperlinks, or more involved analysis of the HTML code. The Document 
Object Model (DOM) establishes the structure of an HTML page as a tag 
tree, as illustrated in Fig. 8.2. HTML parsers build the tree in a depth-first 
manner, as the HTML source code of a page is scanned linearly. 

Unlike program code, which must compile correctly or else will fail 
with a syntax error, correctness of HTML code tends to be laxly enforced 
by browsers. Even when HTML standards call for strict interpretation, de 
facto standards imposed by browser implementations are very forgiving. 
This, together with the huge population of non-expert authors generating 
Web pages, imposes significant complexity on a crawler's HTML parser. 
Many pages are published with missing required tags, tags improperly 
nested, missing close tags, misspelled or missing attribute names and values, 
missing quotes around attribute values, unescaped special characters, and 
so on.  As an example, the double quotes character in HTML is reserved 
for tag syntax and thus is forbidden in text. The special HTML entity 
&quot; is to be used in its place. However, only a small number of authors 
are aware of this, and a large fraction of Web pages contains this illegal 
character. Just like browsers, crawlers must be forgiving in these cases; 
they cannot afford to discard many important pages as a strict parser would 
do. A wise preprocessing step taken by robust crawlers is to apply a tool 
such as tidy (www.w3.org/People/Raggett/tidy) to clean up the HTML 
content prior to parsing. To add to the complexity, there are many coexisting 



8.2 Implementation Issues      317 

HTML and XHTML reference versions. However, if the crawler only 
needs to extract links within a page and/or the text in the page, simpler 
parsers may suffice. The HTML parsers available in high-level languages 
such as Java and Perl are becoming increasingly sophisticated and robust. 

 
Fig. 8.2. Illustration of the DOM (or tag) tree built from a simple HTML page. 
Internal nodes (shown as ovals) represent HTML tags, with the <html> tag as the 
root. Leaf nodes (shown as rectangles) correspond to text chunks. 

A growing portion of Web pages are written in formats other than 
HTML. Crawlers supporting large-scale search engines routinely parse and 
index documents in many open and proprietary formats such as plain text, 
PDF, Microsoft Word and Microsoft PowerPoint. Depending on the 
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application of the crawler, this may or may not be required. Some formats 
present particular difficulties as they are written exclusively for human 
interaction and thus are especially unfriendly to crawlers. For instance, 
some commercial sites use graphic animations in Flash; these are difficult 
for a crawler to parse in order to extract links and their textual content. Other 
examples include image maps and pages making heavy use of Javascript for 
interaction. New challenges are going to come as new standards such as 
Scalable Vector Graphics (SVG), Asynchronous Javascript and XML 
(AJAX), and other XML-based languages gain popularity.  

8.2.3 Stopword Removal and Stemming 

When parsing a Web page to extract the content or to score new URLs 
suggested by the page, it is often helpful to remove so-called stopwords, 
i.e., terms such as articles and conjunctions, which are so common that 
they hinder the discrimination of pages on the basis of content.   

Another useful technique is stemming, by which morphological 
variants of terms are conflated into common roots (stems). In a topical 
crawler where a link is scored based on the similarity between its source 
page and the query, stemming both the page and the query helps improve 
the matches between the two sets and the accuracy of the scoring function.  

Both stop-word removal and stemming are standard techniques in 
information retrieval, and are discussed in greater detail in Chap. 6. 

8.2.4 Link Extraction and Canonicalization 

HTML parsers provide the functionality to identify tags and associated 
attribute-value pairs in a given Web page. In order to extract hyperlink 
URLs from a page, we can use a parser to find anchor (<a>) tags and grab 
the values of the associated href attributes. However, the URLs thus 
obtained need to be further processed. First, filtering may be necessary to 
exclude certain file types that are not to be crawled. This can be achieved 
with white lists (e.g., only follow links to text/html content pages) or black 
lists (e.g., discard links to PDF files). The identification of a file type may 
rely on file extensions. However, they are often unreliable and sometimes 
missing altogether. We cannot afford to download a document and then 
decide whether we want it or not. A compromise is to send an HTTP 
HEAD request and inspect the content-type response header, which is 
usually a more reliable label.  

Another type of filtering has to do with the static or dynamic nature of 
pages. A dynamic page (e.g., generated by a CGI script) may indicate a 
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query interface for a database or some other application in which a crawler 
may not be interested. In the early days of the Web, such pages were few 
and easily recognizable, e.g., by matching URLs against the /cgi-bin/ 
directory name for CGI scripts, or against the special characters [?=&] used 
in CGI query strings. However, the use of dynamic content has become 
much more common; it is used in a variety of sites for content that is 
perfectly indexable. Most importantly, its dynamic nature is very difficult 
to recognize via URL inspection. For these reasons, most crawlers no 
longer make such distinction between static and dynamic content. While a 
crawler normally would not create query URLs autonomously (unless it is 
designed to probe the so-called deep or hidden Web, which contain 
databases with query interfaces), it will happily crawl URLs hard-coded in 
HTML source of parsed pages.  In other words, if a URL is found in a 
Web page, it is fair game. There is one important exception to this 
strategy, the spider trap, which is discussed below. 

Before links can be added to the frontier, relative URLs must be 
converted to absolute URLs. For example, the relative URL news/today.html 
in the page http://www.somehost.com/index.html is to be transformed into 
the absolute form http://www.somehost.com/news/today.html. There are 
various rules to convert relative URLs into absolute ones. A relative URL 
can be expressed as a relative or absolute path relative to the Web server’s 
document root directory. The base URL may be specified by an HTTP 
header or a meta-tag within an HTML page, or not at all–in the latter case 
the directory of the hyperlink’s source page is used as a base URL. 

Converting relative URLs is just one of many steps that make up the 
canonicalization process, i.e., the conversion of a URL into a canonical 
form. The definition of canonical form is somewhat arbitrary, so that 
different crawlers may specify different rules. For example, one crawler may 
always specify the port number within the URL (e.g.,  http://www.somehost. 
com:80/), while another may specify the port number only when it is not 
80 (the default HTTP port). As long as the canonical form is applied 
consistently by a crawler, such distinctions are inconsequential. Some 
programming languages such as Perl provide modules to manage URLs, 
including methods for absolute/relative conversion and canonicalization. 
However, several canonicalization steps require the application of heuristic 
rules, and off-the-shelf tools typically do not provide such functionalities. 
A crawler may also need to use heuristics to detect when two URLs point 
to the same page in order to minimize the likelihood that the same page is 
fetched multiple times. Table 8.1 lists the steps typically employed to 
canonicalize a URL.    
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Table 8.1. Some transformations to convert URLs to canonical forms. Stars 
indicate heuristic rules, where there is a tradeoff between the risk of altering the 
semantics of the URL (if a wrong guess is made) and the risk of missing duplicate 
URLs (if no transformation is applied) for the same target 

Description and transformation Example and canonical form 

Default port number  http://cs.indiana.edu:80/ 
Remove  http://cs.indiana.edu/ 
Root directory  http://cs.indiana.edu 
Add trailing slash  http://cs.indiana.edu/ 
Guessed directory*  http://cs.indiana.edu/People 
Ad     http://cs.indiana.edu/People/ 
Fragment  http://cs.indiana.edu/faq.html#3 
Remove  http://cs.indiana.edu/faq.html 
Current or parent directory  http://cs.indiana.edu/a/./../b/ 
Resolve path  http://cs.indiana.edu/b/ 
Default filename*  http://cs.indiana.edu/index.html 
Remove  http://cs.indiana.edu/ 
Needlessly encoded characters  http://cs.indiana.edu/%7Efil/ 
Decode  http://cs.indiana.edu/~fil/ 
Disallowed characters  http://cs.indiana.edu/My File.htm 
Encode  http://cs.indiana.edu/My%20File.htm 
Mixed/upper-case host names  http://CS.INDIANA.EDU/People/ 
Lower-case  http://cs.indiana.edu/People/ 

8.2.5 Spider Traps 

A crawler must be aware of spider traps. These are Web sites where the 
URLs of dynamically created links are modified based on the sequence of 
actions taken by the browsing user (or crawler). Some e-commerce sites 
such as Amazon.com may use URLs to encode which sequence of 
products each user views. This way, each time a user clicks a link, the 
server can log detailed information on the user's shopping behavior for 
later analysis. As an illustration, consider a dynamic page for product x, 
whose URL path is /x and that contains a link to product y. The URL path 
for this link would be /x/y to indicate that the user is going from page x to 
page y. Now suppose the page for y has a link back to product x. The 
dynamically created URL path for this link would be /x/y/x, so that the 
crawler would think this is a new page when in fact it is an already visited 
page with a new URL. As a side effect of a spider trap, the server may 
create an entry in a database every time the user (or crawler) clicks on 
certain dynamic links. An example might be a blog or message board 
where users can post comments. These situations create sites that appear 
infinite to a crawler, because the more links are followed, the more new 

d trailing slash
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URLs are created. However these new “dummy” links do not lead to existing 
or new content, but simply to dynamically created form pages, or to pages 
that have already been visited. Thus a crawler could go on crawling inside 
the spider trap forever without actually fetching any new content. 

In practice spider traps are not only harmful to the crawler, which 
wastes bandwidth and disk space to download and store duplicate or 
useless data. They may be equally harmful to the server sites. Not only 
does the server waste its bandwidth, the side effect of a crawler caught in a 
spider trap may also be filling a server-side database with bogus entries. 
The database may eventually become filled to capacity, and the site may 
be disabled as a result. This is a type of denial of service attack carried out 
unwittingly by the crawler. 

In some cases a spider trap needs the client to send a cookie set by the 
server for the dynamic URLs to be generated. So the problem is prevented 
if the crawler avoids accepting or sending any cookies. However, in most 
cases a more proactive approach is necessary to defend a crawler against 
spider traps. Since the dummy URLs often become larger and larger in size 
as the crawler becomes entangled in a spider trap, one common heuristic 
approach to tackle such traps is by limiting the URL sizes to some 
maximum number of characters, say 256. If a longer URL is encountered, 
the crawler should simply ignore it. Another way is by limiting the number 
of pages that the crawler requests from a given domain. The code 
associated with the frontier can make sure that every consecutive sequence 
of, say, 100 URLs fetched by the crawler contains at most one URL from 
each fully qualified host name. This approach is also germane to the issue 
of crawler etiquette, discussed later. 

8.2.6 Page Repository 

Once a page is fetched, it may be stored/indexed for the master application 
(e.g., a search engine). In its simplest form a page repository may store 
the crawled pages as separate files. In this case each page must map to a 
unique file name. One way to do this is to map each page's URL to a 
compact string using some hashing function with low probability of 
collisions, e.g., MD5. The resulting hash value is used as a (hopefully) 
unique file name. The shortcoming of this approach is that a large scale 
crawler would incur significant time and disk space overhead from the 
operating system to manage a very large number of small individual files.  

A more efficient solution is to combine many pages into one file. A 
naïve approach is to simply concatenate some number of pages (say 1,000) 
into each file, with some special markup to separate and identify the pages 
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within the file. This requires a separate look-up table to map URLs to file 
names and IDs within each file. A better method is to use a database to 
store the pages, indexed by (canonical) URLs. Since traditional RDBMSs 
impose high overhead, embedded databases such as the open-source 
Berkeley DB are typically preferred for fast access. Many high-level 
languages such as Java and Perl provide simple APIs to manage Berkeley 
DB files, for example as tied associative arrays. This way the storage 
management operations become nearly transparent to the crawler code, 
which can treat the page repository as an in-memory data structure.  

8.2.7 Concurrency 

A crawler consumes three main resources: network, CPU, and disk. Each 
is a bottleneck with limits imposed by bandwidth, CPU speed, and disk 
seek/transfer times. The simple sequential crawler described in Sect. 8.1 
makes a very inefficient use of these resources because at any given time 
two of them are idle while the crawler attends to the third.  

The most straightforward way to speed-up a crawler is through 
concurrent processes or threads. Multiprocessing may be somewhat easier 
to implement than multithreading depending on the programming language 
and platform, but it may also incur a higher overhead due to the 
involvement of the operating system in the management (creation and 
destruction) of child processes. Whether threads or processes are used, a 
concurrent crawler may follow a standard parallel computing model as 
illustrated in Fig. 8.3. Basically each thread or process works as an 
independent crawler, except for the fact that access to the shared data 
structures (mainly the frontier, and possibly the page repository) must be 
synchronized. In particular a frontier manager is responsible for locking 
and unlocking the frontier data structures so that only one process or 
thread can write to them at one time. Note that both enqueueing and 
dequeuing are write operations. Additionally, the frontier manager would 
maintain and synchronize access to other shared data structures such as the 
crawl history for fast look-up of visited URLs.  

It is a bit more complicated for a concurrent crawler to deal with an 
empty frontier than for a sequential crawler. An empty frontier no longer 
implies that the crawler has reached a dead-end, because other processes 
may be fetching pages and adding new URLs in the near future. The 
process or thread manager may deal with such a situation by sending a 
temporary sleep signal to processes that report an empty frontier. The 
process manager needs to keep track of the number of sleeping processes; 
when all the processes are asleep, the crawler must halt.  
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Fig. 8.3. Architecture of a concurrent crawler 
 

The concurrent design can easily speed-up a crawler by a factor of 5 or 
10. The concurrent architecture however does not scale up to the 
performance needs of a commercial search engine. We discuss in Sect. 8.3 
further steps that can be taken to achieve more scalable crawlers.  

8.3 Universal Crawlers 

General purpose search engines use Web crawlers to maintain their indices 
[4], amortizing the cost of crawling and indexing over the millions of 
queries received between successive index updates (though indexers are 
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designed for incremental updates [13]. These large-scale universal 
crawlers differ from the concurrent breadth-first crawlers described above 
along two major dimensions: 

1. Performance: They need to scale up to fetching and processing 
hundreds of thousands of pages per second. This calls for several 
architectural improvements.  

2. Policy: They strive to cover as much as possible of the most important 
pages on the Web, while maintaining their index as fresh as possible. 
These goals are, of course, conflicting so that the crawlers must be 
designed to achieve good tradeoffs between their objectives.  

Next we discuss the main issues in meeting these requirements.  

8.3.1 Scalability 

Figure 8.4 illustrates the architecture of a large-scale crawler, based on the 
accounts in the literature [6, 8, 25]. The most important change from the 
concurrent model discussed earlier is the use of asynchronous sockets in 
place of threads or processes with synchronous sockets. Asynchronous 
sockets are non-blocking, so that a single process or thread can keep 
hundreds of network connections open simultaneously and make efficient 
use of network bandwidth. Not only does this eliminate the overhead due 
to managing threads or processes, it also makes locking access to shared 
data structures unnecessary. Instead, the sockets are polled to monitor their 
states. When an entire page has been fetched into memory, it is processed 
for link extraction and indexing. This “pull” model eliminates contention 
for resources and the need for locks.  

The frontier manager can improve the efficiency of the crawler by 
maintaining several parallel queues, where the URLs in each queue refer to 
a single server. In addition to spreading the load across many servers 
within any short time interval, this approach allows to keep connections 
with servers alive over many page requests, thus minimizing the overhead 
of TCP opening and closing handshakes. 

The crawler needs to resolve host names in URLs to IP addresses. The 
connections to the Domain Name System (DNS) servers for this purpose 
are one of the major bottlenecks of a naïve crawler, which opens a new 
TCP connection to the DNS server for each URL. To address this 
bottleneck, the crawler can take several steps. First, it can use UDP instead 
of TCP as the transport protocol for DNS requests. While UDP does not 
guarantee delivery of packets and a request can occasionally be dropped, 
this is rare. On the other hand, UDP incurs no connection overhead with a 
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significant speed-up over TCP. Second, the DNS server should employ a 
large, persistent, and fast (in-memory) cache. Finally, the pre-fetching of 
DNS requests can be carried out when links are extracted from a page. In 
addition to being added to the frontier, the URLs can be scanned for host 
names to be sent to the DNS server. This way, when a URL is later ready 
to be fetched, the host IP address is likely to be found in the DNS cache, 
obviating the need to propagate the request through the DNS tree. 

 

Fig. 8.4. High-level architecture of a scalable universal crawler 
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In addition to making more efficient use of network bandwidth through 
asynchronous sockets, large-scale crawlers can increase network 
bandwidth by using multiple network connections switched to multiple 
routers, thus utilizing the networks of multiple Internet service providers. 
Similarly, disk I/O throughput can be boosted via a storage area network 
connected to a storage pool through a fibre channel switch. 

8.3.2 Coverage vs. Freshness vs. Importance 

Given the size of the Web, it is not feasible even for the largest-scale 
crawlers employed by commercial search engines to index all of the 
content that could be accessed. Instead, search engines aim to focus on the 
most “important” pages, where importance is assessed based on various 
factors such as link popularity measures (indegree or PageRank) [14, 22]. 
At the time of this writing the three major commercial search engines 
report index sizes in the order of 1010 pages, while the indexable Web may 
be at least an order of magnitude larger.  

The simplest strategy to bias the crawler in favor of popular pages is to 
do nothing – given the long-tailed distribution of indegree discussed in 
Sect. 8.1, a simple breadth-first crawling algorithm will tend to fetch the 
pages with the highest PageRank by definition, as confirmed empirically 
[41]. In fact, one would have to apply a reverse bias to obtain a fair sample 
of the Web. Suppose that starting with a random Web walk, we wanted a 
random sample of pages drawn with uniform probability distribution 
across all pages. We can write the posterior probability of adding a page p 
to the sample as Pr(accept(p)|crawl(p))Pr(crawl(p)) where the first factor 
is the conditional probability of accepting the page into the sample given 
that it was crawled, and the second factor is the prior probability of 
crawling the page in the random walk. We can find the acceptance strategy 
to obtain a uniform sample by setting the product to a constant, yielding 
Pr(accept(p)|crawl(p))  1/Pr(crawl(p)). The prior Pr(crawl(p)) is given by 
the PageRank of p, and can be approximated during the random walk by 
the frequency f(p) that the crawler has encountered a link to p. So 
therefore, each visited page p should be accepted with probability 
proportional to 1/f(p). Empirical tests on a simulated Web graph validate 
that this strategy yields a sample of the graph that is statistically 
representative of the original [23].  

The goal to cover as many pages as possible (among the most important 
ones) is in conflict with the need to maintain a fresh index. Because of the 
highly dynamic nature of the Web, with pages being added, deleted, and 
modified all the time, it is necessary for a crawler to revisit pages already 
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in the index in order to keep the index up-to-date. Many studies have been 
conducted to analyze the dynamics of the Web, i.e., the statistical 
properties of the processes leading to change in Web structure and content 
66, 101, 152, 177, 416]. They all indicate that the Web changes at very 
rapid rates. While early studies relied on the values reported by Web 
servers in the last-modified HTTP header, recently there is consensus that 
this information has little reliability. The most recent and exhaustive study 
at the time of this writing [42] reports that while new pages are created at a 
rate of about 8% per week, only about 62% of the content of these pages is 
really new because pages are often copied from existing ones. The link 
structure of the Web is more dynamic, with about 25% new links created 
per week. Once created, pages tend to change little so that most of the 
changes observed in the Web are due to additions and deletions rather than 
modifications. Finally, there is an agreement on the observation that the 
degree of change of a page is a better predictor of future change than the 
frequency of change [20, 42]. This suggests that crawler revisit strategies 
based on frequency of change [4, 13] may not be the most appropriate for 
achieving a good tradeoff between coverage and freshness. 

8.4 Focused Crawlers 

Rather than crawling pages from the entire Web, we may want to crawl 
only pages in certain categories. One applications of such a preferential 
crawler would be to maintain a Web taxonomy such as the Yahoo! 
Directory (dir.yahoo.com) or the volunteer-based Open Directory Project 
(ODP, dmoz.org). Suppose you are the ODP editor for a certain category; 
you may wish to launch such a crawler from an initial seed set of pages 
relevant to that category, and see if any new pages discovered should be 
added to the directory, either directly under the category in question or one 
of its subcategories. A focused crawler attempts to bias the crawler 
towards pages in certain categories in which the user is interested. 

Chakrabarti et al. [11] proposed a focused crawler based on a classifier. 
The idea is to first build a text classifier using labeled example pages from, 
say, the ODP. Then the classifier would guide the crawler by preferentially 
selecting from the frontier those pages that appear most likely to belong to 
the categories of interest, according to the classifier's prediction. To train 
the classifier, example pages are drawn from various categories in the 
taxonomy as shown in Fig. 8.5. The classification algorithm used was the 
naïve Bayesian method (see Chap. 3). For each category c in the taxonomy 
we can build a Bayesian classifier to compute the probability Pr(c|p) that a 
crawled page p belongs to c (by definition, Pr(top|p) = 1 for the top or root 



328 8 Web Crawling 

category). The user can select a set c* of categories of interest. Each 
crawled page is assigned a relevance score.  

 
 * ).|Pr()(

cc
pcpR  (1) 

3 
 

Two strategies were explored. In the “soft” focused strategy, the crawler 
uses the score R(p) of each crawled page p as a priority value for all 
unvisited URLs extracted from p. The URLs are then added to the frontier, 
which is treated as a priority queue (see Sect. 8.1.2). In the “hard” focused 
strategy, for a crawled page p, the classifier first finds the leaf category 

)(ˆ pc  in the taxonomy most likely to include p: 

ˆ c (p)  arg max
c: c'c

Pr(c | p). (2) 

If an ancestor of )(ˆ pc  is a focus category, i.e., c’: )(ˆ pc  c’ c’ c*, 
then the URLs from the crawled page p are added to the frontier. Otherwise 
they are discarded. The idea is illustrated in Fig. 8.5 (left). For example, 
imagine a crawler focused on soccer (c' = soccer  c*) visits a page p in 
the FIFA World Cup Germany 2006 site. If the classifier correctly assigns 
p to the leaf category ĉ =Sports/Soccer/Competitions/World_Cup/2006, the 

 

Fig. 8.5. Left: A taxonomy supporting a focused crawler. The areas in gray 
represent the categories of interest c*. A crawler with hard focus would add to the 
frontier the links extracted from a page classified in the leaf category 1̂c  because 
its ancestor category c' is of interest to the user, while the links from a page 
classified in 2ĉ would be discarded. Right: A context graph with L = 3 layers 
constructed to train a context focused crawler from the target set in layer  = 0. 
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links extracted from p are added to the frontier because 2006 is a 
subcategory of Sports/Soccer ( ĉ soccer). The soft and hard focus 
strategies worked equally well in experiments.  

Another element of the focused crawler is the use of a distiller. The 
distiller applies a modified version of the HITS algorithm [28] to find 
topical hubs. These hubs provide links to authoritative sources on a focus 
category. The distiller is activated at various times during the crawl and 
some of the top hubs are added to the frontier.  

Context-Focused Crawlers are another type of focused crawlers. They 
also use naïve Bayesian classifiers as a guide, but in this case the 
classifiers are trained to estimate the link distance between a crawled page 
and a set of relevant target pages [18]. To see why this might work, 
imagine looking for information on “machine learning.” One might go to 
the home pages of computer science departments and from there to faculty 
pages, which may then lead to relevant pages and papers. A department 
home page, however, may not contain the keywords “machine learning.” A 
typical focused or best-first crawler would give such a page a low priority 
and possibly never follow its links. However, if the crawler could estimate 
that pages about machine learning are only two links away from a page 
containing the keywords “computer science department,” then it would 
give the department home page a higher priority. 

The context-focused crawler is trained using a context graph with L 
layers (Fig. 8.5 right). The seed (target) pages form the layer 0 of the 
graph. The pages corresponding to the in-links to the seed pages are in 
layer 1. The in-links to the layer 1 pages make up the layer 2, and so on.  
The in-links to any page can be obtained by submitting a link: query to a 
search engine. The seed pages in layer 0 (and possibly those in layer 1) are 
then concatenated into a single large document, and the top few terms 
according to the TF-IDF weighting scheme (see Chap. 6) are selected as 
the vocabulary (feature space) to be used for classification. A naïve 
Bayesian classifier is built for each layer in the context graph. A prior 
probability Pr( ) = 1/L is assigned to each layer. All the pages in a layer 
are used to compute Pr(t| ), the probability of occurrence of a term t given 
the layer (class) . At the crawling time, these are used to compute Pr(p| ) 
for each crawled page p. The posterior probability Pr( |p) of p belonging 
to layer  can then be computed for each layer from Bayes’ rule. The layer 

* with highest posterior probability wins: 

).|Pr(maxarg)(* pp   (3) 
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If Pr( *|p) is less than a threshold, p is classified into the “other” class, 
which represents pages that do not have a good fit with any of the layers in 
the context graph. If Pr( *|p) exceeds the threshold, p is classified into *. 

The set of classifiers corresponding to the context graph provides a 
mechanism to estimate the link distance of a crawled page from a relevant 
page. If the mechanism works, the computer science department page in 
our example will get classified into layer 2. The crawler maintains a 
separate priority queue for each layer, containing the links extracted from 
visited pages classified in that layer. Each queue is sorted by the scores 
Pr( |p). The next URL to crawl is taken from the non-empty queue with 
the smallest . So the crawler gives precedence to links that appear to be 
closest to relevant targets. It is shown in [18] that the context-focused 
crawler outperforms the standard focused crawler in experiments. 

While the majority of focused crawlers in the literature have employed 
the naïve Bayesian method as the classification algorithm to score 
unvisited URLs, an extensive study with hundreds of topics has provided 
strong evidence that classifiers based on SVM or neural networks can yield 
significant improvements in the quality of the crawled pages [47]. 

8.5 Topical Crawlers 

For many preferential crawling tasks, labeled (positive and negative) 
examples of pages are not available in sufficient numbers to train a 
focused crawler before the crawl starts. Instead, we typically have a small 
set of seed pages and a description of a topic of interest to a user or user 
community. The topic can consist of one or more example pages (possibly 
the seeds) or even a short query. Preferential crawlers that start with only 
such information are often called topical crawlers [8, 14, 38]. They do not 
have text classifiers to guide crawling.  

Even without the luxury of a text classifier, a topical crawler can be 
smart about preferentially exploring regions of the Web that appear 
relevant to the target topic by comparing features collected from visited 
pages with cues in the topic description. 

To illustrate a topical crawler with its advantages and limitations, let us 
consider the MySpiders applet (myspiders.informatics.indiana.edu). Figure 
8.6 shows a screenshot of this application. The applet is designed to 
demonstrate two topical crawling algorithms, best-N-first and InfoSpiders, 
both discussed below [45].  

MySpiders is interactive in that a user submits a query just like one 
would do with a search engine, and the results are then shown in a 
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window. However, unlike a search engine, this application has no index to 
search for results. Instead the Web is crawled in real time. As pages 
deemed relevant are crawled, they are displayed in a list that is kept sorted 
by a user-selected criterion: score or recency. The score is simply the 
content (cosine) similarity between a page and the query (see Chap. 6); the 
recency of a page is estimated by the last-modified header, if returned by 
the server (as noted earlier this is not a very reliable estimate).  

 

Fig. 8.6. Screenshot of the MySpiders applet in action. In this example the user 
has launched a population of crawlers with the query “search censorship in france” 
using the InfoSpiders algorithm. The crawler reports some seed pages obtained 
from a search engine, but also a relevant blog page (bottom left) that was not 
returned by the search engine. This page was found by one of the agents, called 
Spider2, crawling autonomously from one of the seeds. We can see that Spider2 
spawned a new agent, Spider13, who started crawling for pages also containing 
the term “italy.” Another agent, Spider5, spawned two agents one of which, 
Spider11, identified and internalized the relevant term “engine.” 

One of the advantages of topic crawling is that all hits are fresh by 
definition. No stale results are returned by the crawler because the pages 
are visited at query time. This makes this type of crawlers suitable for 
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applications that look for very recently posted documents, which a search 
engine may not have indexed yet. On the down side, the search is slow 
compared to a traditional search engine because the user has to wait while 
the crawler fetches and analyzes pages. If the user's client machine (where 
the applet runs) has limited bandwidth, e.g., a dial-up Internet connection, 
the wait is likely infeasible. Another disadvantage is that the ranking 
algorithms cannot take advantage of global prestige measures, such as 
PageRank, available to a traditional search engine.  

Several research issues around topical crawlers have received attention. 
One key question is how to identify the environmental signals to which 
crawlers should attend in order to determine the best links to follow. Rich 
cues such as the markup and lexical (text) signals within Web pages, as 
well as features of the link graph built from pages already seen, are all 
reasonable sources of evidence to exploit.   

Crawlers can use the evidence available to them in different ways, for 
example more or less greedily. The goals of the application also provide 
crucial context. For example the desired properties of the pages to be 
fetched (similar pages, popular pages, authoritative pages, recent pages, 
and so on) can lead to significant differences in crawler design and 
implementation. The task could be constrained by parameters like the 
maximum number of pages to be fetched (long crawls vs. short crawls) or 
the memory available. A crawling task can thus be viewed as a constrained 
multi-objective search problem. The wide variety of objective functions, 
coupled with the lack of appropriate knowledge about the search space, 
make such a problem challenging.  

In the remainder of this section we briefly discuss the theoretical 
conditions necessary for topical crawlers to function, and the empirical 
evidence supporting the existence of such conditions. Then we review 
some of the machine learning techniques that have been successfully 
applied to identify and exploit useful cues for topical crawlers.   

8.5.1 Topical Locality and Cues 

The central assumption behind topical crawlers is that Web pages contain 
reliable cues about each other’s content. This is a necessary condition for 
designing a crawler that has a better-than-random chance to preferentially 
visit pages relevant with respect to a given topic. Indeed, if no estimates 
could be made about unvisited pages, then all we could do is a random 
walk through the Web graph, or an exhaustive search (using breadth-first 
or depth-first search algorithms). Fortunately, crawling algorithms can use 
cues from words and hyperlinks, associated respectively with a lexical and 
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a link topology. In the former, two pages are close to each other if they 
have similar textual content; in the latter, if there is a short path between 
them (we will see what “short” means).  

Lexical metrics are text similarity measures derived from the vector 
space model (see Chap. 6). The cluster hypothesis behind this model is 
that a document lexically close to a relevant document (with respect to the 
given query) is also relevant with high probability [51]. 

Link metrics typically look at hyperlinks as directed edges in a graph, 
but a path can also be defined in an undirected sense, in which case two 
pages have a short link distance between them if they are co-cited or co-
referenced, even if there is no directed path between them. Links are a very 
rich source of topical information about Web pages.  

From a crawler's perspective, there are two central questions:  

1. link-content conjecture: whether two pages that link to each other are 
more likely to be lexically similar to each other, compared to two 
randomly selected pages; 

2. link-cluster conjecture: whether two pages that link to each other are 
more likely to be semantically related to each other, compared to two 
randomly selected pages. 

A first answer to the link-content conjecture was obtained by computing 
the cosine similarity between linked and random pairs of pages, showing 
that the similarity is an order of magnitude higher in the former case [15]. 
The same study also showed that the anchor text tends to be a good 
(similar) description of the target page.  

The link-content conjecture can be generalized by looking at the decay 
in content similarity as a function of link distance from a source page. This 
decay was measured by launching an exhaustive breadth-first crawl from 
seed sets of 100 topics in the Yahoo! directory [35]. Let us use the cosine 
similarity measure (p1, p2) between pages p1 and p2 (see Chap. 6). We can 
measure the link distance 1(p1, p2) along the shortest directed path from p1 
and p2, revealed by the breadth-first crawl. Both distances 1(q, p) and 
similarities (q, p) were averaged for each topic q over all pages p in the 
crawl set q
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where Nd
q is the size of the cumulative page set Pd

q = {p | 1(q, p) ≤ d}. 
The crawlers were stopped at depth d = 3, yielding 3000 data points  

 {(p, d): q {1, …, 100}, d {1, 2, 3}}.  

These points were then used for fitting an exponential decay model:  
2

1)1()(
 

  e  (6) 

where  is the noise level in similarity, measured empirically by 
averaging across random pairs of pages. The parameters 1 and 2 are set 
by fitting the data. This was done for pages in various top-level domains, 
and the resulting similarity decay curves are plotted in Fig. 8.7.  

 
Fig. 8.7. Illustration of the link-content conjecture. The curves plot, for each top-
level domain, the decay in mean cosine similarity between pages as a function of 
their mean directed link distance, obtained by fitting data from 100 exhaustive 
breadth-first crawls starting from the 100 Yahoo! directory topics [35]. 

The curves provide us with a rough estimate of how far in link space one 
can make inferences about lexical content. We see that a weak signal is 
still present three links away from the starting pages for all but the .com 
domain, and even further for the .edu domain. Such heterogeneity is not 
surprising – academic pages are written carefully to convey information 
and proper pointers, while business sites often do not link to related sites 
because of competition. Therefore a topical crawler in the commercial 
domain would have a harder task, other things being equal. A solution may 
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be to use undirected links. More specifically, if a crawler can obtain in-
links to good pages (by querying a search engine), it can use co-citation to 
detect hubs. If a page links to several good pages, it is probably a good hub 
and all its out-links should be given high priority. This strategy, related to 
the so-called sibling locality [1], has been used in focused crawlers [11] 
and in topical crawlers for business intelligence [46]. In addition to co-
citation, one could look at bibliographic coupling: if several good pages 
link to a certain page, that target is likely to be a good authority so it and 
its in-links should be given high priority. Fig. 8.8 illustrates various ways 
in which crawlers can exploit co-citation and bibliographic coupling. 

 
Fig. 8.8. Crawling techniques exploiting co-citation (top) and bibliographic 
coupling (bottom). Dashed edges represent in-links, which require access to a 
search engine or connectivity server. Page A is a good hub, so it should be given 
high priority; once fetched, page B linked by it can be discovered and placed in 
the frontier with high priority since it is likely to be a good authority. Page C is 
also a good hub, so D should be given high priority. Page E is a good authority, so 
it should be given high priority. Its URL can also be used to discover F, which 
may be a good hub and should be placed in the frontier. G is also a good authority, 
so H should be given high priority and I should be placed in the frontier. 
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The link-cluster conjecture, also known as linkage locality [11], states 
that one can infer the meaning of a page by looking at its neighbors. This 
is actually more important than inferring lexical content, since the latter is 
only relevant insofar as it is correlated with the semantic content of pages. 
The same exhaustive crawl data used to validate the link-content conjecture 
can also be used to explore the link-cluster conjecture, namely the extent to 
which relevance is preserved within link space neighborhoods and the 
decay in expected relevance as one browses away from a relevant page 
[35]. The link-cluster conjecture can be simply formulated in terms of the 
conditional probability that a page p is relevant with respect to some query 
q, given that page r is relevant and that p is within d links from r: 

Rq (d)  Pr(relq (p) | relq (r)1(r, p)  d] (7) 

where relq() is a binary relevance assessment with respect to q. In other 
words a page has a higher than random probability of being about a certain 
topic if it is in the neighborhood of other pages about that topic. Rq(d) is 
the posterior relevance probability given the evidence of a relevant page 
nearby. The conjecture is then represented by the likelihood ratio (q, d) 
between Rq(d) and the prior relevance probability Gq  Pr(relq(p)), also 
known as the generality of the query. If semantic inferences are possible 
within a link radius d, then the following condition must hold: 
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To illustrate the meaning of the link-cluster conjecture, consider a random 
crawler searching for pages about a topic q. Call q(t) the probability that 
the crawler hits a relevant page at time t. Solving the recursion 

q (t 1) q (t)Rq (1)  (1q (t))Gq  (9) 

for q(t+1) = q(t) yields the stationary hit rate  
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The link-cluster conjecture is a necessary and sufficient condition for 
such a crawler to have a better than chance hit rate: 

.1)1,(*  qGqq   (11) 

Figure 8.9 plots the mean likelihood ratio (q, d) versus the mean link 
distance (q, d) obtained by fitting an exponential decay function  
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to the same 300 data points {(q, d)}. Note that this three-parameter model 
is more complex than the one used to validate the link-content conjecture, 
because ( = 0) must also be estimated from the data ((q, 0) = 1/Gq). 
The fitted curve reveals that being within a radius of three links from a 
relevant page increases the relevance probability by a factor (q, d) >>1. 
This is very reassuring for the design of topical crawlers. It also suggests 
that crawlers should attempt to remain within a few links from some 
relevant source. In this range hyperlinks create detectable signals about 
lexical and semantic content, despite the Web's apparent lack of structure.  

 
Fig. 8.9. Illustration of the link-cluster conjecture. The curve plots the decay in 
mean likelihood ratio as a function of mean directed link distance from a relevant 
page, obtained by fitting data from 100 exhaustive breadth-first crawls starting 
from as many Yahoo! directory topics [35]. 
 

The link-content and link-cluster conjectures can be further developed 
by looking at the correlation between content-based, link-based, and 
semantic-based similarity measures. Using the ODP as a ground truth, we 
can express the semantic similarity between any two pages in the 
taxonomy [32, 36] and see how it can be approximated by content and link 
similarity measures. For content one can consider for example cosine 
similarity based on TF or TF-IDF term weights. For link similarity one 
can similarly represent a page as a bag of links (in-links, out-links, or 
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both/undirected) and then apply a Jaccard coefficient or a cosine 
similarity. Figure 8.10 shows, for various topical domains from the ODP, 
the correlation between semantic similarity and two representative content 
and link similarity measures. We observe significant heterogeneity in the 
correlations, suggesting that topical crawlers have an easier job in some 
topics (e.g., “news”) than others (e.g., “games”). Another observation is 
that in some topical domains (e.g., “home”) textual content is a more 
reliable signal, while in others (e.g., “computers”) links are more helpful. 

 
Fig. 8.10. Pearson correlation coefficients between the semantic similarity 
extracted from ODP [32] and two representative content and link similarity 
measures. The correlations are measured using a stratified sample of 150,000 
URLs from the ODP, for a total of 4 billion pairs [36]. Content similarity is cosine 
with TF weights, and link similarity is the Jaccard coefficient with undirected 
links. 

8.5.2 Best-First Variations 

The majority of crawling algorithms in the literature are variations of the 
best-first scheme described in Sect. 8.1.2. The difference is in the 
heuristics that they use to score unvisited URLs. A very simple instance is 
the case where each URL is queued into the frontier with priority given by 
the content similarity between the topic description and the page from 
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which the URL was extracted. Content similarity can be measured with the 
standard cosine similarity, using TF or TFIDF term weights (in the latter case 
the crawler must have global or topic-contextual term frequency information 
available). This simple crawler is also known as naïve best-first. 

Many variations of the naïve best-first crawlers are possible. Some give 
more importance to certain HTML markups, such as the title, or to text 
segments marked by special tags, such as headers. Other techniques focus 
on determining the most appropriate textual context to score a link. One 

 

 

Fig. 8.11. Link context from distance-weighted window (top) and from the DOM 
tree (bottom). 
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alternative to using the entire page or just the anchor text as context, used 
by InfoSpiders [37] and Clever [9], is a weighted window where topic 
keywords occurrences near the anchor count more toward the link score 
than those farther away, as shown in Fig. 8.11. Another approach is to 
consider the tag (DOM) tree of the HTML page [8]. The idea is to walk up 
the tree from the link anchor toward the root, stopping at an appropriate 
aggregation node. The link context is then obtained by the text in the tag 
subtree rooted at the aggregation node (Fig. 8.11).  

SharkSearch [24] is an improved version of the earlier FishSearch 
crawler [16]. It uses a similarity measure like the one used in the naïve 
best-first crawler as a first step for scoring unvisited URLs. The similarity 
is computed for anchor text, a fixed-width link context, the entire source 
page, and ancestor pages. The ancestors of a URL are the pages that appear 
on the crawl path to the URL. SharkSearch, like its predecessor FishSearch, 
maintains a depth bound. That is, if the crawler finds unimportant pages on 
a crawl path it stops crawling further along that path.  To this end, each 
URL in the frontier is associated with a depth and a potential score. The 
score of an unvisited URL is obtained from a linear combination of anchor 
text similarity, window context similarity, and an inherited score. The 
inherited score is the similarity of the source page to the topic, unless it is 
zero, in which case it is inherited from the source's parent (and recursively 
from its ancestors). The implementation of SharkSearch requires to preset 
three similarity coefficients in addition to the depth bound. This crawler 
does not perform as well as others described below.  

Rather than (or in addition to) improving the way we assign priority 
scores to unvisited URLs, we can also improve on a naïve best-first crawler 
by altering the priority scheme. A classic trade-off in machine learning is 
that between exploration and exploitation of information. A crawler is no 
different: it can greedily pursue the best-looking leads based on noisy 
quality estimates, or be more explorative and visit some pages that seem 
less promising, but might lead to better pages. The latter approach is taken 
in many optimization algorithms in order to escape local optima and reach 
a global optimum with some probability. As it turns out, the same strategy 
is also advantageous for topical crawlers. Visiting some URLs with lower 
priority leads to a better overall quality of the crawler pages than strictly 
following the best-first order. This is demonstrated by best-N-first, a 
crawling algorithm that picks N URLs at a time from the frontier (the top N 
by priority score) and fetches them all. Once all N pages are visited, the 
newly extracted URLs are merge-sorted into the priority queue, and the 
cycle is repeated. The best-N-first crawler with N = 256 is a very strong 
competitor, outperforming most of the other topical crawlers in the 
literature [38, 48]. Figure 8.12 shows a comparison with two crawlers 
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discussed thus far. Note that a concurrent implementation of a best-first 
crawler with N threads or processes is equivalent to a best-N-first crawler.    

8.5.3 Adaptation 

All the crawlers discussed thus far use a static strategy both to evaluate 
unvisited URLs and to manage the frontier. Thus they do not learn from 
experience or adapt to the context of a particular topic in the course of the 
crawl. In this section we describe a number of machine learning techniques 
that have been incorporated into adaptive topical crawlers.  

The intelligent crawler uses a statistical model for learning to assign 
priorities to the URLs in the frontier, considering Bayesian interest factors 
derived from different features [1]. For example, imagine that the crawler 
is supposed to find pages about soccer and that 40% of links with the 
keyword football in the anchor text lead to relevant pages, versus a 
background or prior frequency of only 2% of crawled pages being 
relevant. Then the crawler assigns an interest factor  

 
Fig. 8.12. Performance of best-N-first crawler with N = 256 (BFS256) compared 
with a naïve best-first crawler (BFS1) and a breadth-first crawler. Recall refers to 
sets of relevant pages that the crawlers are supposed to discover; averages and 
error bars are computed across 100 crawls from as many ODP topics. 
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to the feature “keyword football in anchor.” Recall relsoccer(p) is the binary 
relevance score (0 or 1) of page p to soccer. The interest factors are treated 
as independent sources of evidence, or likelihoods. They are combined by 
a linear combination of log-likelihoods, with user-defined weight parameters. 
The features employed by the intelligent crawler may be diverse, depending 
on the particular crawling task. They may include tokens extracted from 
candidate URLs, source page content and links, co-citation (sibling) 
relationships, and/or other characteristics of the visited and unvisited 
URLs. As more evidence is accumulated and stored throughout the crawl, 
the interest factors are recalculated and the priorities updated, so that the 
frontier is always sorted according to the most recent estimates. Thus 
intelligent crawlers adapt to the content and link structure of the Web 
neighborhoods being explored. 

The original focused crawlers described earlier also use machine 
learning, in particular a classifier that guides the crawler. However the 
classifier is trained before the crawl is launched, and no learning occurs 
during the crawl. Therefore we do not consider it an adaptive crawler. 
However, in a later “accelerated” version of the focused crawler [8], an 
online learning apprentice was added to the system; the original (baseline) 
classifier then acts as a critic, providing the apprentice with training 
examples for learning to classify outgoing links from the features of the 
pages from which they are extracted. Suppose page p1 is fetched and 
contains a link to page p2. Later, p2 is fetched and the baseline classifier 
assigns it to a relevant class. This information is passed to the apprentice, 
which uses the labeled example (“the link from p1 to p2 is good”) to learn to 
classify the link to p2 as good based on the textual features in the context of 
the anchor within p1. Future links with a similar context should be given 
high priority. Conversely, if p2 is deemed irrelevant by the baseline 
classifier, the apprentice learns to predict (“bad link”) when it encounters a 
link with a similar context in the future. The features used to train the 
apprentice were textual tokens associated with a link context based on the 
DOM tree, and the learning algorithm used by the apprentice was a naïve 
Bayesian classifier. This approach led to a significant reduction in the 
number of irrelevant pages fetched by the focused crawler.  

While the accelerated focused crawler is not a topical crawler because it 
still needs labeled examples to train the baseline classifier prior to the 
crawl, the idea of training an apprentice online during the crawl can be 
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applied in topical crawlers as well. Indeed this is a type of reinforcement 
learning technique employed in several crawlers, using different features 
and/or different learning algorithms for the apprentice. In reinforcement 
learning [27] we have a network where nodes are states and directed links 
are actions. An action a  A (think “anchor”) moves an agent from a state 
p  P (think “page”) to another state according to a transition function L: P 
 A  P. Thus an adaptive crawler is seen as an agent moving from page 
to page. Actions are rewarded according to a function r: P  A  . We 
want to learn a policy mapping states to actions, : P  A, that maximizes 
future reward discounted over time: 
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where we follow action (link) at=(pt) from state (page) pt at each time 
step t. The parameter  determines how future rewards are discounted (0  
 < 1). If  = 0, the reinforcement learning policy is the greedy one 
employed by the naïve best-first crawler. To learn an optimal policy, we 
define the value of selecting action a from state p, and following the 
optimal policy thereafter: 

)],([),(),( * apLVaprapQ   (15) 

where V* is the value function of the optimal policy *(p) = argmaxaQ(p, 
a). The question then becomes how to estimate the function Q, i.e., to 
assign a value to a link a based on the context information in page p from 
which the link is extracted. However, the actions available to the crawler 
are not limited to the links from the last page visited; any of the actions 
corresponding to the URLs in the frontier are available. Furthermore, there 
is no reason why the Q value of a link should be a function of a particular 
source page; if links to the same target page are extracted from multiple 
source pages, the estimated values of the anchors can be combined, for 
example Q(u) = max{(p, a): L(p, a) = u}Q(p, a). This way Q values can be 
computed not for links (anchors), but for target pages (URLs); the state 
and action spaces are thus greatly reduced, basically collapsing all visited 
pages into a single degenerate state and all links to their target URLs. The 
policy  reduces to the simple selection of the URL in the frontier with the 
maximum Q value.  

One way to calculate Q values is via a naïve Bayesian classifier. This 
method was found to work well compared to a breadth-first crawler for the 
tasks of crawling computer science research papers and company directory 
information [33, 50]. In this case, the classifier was trained off-line rather 
than online while crawling, using labeled examples as in the focused 
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crawler. Training the classifier to predict future reward ( > 0) was better 
than only using immediate reward ( = 0). For future reward the authors 
use a heavy discount  = 0.5, arguing that it is optimal to be greedy in 
selecting URLs from the frontier, so that one can crawl toward the nearest 
relevant page. This assumes that all relevant targets are within reach. So 
there is no reason to delay reward. However, as discussed earlier, a crawler 
typically deals with noisy data, so the classifier’s Q estimates are not 
entirely reliable; more importantly, a typical crawler cannot possibly cover 
the entire search space. These factors suggest that it may be advantageous 
to occasionally give up some immediate reward in order to explore other 
directions, potentially leading to pockets or relevant pages unreachable by 
a greedy crawler (see Fig. 8.12). 

Using a previously trained classifier to compute Q values for URLs in 
the frontier means that supervised learning is combined with reinforcement 
learning. As for focused crawlers, labeled examples must be available 
prior to the start of the crawl. This may be possible in tasks such as the 
collection of research articles, but is not a realistic assumption for typical 
topical crawlers. An adaptive crawling algorithm that actually uses rein-
forcement learning while crawling online, without any supervised learning, 
is InfoSpiders. This crawler employs various machine learning techniques 
to exploit various types of Web regularities. InfoSpiders are inspired by 
artificial life models in which a population of agents lives, learn, evolve, 
and die in an environment. Individual agents learn during their lifetimes 
based on their experiences, with the environment playing the role of a 
critic, providing rewards and penalties for actions. Agents may also reproduce, 
giving rise to new agents similar to them, and die. The environment is the 
Web, the actions consist of following links and visiting pages and the text 
and link features of pages are the signals that agents can internalize into 
their learned and evolved behaviors. Feedback from the environment 
consists of a finite energy resource, necessary for survival. Each action has 
an energy cost, which may be fixed or proportional to, say, the size of a 
fetched page or the latency of a page download [17]. Energy is gained 
from visiting new pages relevant to the query topic. A cache prevents an 
agent from accumulating energy by visiting the same page multiple times. 
In the recent version of InfoSpiders, each agent maintains its own frontier 
of unvisited URLs [38]. The agents can be implemented as concurrent 
processes/threads, with non-contentious access to their local frontiers. Fig. 
8.13 illustrates the representation and flow of an individual agent. 

The adaptive representation of each InfoSpiders agent consists of a list 
of keywords (initialized with the topic description) and a neural net used to 
evaluate new links. Each input unit of the neural net receives a count of the 
frequency with which the keyword occurs in the vicinity of each link, 
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weighted to give more importance to keywords occurring near the anchor 
and maximum for the anchor text (Fig. 8.11). The neural net has a single 
output unit whose activation is used as a Q value (score) for each link u in 
input. The agent’s neural net learns to predict the Q value of the link’s 
target URL u given the inputs from the link's source page p. The reward 
function r(u) is the cosine similarity between the agent’s terms and the 
target page u. The future discounted optimal value V*(u) is approximated 
using the highest neural net prediction among the links subsequently 
extracted from u. This procedure is similar to the reinforcement learning 
algorithm described above, except that the neural net replaces the naïve 
Bayesian classifier. The neural net is trained by the back-propagation 
algorithm [52]. This mechanism is called connectionist reinforcement 
learning [30]. While the neural net can in principle model nonlinear 
relationships between term frequencies and pages, in practice we have 
used a simple perceptron whose prediction is a linear combination of the 
keyword weights. Such a learning technique provides each InfoSpiders 
agent with the capability to adapt its own link-following behavior in the 
course of a crawl by associating relevance estimates with particular 
patterns of keyword frequencies around links. 

 
Fig. 8.13. A single InfoSpiders agent. The link context is the weighted window as 
shown in Fig. 8.11: for each newly extracted URL and for each term in the agent's 
term list, this produces a weight that is fed into the neural network, whose output 
is stored as the link's priority score in the frontier. 

The neural net's link scores are combined with estimates based on the 
cosine similarity between the agent's keyword list and the entire source 
page.  A parameter  (0    1) regulates the relative importance given to 
the estimates based on the neural net versus the source page. Based on the 



346 8 Web Crawling 

combined score   the agent uses a stochastic selector to pick one of the 
links in the frontier with probability 
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where u is a URL in the local frontier . Parameter  regulates the 
greediness of the link selector. Its value can be fixed or evolved with the 
agent.  

After a new page u has been fetched, the agent receives an energy 
payoff proportional to the difference between the reward r(u) and the cost 
charged for the download. An agent dies when it runs out of energy. The 
energy level is also used to determine whether or not the agent should 
reproduce after visiting a page. An agent reproduces when the energy level 
passes a fixed threshold. The reproduction is meant to bias the search 
toward areas with pages relevant to the topic. Topical locality suggests that 
if an agent visits a few relevant pages in rapid sequence, more relevant 
pages are likely to be nearby (in the frontier). To exploit this, the 
accumulated energy results in a short-term doubling of the frequency with 
which the crawler explores this agent’s frontier. At reproduction, the 
agent’s energy and frontier are split in half with the offspring (new agent 
or thread). According to ecological theory, this way the agent population is 
supposed to move toward an optimal cover of the Web graph in 
proportion to the local density of resources, or relevant pages. 

In addition to the individual's reinforcement learning and the 
population’s evolutionary bias, InfoSpiders employ a third adaptive 
mechanism. At reproduction, the offspring’s keyword vector is mutated 
(expanded) by adding a new term. The chosen term/keyword is the one 
that is most frequent in the parent’s last visited page, i.e., the page that 
triggered the reproduction. This selective query expansion strategy, 
illustrated in Fig. 8.6, is designed to allow the population to diversify and 
expand its focus according to each agent’s local context.  An InfoSpiders 
crawler incorporating all of these adaptive techniques has been shown to 
outperform various versions of naïve best-first crawlers (Fig. 8.14) when 
visiting a sufficiently large number of pages (more than 10,000) so that the 
agents have time to adapt [38, 53].  
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Fig. 8.14. Performance plots [38]: average target recall RT(t) (top) and average 
precision PD(t) (similarity to topic description, bottom). The averages are 
calculated over 10 ODP topics. After 50,000 pages crawled, one tailed t-tests 
reveal that both BFS256 and InfoSpiders outperform the breadth-first crawler on 
both performance metrics. InfoSpiders outperform BFS256 on recall, while the 
difference in precision is not statistically significant. 
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8.6 Evaluation 

Given the goal of building a “good” crawler, a critical question is how to 
evaluate crawlers so that one can reliably compare two crawling algorithms 
and conclude that one is “better” than the other. Since a crawler is usually 
designed to support some application, e.g., a search engine, it can be 
indirectly evaluated through the application it supports. However, 
attribution is problematic; if a search engine works better than another 
(assuming that were easy to determine!), how can we attribute this difference 
in performance to the underlying crawling algorithms as opposed to the 
ranking or indexing schemes? Thus it is desirable to evaluate crawlers 
directly. 

Often crawler evaluation has been carried out by comparing a few 
crawling algorithms on a limited number of queries/tasks without considering 
the statistical significance. Such anecdotal results, while important, do not 
suffice for thorough performance comparisons. As the Web crawling field 
has matured, a need has emerged for evaluating and comparing disparate 
crawling strategies on common tasks through well-defined performance 
measures. Let us review the elements of such an evaluation framework, 
which can be applied to topical as well as focused crawlers.   

A comparison between crawlers must be unbiased and must allow one 
to measure statistically significant differences. This requires a sufficient 
number of crawl runs over different topics, as well as sound methodologies 
that consider the temporal nature of crawler outputs. Significant challenges 
in evaluation include the general unavailability of relevant sets for particular 
topics or queries. Unfortunately, meaningful experiments involving real 
users for assessing the relevance of pages as they are crawled are extremely 
problematic.  In order to obtain a reasonable notion of crawl effectiveness 
one would have to recruit a very large number of subjects, each of whom 
would have to judge a very large number of pages. Furthermore, crawls 
against the live Web pose serious time constraints and would be overly 
burdensome to the subjects.  

To circumvent these problems, crawler evaluation typically relies on 
defining measures for automatically estimating page relevance and quality. 
The crawler literature reveals several performance measures used for these 
purposes. A page may be considered relevant if it contains some or all of 
the keywords in the topic/query. The frequency with which the keywords 
appear on the page may also be considered [14]. While the topic of interest 
to the user is often expressed as a short query, a longer description may be 
available in some cases. Similarity between the short or long description 
and each crawled page may be used to judge the page's relevance [24, 39, 
53]. The pages used as the crawl's seed URLs may be combined together 
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into a single document, and the cosine similarity between this document 
and a crawled page may serve as the page’s relevance score [3]. A classifier 
may be trained to identify relevant pages. The training may be done using 
seed pages or other pre-specified relevant pages as positive examples. The 
trained classifier then provides boolean or continuous relevance scores for 
each of the crawled pages [11, 18]. Note that if the same classifier, or a 
classifier trained on the same labeled examples, is used both to guide a 
(focused) crawler and to evaluate it, the evaluation is not unbiased. Clearly 
the evaluating classifier would be biased in favor of crawled pages. To 
partially address this issue, an evaluation classifier may be trained on a 
different set than the crawling classifier. Ideally the training sets should be 
disjoint. At a minimum the training set used for evaluation must be 
extended with examples not available to the crawler [47]. Another 
approach is to start N different crawlers from the same seeds and let them 
run until each crawler gathers P pages. All of the NP pages collected 
from the crawlers are ranked against the topic query/description using a 
retrieval algorithm such as cosine. The rank provided by the retrieval 
system for each page is then used as a relevance score. Finally, one may 
use algorithms, such as PageRank or HITS, that provide authority or 
popularity estimates for each crawled page. A simpler method would be to 
use just the number of in-links to the crawled page to derive similar 
information [3, 14]. Many variations of link-based methods using topical 
weights may be applied to measure the topical quality of pages [5, 10]. 

Once each page is assessed, a method is needed to summarize the 
performance of a crawler across a set of crawled pages. Given a particular 
measure of page relevance and/or importance we can summarize the 
performance of the crawler with metrics that are analogous to the 
information retrieval notions of precision and recall (see Chap. 6). 
Lacking well-defined relevant sets, the classic boolean relevance is 
replaced by one of the scores outlined above. A few precision-like 
measures are found in the literature. In case we have boolean relevance 
scores, we could measure the rate at which “good” pages are found; if 100 
relevant pages are found in the first 500 pages crawled, we have an 
acquisition rate or harvest rate of 20% at 500 pages [1]. If the relevance 
scores are continuous (e.g., from cosine similarity or a trained classifier) 
they can be averaged over the crawled pages. The average relevance, as 
shown in Fig. 8.14, may be computed over the progress of the crawl [39]. 
Sometimes running averages are calculated over a window of a number of 
pages, e.g., the last 50 pages from a current crawl point [11]. Another 
measure from information retrieval that has been applied to crawler 
evaluation is search length [37], defined as the number of pages (or the 
number of irrelevant pages) crawled before a certain percentage of the 
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relevant pages are found. Search length is akin to the reciprocal of 
precision for a preset level of recall.  

Recall-like measures would require normalization by the number of 
relevant pages. Since this number is unknown for Web crawling tasks, it 
might appear that recall cannot be applied to crawlers. However, even if 
unknown, the size of the relevant set is a constant. Therefore, it can be 
disregarded as a scaling factor when comparing two crawling algorithms 
on the same topical query. One can simply sum the quality or relevance 
estimates (obtained by one of the methods outlined above) over the course 
of a crawl, and obtain a total relevance as shown in Fig. 8.14.  

It is possible to design crawling experiments so that a set of relevant 
target pages is known by the experimenter. Then precision and recall can 
be calculated from the fraction of these relevant targets that are discovered 
by the crawler, rather than based on relevance estimates. One way to 
obtain a set of relevant pages is from a public directory such as the ODP. 
This way one can leverage the classification already carried out by the 
volunteer editors of the directory. The experimenter can select as topics a 
set of categories from the ODP, whose distance from the root of the ODP 
taxonomy can be determined so as to obtain topics with generality/ 
specificity appropriate for the crawling task [38, 53]. Figure 8.5 (left) 
illustrates how subtrees rooted at a chosen category can be used to harvest 
a set of relevant target pages. If a page is classified in a subtopic of a target 
topic, it can be considered relevant with respect to the target topic.  

If a set of known relevant target pages is used to measure the 
performance of a topical crawler, these same pages cannot be used as seeds 
for the crawl. Two approaches have been proposed to obtain suitable seed 
pages. One is to perform a back-crawl from the target pages [53]. By 
submitting link: queries to a search engine API, one can obtain a list of 
pages linking to each given target; the process can be repeated from these 
parent pages to find “grandparent” pages, and so on until a desired link 
distance is reached. The greater the link distance, the harder the task is for 
the crawler to locate the relevant targets from these ancestor seed pages. 
The procedure has the desired property that directed paths are guaranteed 
to exist from any seed page to some relevant targets. Given the potentially 
large fan-in of pages, sampling is likely required at each stage of the back-
crawl to obtain a suitable number of seeds. The process is similar to the 
construction of a context graph, as shown in Fig. 8.5 (right). A second 
approach is to split the set of known relevant pages into two sets; one set 
can be used as seeds, the other as targets. While there is no guarantee that 
the targets are reachable from the seeds, this approach is significantly 
simpler because no back-crawl is necessary. Another advantage is that 
each of the two relevant subsets can be used in turn as seeds and targets. In 
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this way, one can measure the overlap between the pages crawled starting 
from the two disjoint sets. A large overlap is interpreted as robustness of 
the crawler in covering relevant portions of the Web [8, 11]. 

The use of known relevant pages as proxies for unknown relevant sets 
implies an important assumption, which we can illustrate by the Venn 
diagram in Fig. 8.15. Here S is a set of crawled pages and T is the set of 
known relevant target pages, a subset of the relevant set R. Let us consider 
the measure of recall. Using T as if it were the relevant set means that we 
are estimating the recall |R  S| / |R| by |T  S| / |T|. This approximation 
only holds if T is a representative, unbiased sample of R independent of the 
crawl process. While the crawler attempts to cover as much as possible of 
R, it should not have any information about how pages in T are sampled 
from R. If T and S are not independent, the measure is biased and 
unreliable. For example if a page had a higher chance of being selected in 
T because it was in S, or vice versa, then the recall would be overestimated. 
The same independence assumption holds for precision-like measures, 
where we estimate |R  S| / |S| by |T  S| / |S|. A consequence of the 
independence requirement is that if the ODP is used to obtain T, the 
experimenter must prevent the crawler from accessing the ODP. This 
would bias the results because, once a relevant ODP category page is 
found, all of the relevant target pages can be reached by the crawler in a 
short breadth-first sweep. Preventing access to the ODP may pose a 
challenge because so many ODP mirrors exist on the Web. They may not 
be known by the experimenter, and not trivial to detect. 

To summarize, crawler performance measures [53] can be characterized 
along two dimensions: the source of relevance assessments (target pages 

 
Fig. 8.15. Illustration of precision and recall measures based on known relevant 
target pages and underlying independence assumption/requirement. 
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vs. similarity to their descriptions) and the normalization factor (average 
relevance, or precision, vs. total relevance, or recall). Using target pages as 
the relevant sets we can define crawler precision and recall as follows:  
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where St is the set of pages crawled at time t (t can be wall clock time, 
network latency, number of pages visited, number of bytes downloaded, 
and so on). T is the relevant target set, where  represents the parameters 
used to select the relevant target pages. This could include for example the 
depth of ODP category subtrees used to extract topic-relevant pages. 
Analogously we can define crawler precision and recall based on similarity 
to target descriptions:  
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where D is the textual description of the target pages, selected with 
parameters , and  is a text-based similarity function, e.g., cosine 
similarity (see Chap. 6). Figure 8.14 shows two examples of performance 
plots for three different crawlers discussed earlier in this chapter. The two 
plots depict RT and PD as a function of pages crawled. InfoSpiders and the 
BFS256 crawler are found to outperform the breadth-first crawler. 
InfoSpiders gain a slight edge in recall once the agents have had an 
opportunity to adapt. This evaluation involves each of the three crawlers 
visiting 50,000 pages for each of 10 topics, for a total of 1.5 million pages. 

Another set of evaluation criteria can be obtained by scaling or 
normalizing any of the above performance measures by the critical 
resources used by a crawler. This way, one can compare crawling 
algorithms by way of performance/cost analysis. For example, with limited 
network bandwidth one may see latency as a major bottleneck for a 
crawling task. The time spent by a crawler on network I/O can be 
monitored and applied as a scaling factor to normalize precision or recall. 



8.7 Crawler Ethics and Conflicts      353 

Using such a measure, a crawler designed to preferentially visit short 
pages, or pages from fast servers [17], would outperform one that can 
locate pages of equal or even better quality but less efficiently.  

8.7 Crawler Ethics and Conflicts 

Crawlers, especially when efficient, can put a significant strain on the 
resources of Web servers, mainly on their network bandwidth. A crawler 
that sends many page requests to a server in rapid succession, say ten or 
more per second, is considered impolite.  The reason is that the server 
would be so busy responding to the crawler that its service to other 
requests, including those from human browsing interactively, would 
deteriorate. In the extreme case a server inundated with requests from an 
aggressive crawler would become unable to respond to other requests, 
resulting in an effective denial of service attack by the crawler.  

To prevent such incidents, it is essential for a crawler to put in place 
measures to distribute its requests across many servers, and to prevent any 
one server (fully qualified host name) from receiving requests at more than 
some reasonably set maximum rate (say, one request every few seconds). 
In a concurrent crawler, this task can be carried out by the frontier 
manager, when URLs are dequeued and passed to individual threads or 
processes. This practice not only is required by politeness toward servers, 
but also has the additional benefits of limiting the impact of spider traps 
and not overloading the server, which will respond slowly.  

Preventing server overload is just one of a number of policies required 
of ethical Web agents [19]. Such policies are often collectively referred to 
as crawler etiquette. Another requirement is to disclose the nature of the 
crawler using the User-Agent HTTP header. The value of this header 
should include not only a name and version number of the crawler, but 
also a pointer to where Web administrators may find information about the 
crawler. Often a Web site is created for this purpose and its URL is 
included in the User-Agent field. Another piece of useful information is the 
email contact to be specified in the From header.  

Finally, crawler etiquette requires compliance with the Robot 
Exclusion Protocol. This is a de facto standard providing a way for Web 
server administrators to communicate which files may not be accessed by a 
crawler. This is accomplished via an optional file named robots.txt in the 
root directory of the Web server (e.g., http://www.somehost.com/robots.txt).  
The file provides access policies for different crawlers, identified by the 
User-agent field. For any user-agent value (or the default “*”) a number of 
Disallow entries identify directory subtrees to be avoided. Compliant 
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crawlers must fetch and parse a server's robots.txt file before sending 
requests to that server. For example, the following policy in robots.txt: 
     User-agent: * 
     Disallow: / 

directs any crawler to stay away from the entire server. Some high-level 
languages such as Perl provide modules to parse robots.txt files. It is wise 
for a crawler to cache the access policies of recently visited servers, so that 
the robots.txt file need not be fetched and parsed every time a request is 
sent to the same server. Additionally, Web authors can indicate if a page 
may or may not be indexed, cached, or mined by a crawler using a special 
HTML meta-tag. Crawlers need to fetch a page in order to parse this tag, 
therefore this approach is not widely used. More details on the robot exclusion 
protocols can be found at http://www.robotstxt.org/wc/robots.html.   

When discussing the interactions between information providers and 
search engines or other applications that rely on Web crawlers, confusion 
sometime arises between the ethical, technical, and legal ramifications of 
the Robot Exclusion Protocol. Compliance with the protocol is an ethical 
issue, and non-compliant crawlers can justifiably be shunned by the Web 
community. However, compliance is voluntary, and a robots.txt file cannot 
enforce it. Servers can, however, block access to a client based on its IP 
address. Thus it is likely that a crawler which does not comply with the 
Exclusion Protocol and does not follow proper etiquette will be quickly 
blocked by many servers. Crawlers may disguise themselves as browsers 
by sending a browser's identifying string in the User-Agent header. This 
way a server administrator may not immediately detect lack of compliance 
with the Exclusion Protocol, but an aggressive request profile is likely to 
reveal the true nature of the crawler. To avoid detection, some mischievous 
crawlers send requests at low and randomized rates. While such behaviors 
may be reprehensible, they are not illegal – at least not at the time of this 
writing. Nonetheless, there have been cases of businesses bringing lawsuits 
against search organizations for not complying with the Robot Exclusion 
Protocol. In a recent lawsuit involving the Internet Archive's WayBack 
Machine (www.archive.org), a plaintiff not only attributed legal weight to 
the Exclusion Protocol, but also expected that a newly added robots.txt 
policy should have retroactive value! 

Deception does not occur only by crawlers against servers. Some 
servers also attempt to deceive crawlers. For example, Web administrators 
may attempt to improve the ranking of their pages in a search engine by 
providing different content depending on whether a request originates from 
a browser or a search engine crawler, as determined by inspecting the 
request's User-Agent header. This technique, called cloaking, is frowned 
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upon by search engines, which remove sites from their indices when such 
abuses are detected. For more information about Web spam, see Chap. 6. 

One of the most serious challenges for crawlers originates from the 
rising popularity of pay-per-click advertising. If a crawler is not to follow 
advertising links, it needs to have a robust detection algorithm to 
discriminate ads from other links. A bad crawler may also pretend to be a 
genuine user who clicks on the advertising links in order to collect more 
money from merchants for the hosts of advertising links.  

The above examples suggest a view of the Web as a new playground for 
artificial intelligence (AI). Crawlers need to become increasingly sophi-
sticated to prevent insidious forms of spam from polluting and exploiting 
the Web environment. Malicious crawlers are also becoming smarter in 
their efforts, not only to spam but also to steal personal information and in 
general to deceive people and crawlers for illicit gains. One chapter of this 
arms race has been the development of CAPTCHAs [55], graphics-based 
inverse Turing tests automatically generated by server sites to keep out 
malicious crawlers. Maybe a stronger AI will be a positive outcome of 
crawler evolution; maybe a less usable Web will be a hefty price to pay. 

Interestingly, the gap between humans and crawlers may be narrowing 
from both sides. While crawlers become smarter, some humans are 
dumbing down their content to make it more accessible to crawlers. For 
example some online news providers use simpler titles than can be easily 
classified and interpreted by a crawler as opposed or in addition to witty 
titles that can only be understood by humans. 

Another gap that is getting narrower is the distinction between browsers 
and crawlers, with a growing gray area between the two. A business may 
wish to disallow crawlers from its site if it provides a service by which it 
wants to entice human users to visit the site, say to make a profit via ads on 
the site. A competitor crawling the information and mirroring it on its own 
site, with different ads, is a clear violator not only of the Robot Exclusion 
Protocol but also possibly of copyright law. What about an individual user 
who wants to access the information but automatically hide the ads? There 
are many browser extensions that allow users to perform all kinds of tasks 
that deviate from the classic browsing activity, including hiding ads, 
altering the appearance and content of pages, adding and deleting links, 
adding functionality to pages, pre-fetching pages, and so on. Such 
extensions have some of the functionalities of crawlers. Should they 
identify themselves through the User-Agent header as distinct from the 
browser with which they are integrated? Should a server be allowed to 
exclude them? And should they comply with such exclusion policies? 
These too are questions about ethical crawler behaviors that remain open 
for the moment. 
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8.8 Some New Developments 

The typical use of (universal) crawlers thus far has been for creating and 
maintaining indexes for general purpose search engines. However a more 
diverse use of (topical) crawlers is emerging both for client and server 
based applications. Topical crawlers are becoming important tools to 
support applications such as specialized Web portals (a.k.a. “vertical” 
search engines), live crawling, and competitive intelligence.  

Another characteristic of the way in which crawlers have been used by 
search engines up to now is the one-directional relationship between users, 
search engines, and crawlers. Users are consumers of information provided 
by search engines, search engines are consumers of information provided 
by crawlers, and crawlers are consumers of information provided by users 
(authors). This one-directional loop does not allow, for example, information 
to flow from a search engine (say, the queries submitted by users) to a 
crawler. It is likely that commercial search engines will soon leverage the 
huge amounts of data collected from their users to focus their crawlers on 
the topics most important to the searching public. To investigate this idea 
in the context of a vertical search engine, a system was built in which the 
crawler and the search engine engage in a symbiotic relationship [44]. The 
crawler feeds the search engine which in turn helps the crawler. It was 
found that such a symbiosis can help the system learn about a community's 
interests and serve such a community with better focus. 

As discussed in Sect. 8.3, universal crawlers have to somehow focus on 
the most “important” pages given the impossibility to cover the entire Web 
and keep a fresh index of it. This has led to the use of global prestige 
measures such as PageRank to bias universal crawlers, either explicitly 
[14, 22] or implicitly through the long-tailed structure of the Web graph 
[41]. An important problem with these approaches is that the focus is 
dictated by popularity among “average” users and disregards the hetero-
geneity of user interests. A page about a mathematical theorem may appear 
quite uninteresting to the average user, if one compares it to a page about a 
pop star using indegree or PageRank as a popularity measure. Yet the math 
page may be highly relevant and important to a small community of users 
(mathematicians). Future crawlers will have to learn to discriminate 
between low-quality pages and high-quality pages that are relevant to very 
small communities.  

Social networks have recently received much attention among Web 
users as vehicles to capture commonalities of interests and to share relevant 
information.  We are witnessing an explosion of social and collaborative 
engines in which user recommendations, opinions, and annotations are 
aggregated and shared. Mechanisms include tagging (e.g., del.icio.us and 
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flickr.com), ratings (e.g., stumbleupon.com), voting (e.g., digg.com), and 
hierarchical similarity (GiveALink.org). One key advantage of social 
systems is that they empower humans rather than depending on crawlers to 
discover relevant resources. Further, the aggregation of user recommendations 
gives rise to a natural notion of trust. Crawlers could be designed to expand 
the utility of information collected through social systems. For example it 
would be straightforward to obtain seed URLs relevant to specific 
communities of all sizes. Crawlers would then explore the Web for other 
resources in the neighborhood of these seed pages, exploiting topical 
locality to locate and index other pages relevant to those communities.  

Social networks can emerge not only by mining a central repository of 
user-provided resources, but also by connecting hosts associated with 
individual users or communities scattered across the Internet. Imagine a 
user creating its own micro-search engine by employing a personalized 
topical crawler, seeded for example with a set of bookmarked pages. 
Desktop search applications make it easy to also share certain local files, if 
so desired. Can federations of such micro-engine agents emerge on the 
basis of mutual interests? Peer-to-peer (P2P) networks are beginning to be 
seen as robust architectures ideal for brokering among individual needs 
and catering to communities [31].  

Adaptive peer-based search systems driven by simple distributed 
adaptive query routing algorithms can spontaneously organize into 
networks with efficient communication and with emerging clusters 
capturing semantic locality. Specifically, in a P2P search application called 
6Search (6S), each peer crawls the Web in a focused way, guided by its 
user’s information context. Each peer submits and responds to queries 
to/from its neighbors. This search process has no centralized control.  
Peers depend on local adaptive routing algorithms to dynamically change 
the topology of the peer network and search for the best neighbors to 
answer their queries. Machine learning techniques are being explored to 
improve local adaptive routing. Validation of the 6S framework and 
network via simulations with 70500 model users based on actual Web 
crawls has yielded encouraging preliminary results. The network topology 
rapidly converges from a random network to a small-world network, with 
clusters emerging to match user communities with shared interests [2]. 
Additionally the quality of the results is significantly better than obtained 
by centralized search engines built with equivalent resources, and 
comparable with the results from much larger search engines such as 
Google [57, 58].  

The integration of effective personalized/topical crawlers with adaptive 
query routing algorithms is the key to the success of peer-based social 
search systems. Many synergies may be exploited in this integration by 
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leveraging contextual information about the local peer that is readily 
available to the crawler, as well as information about the peer's neighbors 
that can be mined through the stream of queries and results routed through 
the local peer. An open-source prototype of 6S enabling sharing of 
bookmarks, one-click crawling, and distributed collaborative search is 
available (http://homer.informatics.indiana.edu/~nan/6S/). If successful, 
this kind of application could create a new paradigm for crawling and 
searching where universal crawlers and search engines are complemented 
with swarms of personal crawlers and micro-engines tuned to the 
specialized information needs of individual users and dynamic self-
organized social networks.  

Bibliographic Notes 

General ideas and techniques about crawling can be found in [6, 8], but 
little is known about implementation details of commercial crawlers. 
Focused crawling discussed in this chapter is based on [8, 11, 18] . 
Literature on topical crawling algorithms is extensive [e.g., [1, 14, 16, 17, 
24, 33, 34, 37, 38, 46, 48, 50]. Topical crawlers have been used for building 
focused repositories, automating resource discovery, and supporting 
software agents. For example, topical crawlers are used to collect papers 
for building scientific literature digital libraries such as CiteSeer and 
Google Scholar [29, 33, 56]. Applications of topical crawlers to business 
and competitive intelligence are discussed in [46], and biomedical 
applications in [54]. Controversial applications to harvest personal 
information for spam and phishing purposes are illustrated in [26].  

On best-first crawlers, various methods have been used to determine an 
appropriate textual context in which to evaluate and score unvisited links. 
Using the anchor text is one strategy [15]. Another strategy is to use 
windows of a fixed size, e.g., 50 words around the anchor, in place of/in 
addition to the anchor text [24]. The weighted window used by InfoSpiders 
[37] yields a weight for each link, which is then fed to a neural network to 
score each link. In the tag (DOM) tree approach [8], using the parent node 
of the anchor as aggregation node worked well in a business intelligence 
crawling task [46]. There is a tradeoff analogous to that between precision 
and recall when we consider the optimal size of a link context: small 
contexts (e.g., anchor text) have the highest average similarities to the 
target page, but also highest chance to miss important cues about the 
target. Larger contexts (e.g., parent or grand-parent aggregator node) have 
lower average similarities to the target, but lower chance to miss all the 
keywords in the target. This suggests a greedy optimization scheme: climb 
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the DOM tree from the anchor until sufficient terms are present in the link 
context [43]. This approach outperformed both the fixed-window method 
(with optimal window size) and the DOM tree method with a fixed 
aggregator depth (anchor, parent, or grandparent). 

Early versions of InfoSpiders were described in [34, 37, 39]. Certain 
aspects of evolutionary computation have also been used in other topical 
crawlers such as the itsy bitsy spider [12]. Another adaptive mechanism 
for topical crawlers inspired by natural processes is ant colony 
optimization [21]. The idea is that a population of agents leaves a trail of 
pheromone along the paths that lead to relevant pages, gradually biasing 
the crawl toward promising portions of the Web graph. A more extensive 
review of adaptive topical crawling algorithms can be found in [40].  
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9 Structured Data Extraction: Wrapper 
Generation                  

Web information extraction is the problem of extracting target information 
items from Web pages. There are two general problems: extracting infor-
mation from natural language text and extracting structured data from Web 
pages. This chapter focuses on extracting structured data. A program for 
extracting such data is usually called a wrapper. Extracting information 
from text is studied mainly in the natural language processing community.  

Structured data on the Web are typically data records retrieved from 
underlying databases and displayed in Web pages following some fixed 
templates. In this chapter, we still call them data records. Extracting such 
data records is useful because it enables us to obtain and integrate data 
from multiple sources (Web sites and pages) to provide value-added services, 
e.g., customizable Web information gathering, comparative shopping, 
meta-search, etc. With more and more companies and organizations 
disseminating information on the Web, the ability to extract such data from 
Web pages is becoming increasingly important. At the time of writing this 
book, there are several companies working on extracting products sold 
online, product reviews, job postings, research publications, forum 
discussions, statistics data tables, news articles, search results, etc.  

Researchers and Internet companies started to work on the extraction 
problem from the middle of 1990s. There are three main approaches:  

1. Manual approach: By observing a Web page and its source code, the 
human programmer finds some patterns and then writes a program to 
extract the target data. To make the process simpler for programmers, 
several pattern specification languages and user interfaces have been 
built. However, this approach is not scalable to a large number of sites.  

2. Wrapper induction: This is the supervised learning approach, and is 
semi-automatic. The work started around 1995-1996. In this approach, a 
set of extraction rules is learned from a collection of manually labeled 
pages or data records. The rules are then employed to extract target data 
items from other similarly formatted pages.  

3. Automatic extraction: This is the unsupervised approach started 
around 1998. Given a single or multiple pages, it automatically finds 

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_9, 
© Springer-Verlag Berlin Heidelberg 2011 
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patterns or grammars from them for data extraction. Since this approach 
eliminates the manual labeling effort, it can scale up data extraction to a 
huge number of sites and pages.  

The first approach will not be discussed further. This chapter focuses on 
the last two approaches. Sects. 9.2 and 9.3 study supervised wrapper 
learning, and the rest of the chapter studies automatic extraction.  

9.1 Preliminaries 

To start our discussion, let us see some real pages that contain structured 
data that we want to extract. We then develop a Web data model and a 
HTML mark-up encoding scheme for the data model. Data extraction is 
simply the reverse engineering task. That is, given the HTML mark-up 
encoded data (i.e., Web pages), the extraction system recovers the original 
data model and extracts data from the encoded data records.    

9.1.1 Two Types of Data Rich Pages 

There are mainly two types of data rich pages. Data in such pages are 
usually retrieved from underlying databases and displayed on the Web 
following some fixed templates.  
1. List pages: Each of such pages contains several lists of objects. Fig. 9.1 

shows such a page, which has two lists of products. From a layout point 
of view, we see two data regions (one horizontal and one vertical). 
Within each region, the data records are formatted using the same 
template. The templates used in the two regions are different. 

2. Detail pages: Such a page focuses on a single object. For example, in 
Fig. 9.2, the page focuses on the product “iPod Video 30GB, Black”. 
That is, it contains all the details of the product, name, image, price and 
other purchasing information, product description, customer rating, etc.  

Note that when we say that a page focuses on a particular object (or lists of 
objects), we do not mean that the page contains no other information. In 
fact, it almost certainly contains other information. For example, in the 
page for “iPod Video 30GB, Black” (Fig. 9.2), there are some related 
products on the right-hand side, company information at the top, and 
copyright notices, terms and conditions, privacy statements at the bottom, 
etc. They are not shown in Fig. 9.2 as we want the main part of the product 
clearly eligible. For list pages, it is often easy to use some heuristics to 
identify the main data regions, but for detail pages, it is harder.  
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Fig. 9.1. A segment of a list page with two data regions 

 
Fig. 9.2. A segment of a detail page 
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In Fig. 9.1, the description of each product is called a data record. 
Notice that the data records in this page are all flat with no nesting. Fig. 
9.3(A) contains some nested data records, which makes the problem more 
interesting and also harder. The first product, “Cabinet Organizers by 
Copco,” has two sizes (9-in. and 12-in.) with different prices. These two 
organizers are not at the same level as “Cabinet Organizers by Copco”.  

Our objective: We want to extract the data and produce the data table 
given in Fig. 9.3(B). “image 1” and “Cabinet Organizers by Copco” are 
repeated for the first two rows due to the nesting.  

9.1.2 Data Model 

We now describe a data model commonly used for structured data on the 
Web. In the next sub-section, we present a HTML mark-up encoding of 
the model and the data, which helps extraction.  

Most Web data can be modeled as nested relations, which are typed 
objects allowing nested sets and tuples. The types are defined as follows:  

 

(A) An example of a nested data record 

image 1 Cabinet Organizers by Copco 9-in. Round Turntable: White ***** $4.95 
image 1 Cabinet Organizers by Copco 12-in. Round Turntable: White ***** $7.95 
image 2 Cabinet Organizers 14.75x9

  
Cabinet Organizer (Non-

skid): White 
***** $7.95 

image 3 Cabinet Organizers 22x6 Cookware Lid Rack **** $19.95 

(B) Extraction results 

Fig. 9.3. An example input page and output data table 
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 There is a set of basic types, B = {B1, B2, …, Bk}. Each Bi is an atomic 
type, and its domain, denoted by dom(Bi), is a set of constants;  

 If T1, T2, …, Tn are basic or set types, then [T1, T2, …, Tn] is a tuple type 
with the domain dom([T1, T2, …, Tn]) = {[v1, v2, …, vn] | vi  dom(Ti)}; 

 If T is a tuple type, then {T} is a set type with the domain dom({T}) 
being the power set of dom(T).  

A basic type Bi is analogous to the type of an attribute in relational 
databases, e.g., string and int. In the context of the Web, Bi is usually a text 
string, image-file, etc. The example in Fig. 9.4 shows a nested tuple type 
product, with attributes  

 name (of type string),  
 image (of type image-file), and  
 differentSizes (a set type), consisting of a set of tuples with attributes: 
 size (of type string), and  
 price (of type string).  

  product  [ name:  string; 
  image:  image-file;  
  differentSizes:  { [ size:  string; 
    price:  string; ] } ] 

Fig. 9.4. An example nested type 

We can also define flat tuple and set types: 

 If T1, T2, …, Tn are basic types, then [T1, T2, …, Tn] is a flat tuple type;  
 If T is a flat tuple type, then {T} is a flat set type.  

Classic flat relations are of flat set types. Nested relations are of 
arbitrary set types. Types can be represented as trees.  

 A basic type Bi is a leaf tree or node; 
 A tuple type [T1, T2, …, Tn] is a tree rooted at a tuple node with n sub-

trees, one for each Ti; 
 A set type {T} is a tree rooted at a set node with one sub-tree.  

An instance of a type T is simply an element of dom(T). Clearly, 
instances can be represented as trees as well: 

 An instance (constant) of a basic type is a leaf tree; 
 A tuple instance [v1, v2, …, vn] forms a tree rooted at a tuple node with n 

children or sub-trees representing attribute values v1, v2, …, vn; 
 A set instance {e1, e2, …, en} forms a set node with n children or sub-

trees representing the set elements e1, e2, …, and en.  
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An instance of a tuple type (also known as a tuple instance) is usually 
called a data record in the data extraction research. An instance of a set 
type (also known as a set instance) is usually called a list as in an actual 
Web page the data records in the set are presented in a particular order. An 
instance of a flat tuple type is called a flat data record (no nested lists), 
and an instance of a flat set type is called a list of flat data records.  

We note that attribute names are not included in the type tree. We next 
introduce a labeling of a type tree, which is defined recursively:  

 If a set node is labeled , then its child is labeled .0, a tuple node;  
 If a tuple node is labeled , then its n children are labeled .1, …, .n.  

We can think of labels as abstract names for types or attributes. For example, 
in Fig. 9.4 the top level tuple type is “product”, its three children are 
attributes: product.name, product.image, and product.differentSizes. .0 
labels a tuple node without a name of two attributes, “size” and “price”.  

9.1.3 HTML Mark-Up Encoding of Data Instances 

In a Web page, the data is encoded or formatted with HTML mark-up tags. 
This sub-section discusses the encoding of data instances in the above 
abstract data model using HTML tags.  

Web pages are written in HTML consisting of plain texts, tags and links 
to image, audio and video files, and other pages. Most HTML tags work in 
pairs. Each pair consists of an open tag and a close tag indicated by < > 
and </> respectively. Within each corresponding tag-pair, there can be 
other pairs of tags, resulting in nested structures. Thus, HTML tags can 
naturally encode nested data. We note the following:  

1. There are no designated tags for each type as HTML was not designed 
as a data encoding language. Any HTML tag can be used for any type.  

2. For a tuple type, values (data items) of different attributes are usually 
encoded differently to distinguish them and to highlight important items.  

3. A tuple may be partitioned into several groups or sub-tuples. Each group 
covers a disjoint subset of attributes and may be encoded differently.   

Based on these characteristics of the HTML language, the HTML mark-up 
encoding of instances is defined recursively below. We encode based on 
the type tree, where each node of the tree is associated with an encoding 
function, which will encode (or mark-up) all the instances of the type in 
the same way. We will use the tuple type and its attributes explicitly 
because values of different attributes in the tuple type are typically 
encoded differently. We use T.i to represent a value instance of the tuple 
type T and attribute i. We use enc to denote an abstract encoding function.  
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 For a leaf node of a basic type labeled , an instance c is encoded with 
 enc(:c) = OPEN-TAGS c CLOSE-TAGS 

 where OPEN-TAGS is a sequence of open HTML tags, and  CLOSE-
TAGS is the sequence of corresponding close HTML tags. The number 
of tags is greater than or equal to 0.  

 For a tuple node labeled  of n children or attributes, [.1, …, .n], the 
attributes are first partitioned into h ( 1) groups <.1, …, .e>, 
<.(e+1),…, .g> … <.(k+1), …, .n> and an instance [v1, …, vn] of 
the tuple node is encoded with 

  enc(:[v1, …, vn]) = OPEN-TAGS1 enc(v1) … enc(ve) CLOSE-TAGS1  
 OPEN-TAGS2 enc(ve+1)…enc(vg) CLOSE-TAGS2 
   … 
 OPEN-TAGSh enc(vk+1)…enc(vn) CLOSE-TAGSh 

 where OPEN-TAGSi is a sequence of open HTML tags, and  CLOSE-
TAGSi is the sequence of corresponding close tags. The number of tags 
is greater than or equal to 0.   

 For a set node labeled , an non-empty set instance {e1, e2, …, en} is 
encoded with 

  enc(:{e1, …, en})  = OPEN-TAGS enc(ej1)…enc(ejn) CLOSE-TAGS, 

  where OPEN-TAGS is a sequence of open HTML tags, and  CLOSE-
TAGS is the sequence of corresponding close HTML tags. The number 
of tags is greater than or equal to 0.  The set elements are ordered based 
on an ordering function <. With ordering, a set instance is called a list. 
An empty set instance is encoded with OPEN-TAGS CLOSE-TAGS. 

By no means does this mark-up encoding cover all cases in Web pages. In 
fact, each group of a tuple type can be further divided. Anyway, you get 
the idea. We should also note that in an actual Web page the encoding is 
usually done not only by HTML tags, but also by words and punctuation 
marks. For example, in Fig. 9.5, if we are interested in extracting the 
addresses and the area codes, the punctuation marks are useful.  

 
Fig. 9.5. Words and punctuation marks are also used in data encoding 



370      9 Structured Data Extraction: Wrapper Generation 

9.2  Wrapper Induction 

We are now ready to study the first approach to data extraction, namely 
wrapper induction, which is based on supervised learning. A wrapper 
induction system learns data extraction rules from a set of labeled training 
examples. Labeling is usually done manually, which simply involves 
marking the data items in the training pages/examples that the user wants 
to extract. The learned rules are then applied to extract target data from 
other pages with the same mark-up encoding or the same template.  

The algorithm discussed in this section is based on the Stalker system 
[28]. Related work includes WIEN [19], Softmealy [17], WL2 [10], the 
systems in [18] and [43], etc. The next section describes a different 
learning approach, which is based on the IDE system given in [38].  

Stalker models the Web data as nested relations. Let us model the restaurant 
page in Fig. 9.5. It has four addresses in four different cities. The type tree of 
the data is given in Fig. 9.6 (the country code is omitted). For each type, 
we also added an intuitive label. The wrapper uses a tree structure based 
on this to facilitate extraction rule learning and data extraction. 

Fig. 9.6. Type tree of the restaurant page in Fig. 9.5 

Below, we first introduce the data extraction process, and then describe 
the learning algorithm for generating extraction rules.  

9.2.1 Extraction from a Page 

A Web page can be seen as a sequence of tokens S (e.g., words, numbers 
and HTML tags). The extraction is done using a tree structure called the 
EC tree (embedded catalog tree), which models the data embedding in a 
HTML page. The EC tree is based on the type tree above. The root of the 
tree is the document containing the whole token sequence S of the page, 
and the content of each child node is a subsequence of the sequence of its 
parent node. To extract a node of interest, the wrapper uses the EC 
description of the page and a set of extraction rules. Fig. 9.7 shows the EC 
tree of the page in Fig. 9.5. Note that we use LIST here because the set of 

String: Name 

String:  
Street 

String:  
City 

Set: Addresses 

Integer: 
Area-Code 

String:  
Phone-No. 

Tuple: Restaurant  

Tuple: Address  
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addresses are already ordered in a page. For an extraction task, the EC tree 
for a data source is specified by the user (not discovered by the system). 

Fig. 9.7. The EC tree of the HTML page in Fig. 9.5 

For each node in the tree, the wrapper identifies or extracts the content 
of the node from its parent, which contains the sequence of tokens of all its 
children. Each extraction is done using two rules, the start rule and the 
end rule. The start rule identifies the beginning of the node and the end 
rule identifies the end of the node. This strategy is applicable to both leaf 
nodes (which represent data items) and list nodes. For a list node, list 
iteration rules are needed to break the list into individual data records 
(tuple instances). To extract items from the data records, data extraction 
rules are applied to each record. All the rules are learned during wrapper 
induction, which will be discussed in Sect. 9.2.2. Given the EC tree and 
the rules, any node can be extracted by following the tree path P from the 
root to the node by extracting each node in P from its parent. 

The extraction rules are based on the idea of landmarks. Each landmark 
is a sequence of consecutive tokens and is used to locate the beginning or 
the end of a target item. Let us use the example in Fig. 9.5 to introduce 
extraction rules and the extraction process based on the EC tree (Fig. 9.7). 
Fig. 9.8 shows the HTML source code of the page in Fig. 9.5. 

1: <p> Restaurant Name: <b>Good Noodles</b><br><br>  
2: <li> 205 Willow, <i>Glen</i>, Phone 1-<i>773</i>-366-1987</li> 
3: <li> 25 Oak, <i>Forest</i>, Phone (800) 234-7903 </li> 
4: <li> 324 Halsted St., <i>Chicago</i>, Phone 1-<i>800</i>-996-5023 </li> 
5: <li> 700 Lake St., <i>Oak Park</i>, Phone: (708) 798-0008 </li>  </p> 

Fig. 9.8. The HTML source of the page in Fig. 9.5 

Let us try to extract the restaurant name “Good Noodles”. The following 
rule can be used to identify the beginning of the name: 

R1:  SkipTo(<b>) 

This rule means that the system should start from the beginning of the page 
and skip all the tokens until it sees the first <b> tag. <b> is a landmark. 

Name 

Street City 

LIST (Addresses) 

Area-Code Phone-No. 

Address 

Page 
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Obviously, SkipTo(:) and SkipTo(<i>) will not work. According to the EC 
tree in Fig. 9.7, R1 is applied to the parent of node name, which is the root 
node. The root node contains the token sequence of the whole page.  

Similarly, to identify the end of the restaurant name, we can use: 

R2:  SkipTo(</b>)  

R2 is applied from the end of the page toward the beginning. R1 is called 
the start rule and R2 is called the end rule.  

Note that a rule may not be unique. For example, we can also use the 
following rules (and many more) to identify the beginning of the name: 

R3:  SkiptTo(Name _Punctuation_  _HtmlTag_) 
or R4:  SkiptTo(Name) SkipTo(<b>) 

R3 means that we skip everything till the word “Name” followed by a 
punctuation symbol and then a HTML tag. In this case, “Name 
_Punctuation_ _HtmlTag_” together is a landmark. _Punctuation_ and 
_HtmlTag_ are called wildcards. A wildcard represents a class of tokens. 
For example, _HtmlTag_ represents any HTML tag, i.e., any HTML tag 
matches the wildcard _HtmlTag_. R4 means that we skip everything till 
the word “Name” and then again skip everything till the tag <b>. Since 
wrapper induction algorithms find simple rules first, R1 will be produced.  

Now, suppose that we also want to extract each area code. The wrapper 
needs to perform the following steps:  

1. Identify the entire list of addresses. We can use the start rule 
SkipTo(<br><br>), and the end rule SkipTo(</p>).  

2. Iterate through the list (lines 2-5 in Fig. 9.8) to break it into four 
individual records. To identify the beginning of each address, the wrapper 
can start from the first token of the parent and repeatedly apply the start 
rule SkipTo(<li>) to the content of the list. Each successive identification 
of the beginning of an address starts from where the previous one ends. 
Similarly, to identify the end of each address, it starts from the last 
token of its parent and repeatedly apply the end rule SkipTo(</li>).  

Once each address record is identified or extracted, we can extract the area 
code in it. Due to variations in the format of area codes (some are in italic 
and some are not), we need to use disjunctions. In this case, the disjunctive 
start and the end rules are respectively R5 and R6:  

R5:  either  SkipTo( ( )  R6: either  SkipTo( ) )  
 or  SkipTo(-<i>)   or  SkipTo(</i>) 

In a disjunctive rule, the disjuncts are applied sequentially until a disjunct 
can identify the target node.  
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Finally, we summarize the data extraction features of Stalker.  

1. Extraction is done hierarchically based on the EC tree, which enables 
extraction of items at any level of the hierarchy.  

2. The extraction of each node is independent of its siblings. No contextual 
or ordering information of siblings is used in extraction or rule learning.  

3. Each extraction is done using two rules, the start rule and the end rule. 
Each rule consists of an ordered list of disjuncts (could be one).  

9.2.2 Learning Extraction Rules  

We now present the wrapper learning algorithm for generating extraction 
rules. The basic idea is as follows: To generate the start rule for a node in 
the EC tree, some prefix tokens or their wildcards of the node are 
identified as the landmarks that can uniquely identify the beginning of the 
node. To generate the end rule for a node, some suffix tokens or their 
wildcards of the node are identified as the landmarks. The rule generation 
process for the start rule and the end rule is basically the same. Their 
applications are also similar except that to apply a start rule the system 
starts by consuming the first token in the sequence of the parent and goes 
towards the last token, while for an end rule the system starts from the last 
token in the sequence of the parent and goes towards the first. Without loss 
of generality, in this section, we will discuss only the generation of start 
rules.  

For rule learning, the user first marks or labels the target items that need 
to be extracted in a few training examples. For instance, we have the 
examples in Fig. 9.8, which are addresses from the page in Fig. 9.5. 
Suppose we want to generate rules to extract the area code from each 
address. The area codes are labeled (marked) as in Fig. 9.9. A graphic user 
interface can make the labeling process very easy.  

Given a set of labeled training examples E, the learning algorithm 
should generate extraction rules that extract all the target items (also called 
positive items) without extracting any other items (called negative items).  

Learning is done based on the machine learning method, sequential 
covering (see Sect. 3.4.1). The algorithm is given in Fig. 9.10. In each 

E1:  205 Willow, <i>Glen</i>, Phone 1-<i>773</i>-366-1987 
E2:  25 Oak, <i>Forest</i>, Phone (800) 234-7903 
E3:  324 Halsted St., <i>Chicago</i>, Phone 1-<i>800</i>-996-5023 
E4:  700 Lake St., <i>Oak Park</i>, Phone: (708) 798-0008 

Fig. 9.9. Training examples: four addresses with labeled area codes 
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iteration, the algorithm LearnRule() (Fig. 9.10) generates a perfect 
disjunct that covers as many positive items as possible and does not cover 
any negative item in E (Examples). Then, all the examples whose positive 
items are covered by the rule are removed. The next iteration starts. The 
input to LearnRule() is E. Once all the positive items are covered, the rule 
is returned (line 6), which consists of an ordered list of learned disjuncts.  

The function LearnDisjunct() performs the actual generation of perfect 
disjuncts (Fig. 9.11). It works as follows: It first chooses a Seed example 
(line 1), which is the shortest example. In the case of Fig. 9.9, it is E2. It 
then generates the initial candidate disjuncts. Let us explain using a 
generic Seed, which can be represented as follows:  

t1 t2 … tk <target item> tk+1 tk+2 … tn, 

where ti is a token and <target item> is a labeled target item. We call t1 t2 
… tk the prefix sequence of the target item, and tk+1tk+2…tn the suffix 
sequence of the target item. The initial candidate disjuncts for the start rule 
are tk, and its matching wildcards. Let us use seven wildcards, _Numeric_, 
_AlphaNum_, _Alphabetic_, _Capitalized_, _AllCaps_, _HtmlTag_, and 
_Punctuation_. Their meanings are self-explanatory. For the example E2 
of Fig. 9.9, the following candidate disjuncts are generated: 

D1: SkipTo( ( ) 
D2: SkipTo(_Punctuation_) 

In line 4 of LearnDisjunct(), the function BestDisjunct() selects the best 
disjunct using a set of heuristics given in Fig. 9.13.  

In this case, D1 is selected as the best disjunct. D1 is a perfect disjunct, 
i.e., it only covers positive items in E2 and E4 but not any negative items 
in E. D1 is returned from LearnDisjunct(), which also ends the first 
iteration of LearnRule(). E2 and E4 are removed (line 4) of Fig. 9.10. The 
next iteration of LearnRule() is left with E1 and E3. LearnDisjunct() will 
select E1 as Seed as it is shorter. Two candidates are then generated:  

D3: SkipTo( <i> ) 
D4: SkipTo( _HtmlTag_ ) 

Both these two candidates match early in the uncovered examples, E1 and 
E3. Thus, they cannot uniquely locate the positive items. Even worse, they 
can match to negative items in the two already covered examples, E2 and 
E4. Refinement is thus needed, which aims to specialize a disjunct by 
adding more terminals (a token or one of its matching wildcards) to it. We 
hope the refined version will be able to uniquely identify the positive items 
in some examples without matching any negative item in any example in 
E. Two refinement strategies are used: 
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Algorithm LearnRule(Examples) // Examples: training examples 
1 Rule    // Rule: the returned rule 
2 while Examples   do 
3 Disjunct  LearnDisjunct(Examples); 
4 remove all examples in Examples covered by Disjunct; 
5 add Disjunct to Rule 
6 return Rule 

Fig. 9.10. The main learning algorithm  based on sequential covering 

Function LearnDisjunct(Examples) 
1  let Seed  Examples be the shortest example; 
2  Candidates  GetInitialCandidates(Seed); 
3  while Candidates   do 
4  D  BestDisjunct(Candidates); 
5  if D is a perfect disjunct then 
6 return D 
7 Candidates  Candidates  Refine(D, Seed); 
8  remove D from Candidates; 
9  return D 

Fig. 9.11. Learning disjuncts 

Function Refine(D, Seed) 
1  D is a consecutive landmarks (l0, l1, …, ln); // li is in fact SkipTo(li) 
2 TopologyRefs  LandmarkRefs  ; 
3 for i = 1 to n do  // t0 or t1 below may be null 
4 for each sequence s = t0 li t1 before the target item in Seed do    
5 LandmarkRefs  LandmarkRefs  {(l0, …, li1, t0 li, …, ln)}   
  {(l0, …, li1, x li, …, ln) | x is a wildcard that matches t0} 
    {(l0, …, li t1, li+1, …, ln)}  
  {(l0, …, li x, li+1, …, ln) | x is a wildcard that matches t1} 
6 for each token t between li1 and li before the target item in Seed do 
7 ToplogyRefs  TopologyRefs  {(l0, …, li, t, li+1, …, ln)}  
  {(l0, …, li, x, li+1, …, ln)} | x is a wildcard that matches t} 
8 return TopologyRefs  LandmarkRefs 

Fig. 9.12. Refining a disjunct to generate more specialized candidates 

BestDisjunct () prefer candidates that have: 
- more correct matches 
- accepts fewer false positives 
- fewer wildcards 
- longer end-landmarks 

Fig. 9.13. Choosing the best disjunct 
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1. Landmark refinement (lines 4-5 in Fig. 9.12): Increase the size of a 
landmark li by concatenating a terminal (a token t0 or t1, and its matching 
wildcards) at the beginning or at the end of li. If t0 or t1 does not exist, it 
will not be considered. We note that each landmark li in the algorithm in 
Fig. 9.12 actually represents the SkipTo(li). 

2. Topology refinement (lines 6-7 in Fig. 9.12): Increase the number of 
landmarks by adding 1-terminal landmarks, i.e., t and its matching 
wildcards. Note that l0 is not a landmark, which is used to simplify the 
algorithm presentation. It represents the beginning of the Seed example.   

Let us go back to our running example. D3 is selected as the best disjunct 
(line 4 of Fig. 9.11). Clearly, D3 is not a perfect disjunct. Then, refinement 
is carried out. Landmark refinement produces the following candidates:  

D5:  SkipTo( - <i>) 
D6:  SkipTo( _Punctuation_ <i>) 

Topology refinement produces the 15 candidates in Fig. 9.14. We can 
already see that D5, D10, D12, D13, D14, D15, D18 and D21 match 
correctly with E1 and E3 and fail to match on E2 and E4. Using the 
heuristics in Fig. 9.13, D5 is selected as the final solution as it has longest 
last landmark (- <i>). D5 is then returned by LearnDisjunct(). It is 
possible that no perfect disjunct can be found after all possible refinements 
have been tried. In this case, an imperfect best disjunct will be returned 
(line 9 in Fig. 9.11).   

Since all the examples are covered, LearnRule() ends and returns the 
disjunctive (start) rule “either D1 or D5”, i.e.,  

R7:  either  SkipTo( ( )  
 or  SkipTo(- <i>) 

In summary, we note the following:  

1. The algorithm presented in this section is by no mean the only possible 
algorithm. Many variations are possible. Of course, there are also many 

D7:  SkipTo(205) SkipTo(<i>) D15: SkipTo(_Numeric_) SkipTo(<i>) 
D8: SkipTo(Willow) SkipTo(<i>) D16: SkipTo(_Alphabetic_) SkipTo(<i>) 
D9:  SkipTo(,) SkipTo(<i>)  D17: SkipTo(_Punctuation_) SkipTo(<i>) 
D10: SkipTo(<i>) SkipTo(<i>) D18: SkipTo(_HtmlTag_) SkipTo(<i>) 
D11: SkipTo(Glen) SkipTo(<i>) D19: SkipTo(_Capitalized_) SkipTo(<i>) 
D12: SkipTo(1) SkipTo(<i>) D20: SkipTo(_AlphaNum_) SkipTo(<i>) 
D13: SkipTo(-) SkipTo(<i>) D21: SkipTo(</i>) SkipTo(<i>) 
D14: SkipTo(Phone) SkipTo(<i>)  

Fig. 9.14. All 15 topology refinements of D3 
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other entirely different algorithms for wrapper induction. 
2. In our discussion above, we used only the SkipTo() function in 

extraction rules. However, in some situations it may not be sufficiently 
expressive. Therefore, other functions may be added. For example, 
Stalker also has the SkipUntil() function. Its argument is a part of the 
target item to be extracted, and is not consumed when the rule is 
applied. That is, the rule stops right before its occurrence.  

9.2.3 Identifying Informative Examples 

One of the important issues in wrapper learning is the manual labeling of 
training examples. To ensure accurate learning, a large number of training 
examples are needed. To manually label them is labor intensive and time 
consuming. The question is: is it possible to automatically select 
(unlabelled) examples that are informative for the user to label? Clearly, 
examples of the same format are of limited use. Examples that represent 
exceptions are informative as they are different from already labeled 
examples. Active learning is an approach that helps identify informative 
unlabeled examples automatically. Given a set of unlabeled examples U, 
the approach works as follows in the wrapper induction context:  

1. Randomly select a small subset L of unlabeled examples from U  
2. Manually label the examples in L, and U = U  L; 
3. Learn a wrapper W based on the labeled set L; 
4. Apply W to U to find a set of informative examples L;  
5. Stop if L = , otherwise go to step 2.   

The key is to find informative examples in step 4. In [27], Muslea et al. 
proposed a method, called co-testing, to identify informative examples.  

The idea of co-testing is simple. It exploits the fact that there are often 
multiple ways of extracting the same item. Thus, the system can learn 
different rules, forward and backward rules, to locate the same item. Let 
us use learning of start rules as an example. The rules learned in Sect. 9.2.2 
are called forward rules because they consume tokens from the beginning 
of the example to the end. In a similar way, we can also learn backward 
rules that consume tokens from the end of the example to the beginning.  

Given an unlabeled example, both the forward rule and backward rule 
are applied. If the two rules disagree on the beginning of a target item in 
the example, this example is given to the user to label. The intuition behind 
is simple. When the two rules agree, the extraction is very likely to be 
correct. When the two rules do not agree on the example, one of them must 
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be wrong. By giving the user the example to label, we obtain a labeled 
informative training example.  

9.2.4 Wrapper Maintenance 

Once a wrapper is generated, it is applied to other Web pages that contain 
similar data and are formatted in the same ways as the training examples. 
This introduces new problems.  
1. If the site changes, does the wrapper know the change? This is called the 

wrapper verification problem.  
2. If the change is correctly detected, how to automatically repair the 

wrapper? This is called the wrapper repair problem.  

One way to deal with both problems is to learn the characteristic patterns 
of the target items, which are then used to monitor the extraction to check 
whether the extracted items are correct. If they are incorrect, the same 
patterns can be used to locate the correct items assuming that the page 
changes are minor formatting changes. This is called re-labeling. After re-
labeling, re-learning is performed to produce a new wrapper. These two 
tasks are very difficult because contextual and/or semantic information is 
often needed to detect changes and to find the new locations of the target 
items. Wrapper maintenance is still an active research area.  

9.3. Instance-Based Wrapper Learning 

The wrapper induction method discussed in the previous section requires a 
set of labeled examples to learn extraction rules. Active learning may be 
applied to identify informative examples for labeling to reduce the manual 
labeling effort. In this section, we introduce an instance-based learning 
approach to wrapper building, which has been implemented by a company 
and is in commercial use. This method does not learn extraction rules. 
Instead, it extracts target items in a new instance/page by comparing their 
prefix and suffix token strings with those of the corresponding items in the 
labeled examples. At the beginning, the user needs to label only a single 
example, which is then used to identify target items from unlabeled 
examples. If some item in an unlabeled example cannot be identified, it is 
sent for labeling, which is active learning but with no additional 
mechanism. Thus, in this approach the user labels only a minimum number 
of training examples. The method described here is based on the IDE 
algorithm in [38], which is given in Fig. 9.15. It consists of three steps:  
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1. A random example p from a set of unlabeled training examples S is 
selected for labeling (line 1). The examples here can be a set of detail 
pages or a set of data records identified from list pages. We will see in 
Sect. 9.8 that data records in list pages can be identified automatically.  

2. The user labels/marks the target items in the selected example p (line 2). 
The system also stores a sequence of k consecutive tokens right before 
each labeled item (called the prefix string of the item) and a sequence of 
k consecutive tokens right after the labeled item (called the suffix string 
of the item). The prefix and suffix strings of all target items form a 
template. Storing the prefix and suffix strings is to avoid keeping the 
whole page in memory. The value of k does not affect the extraction 
result. If it is too small, the algorithm can always get more tokens from 
the original page. In practice, we can give k a large number, say 30, so 
that the system does not have to refer back to the original page during 
extraction. The variable Templates keeps all templates (line 3). 

3. The algorithm then starts to extract items from unlabeled examples (line 
4–9) using the function extract() (line 5). For each unlabeled example d, 
it compares the stored prefix and suffix strings of each target item with 
the token string of d to identify its corresponding item. If some item 
from d cannot be identified, d is passed to the user for labeling (line 6) 
(which is active learning), i.e., d is an informative example.  

Let us use an example to show what a template looks like. For example, in 
the page of Fig. 9.1, we are interested in extracting three items from each 
product, namely, name, image, and price. The template (Tj) for a labeled 
example j is represented with:  

 Tj = patname, patimage, patprice 

Each pati in Tj consists of a prefix string and a suffix string of the item i. 
For example, if the product image is embedded in the following source:  

Algorithm IDE(S) // S is the set of unlabeled examples. 
1. p  randomSelect(S);  // Randomly select a page p from S  
2. Tp  labeling(p);  // the user labels the page p 
3. Templates  Tp;   // initialization 
4. for each remaining unlabeled example d in S do 
5. if (extract(Templates, d)) then  
6. Td  labeling(d); 
7. insert Td into Templates  
8. end-if 
9. end-for 

Fig. 9.15. The IDE algorithm 
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 … <table><tr><td> <img> </td><td></td> … 
then we have (we use k = 3 and regard each HTML tag as a token) 

patimg = (img, prefix:<table><tr><td>, suffix:</td><td></td>). 
Extract(Templates, d) function: For each unlabeled example d, extract() 
tries to use each saved template T ( Templates) to match with the token 
string of d to identify every target item in d. If a sequence of prefix (and 
respectively suffix) tokens of a target item g in T matches a sequence of 
prefix (and suffix) tokens of an item f in d that uniquely identifies f in d, f 
is regarded as g’s corresponding item in d. By “uniquely identifies”, we 
mean that only item f in d matches g based on their prefix and suffix 
strings. An example is given below.  

After item f, which corresponds to item g in T, is identified and 
extracted from d, we use the token strings of d before f and after f to find 
the remaining target items using the same template T. This process continues 
until all the corresponding items of those items in T are identified from d. 
If the corresponding item of an item in T cannot be uniquely identified 
from d, then the extraction using T fails on d. The next template in 
Templates is tried. If every template in Templates fails on d, d is sent to the 
user for labeling (line 6 of Fig. 9.15). The algorithm is fairly straightforward, 
and thus is omitted. See [38] for more details, which also discusses how to 
deal with some additional issues, e.g., missing items in a page.  

Fig. 9.16 gives an example to show how a target item is uniquely 
identified. Assume that 5 tokens <table><tr><td><i><b> are saved in the 
prefix string of item price from a labeled example. Given an unlabeled 
example, after scanning through its token string, we obtain the match 
situation in Fig. 9.16. That is, we find 4 <b>’s, three <i><b> together, and 
only one <td><i><b> together, which can match some prefix tokens of 
price. These are shown in four rows below the saved prefix string. The 

prefix: <table> <tr>  <td>  <i>  <b>     price 
     <b>(10) 
   <i>(17) <b>(18) 
   <td>(23) <i>(24) <b>(25) 
   <i>(67) <b>(68) 

  1 3 4 
 

 

 

 

Fig. 9.16. The price is found uniquely.  

…<td> <font> <b>……<td> <font> <i> <b> … 
 8  9  10  15 16  17  18 

… <tr> <td> <i> <b> $25.00 …... 
 22  23  24 25 

... <br> <font> <i> <b> 
 65  66 67  68 

HTML 
source of the 
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number within each “( )” is the sequence id of the token (the tag) in the 
unlabeled example. “” means no match. The HTML source is given in the 
box of Fig. 9.16 with sequence id’s attached. We observe that the 
beginning of price is uniquely identified because the sequence of prefix 
tokens of price, <td><i><b>, has only one match. Note that we do not need 
to use all the saved tokens in the prefix string of price. This technique is 
thus called sufficient match. We see that <b> is not unique because there 
are 4 <b>’s. <i><b> is not unique because there are 3 matches.  

Once the beginning of item price is found, the algorithm tried to locate 
the ending of item price in the same way by comparing suffix strings in the 
opposite direction. After item price is identified and extracted, the 
algorithm goes to identify other items if they are not extracted.  

The final set of templates and the extract() function together form a 
wrapper, which can be used to extract target items from future examples.  

Apart from performing active learning automatically, there are two other 
interesting features about IDE. Firstly, there is no pre-specified sequence 
of items to be extracted. For example, the order of items in the HTML 
source may be: name, price, and image. If at the beginning we can identify 
item price uniquely in the unlabeled example, we can then start from price 
and search forward to find item image and search backward to find item 
name. The final extraction sequence of items may be price, image and 
name. Secondly, the method exploits local contexts in extraction. It may 
be the case that from the whole page/data record we are unable to identify 
a particular item. However, within a local area, it is easy to identify the 
item. For instance, in the above example, after identifying item price, we 
only need to search for item image in the rest of the input. Even a similar 
item appears before price, it will not be considered. Evaluation results in 
[38] show that this simple technique works very well.  

9.4  Automatic Wrapper Generation: Problems 

Wrapper generation using supervised learning has two main shortcomings: 
1. It is not suitable for a large number of sites due to the manual labeling 

effort. For example, if a shopping site wants to extract all the products 
sold on the Web, manual labeling becomes almost an impossible task.  

2. Wrapper maintenance is very costly. The Web is a dynamic environment. 
Sites change constantly. Since wrapper learning systems mainly rely on 
HTML formatting tags, if a site changes its formatting templates, the 
existing wrapper for the site will become invalid. As we discussed 
earlier, automatic verification and repair are still difficult. Doing them 
manually is very costly if the number of sites involved is large.  
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Due to these problems, automatic (or unsupervised) extraction has been 
studied by researchers. Automatic extraction is possible because data 
records (tuple instances) in a Web site are usually encoded using a very 
small number of fixed templates. It is possible to find these templates by 
mining repeated patterns in multiple data records. The rest of the chapter 
focuses on automatic extraction.  

Note that in general we use the term “templates” to refer to hidden 
templates employed by Web page designers. We use the term “patterns” to 
refer to regular structures that the system has discovered. 

9.4.1 Two Extraction Problems  

In Sects. 9.1.2 and 9.1.3, we described an abstract model of structured data 
on the Web (i.e., nested relations), and a HTML mark-up encoding of the 
data model respectively. The general goal of data extraction is to recover 
the hidden schema from the HTML mark-up encoded data. In the rest of 
the chapter, we focus on two problems, which are really quite similar.  

Problem 1: Extraction Based on a Single List Page 

Input: A single HTML string S, which contains k non-overlapping 
substrings s1, s2, …, sk with each si encoding an instance of a set type. 
That is, each si contains a collection Wi of mi ( 2) non-overlapping sub-
substrings encoding mi instances of a tuple type.  

Output: k tuple types 1, 2, …, k, and k collections C1, C2, …, Ck of 
instances of the tuple types such that for each collection Ci there is a 
HTML encoding function enci such that enci: Ci  Wi is a bijection.  

We use the example in Fig. 9.1 to explain. The input string S is the full Web 
page (only part of it is shown in Fig. 9.1). In this page, there are two 
substrings s1 and s2 that encode two set instances, i.e., the two sets of data 
records. s1 consists of four encodings (displayed horizontally) enc1(I1), 
enc1(I2), enc1(I3), enc1(I4) of four product instances I1, I2, I3, I4 of a tuple 
type 1, according to some mark-up encoding function enc1. Similarly, s2 
consists of encodings of some other products (displayed vertically). One 
important note is that S often contains some other information (not shown 
in Fig. 9.1) apart from the encoded data. An algorithm needs to work on the 
string S to find each substring and construct the tuple type by generating a 
pattern from each substring representing the mark-up encoding function enci.  

The pattern may be represented as a regular expression. Data 
extraction can be done using the regular expression or the original pattern 
as we will see in Sect. 9.11.1.  
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Problem 2: Extraction Based on Multiple Pages  

Input: A collection W of k HTML strings, which encodes k instances of 
the same type.  

Output: A type , and a collection C of instances of type , such that 
there is a HTML encoding enc such that enc: C  W is a bijection.  

The input consists of a collection of k encodings enc(I1), enc(I2), …, 
enc(Ik) of instances I1, I2, …, Ik of a nested type , according to some 
mark-up encoding function enc. An algorithm works on the encoded 
instances and constructs the type by generating a pattern (the encoding 
function enc), which again may be represented as a regular expression and 
used to extract data from other pages. Note that, for this problem, the input 
may be a set of detail pages (of a tuple type) or list pages (of a set type).  

The next few sections describe several techniques to solve the two 
problems. As we will see in Sect. 9.10, most techniques for solving 
problem 1 can also be used for solving problem 2.  

9.4.2 Patterns as Regular Expressions 

A regular expression can be naturally used to model the HTML encoded 
version of a nested type. Given an alphabet of symbols Σ and a special 
token “#text” that is not in Σ, a regular expression over Σ is a string over 
Σ  {#text, *, ?, |, (, )} defined as follows: 

 The empty string ε and all elements of   {#text} are regular expressions.  
 If A and B are regular expressions, then AB, (A|B) and (A)? are regular 

expressions, where (A|B) stands for A or B and (A)? stands for (A|ε).  
 If A is a regular expression, (A)* is a regular expression, where (A)* 

stands for ε or A or AA or ...  
We also use (A)+ as a shortcut for A(A)*, which can be used to model the 
set type of a list of tuples. (A)? indicates that A is optional. (A|B) represents 
a disjunction. If a regular expression does not include (A|B), it is called a 
union-free regular expression. Regular expressions are often employed to 
represent extraction patterns (or encoding functions). However, extraction 
patterns do not have to be regular expressions, as we will see later.  

Given a regular expression, a nondeterministic finite-state automaton 
can be constructed and employed to match its occurrences in string 
sequences representing Web pages. In the process, data items can be 
extracted, which are text strings represented by #text. 
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9.5 String Matching and Tree Matching 

As we can see from both problems in Sect. 9.4.1, the key is to find the 
encoding template from a collection of encoded instances of the same type. 
A natural way to do this is to detect repeated patterns from HTML 
encoding strings. String matching and tree matching are obvious 
techniques for the task. Tree matching is useful because HTML encoding 
strings also form nested structures due to their nested HTML tags. Such 
nested structures can be modeled as trees, commonly known as DOM (tag) 
trees. DOM stands for Document Object Model (http://www.w3.org/DOM/). 
Below we describe some string matching and tree matching algorithms. 

9.5.1 String Edit Distance 

String edit distance (also known as Levenshtein distance) is perhaps the 
most widely used string matching/comparison technique. The edit distance 
of two strings, s1 and s2, is defined as the minimum number of point 
mutations required to change s1 into s2, where a point mutation is one of: 
(1) change a character, (2) insert a character, and (3) delete a character.  

Assume we are given two strings s1 and s2. The following recurrence 
relations define the edit distance, d(s1, s2), of two strings s1 and s2:  

d(ε, ε) = 0  // ε represents an empty string 
d(s, ε) = d(ε, s) = |s|    // |s| is the length of string s 
d(s1–+c1, s2–+c2) = min(d(s1–, s2–) + p(c1, c2), d(s1–+c1, s2–) + 1, 

            d(s1–, s2–+c2) + 1), 

where c1 and c2 are the last characters of s1 (= s1–+c1) and s2 (= s2–+c2) 
respectively, and p(c1, c2) = 0 if c1 = c2; p(c1, c2) = 1, otherwise. 

The first two rules are obvious. Let us examine the last one. Since 
neither string is empty, each has a last character, c1 and c2 respectively. c1 
and c2 have to be explained in an edit of s1–+c1 into s2–+c2. If c1 = c2, they 
match with no penalty, i.e., p(c1, c2) = 0, and the overall edit distance is 
d(s1–, s2–). If c1  c2, then c1 could be changed into c2, giving p(c1, c2) = 1 
and an overall cost d(s1–, s2–)+1. Another possibility is to edit s1–+c1 into s2– 
and then insert c2, giving d(s1–+c1, s2–)+1. The last possibility is to delete c1 
and edit s1– into s2–+c2, giving d(s1–, s2–+c2)+1. There are no other 
alternatives. We take the least expensive, i.e., min. of these alternatives.  

From the relations, we can see that d(s1, s2) depends only on d(s1, s2) 
where s1 is a shorter string than s1, or s2 is a shorter string than s2, or both. 
Thus, the dynamic programming technique can be applied to compute 
the edit distance of two strings. 
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We can use a two-dimensional matrix, m[0..|s1|, 0..|s2|], to hold the edit 
distances. The low right corner cell m(|s1|, |s2|) will furnish the required 
value of the edit distance d(s1, s2). We have 

m[0, 0] = 0 
m[i, 0] = i,  i =1, 2, ..., |s1| 
m[0, j] = j,  j =1, 2, ..., |s2| 
m[i, j] = min(m[i1, j1] + p(s1[i], s2[j]), m[i1, j] + 1, m[i, j1] + 1 ), 

 where i = 1, 2, ..., |s1|, j = 1, 2, ..., |s2|, and p(s1[i], s2[j]) = 0 if 
s1[i] = s2[j]; p(s1[i], s2[j]) = 1, otherwise.  

Once the edit distance computation is completed, we can find the 
alignment of characters that give the final distance. For this, we need to 
record which case in the above recursive rule minimizes the distance, and 
then trace back the path that corresponds to the best alignment. Note that, 
in many cases, the minimal choice is not unique, and different paths could 
have been drawn, which indicate alternative optimal alignments.  

Example 1: We want to compute the edit distance and find the alignment 
of the following two strings: 

s1:  X G Y X Y X Y X 
s2:  X Y X Y X Y T X 

The edit distance matrix is given in Fig. 9.17. The final edit distance value 
is 2, which is the value in the bottom right corner cell. Fig. 9.17 also shows 
the trace back path. Notice that a diagonal line means match or change, a 
vertical line means insertion, and a horizontal line means deletion. Thus, 
the final alignment of our two strings is:  

s1:  X G Y X Y X Y  X 
s2:  X  Y X Y X Y T X 

 
Fig. 9.17. The edit distance matrix and back trace path 

 s1 X G Y X Y X Y X 
s2 0 1 2 3 4 5 6 7 8 
X 1 0 1 2 3 4 5 6 7 
Y 2 1 1 1 2 3 4 5 6 
X 3 2 2 2 1 2 3 4 5 
Y 4 3 3 2 2 1 2 3 4 
X 5 4 4 3 2 2 1 2 3 
Y 6 5 5 4 3 2 2 1 2 
T 7 6 6 5 4 3 3 2 2 
X 8 7 7 6 5 4 3 3 2 
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The time-complexity of the algorithm is O(|s1||s2|) (to fill the matrix). 
The space complexity is also O(|s1||s2|). Back trace takes O(|s1|+|s2|) time.  

The normalized edit distance ND(s1, s2) is defined as the edit distance 
divided by the mean length of the two strings: 

.
2/|)||(|

),(
),(

21

21
21

ss

ssd
ssND


  (1) 

Another commonly used denominator is max(|s1|, |s2|).  
Finally, in data extraction, “change a character” may be undesirable 

(which represents a disjunction in regular expressions). A large distance 
may be used to disallow it. We will discuss this issue again in Sect. 9.11.2.  

9.5.2 Tree Matching 

Like string edit distance, tree edit distance between two trees A and B 
(labeled ordered rooted trees) is the cost associated with the minimum set 
of operations needed to transform A into B. In the classic formulation, the 
set of operations used to define tree edit distance includes, node removal, 
node insertion, and node replacement. A cost is assigned to each operation. 
Solving the tree edit distance problem is to find a minimum-cost mapping 
between two trees. The concept of mapping is formally defined as: 

Let X be a tree and let X[i] be the ith node of tree X in a preorder walk of 
the tree. A mapping M between a tree A of size n1 and a tree B of size n2 is 
a set of ordered pairs (i, j), one from each tree, satisfying the following 
conditions for all (i1, j1), (i2, j2)  M:  

(1) i1 = i2 iff j1 = j2; 
(2) A[i1] is on the left of A[i2] iff B[j1] is on the left B[j2]; 
(3) A[i1] is an ancestor of A[i2] iff B[j1] is an ancestor of B[j2]. 

Intuitively, the definition requires that each node appears no more than 
once in a mapping and the order among siblings and the hierarchical 
relation among nodes are preserved. Fig. 9.18 shows a mapping example. 

Several algorithms have been proposed to address the problem of 
finding the minimum set of operations (i.e., the one with the minimum 
cost) to transform one tree into another. All the formulations have 
complexities above quadratic. In [33], a solution based on dynamic 
programming is presented with the complexity of O(n1n2h1h2), where n1 
and n2 are the sizes of the trees and h1 and h2 are the heights of the trees. In 
[9, 35], two improved algorithms are presented, and in [41], it is shown 
that if the trees are not ordered, the problem is NP-complete. 
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Fig. 9.18. A general tree mapping example 

In the above general setting, mapping can cross levels, e.g., node a in 
tree A and node a in tree B (Fig. 9.18). Replacements are also allowed, 
e.g., node b in A and node h in B. We now define a restricted tree mapping 
[37], called simple tree matching (STM), in which no node replacement 
and no level crossing are allowed. In STM, the aim is to find the maximum 
matching between two trees (not the edit distance of two trees). This 
restricted model has been found quite effective for Web data extraction.  

Let A and B be two trees, and i  A and j  B be two nodes in A and B 
respectively. A matching between two trees is defined to be a mapping M 
such that, for every pair (i, j)  M where i and j are non-root nodes, 
(parent(i), parent(j))  M. A maximum matching is a matching with the 
maximum number of pairs.  

Let A = RA:A1, …, Ak and B = RB:B1,…, Bn be two trees, where RA and 
RB are the roots of A and B, and Ai and Bj are the ith and jth first-level sub-
trees of A and B respectively. Let W(A, B) be the number of pairs in the 
maximum matching of trees A and B. If RA and RB contain identical 
symbols, the maximum matching between A and B (i.e., W(A, B)) is m(A1, 
…, Ak, B1, …, Bn) + 1, where m(A1, …, Ak, B1, …, Bn) is the number 
of pairs in the maximum matching of A1, …, Ak and B1, …, Bn. If RA  
RB, W(A, B)) = 0. Formally, W(A, B) is defined as follows:  
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m(, ) = 0 //  represents an empty sub-tree list.  
m(s, ) = m(, s) = 0 // s matches any non-empty sub-tree list 
m(A1, …, Ak, B1, …, Bn) = max(m(A1, …, Ak-1, B1, …, Bn-1) + W(Ak, Bn),  

  m(A1, …, Ak, B1, …, Bn-1),  
  m(A1, …, Ak-1, B1, …, Bn)).  

This definition of m is similar to that of the string edit distance except 
that here we compute the maximum matching rather than the distance and 
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that W(Ak, Bn) needs to be computed recursively since Ak and Bn are sub-
trees. Clearly, the dynamic programming technique is again applicable.    

We now give an algorithm for simple tree matching (STM), which 
computes W(A, B). The algorithm is also called STM (Fig. 9.19). STM is a 
top-down algorithm. It evaluates the similarity by producing the maximum 
matching through dynamic programming. The algorithm has the 
complexity of O(n1n2), where n1 and n2 are the sizes of trees A and B 
respectively.  

In line 1, the roots of A and B are compared first. If the roots contain 
distinct symbols, then the two trees do not match at all. If the roots contain 
identical symbols, then the algorithm recursively finds the maximum 
matching between first-level sub-trees of A and B and save it in a W matrix 
(line 8). Based on the W matrix, a dynamic programming scheme is 
applied to find the number of pairs in a maximum matching between two 
trees A and B. We use an example (Fig. 9.20) to explain the algorithm.  

To find the maximum matching between trees A and B, their roots (N1 
and N15) are compared first. Since N1 and N15 contain identical symbols, 
m1,15[4, 2]+1 is returned as the maximum matching value between trees A 
and B (line 11). The m1,15 matrix is computed based on the W1,15 matrix. 
Each entry in W1,15, e.g., W1,15[i, j], is the maximum matching between the 
ith and jth first-level sub-trees of A and B, which is computed recursively 
based on its m matrix. For example, W1,15[4, 2] is computed recursively by 
building the matrices (E)-(H). All the relevant cells are shaded. The zero 
column and row in m matrices are initializations. Note that we use 
subscripts for both m and W to indicate the nodes that they are working on.  

Algorithm: STM(A, B) 
1. if the roots of the two trees A and B contain distinct symbols then 
2. return (0) 
3. else  k  the number of first-level sub-trees of A; 
4. n  the number of first-level sub-trees of B; 
5. Initialization:  m[i, 0]  0 for i = 0, …, k; 
  m[0, j]  0 for j = 0, …, n; 
6. for i = 1 to k do 
7. for j = 1 to n do  
8. m[i, j]  max(m[i, j1], m[i1, j], m[i1, j1]+W[i, j]),  
 where W[i, j]  STM(Ai, Bj) 
9. end-for 
10. end-for 
11. return (m[k, n]+1) 
12. end-if 

Fig. 9.19. The simple tree matching (STM) algorithm 
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Fig. 9.20. (A) Tree A; (B) Tree B; (C) m matrix for the first level sub-trees of N1 
and N15; (D) W matrix for the first level sub-trees of N1 and N15; (E)-(H) m 
matrixes and W matrixes for the lower level sub-trees. 

The normalized simple tree matching NSTM(A, B) is obtained by 
dividing the matching score by the mean number of nodes in the two trees: 
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We may also use max(nodes(A), nodes(B)) as the denominator. nodes(X) 
denotes the number of nodes in tree X.  

Similar to string edit distance, after matching computation, we can trace 
back in the m matrices to find the aligned nodes from the two trees.  
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9.6 Multiple Alignment  

In order to find repeated patterns from HTML strings based on string edit 
distance or tree matching, we need alignments of strings and trees. We 
have discussed how to obtain the alignment of two strings or trees. However, 
a Web page usually contains more than two data records, thus more than 
two strings or trees need to be aligned. Producing a global alignment of all 
the strings or trees is crucial. The task is called multiple alignment.  

In [6], Carrillo and Lipman proposed an optimal multiple alignment 
based on multidimensional dynamic programming. However, its time 
complexity is exponential, and is thus not suitable for practical use. Many 
heuristic methods exist. We describe two of them: the center star method 
and the partial tree alignment method in [40].  

9.6.1 Center Star Method 

This is a classic technique [14]. It is commonly used for multiple string 
alignments, but can be adopted for trees. The method is applied to data 
extraction based on alignments of HTML strings in [8]. Let the set of 
strings to be aligned be S. In the method, a string sc that minimizes  

 Ss ic
i

ssd ),(  (3) 

is first selected as the center string. d(sc, si) is the distance of two strings. 
The algorithm then iteratively computes the alignment of rest of the strings 
with sc. Spaces are added when needed. The algorithm is in Fig. 9.21.  

CenterStar(S) 
1. choose the center star sc using Equation (3); 
2.  initialize the multiple sequence alignment M that contains only sc; 
4. for each s in S-{sc} do 
5.  let c* be the aligned version of sc in M; 
6.  let s and c* be the optimally aligned strings of s and c*; 
7.  add aligned strings s and c* into the multiple alignment M; 
8.  add spaces to each string in M, except, s and c*, at locations where new 

spaces are added to c* 
9.  endfor  
10.  return multiple string alignment M 

Fig. 9.21. The center star algorithm 

Example 2: We have three strings, i.e., S = {ABC, XBC, XAB}. ABC is 
selected as the center string sc. Let us align the other strings with ABC. 



9.6 Multiple Alignment      391 

Iteration 1:  Align c* (= sc) with s =XBC: 
  c* :  A B C 
    | | 
 s :  X B C 
 Update M:  A B C   A B C 
      X B C 
Iteration 2:  Align c* with s = XAB: 
  c* :   A B C 
  | | 
 s : X A B  
 Update M:  A B C    A B C 
  X B C    X B C 
      X A B  

Assume there are k strings in S and all strings have length n, finding the 
center takes O(k2n2) time and the iterative pair-wise alignment takes O(kn2) 
time. Thus, the overall time complexity is O(k2n2).  

For our data extraction task, this method has two shortcomings:  
1. the algorithm runs slowly for pages containing many data records and/or 

data records containing many tags (i.e., long strings) because finding the 
center string needs O(k2n2) time. 

2. if the center string (or tree) does not have a particular data item, other 
data records that contain the same data item may not be aligned 
properly. For example, the letter X’s in the last two strings (in bold) are 
not aligned in the final result, but they should.  

Let us discuss the second point further. As we mentioned in Sect. 9.5.1, 
giving the cost of 1 for “changing a letter” in edit distance is problematic 
(e.g., A and X in the first and second strings in the final result) because of 
optional data items in data records. The problem can be partially dealt with 
by disallowing “changing a letter” (e.g., giving it a very large cost). 
However, this introduces another problem. For example, if we align only 
ABC and XBC, it is not clear which of the following alignment is better. 
 (1)  A – B C (2)  – A B C 
  – X  B C   X – B C 

If we also consider the string XAB, then (2) is better. However, the 
center star method does not have this global view. The partial tree 
alignment algorithm described below deals with both problems nicely.  

9.6.2 Partial Tree Alignment 

This method is proposed in [40] for multiple tree alignment in the context 
of data extraction. It can also be used for aligning multiple strings. For 
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simplicity, we describe the method in the context of trees. The main idea is 
as follows: The algorithm aligns multiple trees by progressively growing a 
seed tree. The seed tree, denoted by Ts, is initially picked to be the tree 
with the maximum number of data fields, which is similar to the center 
string but without the O(k2n2) pair-wise tree matching to choose it. The 
reason for choosing this seed tree is clear as it is more likely for this tree to 
have a good alignment with data fields in other data records. Then, for 
each Ti (i ≠ s), the algorithm finds for each node in Ti a matching node in 
Ts. If no match can be found for a node vi, then the algorithm attempts to 
expand the seed tree by inserting vi into Ts. The expanded seed tree Ts is 
then used in subsequent matching. The insertion is done only if a position 
for vi can be uniquely determined in Ts. Otherwise, it is left unmatched. 
Thus the alignment is partial. It represents a least commitment approach. 
Early uncertain commitments can result in undesirable effects for later 
matches. Note that although the method was designed originally for 
aligning multiple trees, it can also be adapted for aligning multiple strings. 

Partial Alignment of Two Trees 

Before presenting the full algorithm for aligning multiple trees, let us first 
look at the partial alignment of two trees. As indicated above, after Ts and 
Ti are matched, some nodes in Ti can be aligned with their corresponding 
nodes of Ts because they match one another. For those nodes in Ti that are 
not matched, we want to insert them into Ts as they may contain optional 
data items. There are two possible situations when inserting a new node vi 
from Ti into Ts, depending on whether a location in Ts can be uniquely 
determined to insert vi. Instead of considering a single node vi, we can 
consider each set of unmatched consecutive sibling nodes vj…vm from Ti 
together. Without loss of generality, we assume that the parent of vj…vm 
has a match in Ts and we want to insert vj…vm into Ts under the same parent 
node. We only insert vj…vm into Ts if a position for inserting vj…vm can be 
uniquely determined in Ts. Otherwise, they will not be inserted into Ts and 
left unaligned. The location for inserting vj…vm can be uniquely decided: 

1. If vj…vm have two neighboring siblings in Ti, one on the right and one 
on the left, that are matched with two consecutive siblings in Ts. Fig. 
9.22(A) shows such a situation, which gives one part of Ts and one part 
of Ti. We can see that node c in Ti can be inserted into Ts between node 
b and node e in Ts because node b and node e in Ts and Ti match. The 
new (extended) Ts is also shown in Fig. 9.22(A). We note that nodes a, 
b, c and e may also have their own children. We did not draw them to 
save space. This applies to all the cases below. 
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2. If vj…vm has only one left neighboring sibling x in Ti and x matches the 
right most node x in Ts, then vj…vm can be inserted after node x in Ts. 
Fig. 9.22(B) illustrates this case. 

3. If vj…vm has only one right neighboring sibling x in Ti and it matches 
the left most node x in Ts, then vj…vm can be inserted before node x in 
Ts. This case is similar to the second case above.  

Otherwise, we cannot uniquely decide a location for unmatched nodes in Ti 
to be inserted into Ts. This is shown in Fig. 9.22(C). The unmatched node x 
in Ti could be inserted into Ts in two positions, between nodes a and b, or 
between node b and e in Ts. In this situation, we will not insert it into Ts. 

 

Fig. 9.22. Expand the seed: (A) and (B) unique insertion; (C) insertion ambiguity 

Partial Alignment of Multiple Trees  

Fig. 9.23 gives the full algorithm for multiple tree alignment based on 
partial alignment of two trees. S is the set of input trees. We use a simple 
example in Fig. 9.24 to explain the algorithm. S has three example trees. 

Lines 1–2 (Fig. 9.23) find the tree with the most data items. It is used as 
the seed tree Ts. In Fig. 9.24, the seed tree is the first tree (we omitted 
many nodes on the left of T1). Line 3 initializes R, which is used to store 
those trees that are not completely aligned with Ts in each iteration. Line 4 
starts the while loop to align every other tree against Ts. Line 5 picks the 
next unaligned tree, and line 6 does the tree matching. Line 7 finds all the 
matched pairs by tracing the matrix results of line 6. This function is 
similar to aligning two strings using edit distance. In Fig. 9.24, Ts and T2 
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produce one match, node b. Nodes w, c, k and g are not matched to Ts. Lines 8 
and 9 attempt to insert the unmatched nodes into Ts. This is the partial tree 
alignment discussed above. In Fig. 9.24, none of the nodes w, c, k and g in 
T2 can be inserted into Ts because no unique location can be found. Thus, it 
will not pass the if-statement (InsertIntoSeed() returns false in line 9 of 
Fig. 9.23). Lines 13–14 inserts T2 into R, which is a list of trees that need 
to be re-matched since some data items are not aligned and not inserted 
into Ts. In Fig. 9.24, when matching T3 with Ts in the next iteration, all 
unmatched nodes c, h and k can be inserted into Ts (line 9). Since there are 
some insertions, we re-match those trees in R. Line 10 and line 11 put the 
trees in R into S and reinitializes R. T3 will not be inserted into R (line 13). 

In Fig. 9.24, T2 is the only tree in R, which will be matched to the new 
Ts in the next round. Now, every node in T2 can be matched or inserted, 
and the process completes. Line 18 of Fig. 9.23 outputs the data items 
from each tree according to the alignment. Note that if there are still
un-matched nodes with data after the algorithm completes (e.g., R ≠ 
), each un-matched data will occupy a single column by itself. Table 1 
shows the data table for the trees in Fig. 9.24. We use “1” to indicate a data 
item. 

The complexity of the algorithm is O(k2n2), where k is the number of 
trees in S and n is the size of each tree (we assume that all the trees are of 
similar size). However, as reported in [40], in practice, the algorithm 

Algorithm PartialTreeAlignment(S) 
1. Sort trees in S in descending order of the number of unaligned data items; 
2. Ts  the first tree (which is the largest) and delete it from S; 
3. R  ; 
4. while (S ≠ ) do  
5.  Ti  select and delete next tree from S;  // follow the sorted order 
6.      STM(Ts, Ti); // tree matching 
7.  AlignTrees(Ts, Ti);      // based on the result from line 6 
8.  if Ti is not completely aligned with Ts then 
9.  if InsertIntoSeed(Ts, Ti) then // True: some insertions are done 
10.  S  S  R; 
11.  R   
12  endif; 
13.  if there are still unaligned items in Ti that are not inserted into Ts then 
14.  R  R  {Ti}  
15.  endif; 
16.  endif; 
17. endwhile; 
18. Output data fields from each Ti to a data table based on the alignment results.  

Fig. 9.23. The partial tree alignment algorithm 

almost always goes through S only once (i.e., R = ).  
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Fig. 9.24. Iterative tree alignment with two iterations 

Table 1. Final data table (“1” indicates a data item) 

 … x b w c d h k g 
T1 … 1 1   1    
T2   1 1 1   1 1 
T3   1  1 1 1 1  

In fact, to make the algorithm complete, a recursive call should be added 
after line 17 in Fig. 9.23 to handle the case when R ≠ , i.e., to further 
align only those trees in R. The following three lines can be added:  

18.   if R   then 
19.   PartialTreeAlignment(R) 
20.  endif 

This takes care of the situation where some items are not aligned and 
not inserted. However, it is shown in [40] that this part is usually not 
needed for data extraction.  

We make two remarks about this complete algorithm. First, the 
recursion will terminate even if no alignment and/or no insertion is made 
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to the seed tree because the seed tree is deleted in each recursion and thus 
R becomes smaller and smaller. Second, the algorithm can found multiple 
templates in the data. The seed tree from each recursion represents a 
different template.  

9.7 Building DOM Trees 

DOM (Document Object Model) tree building from input pages is a 
necessary step for many data extraction algorithms. We describe two 
methods for building DOM trees, which are also commonly called tag 
trees (we will use them interchangeably in this chapter).  

Using Tags Alone: Most HTML tags work in pairs. Each pair consists of 
an open tag and a close tag (indicated by < > and </> respectively). Within 
each corresponding tag-pair, there can be other pairs of tags, resulting in a 
nested structure. Building a DOM tree from a page using its HTML code is 
thus natural. In the tree, each pair of tags is a node, and the nested pairs of 
tags within it are the children of the node. Two tasks need to be performed: 

1. HTML code cleaning: Some tags do not require close tags (e.g., <li>, 
<hr> and <p>) although they have close tags. Hence, additional close 
tags should be inserted to ensure all tags are balanced. Ill-formatted tags 
also need to be fixed. Such error tags are usually close tags that cross 
different nested blocks, e.g., <tr> … <td> … </tr> … </td>, which can 
be hard to fix if multiple levels of nesting exist. There are open source 
programs that can be used to clean up HTML pages. One popular 
program is called tidy (available at http://tidy.sourceforge. net/).  

2. Tree building: We can follow the nested blocks of the HTML tags in the 
page to build the DOM tree. It is fairly straightforward. We will not 
discuss it further.  

This method works for most pages. However, for some ill-formatted tags, 
even the tidy program cannot fix. Then, the constructed DOM trees may be 
wrong, which makes it difficult for subsequent data extraction.  

Using Tags and Visual Cues: Instead of analyzing the HTML code to 
fix errors, rendering or visual information (i.e., the locations on the screen 
at which tags are rendered) can be used to infer the structural relationship 
among tags and to construct a DOM tree. This method leads to more 
robust tree construction due to the high error tolerance of the rendering 
engines of Web browsers (e.g., Internet Explorer). As long as the browser 
is able to render a page correctly, its tag tree can be built correctly. 
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In a Web browser, each HTML element (consisting of an open tag, 
optional attributes, optional embedded HTML content, and a close tag that 
may be omitted) is rendered as a rectangle. The visual information can be 
obtained after the HTML code is rendered by a Web browser. A DOM tree 
can then be constructed based on the nested rectangles (resulted from 
nested tags). The details are as follows:  

1. Find the four boundaries of the rectangle of each HTML element by 
calling the rendering engine of a browser, e.g., Internet Explorer.  

2. Follow the sequence of open tags and perform containment checks to 
build the tree. Containment check means checking if one rectangle is 
contained in another.  

Let us use an example to illustrate the process. Assume we have the 
HTML code on the left of Fig. 9.25. However, there are three errors in the 
code. The close tag </td> for line 3 is put after the open tag for line 4. 
Also, the close tags </tr> in line 5 and </td> in line 7 are missing. However, 
this HTML segment can be rendered correctly in a browser, with the 
boundary coordinates for each HTML element shown in the middle of Fig. 
9.25. Using this visual information, it is easy to build the tree on the right.  

 
Fig. 9.25. A HTML code segment, boundary coordinates and the resulting tree 

9.8 Extraction Based on a Single List Page: Flat Data 
Records 

We are now ready to perform the data extraction task. In this and the next 
sections, we study the first extraction problem in Sect. 9.4.1, i.e., extraction 
based on a single list page. This section focuses on a simpler case, i.e., a 
list (a data region) containing only flat data records (no nesting). We 
assume that the DOM tree has been built for the page. In Sect. 9.10, we 
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9 </table> 

left  right top bottom

100 300 200 400
100 300 200 300 
100 200 200 300 
200 300 200 300 
100 300 300 400 
100 200 300 400 
200 300 300 400 

table 

tr tr 

td td td td 



398      9 Structured Data Extraction: Wrapper Generation 

will study the second extraction problem based on multiple input pages. 
The techniques studied in this section are based on the work in [24, 40]. 

Given a list page containing multiple lists and each list contains multiple 
data records (at least two), the following tasks are performed: 

1. Identify each list (also called a data region), i.e., mine all data regions,  
2. Segment data records in each list or data region, and 
3. Align data items in the data records to produce a data table for each data 

region and also a regular expression pattern. 

9.8.1 Two Observations about Data Records 

Data records in each list (or data region) are encoded using the same 
HTML mark-up encoding. Finding the data records and its hidden schema 
means to find repeated patterns and align them. String or tree 
matching/comparison are natural techniques. The problem, however, is the 
efficiency because a data record can start from anywhere in a page and has 
any length. It is prohibitive to try all possibilities. If all data records have 
exactly the same tag string, then the problem is easier. However, in 
practice, a set of data records typically does not have exactly the same tag 
string or data items due to missing or optional items (see Fig. 9.26). The 
two important observations below help to solve the problem, which are 
based on the DOM tree structure [24].   

Observation 1: A group of data records that contains descriptions of a set 
of similar objects is typically presented in a contiguous region of a page 
and is formatted using similar HTML tags. Such a region represents a 
list or a data region. For example, in Fig. 9.26 two books are presented 
in one contiguous region.  

Observation 2: A list of data records in a region is formed by some child 
sub-trees of the same parent node. It is unlikely that a data record starts 
in the middle of a child sub-tree and ends in the middle of another child 
sub-tree. Instead, it starts from the beginning of a child sub-tree and ends 
at the end of the same or a later child sub-tree.  

For example, Fig. 9.27 shows the DOM tree of the page in Fig. 9.26 
(with some parts omitted). In this tree, each data record is wrapped in 
five TR nodes with their sub-trees under the same parent TBODY. The 
two data records are in the two dash-lined boxes. It is unlikely that a data 
record starts from TD* and ends at TD# (Fig. 9.27).  

The second observation makes it possible to design an efficient 
algorithm to identify data records because it limits the tags from which a 
data record may start and end in a DOM tree.  
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Fig. 9.27. The DOM tree of the page segment in Fig. 9.26 

9.8.2 Mining Data Regions  

This first step mines every data region in a Web page that contains a list of 
data records (a set instance). Finding data regions (or individual data 
records in them) directly is, however, hard. We first mine generalized 
nodes (defined below). A sequence of adjacent generalized nodes forms a 

 

Fig. 9.26. An example of a page segment 
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data region. From each data region, we identify the actual data records 
(discussed in Sect. 9.8.3). Below, we define generalized nodes and data 
regions using the DOM (tag) tree:  

Definition: A generalized node (a node combination) of length r consists 
of r (r  1) nodes in the DOM tree with the following two properties:  

     (1)  the nodes all have the same parent; 
     (2)  the nodes are adjacent. 

We introduce the generalized node to capture the situation that a data 
record is contained in several sibling HTML tag nodes rather than one. For 
example, in Fig. 9.27, we see that each notebook is contained in five table 
rows (or five TR nodes). We call each node in the HTML tag tree a tag 
node to distinguish it from a generalized node.  

Definition: A data region is a collection of two or more generalized 
nodes with the following properties: 
(1)  the generalized nodes all have the same parent; 
(2)  the generalized nodes all have the same length; 
(3)  the generalized nodes are all adjacent; 
(4)  the similarity between adjacent generalized nodes is greater than a 

fixed threshold. 

For example, in Fig. 9.27, we can form two generalized nodes. The first 
one consists of the first five children TR nodes of TBODY, and the second 
one consists of the next five children TR nodes of TBODY. We should 
note that although the generalized nodes in a data region have the same 
length (the same number of children nodes of a parent node in the tag tree), 
their lower level nodes in their sub-trees can be quite different. Thus, they 
can capture a wide variety of regularly structured objects. We also note 
that a generalized node may not represent a final data record (see Sect. 
9.8.3), but will be used to find the final data records. 

To further explain different kinds of generalized nodes and data regions, 
we make use of an artificial DOM/tag tree in Fig. 9.28. For notational 
convenience, we do not use actual HTML tag names but ID numbers to 
denote tag nodes in a tree. The shaded areas are generalized nodes. Nodes 
5 and 6 are generalized nodes of length 1 and they together define the data 
region labeled 1 if the similarity condition (4) is satisfied. Nodes 8, 9 and 
10 are also generalized nodes of length 1 and they together define the data 
region labeled 2 if the similarity condition (4) is satisfied. The pairs of 
nodes (14, 15), (16, 17) and (18, 19) are generalized nodes of length 2. 
They together define the data region labeled 3 if the similarity condition 
(4) is satisfied. It should be emphasized that a data region includes the sub-
trees of the component nodes, not just the component nodes alone.  
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Fig. 9.28. An illustration of generalized nodes and data regions 

Comparing Generalized Nodes 

In order to find each data region in a Web page, the mining algorithm 
needs to find the following: (1) Where does the first generalized node of a 
data region start? For example, in Region 2 of Fig. 9.28, it starts at node 8. 
(2) How many tag nodes or components does a generalized node in each 
data region have? For example, in Region 2 of Fig. 9.28, each generalized 
node has one tag node (or one component).  

Let the maximum number of tag nodes that a generalized node can have 
be K, which is normally a small number (< 10). In order to answer (1), we 
can try to find a data region starting from each node sequentially. To 
answer (2), we can try one node, two node combination, …, K node 
combination. That is, we start from each node and perform all 1-node 
comparisons, all 2-node comparisons, and so on (see the example below). 
We then use the comparison results to identify each data region.  

The number of comparisons is actually not very large because: 

 Due to the two observations in Sect. 9.8.1, we only need to perform 
comparisons among the children nodes of a parent node. For example, 
in Fig. 9.28, we do not compare node 8 with node 13.  

 Some comparisons done for earlier nodes are the same as for later nodes 
(see the example below).  

We use Fig. 9.29 to illustrate the comparison. There are 10 nodes below 
the parent node p. We start from each node and perform string (or tree) 
comparison of all possible combinations of component nodes. Let the 
maximum number of components that a generalized node can have be 3.  
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Fig. 9.29. Combination and comparison 

Start from node 1: We compute the following string or tree comparisons.  

 (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10) 
 (1-2, 3-4), (3-4, 5-6), (5-6, 7-8), (7-8, 9-10) 
 (1-2-3, 4-5-6), (4-5-6, 7-8-9). 
(1, 2) means that the tag string of node 1 is compared with the tag string 
of node 2. The tag string of a node includes all the tags of the sub-tree of 
the node. (1-2, 3-4) means that the combined tag string of nodes 1 and 2 
is compared with the combined tag string of nodes 3 and 4.  

Start from node 2: We only compute: 

 (2-3, 4-5), (4-5, 6-7), (6-7, 8-9) 
 (2-3-4, 5-6-7), (5-6-7, 8-9-10). 

We do not need to do 1-node comparisons because they have been done 
when we started from node 1 above.  

Start from node 3: We only need to compute: 

 (3-4-5, 6-7-8). 

Again, we do not need to do 1-node comparisons. Also, 2-node comparisons 
are not necessary as they were done when we started at node 1. 

We do not need to start from any other node after node 3 because all the 
computations have been done.  

The Overall Algorithm 

The overall algorithm (called MDR) is given in Fig. 9.30. It traverses the 
tag tree from the root downward in a depth-first fashion (lines 5 and 6). 
Node is any tree node. K is the maximum number of tag nodes in a 
generalized node (10 is sufficient).  is the similarity threshold. The node 
comparison can be done either using string edit distance or tree matching 
(e.g., STM). The similarity threshold can be set empirically.  

Line 1 says that the algorithm will not search for data regions if the 
depth of the sub-tree at Node is 2 or 1 as it is unlikely that a data region is 
formed with only a single level of tag(s).  

2 1 3 4 6 5 7 8 9 10 

p 
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At each internal node, the function CombComp() (line 2) performs 
string (tree) comparisons of various combinations of the children sub-trees, 
which have been discussed above. The function IdenDRs() (line 3) uses 
the comparison results to find similar children node combinations (using 
the similarity threshold ) to obtain generalized nodes and data regions 
(DataRegions) under Node (i.e., among the children of Node). That is, it 
decides which combinations represent generalized nodes and where the 
beginning and end are for each data region. DataRegions consists of a set 
of data regions, and each data region contains a list of tag nodes organized 
as generalized nodes of the region. IdenDRs() is discussed further below. 
Line 4 says that if some nodes are not covered by discovered data regions, 
the algorithm will go down the tree further from these nodes to see 
whether they contain data regions (lines 5 and 6).  

We note that a generalized node may not be a data record, but may 
contain more than one data record. Fig. 9.31 illustrates the point. This data 
region has eight data records. Each row has two. However, each row will 
be reported as a generalized node because rows 14 are similar. We will 
explain how to find data records from each generalized node shortly.  

 
Fig. 9.31. A possible configuration of data records 

 Algorithm MDR(Node, K, )  
 1 if TreeDepth(Node) >= 3 then  
 2  CombComp(Node.Children, K); 
 3  DataRegions  IdenDRs(Node, K, );  
 4     if (UncoveredNodes  Node.Children  UDRDataRegionsDR) ≠  then  
 5           for each ChildNode  UncoveredNodes do 
 6  DataRegions  DataRegions  MDR(ChildNode, K, );  
 7     return DataRegions 
 8 else return  

Fig. 9.30. The MDR algorithm 
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Let us come back to the function IdenDRs(), which is not hard to design 
and it is omitted. Interested readers can refer to [24]. We only describe two 
issues that the function needs to consider.  

1. It is clear from Fig. 9.28 that there may be several data regions under a 
single parent node Node. Generalized nodes in different data regions 
may have different number of tag node components.    

2. A property about similar strings (or trees) is that if a set of strings 
(trees), s1, s2, s3, …., sn, is similar to one another, then a combination of 
any number of them is also similar to another combination of them of 
the same number. IdenDRs should only report generalized nodes of the 
smallest length that cover a data region. For Fig. 9.31, it only reports 
each row as a generalized node rather than a combination of two rows 
(rows 1-2, and rows 3-4). 

The computation of the algorithm is dominated by string (or tree) 
comparison. Assume that the total number of nodes in the tag tree is N, the 
number of comparisons is in the order of O(NK2). Since K is normally very 
small, the computation requirement of the algorithm is low. Visual 
information (see Sect. 9.8.5) and simple heuristics can be applied to reduce 
the number of string (tree) comparisons substantially.  

9.8.3 Identifying Data Records in Data Regions 

As we have discussed above, a generalized node may consist of multiple 
data records. Fig. 9.31 shows an example, where each row is a generalized 
node that contains two data records. To find data records from each 
generalized node in a data region, the following observation is useful:  

 If a generalized node contains two or more data records, these data 
records must be similar in terms of their tag strings.  

This is clear because we assume that a data region contains descriptions of 
similar data records. Identifying data records from each generalized node 
in a data region is relatively easy because they are nodes (together with 
their sub-trees) at the same level as the generalized node, or nodes at a 
lower level of the DOM/tag tree. This can be done in two steps: 

1. Produce one rooted tree for each generalized node: An artificial root 
node is created first, and all the components (which are sub-trees) of the 
generalized node are then put as its children. 

2. Call the MDR algorithm using the tree built in step 1: Due to the 
observation above, this step will find the data records if exist. Otherwise, 
the generalized node is a data record. Two issues needs to be considered.  

7
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 The discovered data records should cover all the data items in the 
original generalized node. 

 Each data record should not be too small, e.g., a single number or a 
piece of text, which is likely to be an entry in a spreadsheet table.  

Further details can be found in [24, 39], where handling non-contiguous 
data records is also discussed. For example, two books are described in 
two table rows. One row lists the names of the two books in two cells, and 
the next row lists the other pieces of information about the books also in 
two cells. This results in the following sequence in the HTML code: name 
1, name 2, description 1, description 2.  

9.8.4 Data Item Alignment and Extraction 

Once data records in each data region are discovered, they are aligned to 
produce an extraction pattern that can be used to extract data from the 
current page and also other pages that use the same encoding template. We 
use the partial tree alignment algorithm to perform the task in two steps:  
1. Produce a rooted tree for each data record: An artificial root node is 

created first. The sub-trees of the data record are then put as its children.  
2. Align the resulting trees: The trees of all the data records in each data 

region are aligned using the partial tree alignment method in Sect. 9.6.2. 
After alignments are done, the final seed tree can be used as the 
extraction pattern, or be turned into a regular expression.  

Conflict Resolution: In tree matching and alignment, it is possible that 
multiple matches can give the same maximum score, but only one match is 
correct. Then, we need to decide which one. For example, in Fig. 9.32, 
node c in tree A can match either the first or the last node c in tree B.   

 

Fig. 9.32. Two trees with more than one possible match: which is correct? 

To deal with this problem, we can use data content similarity. Data 
items that share some common substrings are more likely to match. In 
many cases, a data item contains both the attribute name and the attribute 
value. For example, “shopping in 24 hours” and “shopping within a week”.  
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The data content similarity can in fact be considered in the simple tree 
matching (STM) algorithm in Fig. 9.19 with minor changes to line 1 and 
line 11. Data contents (data items) should be included as leaves of the 
DOM trees. When data items are matched, their match score is computed. 
In [39], the longest common subsequence (LCS) is used, but cosine 
similarity should work too. Let q be the number of words in the LCS of the 
two data items, and m be the maximal number of words contained in them. 
Their matching score is computed with q/m.  

9.8.5 Making Use of Visual Information 

It is quite clear that many visual features that are designed to help people 
locate and understand information in a Web page can help data extraction. 
We have already shown that visual cues can be used to construct DOM 
trees. In fact, they can be exploited everywhere. Here are some examples:  

 Reduce the number of string or tree comparisons. If two sub-trees are 
visually too different, they do not need to be compared.  

 Confirm the boundary of data records using the space gap between data 
records. It is usually the case that gaps between data records are larger 
than gaps between items within a data record.  

 Determine item alignment. Visual alignment (left, right or center) of 
items can help determine whether two data items should match. Relative 
positions of the data items in each data record are very helpful too.  

 Identify data records based on their contour shapes. This method was 
exploited to segment data records from search engine results [42].  

9.8.6 Some Other Techniques  

Both string comparison and tree comparison based methods have been 
used to solve the data extraction problem. The task described in Sect. 9.8.2 
can be done either based on strings or based on trees. A pure string based 
method called IEPAD is proposed in [8]. It finds patterns from the HTML 
tag string and then uses the patterns to extract data. The center star method 
is used to align multiple strings. A more sophisticated string based method, 
which also deals with nested records, is proposed in [34]. The main 
problem with string based methods is that they can find many patterns and 
it is hard to determine which one is correct. Some patterns may even cross 
boundaries of data records. In [8], the user needs to choose the right 
pattern for extraction. In [34], multiple pages containing similar data 
records and other methods are used to choose the right pattern. This 
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problem is not a major issue for tree based methods because of the tree 
structures, which eliminate most alternatives. The observations made in 
Sect. 9.8.1 were also very helpful. In [22], a method based on constraints 
and the EM algorithm is proposed, which needs to use some information 
from detail pages to segment data records. Note that a data record usually 
(not always) has a link to its detail page, which contains the detail 
description of the object (e.g., a product) represented by the data record.  

Visual information is extensively used in [42] to segment snippets (data 
records) of returned pages from search engines. It uses the contour shape 
on the left of each snippet, distance from the left boundary of the page, and 
also the type of each line in the snippet (e.g., text line, link line, empty 
line, etc.) to determine the similarity of candidate data records. In [26], a 
set of visual signals is identified and clustered to help find data records.   

Several researchers also explored the idea of using some simple domain 
knowledge to help identify data records [36], e.g., a key piece of data or 
information that appears in every data record. In [32], Song et al. extended 
this idea and also MDR by proposing an automated method to identify a 
sub-tree (called the anchor tree) that exists in every data record. Data 
records are then identified by looking for other elements around the 
anchors.    

9.9 Extraction Based on a Single List Page: Nested Data 
Records 

The problem with the method in Sect. 9.8 is that it is not suitable for nested 
data records, i.e., data records containing nested lists. Since the number of 
elements in a list of each data record can be different, using a fixed 
threshold to determine the similarity of data records will not work.  

The problem, however, can be dealt with as follows. Instead of 
traversing the DOM tree top down, we can traverse it post-order. This 
ensures that nested lists at lower levels are found first based on repeated 
patterns before going to higher levels. When a nested list is found, its 
records are collapsed to produce a single pattern which replaces the list of 
data records. When comparisons are made at a higher level, the algorithm 
only sees the pattern. Thus it is treated as a flat data record. This solves the 
fixed threshold problem above. We introduce an algorithm below, which is 
based on the NET system in [25]. A running example is also given to 
illustrate the process.  

The NET algorithm is given in Fig. 9.33. It is basically a post-order tree 
traversal algorithm. The observations in Sect. 9.8.1 are still applicable 
here. The function TraverseAndMatch() performs the post-order traversal. 
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During the process, each nested list is collapsed. The function 
PutDataInTables() (line 3) outputs the extracted data to the user in 
relational tables (a page may have multiple data regions, and data in each 
region are put in a separate table). Line 3 can be easily done if the function 
TraverseAndMatch() saves the nodes whose children form data records.  

Line 1 of TraverseAndMatch() says that the algorithm will not search 
for data records if the depth of the sub-tree from Node is 2 or 1 as it is 
unlikely that a data record is formed with only a single level of tag(s). This 
parameter can be changed. The Match() function performs tree matching 
on child sub-trees of Node and pattern generation.  is the threshold for a 
match of two trees that are considered sufficiently similar.  

Algorithm NET(Root, )   
1 TraverseAndMatch(Root, );  
2 for each top level node Node whose children have aligned data records do 
3 PutDataInTables(Node); 
4 endfor  
 
Function TraverseAndMatch (Node, ) 
1 if Depth(Node)  3 then 
2 for each Child  Node.Children do 
3 TraverseAndMatch(Child, ); 
4 endfor 
5 Match(Node, );  
6 endif 

Fig. 9.33. The NET algorithm 

Function Match(Node, ) 
1 Children  Node.Children;  
2 while Children   do 
3 ChildFirst  select and remove the first child from Children; 
4 for each ChildR in Children do 
5 if TreeMatch(ChildFirst, ChildR) >   then 
6 AlignAndLink();  
7  Children  Children – {ChildR} 
8 endfor  
9 if some alignments (or links) have been made with ChildFirst then 
10  GenNodePattern(ChildFirst) 
11 endwhile 
12 If consecutive child nodes in Children are aligned then 
13 GenRecordPattern(Node) 

Fig. 9.34. The Match function 
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Match(): The Match() function is given in Fig. 9.34. Fig. 9.35 shows a 
running example. In this figure, Ni represents an internal node, and tj 
represents a terminal (leaf) node with a data item. We use the same shape 
or shading to indicate matching nodes. We explain the algorithm below.  

Given the input node Node, line 1 obtains all its children to be matched. 
In our example, Children of p are t1, N1, N2, N3, N4, t2, N5, N6, N7, N8, 
and N9 (with their sub-trees). Lines 2–4 set every pair of child nodes to be 
matched. The matching is done by TreeMatch(), which uses algorithm 
STM() in Fig. 9.19. AlignAndLink() (line 6) aligns and links all matched 
data items (leaf nodes) in ChildFirst and ChildR. The links are directional, 
i.e., from earlier data items to later (matched) data items. If ChildR matches 
ChildFirst, ChildR is removed from Chirdren so that it will not be matched 
again later (line 7). For our example, after lines 411, the resulting 
matches and links (dashed lines) are given in Fig. 9.35. Assume they all 
satisfy the match condition in line 5.  

In lines 910, if some alignments (or links) have been made, the 
GenNodePattern() function generates a node pattern for all the nodes 
(including their sub-trees) that match ChildFirst. This function first gets 
the set of matched nodes ChildR’s, and then calls PartialTreeAlignment() 
in Fig. 9.23 to produce a pattern which is the final seed tree. Note that 
PartialTreeAlignment() can be simplified here because most alignments 
have been done. Only insertions and matching of unaligned items are 
needed. A node pattern can also be represented as a regular expression.  

In lines 1213, it collapses the sub-trees to produce a global pattern for 
the data records (which are still unknown). Notice that lines 910 already 
produced the pattern for each child sub-tree. The GenRecordPattern() 
function simply produces a regular expression pattern for the list of data 
records. This is essentially a grammar induction problem [16].  

t1 

 p 
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t6 t7 t8 

 N1 t2 

t3 t4 

N5 

t9 t10 

N7 N6 

t12 t13 t11 
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Fig. 9.35. A running example: All matched items are linked 
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Grammar induction in our context is to infer a regular expression given 
a finite set of positive and negative example strings. However, we only 
have a single positive example (a list of hidden data records). Fortunately, 
structured data in Web pages are usually highly regular which enables 
heuristic methods to generate “simple” regular expressions. Here, we 
introduce such a simple method, which depends on three assumptions:  

1. The nodes in the first data record at each level must be complete, e.g., in 
Fig. 9.35, nodes t1, N1 and N2 must all be present.  

Function GenRecordPattern(Node) 
1 String  Assign a distinctive symbol to each set of matched children of Node;  
2 Initilize a data structure for NFA N = (Q, , , q0, F), where Q is the set of 

states,  is the symbol set containing all symbols appeared in String,  is the 
transition relation that is a partial function from Q  (  {}) to Q, and F is 
the set of accept states, Q  {q0} (q0 is the start state),    and F  ;  

3 qc  q0; // qc is the current state 
4 for each symbol s in String in sequence do  
5 if  a transition (qc, s) = qn then  
6 qc  qn  // transit to the next state; 
7 else if  (qi, s) = qj, where qi, qj  Q then  // s appeared before 
8 if  (qf, ) = qi, where (qi, s) = qj and f  c then 
9 TransitTo(qc, qf) 
10 else  TransitTo(qc, qi)  
11 qc  qj 
12 else  create a new state qc+1 and a transition (qc, s) = qc+1,  
  i.e.,      {((qc, ), qc+1)} 
13 Q  Q  {qc+1};  
14  qc  qc+1 
15 if s is the last symbol in String then  
16 Assign the state with the largest subscript the accept state qr, F = {qr};  
17 TransitTo(qc, qr); 
18 endfor 
19 generate a regular expression based on the NFA N; 
20 Substitute all the node patterns into the regular expression. 

Function TransitTo(qc, qs) 
1      while qc  qs do  
2              if  (qc, ) = qk and k>c then  
3                 qc  qk 

4              else  create a transition (qc, ) = qc+1, i.e.,      {((qc, ), qc+1)}; 
5                      qc  qc+1 
6      endwhile 

Fig. 9.36. Generating regular expressions 
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2. The first node of every data record at each level must be present, e.g., at 
the level of t1 and t2, they both must be present, and at the next level, 
N1, N3, N5, N7 and N8 must be present. Note that the level here is in 
the hierarchical data organizational sense (not the HTML code sense).  

3. Nodes within a single flat data record (no nesting) do not match one 
another, e.g., N1 and N3 do not appear in the same data record. 

The GenRecordPattern() function is given in Fig. 9.36. It generates a 
regular expression pattern.  

Line 1 in Fig. 9.36 simply produces a string for generating a regular 
expression. For our example, we obtain the following:  

   t1 N1 N2 N3 N4 t2 N5 N6 N7 N8 N9 
 String: a b c b c a b c b b c 

Lines 23 initialize a NFA (non-deterministic finite automaton). Lines 
418 traverses String from left to right to construct the NFA. For our 
example, we obtain the final NFA in Fig. 9.37.  

 
Fig. 9.37. The generated NFA and its regular expression 

Line 19 produces a regular expression from the NFA, which is shown in 
Fig. 9.37 on the right.  

Line 20 produces the final pattern (Fig. 9.38) by substituting the node 
patterns into the regular expression. Here, we use node t1 as the pattern 
(the seed tree) for nodes t1 and t2, the N1 sub-tree as the pattern for all the 
linked sub-trees rooted at N1, N3, N5, N7 and N8. The N2 sub-tree is the 
pattern of the sub-trees rooted at N2, N4, N6 and N9.  

 

Fig. 9.38. The regular expression produced from Fig. 9.35 

Some additional notes about the algorithm are in order: 

 Each child node here represents a sub-tree (e.g., N1, N2, etc). 
Assumption 1 does not require lower level nodes of each sub-tree in the 
first data record to be complete (no missing items). We will see an 

t1 N2

t5 

N1 

t3 t4 

? + + 

(a (b c?)+ )+ 
a b 

 

 

c 
 

q0 q1 q3 q4



412      9 Structured Data Extraction: Wrapper Generation 

example in Fig. 9.40 and Fig. 9.41.  
 Regular expressions produced by the algorithm do not allow 

disjunctions (i.e., A|B) except (A|), which means that A is optional. 
Such regular expresses are called union-free regular expressions. 
However, disjunctions are possible at lower level matches of the sub-
trees. We will discuss the issue of disjunction again in Sect. 9.11.2. 

 Function GenRecordPattern() in Fig. 9.37 assumes that under Node 
there is only one data region, which may not be true. The algorithm can 
be easily extended to take care of multiple data regions under Node. In 
fact, the NET() algorithm here is a simplified version to present the 
main ideas. For practical use, it can be significantly enhanced to remove 
most assumptions if not all.   

Finally, the function PutDataInTables() (line 3 of NET() in Fig. 9.33) 
simply outputs data items in a table, which is straightforward after the data 
record patterns are found. For the example in Fig. 9.35, the following data 
table is produced (only terminal nodes contain data):   

  
Fig. 9.39. The output data table for the example in Fig. 9.35 

 

Fig. 9.42. The output data table for the example in Fig. 9.40 

t1 t3 t4 t5 
t1 t6 t7 t8 
t2 t9 t10 t11 
t2 t12 t13  
t2 t14 t15 t16 

N3 

t8 t9 

t2 

 N2 

 N4 N5 

N1 

 N3 

t8 t9 

t2 

N2 

 N5  + 

t5 t6 

t1  N6 

Fig. 9.40. Aligned data nodes are linked 

N6 

t3 t4 t5 t6 t7 t7 

N1 

Fig. 9.41. Alignment after collapsing 

t1 

?

t1 t3 t4  
t1 t5 t6 t7 
t2 t8 t9  
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Let us use a smaller but more complete example (Fig. 9.40) to show that 
generating a pattern of a lower level list makes it possible for a higher 
level matching. At the level of N4N5 (which has the parent N2), t3t5 
and t4t6 are matched (assume they satisfy the match condition, line 5 of 
Fig. 9.34). They are aligned and linked (dash lines). N4 and N5 are data 
records at this level (nested in N2 in this case), in which t7 is optional. N4 
and N5 are then collapsed to produce a pattern data record using 
GenNodePattern() first and then GenRecordPattern(), which does not do 
anything in this case. t7 is marked with a “?”, indicating that it is optional. 
The pattern data record is N5 (selected based on the 
PartialTreeAlignment() function). The sub-tree at N4 is then omitted in 
Fig. 9.41. N5 is marked with a “+” indicating that there is one or more 
such data records and that the sub-tree of N5 is the pattern. We can see in 
Fig. 9.41 that the sub-trees rooted at N2 and N3 can now match. The final 
output data table is given in Fig. 9.42.  

9.10 Extraction Based on Multiple Pages 

We now discuss the second extraction problem described in Sect. 9.4.1. 
Given multiple pages with the same encoding template, the system finds 
patterns from them to be used to extract data from other similar pages. The 
collection of input pages can be a set of list pages or detail pages. Below, 
we first see how the techniques described so far can be applied in this 
setting, and then describe a technique specifically designed for this setting. 

9.10.1 Using Techniques in Previous Sections 

We discuss extraction of list pages and detail pages separately. 

Given a Set of List Pages 

Since the techniques described in previous sections are for a single list 
page, they can obviously be applied to multiple list pages. The pattern 
discovered from a single page can be used to extract data from the rest of 
the pages. Multiple list pages may also help improve the extraction. For 
example, patterns from all input pages may be found separately and 
merged to produce a single refined pattern. This can deal with the problem 
that a single page may not contain the complete information.  

Given a Set of Detail Pages 

In some applications, one needs to extract data from detail pages as they 
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contain more information. For example, in a list page, the information on 
each product is usually quite brief, e.g., containing only the name, image, 
and price. However, if an application also needs the product description 
and customer reviews, one has to extract them from detail pages.  

For extraction from detail pages, we can treat each page as a data record 
and apply the algorithms described in Sect. 9.8 and/or Sect. 9.9. For 
instance, to apply the NET algorithm, we can simply construct a rooted 
tree as input to NET as follows: (1) create an artificial root node, and (2) 
make the DOM tree of each page as a child sub-tree of the artificial root.  

9.10.2 RoadRunner Algorithm 

We now describe the RoadRunner algorithm [11], which is designed 
specifically for problem 2. Given a set of pages, each containing one or 
more data records (i.e., the pages can be list pages or detail pages), the 
algorithm compares the pages to find similarities and differences, and in 
the process generating a union-free regular expression (i.e., a regular 
expression without disjunctions) extractor/wrapper. The approach works as 
follows: 

 To start, it takes a random page as the regular expression wrapper W. 
 The wrapper W is then refined by matching it sequentially with the 

HTML code of each remaining page pi. It generalizes W by solving 
mismatches between the wrapper W and the page pi. A mismatch occurs 
when some token in pi does not match the grammar of the wrapper.  

There are two types of mismatches:  

1. Text string mismatches: They indicate data fields or items.  
2. Tag mismatches: They indicate  
 optional items, or 
 iterators (a list of repeated patterns): 

In this case, a mismatch occurs at the beginning of a repeated pattern 
and the end of a list. The system finds the last token of the mismatch 
position and identifies some candidate repeated patterns from the 
wrapper and the page pi by searching forward. It then compares the 
candidates with the upward portion of the page pi to confirm. 

The algorithm is best explained with an example, which is given in Fig. 
9.43. In this figure, page 1 on the left (in HTML code) is the initial 
wrapper. Page 2 on the right is a new page to be matched with page 1.  

Let us look at some matches and mismatches. Lines 13 of both pages 
are the same and thus match. Lines 4 of both pages are text strings and are 
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different. They are thus data items to be extracted. We go down further. 
Lines 6 of the pages do not match. Line 6 of page 1 matches line 7 of page 
2. Thus, <IMG src=…/> is likely to be optional. Line 11 of page 1 and line 
12 of page 2 give another mismatch. Since they are text strings, they are 
thus data items to be extracted. Line 17 of page 1 and line 18 of page 2 are 
also data items. Another mismatch occurs at line 19 of page 1 and line 20 
of page 2. Further analysis will find that we have a list here. The final 
refined regular expression wrapper is given at the bottom of Fig. 9.43.  

 

Fig. 9.43. A wrapper generation example  

The match algorithm is exponential in the input string length as it has to 
explore all possibilities. A set of heuristics is introduced to lower the 
complexity by limiting the space to explore and to backtrack. In [1], a 
more efficient method is given based on sophisticated tag path analysis. 

9.11 Some Other Issues  

We now briefly discuss a few other issues that are important to automatic 
extraction techniques.  

- Wrapper (initially Page 1): - Sample (page 2) 

1:  <HTML> parsing 1: <HTML> 
2: Books of: 2: Books of: 
3: <B> 3: <B> 
4:  Paul Smith string mismatch 4:  Mike Jones 
5: </B>  5: </B> 
6: <UL> tag mismatch (?) 6: <IMG src=…/> 
  7: <UL> 
7: <LI> 8: <LI> 
8-10: <I>Title:</I> 9-11:  <I>Title:</I> 
11:  Web Mining string mismatch (#text) 12: Databases 
12: </LI> 13: </LI> 
13: <LI> 14: <LI> 
14-16:  <I>Title:</I> 15-17: <I>Title:</I> 
17:  Data Mining string mismatch (#text) 18: HTML Premier  
18: </LI> 19: </LI> 
19: </UL> tag mismatch (+) 20: <LI> 
20: </HTML>  21-23: <I>Title:</I> 
  terminal tag search and 24:  Javascript 
  square matching 25: </LI> 
  26: </UL> 
- Wrapper after solving mismatches: 27: </HTML> 

 <HTML>Books of:<B>#text</B>  
 (<IMG src=…/>)? 
 <UL> 
 (<LI><I>Title:</I>#text</LI>)+ 
 </UL><HTML> 
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9.11.1  Extraction from Other Pages 

Once the encoding template pattern is found, it can be used to extract data 
from other pages that contain data encoded in the same way. There are 
three ways to perform the extraction:  

 Finite-state machines: An encoding template pattern is usually represented 
as a regular expression. A nondeterministic finite-state automaton can 
be constructed to match occurrences of the pattern in the input string 
representing a Web page. In the process, data items are extracted.   

 Pattern matching: It is also possible to directly match the string or tree 
pattern against the input to extract data. This approach is more flexible 
than finite-state machines because pattern matching allows partial 
matching. For example, in the page where the pattern is discovered, an 
optional item does not occur, but it occurs in some other pages. Pattern 
matching can deal with this easily. In the process, the pattern can be 
enhanced as well by inserting the new optional item in it.  

 Extracting each page independently: The above two approaches can be 
problematic if the Web site use many different templates to encode its 
data. If we start to extract after only finding one pattern, then the data 
encoded using other templates will not be extracted. One solution to this 
is to find patterns from each page and extract the page using only the 
discovered patterns from the page. However, handling each page 
individually is inefficient.  

Detecting new templates: To detect new templates without sacrificing 
efficiency of mining extraction patterns from each page, a pre-screening 
strategy may be applied. In most applications, the user is interested in only 
a particular kind of data, e.g., products, research publications, or job 
postings. It is usually possible to design some simple and efficient 
heuristics to check whether a page contains such data. If so, a full blown 
extraction is performed using already generated patterns. If no data is 
extracted from the page, it is an indication that the page is encoded with a 
different template. A new mining process can be initiated to discover the 
new template.  

9.11.2 Disjunction or Optional 

In automatic extraction, it can be difficult to recognize disjunctions. For 
example, for the three digital cameras in Fig. 9.44, it is easy to know that 
“On Sale” is an optional item. However, for the prices (including “Out of 
stock”), it is hard to decide whether they are optional items or disjuncts of 
a disjunction. The HTML codes for the three fields are given below,  
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(1)  <b> $250.00 </b> 
(2)  <b><i> $300.00 </i></b> 
(3)  <i> Out of stock </i>. 

If they are treated as optional items, they are put in three different 
columns in the output table, but if they are disjuncts, they are put in the 
same column. In this example, it is easy for a human user to see that they 
are disjuncts, i.e., (<b> #text </b>) | (<b><i> #text </i></b>) | (<i> 
#text</i>).  

 
Fig. 9.44. Disjuncts or optional items  

There are two main pieces of information that can be used to determine 
whether they are optional or disjuncts:  

1. Visual information: If they are in the same relative location with respect 
to their objects, then they are more likely to be disjuncts. In the above 
example, the three items are all at the same relative location.  

2. Data type information: If the data items are of the same type, they are 
more likely to be disjuncts. “$250.00” and “$300.00” are of the same 
type, but “Out of stock” is not.  

In many cases, it can be hard to decide. Fortunately, disjunctive cases 
are rare on the Web. Even if an extraction system does not deal with 
disjunction, it does not cause a major problem. For example, if “Out of 
stock” is identified as optional, it is probably acceptable.  

9.11.3 A Set Type or a Tuple Type 

Sometimes it can also be difficult to determine whether a list is a tuple 
type or a set type. For example, if all the lists of a set type have the same 
number of elements, it is hard to know if they are in fact attributes of a 
tuple. For instance, the following are three colors of a jacket with different 
prices. Clearly, they represent a set instance with a list of three tuples:  

<tr><td><b>Blue:<b></td> <td> $5.00 </td></tr> 
<tr><td><b>Yellow:<b></td> <td> $6.50 </td></tr>  
<tr><td><b>Pink:<b></td> <td> $10.99 </td></tr>. 

(1) (2) (3)

Digital camera 4mp 

  $250.00 

Digital camera 5mp 

$300.00
On Sale 

Digital camera 3mp 

Out of stock 
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However, the following specifications of a particular product are obviously 
the attributes of the product. Without knowing the semantics of the 
encoded data, it is difficult to know that the above three are a set instance 
and the following two are attributes of a tuple: 

<tr><td><b>weight:<b></td> <td> 30 kg </td></tr>  
<tr><td><b>height:<b></td> <td> 5 m </td></tr>. 

If multiple lists of the same type are available, we may have some additional 
information to make the decision. For instance, one pair of shoes has three 
colors, and another has four colors. We can be fairly confident that 
different sets of colors represent set instances (or lists). In the second 
example, if all products have both height and width, it is more likely that 
they are attributes. However, these heuristics do not always hold. In some 
cases, it is hard to decide without understanding of the data semantics.  

9.11.4 Labeling and Integration 

Once the data is extracted from a page/site and put in tables, it is desirable 
to label each column (assigning an attribute name to it). Some preliminary 
studies have been reported in [2, 34]. However, the problem is still very 
much open. Furthermore, the extracted data from multiple sites may need 
to be integrated. There are two main integration problems. The first one is 
schema matching, which matches columns of data tables. The second one 
is data value/instance match. For example, in one site, Coca Cola is 
called “Coke”, but in another site it is called “Coca Cola”. The problem is: 
how does the system know that they are the same semantically? In Chap. 
10, we will study some data integration techniques.  

9.11.5 Domain Specific Extraction 

In most applications, the user is only interested in some specific data objects, 
e.g., products sold online, and for each object, only some specific items are 
needed, e.g., product name, image, and price. Domain specific information 
can be exploited to simplify and also to speed up the extraction 
dramatically. Such information can be utilized in at least two ways.  

1. Quickly identify pages that may contain required data. For example, it is 
fairly easy to design some domain heuristics to determine whether a 
page contains a list of products (a list page). One heuristic is to detect 
repeated images and repeated prices in some fixed order and interval. 
Such heuristics are usually very efficient to execute and can be used to 
filter out those pages that are unlikely to contain required data. The 
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extraction algorithm, which is slower, will only run on those pages that 
are very likely to contain target data.  

2. Identifying target items in a data record. Based on the characteristics of 
target items, it may be easy to identify and label the target items. For 
example, it is often easy to find product names and product images 
based on simple heuristics. If heuristics are not reliable, machine 
learning methods may be applied to learn models to identify target 
items. For example, in [44], an extended conditional random fields 
method (CRF) [21] is used to learn an extraction model, which is then 
used to extract target items from new data records.  

9.12 Discussion 

Finally, we discuss the main advantages and disadvantages of wrapper 
induction and automatic data extraction. The key advantage of wrapper 
induction is that it extracts only the data that the user is interested in. Due 
to manual labeling, there is no schema matching problem. However, data 
value or instance matching is still needed. The main disadvantages are that 
it is not scalable to a large number of sites due to significant manual 
efforts, and that maintenance is very costly if sites change frequently.  

The main advantages of automatic extraction are that it is scalable to a 
huge number of sites, and that there is little maintenance cost. The main 
disadvantage is that it can extract a large amount of unwanted data because 
the system does not know what is interesting to the user. Also, in some 
applications, the extracted data from multiple sites need integration, i.e., 
their schemas as well as values need to be matched, which are difficult tasks. 
However, if the application domain is narrow, domain heuristics may be 
sufficient to filter out unwanted data and to perform the integration tasks. 

In terms of extraction accuracy, it is reasonable to assume that wrapper 
induction is more accurate than automatic extraction, although there is no 
reported large scale study comparing the two approaches.  

Bibliographic Notes 

Web data extraction techniques can be classified into three main 
categories: (1) wrapper programming languages and visual platforms, (2) 
wrapper induction, and (3) automatic data extraction. The first approach 
provides some specialized pattern specification languages and visual 
platforms to help the user construct extraction programs. Systems that 
follow this approach include WICCAP [23], Wargo [29], Lixto [3], etc.  
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The second approach is wrapper induction, which uses supervised 
learning to learn data extraction rules from a set of manually labeled 
positive and negative examples. A theoretical work on wrapper learning 
based on the PAC learning framework was done by Kushmerick [20]. 
Example wrapper induction systems include WIEN [19], Softmealy [17], 
Stalker [28], WL2 [10], Thresher [15], IDE [38], [18], [43], etc. Most 
existing systems are based on inductive learning from a set of labeled 
examples. IDE [38] employs a simple instance-based learning technique, 
which performs active learning at the same time so that the user only needs 
to label a very small number of pages. Related ideas are also used in [7] 
and [15]. Most existing wrapper induction systems built wrappers based on 
similar pages from the same site. Zhu et al. [44, 45] reported a system that 
learns from labeled pages from multiple sites in a specific domain. The 
resulting wrapper can be used to extract data from other sites. This avoids 
the labor intensive work of building a wrapper for each site.  

The third approach is automatic extraction. In [12], Embley et al. 
studied the automatic identification of data record boundaries given a list 
page. The technique uses a set of heuristic rules and domain ontologies. In 
[4], Buttler et al. proposed additional heuristics to perform the task without 
using domain ontologies. The MDR algorithm discussed in this chapter 
was proposed by Liu et al. [24]. It uses string edit distance in pattern 
finding (incidentally, Lloyd Allison has a great page on string edit 
distance). An algorithm based on the visual information was given by 
Zhao et al. [42] for extracting search engine results. Another visual based 
system is given in [31]. These systems, however, do not align or extract 
data items from data records. Chang et al. [8] reported a semi-automatic 
system called IEPAD to find extraction patterns from a list page to extract 
data items. The DeLa system by Wang et al. [34] works similarly. The 
DEPTA system by Zhai and Liu [40] works in a different way. It first 
segments data records, and then aligns and extracts data items in the data 
records using the partial tree alignment algorithm. Both DEPTA and 
IEPAD do not deal with nested data records, which are dealt with in NET 
[25] and DeLa [34]. Other related work includes [5, 26, 32, 36], which use 
the visual information, the domain knowledge or automatically found 
anchor trees.  

The RoadRunner system, which needs multiple pages as input, was 
proposed by Crescenzi et al. [11]. Its theoretical foundation was given by 
Grumbach and Mecca [13]. Sects. 9.1 and 9.4 are influenced by this paper. 
The work of RoadRunner was improved by Arasu and Garcia-Molina in 
their EXALG system [1]. Both systems need multiple input pages with a 
common schema/template and assume that these pages are given. The 
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pages can be either detail pages or list pages. The method proposed in [22] 
works in a similar setting. A tree-matching based method is given in [30]. 
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10 Information Integration 

In Chap. 9, we studied data extraction from Web pages. The extracted data 
is put in tables. For an application, it is, however, often not sufficient to 
extract data from only a single site. Instead, data from a large number of 
sites are gathered in order to provide value-added services. In such cases, 
extraction is only part of the story. The other part is the integration of the 
extracted data to produce a consistent and coherent database because 
different sites typically use different data formats. Intuitively, integration 
means to match columns in different data tables that contain the same type 
of information (e.g., product names) and to match values that are 
semantically identical but represented differently in different Web sites 
(e.g., “Coke” and “Coca Cola”). Unfortunately, limited integration 
research has been done so far in this specific context. Much of the Web 
information integration research has been focused on the integration of 
Web query interfaces. This chapter will have several sections on their 
integration. However, many ideas developed are also applicable to the 
integration of the extracted data because the problems are similar.  

Web query interfaces are used to formulate queries to retrieve needed 
data from Web databases (called the deep Web). Fig. 10.1 shows two 
query interfaces from two travel sites, expedia.com and vacation.com. The 
user who wants to buy an air ticket typically tries many sites to find the 
cheapest ticket. Given a large number of alternative sites, he/she has to 
access each individually in order to find the best price, which is tedious. 
To reduce the manual effort, we can construct a global query interface 
that allows uniform access to disparate relevant sources. The user can then 
fill in his/her requirements in this single global interface and all the 
underlying sources (or databases) will be automatically filled and searched. 
The retrieved results from multiple sources also need to be integrated. Both 
integration problems, i.e., integration of query interfaces and integration of 
returned results, are challenging due to the heterogeneity of Web sites.  

Clearly, integration is not peculiar only to the Web. It was, in fact, first 
studied in the context of relational databases and data warehouse. Hence, 
this chapter first introduces most integration related concepts using traditional 
data models (e.g., relational) and then shows how the concepts are tailored 
to Web applications and how Web specific problems are handled.  

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_10, 
© Springer-Verlag Berlin Heidelberg 2011 
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Fig. 10.1. Two examples of Web query interfaces 

10.1 Introduction to Schema Matching  

Information/data integration has been studied in the database community 
since the early 1980s [2, 12, 30]. The fundamental problem is schema 
matching, which takes two (or more) database schemas to produce a 
mapping between elements (or attributes) of the two (or more) schemas 
that correspond semantically to each other. The objective is to merge the 
schemas into a single global schema. This problem arises in building a 
global database that comprises several distinct but related databases. One 
application scenario in a company is that each department has its database 
about customers and products that are related to the operations of the 
department. Each database is typically designed independently and possibly 
by different people to optimize database operations required by the functions 
of the department. This results in different database schemas in different 
departments. However, to consolidate the data about customers or company 
operations across the organization in order to have a more complete under-
standing of its customers and to better serve them, integration of databases 
is needed. The integration problem is clearly also important on the Web as 
we discussed above, where the task is to integrate data from multiple sites.    

There is a large body of literature on the topic. Most techniques have 
been proposed to achieve semi-automatic matching in specific domains 
(see the surveys in [12, 22, 30, 32]). Unfortunately, the criteria and 
methods used in match operations are almost all based on domain 
heuristics which are not easily formulated mathematically. Thus, to build a 
schema matching system, we need to produce mapping heuristics which 
reflect our understanding of what the user considers to be a good match.  

Schema matching is challenging for many reasons. First of all, schemas 
of identical concepts may have structural and naming differences. Schemas 
may model similar but not identical contents, and may use different data 
models. They may also use similar words for different meanings.  
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Although it may be possible for some specific applications, in general, it 
is not possible to fully automate all matches between two schemas because 
some semantic information that determines the matches between two 
schemas may not be formally specified or even documented. Thus, any 
automatic algorithm can only generate candidate matches that the user 
needs to verify, i.e., accept, reject or change. Furthermore, the user should 
also be allowed to specify matches for elements that the system is not able 
to find satisfactory match candidates. Let us see a simple example.  

Example 1: Consider two schemas, S1 and S2, representing two customer 
relations, Cust and Customer.  

S1  S2 
Cust Customer 

CNo CustID 
CompName Company 
FirstName Contact 
LastName Phone 

We can represent the mapping with a similarity relation, , over the 
power sets of S1 and S2, where each pair in  represents one element of the 
mapping. For our example schemas, we may obtain 

 Cust.CNo  Customer.CustID 
 Cust.CompName  Customer.Company 
 {Cust.FirstName, Cust.LastName}  Customer.Contact ▀ 

There are various types of matching based on the input information [30]. 

1. Schema-level only matching: In this type of matching, only the schema 
information (e.g. names and data types) is considered. No data instance 
is available.  

2. Domain and instance-level only matching: In this type of match, only 
instance data and possibly the domain of each attribute are provided. No 
schema is available. Such cases occur quite frequently on the Web, 
where we need to match corresponding columns of the hidden schemas.  

3. Integrated matching of schema, domain and instance data: In this 
type of match, both schemas and instance data (possibly domain 
information) are available. The match algorithm can exploit clues from 
all of them to perform matching.   

There are existing approaches to all above types of matching. We will 
focus on the first two types. The third type usually combines the results of 
techniques from the first two, which we discuss in Sect. 10.5. Before going 
to the details, we first discuss some pre-processing tasks that usually need 
to be done before matching.  
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10.2 Pre-Processing for Schema Matching 

For pre-processing, issues such as concatenated words, abbreviations, and 
acronyms are dealt with. That is, they need to be normalized before being 
used in matching [18, 26, 36].  

Prep 1 (Tokenization): This process breaks an item, which can be a 
schema element (attribute) or attribute value, into atomic words. Such 
items are usually concatenated words. Delimiters (such as “-”, “_”, etc.) 
and case changes of letters are used to suggest the breakdown. For 
example, we can break “fromCity” into “from City”, and “first-name” 
into “first name”. A domain dictionary of words is typically maintained 
to help the breakdown. Note that if “from”, “city”, “first” and “name” 
are not in the dictionary, they will be added to the dictionary. Existing 
dictionary words are also utilized to suggest the breakdown. For 
example, “deptcity” will be split into “dept” and “city” if “city” is a 
word. The dictionary may be constructed automatically, which consists 
of all the individual words appeared in the given input used in 
matching, e.g., schemas, instance data and domains. The dictionary is 
updated as the processing progresses. However, the tokenization step 
has to be done with care. For example, we have “Baths” and “Bathrooms” 
if we split “Bath” with “Room” it could be a mistake because “Rooms” 
could have a very different meaning (the number of rooms in the 
house). To be sure, we need to ensure that “Bathroom” is not an English 
word, for which an online English dictionary may be employed.  

Prep 2 (Expansion): It expands abbreviations and acronyms to their full 
words, e.g., from “dept” to “departure”. The expansion is usually done 
based on the auxiliary information provided by the user or collected 
from other sources. Constraints may be imposed to ensure that the 
expansion is likely to be correct. For example, we may require that the 
word to be expanded is not in the English dictionary, with at least three 
letters, and having the same first letter as the expanding word. For 
example, “CompName” is first converted to (Comp, Name) in 
tokenization, and then “Comp” is expanded to “Company”. 

Prep 3 (Stopword removal and stemming): These are information 
retrieval pre-processing methods (see Chap. 6). They can be performed 
to attribute names and domain values. A domain specific stopword list 
may also be constructed manually. This step is useful especially in 
linguistic based matching methods discussed below.  

Prep 4 (Standardization of words): Irregular words are standardized to a 
single form (e.g., using WordNet [27]), “colour” “color”, “Children” 
 “Child”.  
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10.3 Schema-Level Matching 

A schema level matching algorithm relies on information about schema 
elements, such as name, description, data type and relationship types (such 
as part-of, is-a, etc.), constraints and schema structures. Before introducing 
some matching methods using such information, let us introduce the notion 
of match cardinality, which describes the number of elements in one 
schema that match the number of elements in the other schema.  

In general, given two schemas, S1 and S2, within a single match in the 
match relation one or more elements of S1 can match one or more elements 
of S2. We thus have 1:1, 1:m, m:1 and m:n matches. 1:1 match means that 
one element of S1 corresponds to one element of S2, and 1:m means that 
one element of S1 corresponds to a set of m (m > 1) elements of S2.  

Example 2: Consider the following schemas:  
S1  S2 
Cust Customer 

CustomID CustID 
Name FirstName  
Phone LastName  

We can find the following 1:1 and 1:m matches:  
1:1 CustomID CustID 
1:m Name  FirstName, LastName ▀ 

m:1 match is similar to 1:m match; m:n match is considerably more 
complex. An example of an m:n match is to match Cartesian coordinates 
with polar coordinates. There is little work on such complex matches. 
Most existing approaches are for 1:1 and 1:m matches.  

We now describe some general matching approaches that employ 
various types of information available in schemas. There are two main 
types of information in schemas, natural language words and constraints. 
Thus, there are two main types of approaches to matching. 

10.3.1 Linguistic Approaches 

They are used to derive match candidates based on the names, comments 
or descriptions of schema elements [7, 8, 10, 11, 18, 26, 36].  

Name Match 

N1  Equality of names: The same name in different schemas often has the 
same semantics.  
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N2  Synonyms: The names of two elements from different schemas are 
synonyms, e.g., Customer  Client. This requires the use of thesaurus 
and/or dictionaries such as WordNet. In many cases, domain dependent 
or enterprise specific thesaurus and dictionaries are required.  

N3  Equality of hypernyms: A is a hypernym of B if B is a kind of A. If 
X and Y have the same hypernym, they are likely to match. For 
example, “Car” is-a “vehicle” and “automobile” is-a “vehicle”. Thus, 
we have Car  vehicle, automobile  vehicle, and Car  automobile.  

N4  Common substrings: Edit distance and similar pronunciation may be 
used. For example, CustomerID  CustID, and ShipTo  Ship2. 

N5  Cosine similarity: Some names are natural language words or phrases 
(after pre-processing). Then, text similarity measures are useful. 
Cosine similarity is a popular similarity measure used in information 
retrieval (see Chap. 6). This method is also very useful for Web query 
interface integration since the labels of the schema elements are natural 
language words or phrases (see the query interfaces in Fig. 10.1) 

N6  User provided name matches: The user may provide a domain 
dependent match dictionary (or table), a thesaurus, and/or an ontology.  

Description Match 

In many databases, there are comments to schema elements, e.g.,  

S1: CNo // customer unique number 
S2: CustID // id number of a customer 

These comments can be compared based on the cosine similarity as well.  

D1 – Use the cosine similarity to compare comments after stemming and 
stopword removal.  

10.3.2 Constraint Based Approaches 

Constraints such as data types, value ranges, uniqueness, relationship types 
and cardinalities, etc., can be exploited in determining candidate matches 
[18, 26, 28, 29].  

C1: An equivalence or compatibility table for data types and keys that 
specifies compatibility constraints for two schema elements to match 
can be provided, e.g., string  varchar, and (primary key)  unique.  
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Example 3: Consider the following two schemas:  
S1 S2 
Cust Customer 

CNo: int, primary key CustID: int, unique 
CompName: varchar (60) Company: string 
CTname: varchar (15) Contact: string 
StartDate: date  Date: date 

Constraints can suggest that “CNo” matches “CustID”, and “StartDate” 
may match “Date”. “CompName” in S1 may match “Company” in S2 or 
“Contact” in S2. Likewise, “CTname” in S1 may match “Company” or 
“Contact” in S2. In both cases, the types match. Although in these two 
cases, we are unable to find a unique match, the approach helps limit the 
number of match candidates and may be combined with other matchers 
(e.g., name and instance matchers). For structured schemas, hierarchical 
relationships such as is-a and part-of relationships may be utilized to help 
match.  ▀ 

In the context of the Web, the constraint information above is often not 
explicitly available because Web databases are for general public who are 
unlikely to know what an int, string or varchar is. Thus, these types are 
never shown in Web pages. However, some information may be inferred 
from the domain or instance information, which we discuss next.  

10.4 Domain and Instance-Level Matching 

In this type of matching, value characteristics are exploited to match 
schema elements [4, 11, 18, 34, 35]. For example, the two attribute names 
may match according to the linguistic similarity, but they may have 
different domain value characteristics. Then, they may not be the same but 
homonyms. For example, Location in a real estate sell may mean the 
address, but could also mean some specific locations, e.g., lakefront 
property, hillside property, etc.  

In many applications, data instances are available, which is often the 
case in the Web database context. In some applications, although the 
instance information is not available, the domain information of each 
attribute may be obtained. This is the case for Web query interfaces. Some 
attributes in the query interface contain a list of possible values (the 
domain) for the user to choose from. No type information is explicitly 
given, but it can often be inferred. We note that the set of value instances 
of an attribute can be treated in the similar way as a domain. Thus, we will 
only deal with domains below.  
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Let us look at two types of domains or types of values: simple domains 
and composite domains. The domain similarity of two attributes, A and B, 
is the similarity of their domains: dom(A) and dom(B).  

Definition (Simple Domain): A simple domain is a domain in which 
each value has only a single component, i.e., the value cannot be 
decomposed.  

A simple domain can be of any type, e.g., year, time, money, area, month, 
integer, real, string, etc. 

Data Type: If there is no type specification at the schema level, we 
identify the data type from the domain values. Even if there is a type 
specification at the schema level for each attribute, we can still refine the 
type to find more characteristic patterns. For example, the ISBN number of 
a book may be specified as a string type in a given schema. However, due 
to its fixed format, it is easy to generate a characteristic pattern from a set 
of ISBN numbers, e.g., a regular expression. Other examples include 
phone numbers, post codes, money, etc. Such specialized patterns are more 
useful in matching compatible attribute types.  

We describe two approaches for type identification: semi-automatic [36, 
37] and automatic [11, 18] approaches.  

Semi-automatic approach: This is done via pattern matching. The pattern 
for each type may be expressed as a regular expression, which is defined 
by a human expert. For example, the regular expression for the time type 
can be defined as “[09]{2}:[09]{2}" or “dd:dd” (d for digit from 0-9) 
which recognizes time of the form “03:15”. One can use such regular 
expressions to recognize integer, real, string, month, weekday, date, time, 
datetime (combination of date and time), etc. To identify the data type, we 
can simply apply all the regular expression patterns to determine the type.  

In some cases, the values themselves may contain some information on 
the type. For example, values that contain “$” or “US$” indicate the 
monetary type. For all values that we cannot infer their types, we can 
assume their domains are of string type with an infinite cardinality.  

Automated approach: Machine learning techniques, e.g., grammar 
induction, may be used to learn the underlying grammar/pattern of the 
values of an attribute, and then use the grammar to match attribute values 
of the other schemas. This method is particularly useful for value of fixed 
format, e.g., zip codes, phone numbers, zip codes, ISBNs, date entries, or 
money-related entries, if their regular expressions are not specified by the 
user.  
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The following methods may be used in matching: 
DI 1 – Data types are used as constraints. The method C1 above is 

applicable here. If the data/domain types of two attributes are not 
compatible, they should not be matched. We can use a table specifying 
the degree of compatibility between a set of predefined generic data 
types, to which data types of schema elements are mapped in order to 
determine their similarity. 

DI 2 – For numerical data, value ranges, averages and variances can be 
computed to access the level of similarity.  

DI 3 – For categorical data, we can extract and compare the set of values 
in the two domains to check whether the two attributes from different 
schemas share some common values. For example, if an attribute from 
S1 contains many “Microsoft” entries and an attribute in S2 also contains 
some “Microsoft”’s, then we can propose them as a match candidate.  

DI 4 – For alphanumeric data, string-lengths and alphabetic/non-alphabetic 
ratios are also helpful. 

DI 5 – For textual data, information retrieval methods such as the cosine 
measure may be used to compare the similarity of all data values in the 
two attributes.  

DI 6 – Schema element name as value is another match indicator, which 
characterizes the cases where matches relate some data instances of a 
schema with a set of elements (attributes) in another schema. For 
example, in the airfare domain one schema uses “Economy” and 
“Business” as instances (values) of the attribute “Ticket Class”, while 
in another interface, “Economy” and “Business” are attributes with the 
Boolean domain (i.e., “Yes” and “No”). This kind of match can be 
detected if the words used in one schema as attribute names are among 
the values of attributes in another schema [8, 37]. 

Definition (Composite Domain and Attribute): A composite domain d 
of arity k is a set of ordered k-tuples, where the ith component of each 
tuple is a value from the ith sub-domain of d, denoted as di. Each di is a 
simple domain. The arity of domain d is denoted as rity(d) (= k). An 
attribute is composite if its domain is composite.  

A composite domain is usually indicated by its values that contained 
delimiters of various forms. The delimiters can be punctuation marks (such 
as “,”, “-”, “/”, “_”, etc) and white spaces and some special words such as 
“to”. To detect a composite domain, we can use these delimiters to split a 
composite domain into simple sub-domains. In order to ensure correctness, 
we may also want to require that a majority of (composite) values can be 
consistently split into the same number of components. For example, the 
date can be expressed as a composite domain with MM/DD/YY.  
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DI 7 – The similarity of a simple domain and a composite domain is 
determined by comparing the simple domain with each sub-domain of 
the composite domain. The similarity of composite domains is 
established by comparing their component sub-domains.  

We note that splitting a composite domain can be quite difficult in the Web 
context. For example, without sufficient auxiliary information (e.g., 
information from other sites) it is not easy to split the following: “Dell 
desktop PC 1.5GHz 1GB RAM 30GB disk space”   

10.5 Combining Similarities 

Let us call a program that assesses the similarity of a pair of elements from 
two different schemas based on a particular match criterion a matcher. It 
is typically the case that the more indicators we have the better results we 
can achieve, because different matchers have their own advantages and 
also shortcomings. Combining schema-level and instance-level approach 
will produce better results than each type of approaches alone. This 
combination can be done in various ways.  

Given the set of similarity values, sim1(u, v), sim2(u, v), …, simn(u, v), of 
a set of n matchers that compared two schema elements u (from S1) and v 
(from S2), one of the following strategies can be used to combine their 
similarity values.  

1. Max: This strategy returns the maximal similarity value of any matcher. 
It is thus optimistic. Let the combined similarity be CSim. Then 

CSim(u, v) = max{sim1(u, v), sim2(u, v), …, simn(u, v)} (1) 

2. Weighted Sum: This strategy computes a weighted sum of similarity 
values of the individual matchers. It needs relative weights which 
correspond to the expected importance of the matchers: 

CSim(u, v) = 1*sim1(u, v) + 2sim2(u, v) + … +n*simn(u, v), (2) 

where i is a weight coefficient, and usually determined empirically.  
3. Weighted Average: This strategy computes a weighted average of 

similarity values of the individual matchers. It also needs relative 
weights that correspond to the expected importance of the matchers. 

n

vuSimvuSimvuSim
vuCSim nn ),(...),(),(),( 2211  


,
 (3) 

where i is a weight coefficient and is determined experimentally.  
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4. Machine Learning: This approach uses a classification algorithm, e.g., 
a decision tree, a naïve Bayesian classifier, or SVM, to determine 
whether two schema elements match each other. In this case, the user 
needs to label a set of training examples, which is described by a set of 
attributes and a class. The attributes can be the similarities. Each 
training example thus represents the similarity values of a pair of 
schema elements. The class of the example is either Yes or No, which 
indicates whether the two elements match or not as decided by the user.  

There are many other possible approaches. In practice, which method to 
use involves a significant amount of experimentation and parameter 
tuning. Note that the combination can also be done in stages for different 
types of matches. For example, we can combine the instance based 
similarities first using one method, e.g., Max, and then combine schema 
based similarities using another method, e.g., Weighted Average. After 
that, the final combined similarity computation may use Weighted Sum. 

10.6 1:m Match 

The approaches presented above are for 1:1 matches. For 1:m match, other 
techniques are needed [8, 36, 37]. There are mainly two types of 1:m 
matches.  
Part-of Type: Each relevant schema element on the many side is a part of 

the element on the one side. For example, in one schema, we may have 
an attribute called “Address”, while in another schema, we may have 
three attributes, “Street”, “City” and “State”. In this case, “Street”, 
“City” or “State” is a part of “Address”. That is, the combination of 
“Street”, “City” or “State” forms “Address”. Thus, it is a 1:m match.  

Is-a Type: Each relevant schema element on the many side is a 
specialization of the schema element on the one side. The content of the 
attribute on the one side is the union or sum of the contents of the 
attributes on the many side. For example, “HomePhone” and 
“CellPhone” in S2 are specializations of “Phone” in S1. Another 
example is the (number of) “Passengers” in Fig. 10.3 (page 397), and 
the (number of) “Adults”, the (number of) “Seniors”, and the (number 
of) “Children” in Fig. 10.1 in the airline ticket domain.  

Identifying Part-of 1:m Matches: For each attribute A in interface S1, we 
first check if it is a composite attribute as described above. If A is a 
composite attribute, we find a subset of schema elements in S2 that has a 
1:1 correspondence with the sub-attributes of A. For a real application, we 
may need additional conditions to make the decision (see Sect. 10.8.1).  
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Identify Is-a 1:m Matches: In the case of part-of 1:m mappings, the 
domains of the sub-attributes are typically different. In contrast, the 
identification of is-a 1:m mappings of attributes requires that the domain of 
each corresponding sub-attribute be similar to that of the general attribute. 
Name matching of schema elements is useful here. For example, in the 
case of “Phone” in S1 and “HomePhone” and “CellPhone” in S2, the name 
similarity can help decide 1:m mapping. However, this strategy alone is 
usually not sufficient, e.g., “Passengers” in S1 and “Adults”, “Seniors” 
and “Children” in S2 have no name similarity. Additional information is 
needed. We will show an example in Sect. 10.8.1.  

Using the auxiliary information provided by the user is also a 
possibility. It is not unreasonable to ask the user to provide some 
information about the domain. For example, a domain ontology that 
includes a set of concepts and their relationships such as the following 
(Fig. 10.2) will be of great help:  

Part-of(“street”, “address”) Is-a(“home phone”, “phone”) 
Part-of(“city”, “address”) Is-a(“cell phone”, “phone”)  
Part-of(“state”, “address”) Is-a(“office phone”, “phone”) 
Part-of(“country”, “address”) Is-a(“day phone”, “phone”)  

Fig. 10.2. Part-of(X, Y)  X is a part of Y, and Is-a(X, Y)  X is a Y. 

10.7 Some Other Issues 

10.7.1  Reuse of Previous Match Results 

We have mentioned in several places that auxiliary information in addition 
to the input schemas and data instances, such as dictionaries, thesauri, and 
user-provided ontology information are very useful in schema matching. 
The past matching results can also be stored and reused for future matches 
[25, 30]. Reuse is important because many schemas are very similar to 
each other and to previously matched schemas. Given a new schema S to 
be matched with a set of existing schemas E, we may not need to match S 
with every existing schema in E. There are two slightly different scenarios:  

1. Matching of a large number of schemas: If we have a large number of 
schemas to match, we may not need to perform all pair-wise matches, 
which have n(n+1)/2 of them with n being the number of input 
schemas. Since most schemas are very similar, the n(n+1)/2 number of 
matches are not necessary.  

2. Incremental schema matching: In this scenario, given a set of schemas 
that has already been matched, when a new schema S needs to be 
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matched with existing matched schemas E, we may not want to use S to 
match every schema in E using pair-wise matching. This is the same 
situation as the first case above. If the original match algorithm is not 
based on pair-wise match, we may not want to run the original 
algorithm on all the schemas to just match this single schema with 
them. 

For both cases, we want to use old matches to facilitate the discovery of 
new matches. The key idea is to exploit the transitive property of 
similarity relationship. For example, “Cname” in S1 matches “CustName” 
in S2 as they are both customer names. If “CTname” in the new schema S 
matches “Cname” in S1, we may conclude that “CTname” matches 
“CustName” in S2. The transitive property has also been used to deal with 
some difficult matching cases. For example, it may be difficult to map a 
schema element A directly to a schema element B, but easy to map both A 
and B to the schema element C in another schema. This helps us decide 
that A corresponds to B [10, 36, 37].  

In the incremental case, we can also use a clustering-based method.  
For example, if we already have a large number of matches, we can group 
them into clusters and find a centroid to represent each cluster, in term of 
schema names and domains. When a new schema needs to be matched, the 
schema is compared with the centroid rather than with each individual 
schema in the cluster.  

10.7.2  Matching a Large Number of Schemas 

The techniques discussed so far are mainly for pair-wise matching of 
schemas. However, in many cases, we may have a large number of 
schemas. This is the case for many Web applications because there are 
many Web databases in any domain or application. With a large number of 
schemas, new techniques can be applied. We do not need to depend solely 
on pair-wise matches. Instead, we can use statistical approaches such as 
data mining to find patterns, correlations and clusters to match the 
schemas. In the next section, we will see two examples in which clustering 
and correlation methods are applied.   

10.7.3 Schema Match Results 

In pair-wise matching, for each element v in S2, the set of matching 
elements in S1 can be decided by one of the following methods [10].  
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1. Top N candidates: The top N elements of S1 that have the highest 
similarities are chosen as match candidates. In most cases, N = 1 is the 
natural choice for 1:1 correspondences. Generally, N > 1 is useful in 
interactive mode, i.e., the user can select among several match 
candidates.  

2. MaxDelta: The S1 element with the maximal similarity is determined as 
match candidate plus all S1 elements with a similarity differing at most 
by a tolerance value t, which can be specified either as an absolute or 
relative value. The idea is to return multiple match candidates when 
there are several S1 elements with almost the same similarity values. 

3. Threshold: All S1 elements with the final combined similarity values 
exceeding a given threshold t are selected. 

10.7.4  User Interactions 

Due to the difficulty of schema matching, extensive user interaction is 
often needed in building an accurate matching system for both parameter 
tuning and resolving uncertainties  

Building the Match System: There are typically many parameters and 
thresholds in an integration system, e.g., similarity values, weight 
coefficients, and decision thresholds, which are usually domain-specific or 
even attribute specific. Before the system is used to match other schemas, 
interactive experiments are needed to tune the parameters by trial-and-
errors.  

After Matching: Although the parameters are fixed in the system 
building, their values may not be perfect. Matching mistakes and failures 
will still occur: (1) some matched attributes may be wrong (false positive); 
(2) some true matches may not be found (false negative). User interactions 
are needed to correct the situations and to confirm the correct matches.  

10.8 Integration of Web Query Interfaces 

The preceding discussions are generic to database integration and Web 
data integration. In this and the next sections, we focus on integration in 
the Web context. The Web consists of the surface Web and the deep 
Web. The surface Web can be browsed using any Web browser, while the 
deep Web consists of databases that can only be accessed through 
parameterized query interfaces. With the rapid expansion of the Web, there 
are now a huge number of deep web data sources. In almost any domain, 
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one can find a large number of them, which are hosted by e-commerce 
sites. Each of such sources usually has a keyword based search engine or a 
query interface that allows the user to fill in some information in order to 
retrieve the needed data. We have seen two query interfaces in Fig. 10.1 
for finding airline tickets. We want to integrate multiple interfaces in order 
to provide the user a global query interface [14, 18] so that he/she does 
not need to manually query each individual source to obtain more 
complete information. Only the global interface needs to be filled with the 
required information. The individual interfaces are filled and searched 
automatically.  

We focus on query interface integration mainly because there is 
extensive research in this area, although the returned instance data 
integration is also of great importance and perhaps even more important 
due to the fact that the number of sites that provide such structured data is 
huge and most of them do not have query interfaces but only keyword 
search or can only be browsed by users (see Chap. 9).  

Since query interfaces are different from traditional database schemas, 
we first define a schema model.  

Schema Model of Query Interfaces: In each domain, there is a set of 
concepts C = {c1, c2, …, cn} that represents the essential information of the 
domain. These concepts are used in query interfaces to enable the user to 
restrict the search for some specific instances or objects of the domain. A 
particular query interface uses a subset of the concepts S  C. A concept i 
in S may be represented in the interface with a set of attributes (or fields) 
fi1, fi2, ..., fik. In most cases, each concept is only represented with a single 
attribute. Each attribute is labeled with a word or phrase, called the label 
of the attribute, which is visible to the user. Each attribute may also have a 
set of possible values that the user can use in search, which is its domain.  

All the attributes with their labels in a query interface are called the 
schema of the query interface [18, 40]. Each attribute also has a name in 
the HTML code. The name is attached to a TEXTBOX (which takes the 
user input). However, this name is not visible to the user. It is attached to 
the input value of the attribute and returned to the server as the attribute of 
the input value. The name is often an acronym that is less useful than the 
label for schema matching. For practical schema integration, we are not 
concerned with the set of concepts but only the label and name of each 
attribute and its domain.  

Most ideas for schema matching in traditional databases are applicable 
to Web query interfaces as the schema of a query interface is similar to a 
schema in databases. However, there are also some important differences 
[3, 5] .  
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1. Limited use of acronyms and abbreviations: Data displayed in Web 
pages are for the general public to view and must be easy to understand. 
Hence, the use of acronyms and abbreviations is limited to those very 
obvious ones. Enterprise-specific acronyms and abbreviations seldom 
appear. In the case of a company database, abbreviations are frequently 
used, which are often hard to understand by human users and difficult to 
analyze by automated systems. To a certain extent, this feature makes 
information integration on the Web easier.  

2. Limited vocabulary: In the same domain, there are usually a limited 
number of essential attributes that describe each object. For example, in 
the book domain, we have the title, author, publisher, ISBN number, etc. 
For each attribute, there is usually limited ways to express the attribute. 
The chosen label (describing a data attribute, e.g., “departure city”) 
needs to be short, and easily understood by the general public. 
Therefore, there are not many ways to express the same attributes. 
Limited vocabulary also makes statistical approaches possible.  

3. A large number of similar databases: There are often a large number 
of sites that offer the same services or sell the same products, which 
result in a large number of query interfaces and make it possible to use 
statistical methods. This is not the case in a company because the 
number of related databases is small. Integration of databases from 
multiple companies seldom happens.  

4. Additional structure: The attributes of a Web interface are usually 
organized in some meaningful ways. For example, related attributes are 
grouped and put together physically (e.g., “first name” and “last name” 
are usually next to each other), and there may also be a hierarchical 
organization of attributes. Such structures also help integration as we 
will see later. In the case of databases, attributes usually have no 
structure.  

Due to these differences, schema matching of query interfaces can exploit 
new methods. For example, data mining techniques can be employed as we 
will see in the next few sub-sections. Traditional schema matching 
approaches in the database context are usually based on pair-wise 
matching.  

Similar to schema integration, query interface integration also requires 
mapping of corresponding attributes of all the query interfaces.  

Example 4: For the two query interfaces in Fig. 10.3, the attribute 
correspondences are: 

Interface 1 (S1) Interface 2 (S2) 
 Leaving from   From 
 Going to  To 
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 Departure date Departure date 
 Return date Return date 
 Passengers: Number of tickets 
 Time 
 Preferred cabin 

The last two attributes from Interface 1 do not have matching attributes in 
Interface 2.  ▀ 

 

Fig. 10.3. Two query interfaces from the domain of airline ticket reservation 

The problem of generating the mapping is basically the problem of 
identifying synonyms in the application domain. However, it is important 
to note that the synonyms here are domain dependent. A general-purpose 
semantic lexicon such as WordNet or any thesaurus is not sufficient for the 
identification of most domain-specific synonyms. For example, it is 
difficult to infer from WordNet or any thesaurus that “Passengers” is 
synonymous to “Number of tickets” in the context of airline ticket 
reservation. Domain-specific lexicons are not generally available as they 
are expensive to build. In this section, we discuss three query interface 
matching techniques. We also describe a method for building a global 
interface. 

10.8.1 A Clustering Based Approach 

This technique is a simplified version of the work in [36]. Given a large set 
of schemas from query interfaces in the same application domain, this 
technique utilizes a data mining method, clustering, to find attribute 
matches of all interfaces. Three types of information are employed, 
namely, attribute labels, attribute names and value domains. Let the set of 
interface schemas be {S1, S2, …, Sn}. The technique works in five steps:  

1. Pre-processing the data. It uses the methods given in Sect. 10.2.  
2. Computing all pair-wise attribute similarities of u ( Si) and v ( Sj), i  

j. This produces a similarity matrix.  
3. Identify initial 1:m matches. 
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4. Cluster schema elements based on the similarity matrix. This step 
discovers 1:1 matches.  

5. Generate the final 1:m matches of attributes. 

We now discuss each step in turn except the first step.  
Computing all Pair-Wise Attribute Similarities: Let u be an attribute of 
Si and v be an attribute of Sj (i  j). This step computes all linguistic 
similarities (denoted by LingSim(u, v)) and domain similarities (denoted 
DomSim(u, v)). The aggregated similarity (denoted by AS(u, v)) is: 

),,(),(),( vuDomSimvuLingSimvuAS dsls    (4) 

where ls and ds are weight coefficients reflecting the relative importance 
of each component similarity.  

The linguistic similarity is based on both attribute labels and attribute 
names, which give two similarity values, lSim(u, v) and nSim(u, v), 
representing label and name similarities respectively. Both similarities are 
computed using the cosine measure as discussed in N5 of Sect. 10.3.1. The 
two similarities are then combined through a linear combination method 
similar to Equation (4) above.   

Domain similarity of two simple domains dv and du is computed based 
on the data type similarity (denoted by typeSim(dv, du) and values 
similarity (denoted by valueSim(dv, du)). The final DomSim is again a 
linear combination of the two values. For the type similarity computation, 
if the types of domains dv and du are the same, typeSim(dv, du) = 1 and 0 
otherwise. If typeSim(dv, du) = 0, then valueSim(dv, du) = 0.   

For two domains dv and du of the same type, the algorithm further 
evaluates their value similarity. Let us consider two character string 
domains. Let the set of values in dv be {t1, t2, …, tn} and the set of values in 
du be {q1, q2, …, qk}. valueSim(dv, du) is computed as follows:  

1. Calculate all pair-wise value (i.e., (ti, qj)) similarities using the cosine 
measure with one value from each domain.  

2. Choose the pair with the maximum similarity among all pairs and delete 
the corresponding two values from dv and du. For a pair to be 
considered, its similarity must be greater than a threshold value.  

3. Repeat step 2 on all remaining values in the domains until no pair of 
values has a similarity greater than.  

Let the pairs of values chosen be P. valueSim(dv, du) is then computed 
using the Dice function [9]:  
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For two numeric domains, their value similarity is the proportion of the 
overlapping range of the domains. For an attribute whose domain is 
unknown, it is assumed that its domain is dissimilar to the domain of any 
other attribute, be it finite or infinite. 

Identify a Preliminary Set of 1:m Mappings: To identify 1:m mappings, 
the technique exploits the hierarchical organization of the interfaces. The 
hierarchical organization is determined using the layout and the proximity 
of attributes as they are likely to be physically close to each other.  

Part-of type: To identify the initial set of aggregate 1:m mappings of 
attributes, it first finds all composite attributes in all interfaces as discussed 
in Sect. 10.4. For each composite attribute e in S, in every interface other 
than S, denoted by X, it looks for a set of attributes f = {f1, f2, … fr} (r > 1) 
with the same parent p, such that the following conditions hold: 

1. fi's are siblings, i.e., they share the same parent p. The sibling 
information is derived from the physical proximity in the interface.  

2. The label of the parent p of fi's is highly similar to the label of e. 
3. The domains of fi’s have a 1-to-1 mapping with a subset of the sub-

domains of e based on the high domain similarities.  

If there exists such a f in interface X, a 1:m mapping of the part-of type 
is identified between e and attributes in f.  

Is-a type: The identification of is-a 1:m attribute mappings requires that the 
domain of each corresponding sub-attribute on the m side be similar to that 
of the general attribute on the one side. More precisely, for each non-
composite attribute h in an interface, we look for a set of attributes f = {f1, 
f2, … fr} (r > 1) in another interface X, that meets the following conditions: 

1. fi's are siblings of the same parent p, and p does not have any children 
other than fi's. 

2. The label of the parent p is highly similar to the label of h. 
3. The domain of each fi is highly similar to the domain of h. 

If the conditions are met, a 1:m mapping of the is-a type is identified 
between h and attributes in f. 

Cluster the Schema Elements based on the Similarity Matrix: Step 2 
produces a similarity matrix M. Let the total number of simple domains in 
the set of all given query interfaces S be w. We then have a ww 
symmetric similarity matrix. M[i, j] is the aggregated similarity of two 
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attributes i and j. For attributes in the same interface, M[i, j] is infinite, 
which indicate that they should not be put together into a cluster.  

The clustering algorithm used is the hierarchical agglomerative 
clustering algorithm. The stopping criterion is a similarity threshold. That 
is, when there is no pair of clusters has the similarity greater than the 
threshold, the algorithm stops. Each output cluster contains a set of 1:1 
attribute mappings from different interfaces. 

Obtain Additional 1:m Mapping: The preliminary set of 1:m 
correspondences may not have found all such mappings. The clustering 
results may suggest additional 1:m mappings. The transitivity property 
can be used here. For example, assume that a composite attribute e maps to 
two attributes f1 and f2 in another interface in step 3 and the clustering 
results suggest that f1 and f2 map to h1 and h2 in yet another interface. Then, 
e also matches h1 and h2. 

10.8.2 A Correlation Based Approach 

This technique also makes use of a large number of interfaces. It is based 
on the technique in [19]. For pre-processing, the methods discussed in 
Sect. 10.2 are applied. The approach is based on co-occurrences of schema 
attributes and the following observations:  

1. In an interface, some attributes may be grouped together to form a 
bigger concept. For example, “first name” and “last name” compose the 
name of a person. This is called the grouping relationship, denoted by 
a set, e.g., {first name, last name}. Attributes in such a group often co-
occur in schemas, i.e., they are positively correlated.  

2. An attribute group rarely co-occurs in schemas with their synonym 
attribute groups. For example, “first name” and “last name” rarely co-
occur with name in the same query interface. Thus, {first name, last 
name} and {name} are negatively correlated. They represent 2:1 
match. Note that a group may contain only one attribute.  

Based on the two observations, a correlation-based method to schema 
matching is in order. Negatively correlated groups represent synonym 
groups or matching groups.  

Given a set of input schemas S = {S1, S2, …, Sn} in the same application 
domain, where each schema Si is a transaction of attributes, we want to 
find all the matches M = {m1, …, mv}. Each mj is a complex matching gj1 = 
gj2 = … = gjw, where each gjk is an positively correlated attribute group and 

i
n
ijk Sg 1 ∪ . Each mj represents the synonym relationship of attribute 

groups gj1 ,..., gjw. The approach for finding M consists of three steps: 
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1. Group discovery: This step mines co-occurring or positively correlated 
attribute groups. It is done by first finding the set of all 2-attribute 
groups (i.e., each group contains only two attributes), denoted by L2, 
that are positively correlated according to the input schema set S (one 
data scan is needed). A 2-attribute group {a, b} is considered positively 
correlated if cp(a, b) is greater than a threshold value p, where cp is a 
positive correlation measure. The algorithm then extends 2-attribute 
groups to 3-attribute groups L3. A 3-attribute group g is considered 
positively correlated if every 2-attribute subset of g is in L2. In general, a 
k-attribute group g is in Lk if every (k1)-attribute sub-group of g is in 
Lk-1. This is similar to candidate generation in the Apriori algorithm for 
association rule mining (see Chap. 2). However, the method here does 
not scan the data after all 2-attribute groups have been generated.  

Example 5: Let L2 = {{a, b}, {b, c}, {a, c}, {c, d}, {d, f}}, which 
contains all 2-attribute groups that are discovered from the data. {a, b, 
c} is in L3, but {a, c, d} is not because {a, d} is not in L2.  ▀ 

2. Match discovery: This step mines negatively correlated groups 
including those singleton groups. Each discovered positively correlated 
group is first added into those transactions in S that contain some 
attributes of the group. That is, for a schema Si and a group g, if Si  g  
, then Si = Si  {g}. The final augmented transaction set S is then used 
to mine negatively correlated groups; which are potential matching 
groups. The procedure for finding all negatively correlated groups is 
exactly the same as the above procedure for finding positively correlated 
groups. The only difference is that a different measure is used to 
determine negative correlations, which will be discussed shortly. A 2-
attribute group {a, b} is considered negatively correlated if cn(a, b) is 
greater than a threshold value n, where cn is a negative correlation 
measure. 

3. Matching selection: The discovered negative correlations may contain 
conflicts due to the idiosyncrasy of the data. Some correlations may also 
subsume others. For instance, in the book domain, the mining result may 
contain both {author} = {first name, last name}, denoted by m1 and 
{subject} = {first name, last name}, denoted by m2. Clearly, m1 is correct, 
but m2 is not. Since {subject} = {author} is not discovered, which should 
be due to transitivity of synonyms, m1 and m2 cannot be both correct. 
This causes a conflict. A match mj semantically subsumes a match mk, 
denoted by mj ;  mk, if all the semantic relationships in mk are 
contained in mj. For instance, {arrival city} = {destination} = {to} ;  
{arrival city} = {destination} because the synonym relationship in the 
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second match is subsumed by the first one. Also, {author} = {first name, 
last name} ;  {author} = {first name} because the second match is part 
of the first. 

We now present a method to choose the most confident and consistent 
matches and to remove possibly false ones. Between conflicting matches, 
we want to select the most negatively correlated one because it is more 
likely to be a group of genuine synonyms. Thus, a score function is 
needed, which is defined as the maximum negative correlation values of 
all 2-attribute groups in the match:  

score(mj, cn) = max cn(gjr, gjt), gjr, gjt  mj, jr  jt. (6) 

Combining the score function and semantic subsumption, the matches 
are ranked based on the following rules:  

1. If score(mj, cn) > score(mk, cn), mj is ranked higher than mk.  
2. If score(mj, cn) = score(mk, cn) and mj ;  mk, mj is ranked higher than 

mk. 
3. Otherwise, mj and mk are ranked arbitrarily.  

Fig. 10.4 gives the MatchingSelection() function. After the highest ranked 
match mt in an iteration is selected, the inconsistent parts in the remaining 
matches are removed (lines 610). The final output is the selected n-ary 
complex matches with no conflict. Note that ranking is redone in each 
iteration instead of sorting all the matches in the beginning, because after 
removing some conflicting parts, the ranking may change.  

Function MatchingSelection(M, cn)  
1  R      // R stores the selected n-ary complex matches  
2  while M   do 
4  Let mt be the highest ranked match in M  //select the top ranked match 
5  R  R  {mt}  
6  for each mj  M do  
7  mj  mj – mt;  // remove the conflicting part  
8  if |mj | < 2 then  
9 M  M – {mj} // delete mj if it contains no matching 
10 endfor 
11 endwhile 
12 return R  

Fig. 10.4. The MatchingSelection function 

Correlation Measures: There are many existing correlation tests in 
statistic, e.g., 2 test and lift, etc. However, it was found that these methods 
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were not suitable for this application. Hence, a new negative correlation 
measure corrn for two attributes Ap and Aq was proposed, which is called 
the H-measure. Let us use a contingency table (Fig. 10.5) to define it. fij in 
the figure is the co-occurrence frequency count of the corresponding cell:    

 Ap Ap  
Aq f11 f10 f1+ 
Aq f01 f00 f0+ 

 f+1 f+0 f++ 

Fig. 10.5. Contingency table for test of correlation 
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10.8.3 An Instance Based Approach 

This method is based on the technique given in [34]. It matches query 
interfaces and also the query results. It assumes that: 

1. a global schema (GS) for the application domain is given, which 
represents the key attributes of the domain, and  

2. a number of sample data instances under the domain global schema are 
also available.  

This technique only finds 1:1 attribute matches. We use IS to denote the 
query interface schema and RS the returned result schema. Let us use an 
example to introduce the key observation exploited in this technique. Fig. 
10.6 shows an example of an online bookstore. The part labeled Data 
Attributes is the global schema with six attributes {Title, Author, 
Publisher, ISBN, Publication Date, Format}. The part labeled Interface is 
the query interface with five input elements/attributes. When the keyword 
query “Harry Potter” is submitted through the Title attribute in the 
interface, a result page is returned which contains the answer to the query 
(labeled Result Page), which shows three book instances.  
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Three types of semantic correspondence represented by different lines 
(dotted, dashed and solid) are also shown in Fig. 10.6. They are 
respectively, the correspondence between attributes of the global schema 
and those of the query interface, the correspondence between the attributes 
of the global schema and those of the instance values in the result page, 
and the correspondence between attributes in the query interface and those 
of the instance values in the result pages. 

Observation: When a proper query is submitted to the right element of the 
query interface, the query words are very likely to reappear in the 
corresponding attribute of the returned results. However, if an improper 
query is submitted to the Web database there are often few or no returned 
results.  

In the example shown in Fig. 10.6, the site retrieves only three matches 
for the query “Harry Potter” when submitted through the “Author” attribute, 
while it retrieves 228 matches for the same query when submitted to the 
Title attribute. If “Harry Potter” is submitted to the “ISBN” attribute, there 
is no returned result. Intuitively, the number of times that query words 
reappear in the returned results gives us a good indication what attributes 
match in the interface schema, the global schema, and the result schema.  

 
Fig. 10.6. An example of a Web database with its query interface and a result page 

To obtain the number of reappearing occurrences, each value from the 
given instances can be submitted to each interface element while keeping 
default values for the other elements. For each TEXTBOX element in the 
query interface, all attribute values from the given instances are tried 

Refine Search  

 
Your Search: 

Harry Potter 
Title:  

 
Author:  

any 
Format:  

ISBN:  

 

Search 

Query Interface 

…

Format 

ISBN

Publish Date 

Publisher

Author 

Title

Data Attributes 

Search Results 

A Comprehensive Guide to Harry Potter 
Paperback | Jan 2001|Carson Dellosa Publishing company, 
Incorporated 

Beatrix Potter to Harry Potter: Portraits of Children’s 
Writers 
Julia Eccleshare            Hardcover | Sep 2002 | National Portrait Gallery 

God, Devil and Harry Potter 
John Killinger               Hardcover | Dec 2002 | St. Martin’s Press, LLC 

Result Page 
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exhaustively. For each SELECT element, its domain values are limited to a 
set of fixed options. Then, an option similar to a value in the given 
instances is found and submitted. Here, “similar” means that the attribute 
value and the option value have at least one common word. Note that this 
approach assumes that a data extraction system is available to produce a 
table from a returned result page (see Chap. 9). Each column has a hidden 
attribute (i.e., of the result schema).  

By counting the number of times that the query words re-occur in each 
column of the result table, a 3-dimensional occurrence matrix (OM) can 
be built. The three dimensions are: global schema (GS) attributes, query 
interface schema (IS) attributes and result schema (RS) attributes. Each 
cell OM[i, j, k] contains the sum of the occurrence counts obtained from 
the kth attribute of RS of all the sample query words from the ith attribute 
of GS when the query words are submitted to the jth attribute of IS.  

Intra-Site Schema Matching: We now briefly describe how to match 
attributes in IS and GS, IS and RS, and GS and RS based on the projected 
matrices of OM, i.e., OMIG(M×N), OMIR(M×L), and OMGR(N×L), where N is the 
number of attributes in the global schema, M is the number of elements in 
the interface schema, and L is the number of columns in the result table. 
An example OMIG(5×4) matrix is shown in Fig. 10.7 with the correct 
matching highlighted, GS = {TitleGS, AuthorGS, PublisherGS, ISBNGS} and 
IS = {AuthorIS, TitleIS, PublisherIS, KeywordIS, ISBNIS}.  

We observe from Fig. 10.7 that the highest occurrence count may not 
represent a correct match. For example, the cell for AuthorIS and 
PublisherGS (534) has the highest value in the matrix but AuthorIS and 
PublisherGS do not correspond to each other. In general, for a cell mij, its 
value in comparison with those of other cells in its row i and its column j is 
more important than its absolute count.  

 TitleGS AuthorGS PublisherGS ISBNGS 
AuthorIS 93 498 534 0 

TitleIS 451 345 501 0 
PublisherIS 62 184 468 2 
KeywordIS 120 248 143 275 

ISBNIS 0 0 0 258 

Fig. 10.7. An example of a OMIG(M×N) matrix with all matches highlighted   

The algorithm in [34] uses the mutual information measure (MI) to 
determine correct matches. The mutual information, which measures the 
mutual dependence of two variables, is defined as follows:  
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In our context, x and y are attributes from IS and GS respectively. The 
probabilities, Pr(x, y), Pr(x) and Pr(y), can be easily computed using the 
OMIG(M×N) matrix.  

The algorithm simply computes the mutual information of every pair of 
attributes based on the counts in the matrix such as the one in Fig. 10.7. A 
corresponding mutual information matrix (called MI matrix) is then 
constructed (not shown here). To find 1-1 matches of the two schemas, the 
algorithm chooses each cell in the MI matrix whose value is the largest 
among all the values in the same row and the same column. The 
corresponding attributes of the cell forms a final match. 

The paper also has a similar method for finding matches from multiple 
Web databases, which is called inter-site schema matching.  

10.9 Constructing a Unified Global Query Interface 

Once a set of query interfaces in the same domain is matched, we can 
automatically construct a well-designed global query interface that 
contains all the (or the most significant) distinct attributes of all source 
interfaces. To build a “good” global interface, three requirements are 
identified in [15].  

1. Structural appropriateness: As noted earlier, elements of query 
interfaces are usually organized in groups (logical units) of related 
attributes so that semantically related attributes are placed in close 
vicinity. For example, “Adults”, “Seniors”, and “Children” of the 
interfaces shown in Fig. 10.1 are placed together. In addition, multiple 
related groups of attributes are organized as super-groups (e.g., “Where 
and when do you want to go?” in Fig. 10.1). This leads to a hierarchical 
structure for interfaces (see Fig. 10.8), where a leaf in the tree 
corresponds to an attribute in the interface, an internal node corresponds 
to a (super)group of attributes and the order among the sibling nodes 
within the tree resembles the order of attributes in the interface (from 
left to right). The global query interface should reflect this domain 
hierarchical structure.  

2. Lexical appropriateness: Labels of elements should be chosen so as to 
convey the meaning of each individual element and to underline the 
hierarchical organization of attributes (e.g., the three attributes together 
with the parent attribute “Number of Passengers” in Fig. 10.1).  
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3. Instance appropriateness: The domain values for each attribute in the 
global interface must contain the values of the source interfaces.  

We will give a high level description of the algorithms in [14, 15] that 
build the global interface by merging given interfaces based on the above 
three requirements. The input to the algorithms consists of (1) a set of 
query interfaces and (2) a global mapping of corresponding attributes in 
the query interfaces. It is assumed that mapping is organized in clusters as 
discussed in Sect. 10.8.1. Each cluster contains all the matched attributes 
from different interfaces. We note that the domain model discovery idea in 
[18] can be seen as another approach to building global interfaces.   

10.9.1 Structural Appropriateness and the Merge Algorithm 

Structural appropriateness means to satisfy grouping constraints and 
ancestor-descendant relationship constraints of the attributes in individual 
interfaces. These constraints guide the merging algorithm to produce the 
global interface, which has one attribute for each cluster.  

 
Fig. 10.8. Three input query interfaces (S1, S2, and S3) and the derived global 
query interface (GS). 

Grouping Constraints: Recall that semantically related attributes within 
an interface are usually grouped together. Grouping constraints require that 
these attributes should also appear together in the global interface.  

S1 S2 GS 

Where … travel? 
Departing From 
Going To 

When Do You Want to Go? 
Departure Date 

depMonth 
depDay 
depTime 

Return Date 

Number of Passengers 
Adults 
Seniors 
Children 

retMonth 
retDay 
retTime 

From 
To 

Depart 
leaveMonth 
leaveDay 

Return 

Passengers 
Adults 
Children 

retMonth 
retDay 

From 
Depart 

To 

dep_Month 
dep_Day 
dep_Year 

Return 

Travelers 
Adult 
Child 
Infant 

ret_Month 
ret_Day 
ret_Year 

Where … travel? 
Departing From 
Going To 

When Do You Want to Go? 
Departure Date 

depTime 

Return Date 

Travelers 
Adults 
Seniors 
Children 

retMonth 
retDay 
retTime 

Cabin 

dep_Year 

ret_Year 

Cabin 

S3

Infant 

depMonth 
depDay 
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As the global interface has an attribute for each cluster, the problem is to 
partition all the clusters into semantically meaningful subsets (or groups), 
which are employed to organize attributes in the global interface. For 
instance, for the example in Fig. 10.8, the following sets of clusters are 
produced, {c_deptCity, c_destCity}, {c_deptYear, c_deptTime, c_deptDay, 
c_depMonth}, and {c_Senior, c_Adult, c_Child, c_Infant}, where c_X is a 
cluster representing X (e.g., c_deptCity and c_destCity are clusters 
representing departure cities and destination cities, respectively). 

The partition is determined by considering each maximal set of adjacent 
sibling leaves in the schema tree of each source interface whose parent is 
not the root. The leaves whose parent is the root are not considered because 
no reliable information can be derived. These structural constraints are 
collected from all source interfaces in order to infer the way that attributes 
are organized in the global interface. All those sets (or groups) of clusters 
whose intersection is not empty are merged to form the final groups, which 
are sequences of attribute clusters that preserve adjacency constraints in all 
interfaces. For example, {c_Adult, c_Senior, c_Child}, {c_Adult, c_Child}, 
{c_Adult, c_Child, c_Infant} are merged to produce the final group, 
[c_Senior, c_Adult, c_Child, c_Infant], which preserves all adjacency 
constraints. Such a sequence does not always exist. In such a case, a 
sequence that accommodates most adjacency constraints is sought. 

Ancestor-Descendant Relationships: In hierarchical modeling of data the 
same information can be represented in various ways. For instance, the 
relationship between “Authors” and “Books” can be captured as 
either ”Authors” having “Books”, which makes “Books” a descendant of 
“Authors”, or “Books” having “Authors”, which makes “Books” an 
ancestor of “Authors”. This, however, was not found to be a problem [14]. 
No such conflicting cases were found from a study of 300 query interfaces 
in eight application domains.  

Merge Algorithm: The merge algorithm merges two interfaces at a time 
to produce the final global interface schema. One of them is the current 
global interface G. At the beginning, the schema tree with the most levels 
is chosen as the initial global schema G. Then each other interface is 
sequentially merged with G. During each merge, G is refined and 
expanded.  

The algorithm works in a bottom-up fashion. The merging between leaves 
is produced based on the clusters. The mapping between internal nodes is 
based on mappings of their children, which may be either leaf nodes or 
internal nodes. To meaningfully insert leaves without a match in the 
correct position, the algorithm relies on groups computed above to infer 
each leaf position. In our example, we start by merging S1 and S3. S1 is the 
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initial global interface G. Within each group, it is easy to see the position 
of “Infant”, “ret_Year” and “dep_Year” (see Fig. 10.8 on the right). 
“Cabin” is inserted at the end since leaf children of the root are discarded 
before merging and then added as children of the root of the integrated 
schema tree. Additional details can be found in [14]. 

10.9.2 Lexical Appropriateness 

After the interfaces are merged, the attributes in the integrated interface 
need to be labeled so that (1) the labels of the attributes within a group are 
consistent and (2) the labels of the internal nodes are consistent with 
respect to themselves and to the leaf nodes [15]. 

It can be observed in the query interface of Fig. 10.1 that between the 
labels of the attributes grouped together there are certain commonalities. 
For instance, “Adults”, “Seniors” and “Children” are all plurals, whereas 
“Leaving” and “Returning” are gerunds. Ideally, the groups within the 
global interface should have the same uniformity property. Since the 
attributes may be from different interfaces, a group of attributes within the 
unified interface might not correspond to any group in a single interface, 
which makes it hard to assign consistent labels. To deal with the problem, 
a strategy called intersect-and-union is used, which finds groups with 
non-empty intersection from different interfaces and then unions them.  

Example 6: Consider the example of the three interfaces in Fig. 10.8 with 
their passenger related groups organized as the table below. It is easy to 
see a systematic way of building a consistent solution.  

Cluster/Interface c_Adult  c_Senior  c_Child c_Infant 
S1 Adults Seniors Children  
S2 Adults  Children  
S3 Adult  Child Infant 

Notice that by combining the labels given by S1 and S2 a consistent 
naming assignment, namely, “Seniors”, “Adults” and “Children”, can be 
achieved because the two sets share labels (i.e., “Adults” and “Children”) 
that are consistent with the labels in both sets. This strategy can be 
iteratively applied until a label is assigned to each attribute in the group.  

To deal with minor variations, more relaxed rules for combining 
attribute labels can be used, e.g., requiring that the set of tokens of the 
labels to be equal after removal of stopwords (e.g., “Number of Adults” has 
the same set of tokens as “Adults Number”, i.e. {Number, Adults}) and 
stemming. If a consistent solution for the entire group cannot be found, 
consistent solutions for subsets of attributes are constructed. 
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The assignment of consistent labels to the internal nodes uses a set of 
rules [15] that tries to select a label for each node in such a way that it is 
generic enough to semantically cover the set of its descendant leaf nodes. 
For example, the label “Travelers” is obtained in the integrated interface in 
Fig. 10.8 as follows. First, we know that “Passengers” is more generic 
than “Number of Passengers” and thus semantically covers both {Seniors, 
Adults, Children} and {Adults, Children}. Then, “Travelers” is found to be 
a hypernym of “Passengers“ (using WordNet) and thus semantically 
covers the union of {Seniors, Adults, Children} and {Adults, Children, 
Infant} which is the desired set {Seniors, Adults, Children, Infant} 

10.9.3 Instance Appropriateness 

Finally, we discuss how to determine the domain for each attribute in the 
global schema (interface). A domain has two aspects: the type and the set 
of values. To determine the domain type of a global attribute, compatibility 
rules are needed [21]. For instance, if all attributes in a cluster have a finite 
(infinite) domain then the global attribute will have a finite (infinite) 
domain. If in the cluster there are both finite and infinite domains, then the 
domain of the global attribute will be hybrid (i.e., users can either select 
from a list of pre-compiled values or fill in a new value). As a case in 
point, the “Adults” attribute on the global interface derived from the two 
interface in Fig. 10.1 will have a finite domain, whereas the attribute 
“Going to” will have a hybrid domain. 

The set of domain values of a global attribute is given by the union of 
the domains of the attributes in the cluster. Computing the union is not 
always easy. For example, the values of the domains may have different 
scale/unit (e.g., the price may be in US$ or in Euro). Moreover, the same 
value may be specified in various ways (e.g., “Chicago O’Hare” vs. 
“ORD”). Currently, the problem is dealt with using user-provided auxiliary 
thesauruses [21].  

Bibliographic Notes 

Schema integration has been studied in the database community since the 
early 1980s. The main contributions are described in the surveys by Batini 
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Bernstein [30]. Many ideas are also taken from Clifton et al. [6], Cohen 
[7], Do and Rahm [10], Dhamankar et al. [8], Embley et al. [16], 
Madhavan et al. [26], Xu and Embley [37], and Yan et al. [38]. Web data 
integration is considerably more recent. Various ideas on Web information 
integration in the early part of the chapter are taken from papers by He and 
Chang [18, 19], and Wu et al. [36]. 

On Web query interface integration, which perhaps received the most 
attention in the research community, several methods have been studied in 
the chapter, which are based on the works of Dragut et al. [14, 15], He and 
Chang [18, 19], He et al. [21], Wang et al. [34], and Wu et al. [36]. Before 
matching can be performed, the Web interfaces have to be found and 
extracted first. This extraction task was investigated by Zhang et al. [40] 
and He et al. [20].  

Another area of research is the ontology, taxonomy or catalog 
integration. Ontologies (taxonomies or catalogs) are tree structured 
schemas. They are similar to query interfaces as most interfaces have some 
hierarchical structures. More focused works on ontology integration 
include those by Agrawal and Srikant [1], Doan et al. [13], Gal et al. [17], 
Zhang and Lee [39]. Wache et al. gave a survey of the area in [33]. 
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11 Opinion Mining and Sentiment Analysis  

In Chap. 9, we studied the extraction of structured data from Web pages. 
The Web also contains a huge amount of information in unstructured texts. 
Analyzing these texts is of great importance as well and perhaps even 
more important than extracting structured data because of the sheer vol-
ume of valuable information of almost any imaginable type contained in 
text. In this chapter, we only focus on mining opinions which indicate 
positive or negative sentiments. The task is technically challenging and 
practically very useful. For example, businesses always want to find public 
or consumer opinions about their products and services. Potential customers 
also want to know the opinions of existing users before they use a service 
or purchase a product.  

This area of study is called opinion mining or sentiment analysis. It 
analyzes people’s opinions, appraisals, attitudes, and emotions toward enti-
ties, individuals, issues, events, topics, and their attributes. Opinions are 
important because they are key influencers of our behaviors. Our beliefs 
and perceptions of reality, and the choices we make, are to a considerable 
degree conditioned on how others see and evaluate the world. For this rea-
son, when we need to make a decision we often seek out the opinions of 
others. This is true not only for individuals but also for organizations.  

With the explosive growth of social media (i.e., reviews, forum discus-
sions, blogs, and social networks) on the Web, individuals and organiza-
tions are increasingly using the content in these media for their decision 
making. Nowadays, if one wants to buy a consumer product, one is no 
longer limited to asking one’s friends and family for opinions as in the past 
because there are many user reviews of products on the Web. For an or-
ganization, it may no longer be necessary to conduct opinion polls, sur-
veys, and focus groups in order to gather public opinions about its products 
and services because there is an abundance of such information publicly 
available. However, finding and monitoring opinion sites on the Web and 
distilling the information contained in them remains a formidable task be-
cause of the proliferation of diverse sites. Each site typically contains a 
huge volume of opinionated text that is not always easily deciphered in 
long forum postings and blogs. The average human reader will have diffi-
culty identifying relevant sites and accurately summarizing the information 
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and opinions contained in them. Moreover, it is also known that human 
analysis and evaluation of text information is subject to considerable bi-
ases, e.g., people often pay greater attention to opinions that are consistent 
with their own preferences. People also have difficulty, owing to their 
mental and physical limitations, producing consistent results when the 
amount of information to be processed is large. Automated opinion mining 
and summarization systems are thus needed, as subjective biases and men-
tal limitations can be overcome with an objective opinion analysis system.  

In the past decade, a considerable amount of research has been done in 
academia [70, 91]. There are also numerous commercial companies that 
provide opinion mining services. In this chapter, we first define the opin-
ion mining problem. From the definition, we will see the key technical is-
sues that need to be addressed. We then describe various key mining tasks 
that have been studied in the research literature and their representative 
techniques. After that, we discuss the related issue of opinion spam detec-
tion. Opinion spam refers to dishonest opinions or reviews that try to pro-
mote or demote some target products or services. Detecting such spam 
opinions is critical for practical applications of opinion mining.   

11.1 The Problem of Opinion Mining 

In this first section, we define an abstraction of the opinion mining prob-
lem. It enables us to see a structure from the complex and intimidating un-
structured text. Moreover, for most opinion-based applications, it is essen-
tial to analyze a collection of opinions rather than only one because one 
opinion represents only the view of a single person, which is usually not 
sufficient for action. This indicates that some form of summary of opin-
ions is needed [37]. The abstraction should facilitate this summarization.  

11.1.1  Problem Definitions 

We use the following review segment on iPhone to introduce the problem 
(an id number is associated with each sentence for easy reference): 

“(1) I bought an iPhone a few days ago. (2) It was such a nice phone. 
(3) The touch screen was really cool. (4) The voice quality was clear 
too. (5) However, my mother was mad with me as I did not tell her be-
fore I bought it. (6) She also thought the phone was too expensive, and 
wanted me to return it to the shop. … ”  

The question is: what we want to mine or extract from this review? The 
first thing that we notice is that there are several opinions in this review. 
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Sentences (2), (3), and (4) express some positive opinions, while sentences 
(5) and (6) express negative opinions or emotions. Then we also notice that 
the opinions all have some targets. The target of the opinion in sentence 
(2) is the iPhone as a whole, and the targets of the opinions in sentences 
(3) and (4) are “touch screen” and “voice quality” of the iPhone, respec-
tively. The target of the opinion in sentence (6) is the price of the iPhone, 
but the target of the opinion/emotion in sentence (5) is “me”, not iPhone. 
Finally, we may also notice the holders of opinions. The holder of the 
opinions in sentences (2), (3), and (4) is the author of the review (“I”), but 
in sentences (5) and (6) it is “my mother.” With this example in mind, we 
now formally define the opinion mining problem. We start with the opin-
ion target.  

In general, opinions can be expressed about anything, e.g., a product, a 
service, an individual, an organization, an event, or a topic, by any person 
or organization. We use the term entity to denote the target object that has 
been evaluated. An entity can have a set of components (or parts) and a set 
of attributes. Each component may have its own sub-components and its 
set of attributes, and so on. Thus, an entity can be hierarchically decom-
posed based on the part-of relation. Formally, we have the following:  

Definition (entity): An entity e is a product, service, person, event, or-
ganization, or topic. It is associated with a pair, e: (T, W), where T is a 
hierarchy of components (or parts), sub-components, and so on, and W 
is a set of attributes of e. Each component or sub-component also has 
its own set of attributes.  

Example 1: A particular brand of cellular phone is an entity, e.g., iPhone. 
It has a set of components, e.g., battery and screen, and also a set of attrib-
utes, e.g., voice quality, size, and weight. The battery component also has 
its own set of attributes, e.g., battery life and battery size.  ▀ 

Based on this definition, an entity can be represented as a tree or hierar-
chy. The root of the tree is the name of the entity. Each non-root node is a 
component or sub-component of the entity. Each link is a part-of relation. 
Each node is associated with a set of attributes. An opinion can be ex-
pressed on any node and any attribute of the node.  

Example 2: Following Example 1, one can express an opinion on the cel-
lular phone itself (the root node), e.g., “I do not like iPhone,” or on any one 
of its attributes, e.g., “The voice quality of iPhone is lousy.” Likewise, one 
can also express an opinion on any one of the phone’s components or any 
attribute of the component.   ▀ 

In practice, it is often useful to simplify this definition due to two rea-
sons: First, natural language processing is a difficult task. To effectively 
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study the text at an arbitrary level of detail as described in the definition is 
very hard. Second, for an ordinary user, it is too complex to use a hierar-
chical representation. Thus, we simplify and flatten the tree to two levels 
and use the term aspects to denote both components and attributes. In the 
simplified tree, the root level node is still the entity itself, while the second 
level nodes are the different aspects of the entity.  

Definition (aspect): The aspects of an entity e are the components and at-
tributes of e.   

Note that in the first edition of this book, we used the term feature to 
mean aspect. Using feature is natural for the product domain as people of-
ten say “product features.” However, when entities are events and topics, 
the term feature becomes unnatural. Furthermore, the term feature also 
confuses with the term feature used in machine learning, where a feature 
means a data attribute. To avoid confusion, we adopt the term aspect in 
this edition.  

Definition (aspect name and aspect expression): An aspect name is the 
name of an aspect given by the user, while an aspect expression is an 
actual word or phrase that has appeared in text indicating an aspect.  

Example 3: In the cellular phone domain, an aspect could be named voice 
quality. There are many expressions that can indicate the aspect, e.g., 
“sound,” “voice,” and also “voice quality” itself.   ▀ 

Aspect expressions are usually nouns and noun phrases but can also be 
verbs, verb phrases, adjectives, and adverbs. We call aspect expressions in 
a sentence that are nouns and noun phrases explicit aspect expressions. 
For example, “sound” in “The sound of this phone is clear” is an explicit 
aspect expression. We call aspect expressions of the other types, implicit 
aspect expressions, as they often imply some aspects. For example, 
“large” is an implicit aspect expression in “This phone is too large.” It im-
plies the aspect size. Many implicit aspect expressions are adjectives and 
adverbs, which also imply some specific aspects, e.g., expensive (price), 
and reliably (reliability). Implicit aspect expressions are not just adjectives 
and adverbs. They can be quite complex, e.g., “This phone will not easily fit 
in pockets.” Here, “fit in pockets” indicates the aspect size (and/or shape). 

Like aspects, an entity also has a name and many expressions that indi-
cate the entity. For example, the brand Motorola (entity name) can be ex-
pressed in several ways, e.g., “Moto,” “Mot,” and “Motorola.” 

Definition (entity name and entity expression): An entity name is the 
name of an entity given by the user, while an entity expression is an ac-
tual word or phrase that has appeared in text indicating an entity.  
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Definition (opinion holder): The holder of an opinion is the person or or-
ganization that expresses the opinion.  

For product reviews and blogs, opinion holders are usually the authors 
of the postings. Opinion holders are more important in news articles as 
they often explicitly state the person or organization that holds an opinion 
[4, 13, 55]. Opinion holders are also called opinion sources [128]. 

We now turn to opinions. There are two main types of opinions: regular 
opinions and comparative opinions. Regular opinions are often referred 
to simply as opinions in the research literature. A comparative opinion ex-
presses a relation of similarities or differences between two or more enti-
ties and/or a preference of the opinion holder based on some of the shared 
aspects of the entities [42, 43]. A comparative opinion is usually expressed 
using the comparative or superlative form of an adjective or adverb, al-
though not always. More detailed definitions will be given in Sect. 11.6. 
The discussion below focuses only on regular opinions. For simplicity, the 
terms regular opinion and opinion are used interchangeably below.  

An opinion (or regular opinion) is simply a positive or negative view, 
attitude, emotion, or appraisal about an entity or an aspect of the entity 
from an opinion holder. Positive, negative, and neutral are called opinion 
orientations. Other names for opinion orientation are sentiment orienta-
tion, semantic orientation, or polarity. In practice, neutral is often inter-
preted as no opinion. We are now ready to formally define an opinion [70].  

Definition (opinion): An opinion (or regular opinion) is a quintuple,  
(ei, aij, ooijkl, hk, tl),  

where ei is the name of an entity, aij is an aspect of ei, ooijkl is the orien-
tation of the opinion about aspect aij of entity ei, hk is the opinion hold-
er, and tl is the time when the opinion is expressed by hk. The opinion 
orientation ooijkl can be positive, negative, or neutral or be expressed 
with different strength/intensity levels. When an opinion is on the entity 
itself as a while, we use the special aspect GENERAL to denote it.  

Some important remarks about this definition are in order: 

1. It should be stressed that the five pieces of information in the quintuple 
must correspond to one another. That is, the opinion ooijkl must be given 
by opinion holder hk about aspect aij of entity ei at time tl. Otherwise, we 
may assign an opinion to a wrong entity or wrong aspect, etc.  

2. These five components are essential. Without any of them, it can be 
problematic in general. For example, one says “The picture quality is 
great,” but if we do not know whose picture quality, the opinion is of 
little use. However, we do not mean that every piece of information is 
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needed in every application. For example, knowing each opinion holder 
is not necessary if we want to summarize opinions from a large number 
of people. Similarly, we do not claim that nothing else can be added to 
the tuple. For example, in some applications (e.g., marketing), the user 
may want to know the sex and age of each opinion holder.  

3. This definition provides a basis for transforming unstructured text into 
structured data. The quintuple gives us the essential information for a 
rich set of qualitative and quantitative analysis of opinions. More spe-
cifically, the quintuple is basically a schema/relation for a database ta-
ble. With a large set of opinion quintuples mined from text, the whole 
suite of database management systems (DBMS) and OLAP tools can be 
applied to slice and dice the opinions for all kinds of analyses.  

4. Opinions (regular opinions) also have sub-types, e.g., direct opinions 
and indirect opinions. For direct opinions, opinions are expressed di-
rectly on entities or their aspects, e.g., “The voice quality of this phone 
is great.” For indirect opinions, opinions on entities are expressed based 
on their effects on some other entities. This sub-type often occurs in the 
medical domain. For example, “After taking this drug, my hand felt 
much better” describes a desirable effect of the drug on “my hand,” 
which indirectly gives a positive opinion to the drug. For simplicity, we 
will not distinguish these sub-types in this chapter. 

5. In the original definition of an entity, it is a hierarchy/tree of compo-
nents, sub-components, and so on. Every component can have its set of 
attributes. Due to simplification by flattening the tree, the quintuple 
representation can result in information loss. For example, “battery” is a 
component/part of a digital camera. In a camera review, one wrote “The 
battery for this camera is expensive.” This does not say that the camera 
is expensive (which indicates the aspect price). If one does not care 
about any attribute of the battery, this sentence just gives a negative 
opinion to the battery, which is an aspect of the camera entity. How-
ever, if one also wants to study opinions about different aspects of the 
battery, e.g., battery life, price, etc., the battery needs to be treated as a 
separate entity. The quintuple representation still applies, but the part-of 
relationship needs to be saved. Of course, conceptually one may also 
treat the quintuple as a nested relation rather than a flat relation.  

We now put everything together to define a model of entity, a model of 
opinionated document, and the mining objective, which are collectively 
called the aspect-based opinion mining (or feature-based opinion mining 
as it was called earlier and in the first edition of this book) [37, 71].  

Model of entity: An entity ei is represented by itself as a whole and a finite 
set of aspects, Ai = {ai1, ai2, …, ain}. The entity itself can be expressed 
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with any one of a final set of entity expressions OEi = {oei1, oei2, …, 
oeis}. Each aspect aij  Ai of the entity can be expressed by any one of a 
finite set of aspect expressions AEij = {aeij1, aeij2, …, aeijm}. 

Model of opinionated document: An opinionated document d contains 
opinions on a set of entities {e1, e2, …, er} from a set of opinion holders 
{h1, h2, …, hp}. The opinions on each entity ei are expressed on the en-
tity itself and a subset Aid of its aspects.  

Objective of opinion mining: Given a collection of opinionated docu-
ments D, discover all opinion quintuples (ei, aij, ooijkl, hk, tl) in D.  

To achieve this objective, one needs to perform the following tasks:  

Task 1 (entity extraction and grouping): Extract all entity expressions in 
D, and group synonymous entity expressions into entity clusters. Each 
entity expression cluster indicates a unique entity ei. 

Task 2 (aspect extraction and grouping): Extract all aspect expressions of 
the entities, and group aspect expressions into clusters. Each aspect ex-
pression cluster of entity ei indicates a unique aspect aij.  

Task 3 (opinion holder and time extraction): Extract these pieces of infor-
mation from the text or structured data. 

Task 4 (aspect sentiment classification): Determine whether each opinion 
on an aspect is positive, negative or neutral.  

Task 5 (opinion quintuple generation): Produce all opinion quintuples (ei, 
aij, ooijkl, hk, tl) expressed in D based on the results of the above tasks. 

The difficulty of opinion mining lies in the fact that none of the above 
problems or tasks is a solved problem. To make matters worse, a sentence 
may not explicitly mention some pieces of information, but they are im-
plied due to pronouns, language conventions, and contexts. What is also 
challenging is to ensure that the five pieces of information in an opinion 
correspond to one another as we discussed earlier. We now use an example 
blog to illustrate the tasks (a sentence id is associated with each sentence):  
Example 4: Posted by: bigXyz on Nov-4-2010: (1) I bought a Motorola 
phone and my girlfriend bought a Nokia phone yesterday. (2) We called 
each other when we got home. (3) The voice of my Moto phone was un-
clear, but the camera was good. (4) My girlfriend was quite happy with her 
phone, and its sound quality. (5) I want a phone with good voice quality. (6) 
So I probably will not keep it.  ▀ 

Task 1 should extract the entity expressions, “Motorola,” “Nokia,” and 
“Moto,” and group “Motorola” and “Moto” together as they represent the 
same entity. Task 2 should extract aspect expressions “camera,” “voice,” 
and “sound” and group “voice” and “sound” together as they are syno-
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nyms representing the same aspect. Task 3 should find the holder of the 
opinions in sentence (3) to be bigXyz (the blog author) and the holder of 
the opinions in sentence (4) to be bigXyz’s girlfriend. It should also find 
the time when the blog was posted, which is Nov-4-2010. Task 4 should 
find that sentence (3) gives a negative opinion to the voice quality of the 
Motorola phone but a positive opinion to its camera. Sentence (4) gives 
positive opinions to the Nokia phone as a whole and also its sound quality. 
Sentence (5) seemingly expresses a positive opinion, but it does not. To 
generate opinion quintuples for sentence (4), we also need to know what 
“her phone” is and what “its” refers to. All these are challenging problems. 
Task 5 should finally generate the following four opinion quintuples: 

(Motorola, voice_quality, negative, bigXyz, Nov-4-2010) 
(Motorola, camera, positive, bigXyz, Nov-4-2010) 
(Nokia, GENERAL, positive, bigXyz’s girlfriend, Nov-4-2010) 
(Nokia, voice_quality, positive, bigXyz’s girlfriend, Nov-4-2010) 

Before going further, let us discuss two other important concepts related 
to opinion mining and sentiment analysis, i.e., subjectivity and emotion.  

Definition (sentence subjectivity): An objective sentence presents some 
factual information about the world, while a subjective sentence ex-
presses some personal feelings, views, or beliefs.  
For example, in Example 4, sentences (1) and (2) are objective sen-

tences, while all other sentences are subjective sentences. Subjective ex-
pressions come in many forms, e.g., opinions, allegations, desires, beliefs, 
suspicions, and speculations [102, 123]. Thus, a subjective sentence may 
not contain an opinion. For example, sentence (5) in Example 4 is subjec-
tive but it does not express a positive or negative opinion about anything. 
Interestingly, objective sentences can imply opinions [140]. For example, 

“The earphone broke in two days.” 
is an objective sentence but it implies a negative opinion. There is some 
confusion among researchers to equate subjectivity with opinionated. As 
we can see, the concepts of subjective sentences and opinion sentences are 
not the same, although they have a large intersection. The task of deter-
mining whether a sentence is subjective or objective is called subjectivity 
classification [126], which we will discuss in Sect. 11.3.  
Definition (emotion): Emotions are our subjective feelings and thoughts.  

Emotions have been studied in many fields, e.g., psychology, philoso-
phy, and sociology. However, there is still not a set of agreed basic emo-
tions of people among researchers. Based on [96], people have six primary 
emotions, i.e., love, joy, surprise, anger, sadness, and fear, which can be 
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sub-divided into many secondary and tertiary emotions. Each emotion can 
also have different intensities. The strengths of opinions are related to the 
intensities of certain emotions, e.g., joy and anger. However, the concepts 
of emotions and opinions are not equivalent. Many opinion sentences ex-
press no emotion (e.g., “The voice of this phone is clear”), and many emo-
tion sentences express no opinion (e.g., “I am so surprised to see you”).  

11.1.2  Aspect-Based Opinion Summary 

As mentioned at the beginning of this section, most opinion mining appli-
cations need to study opinions from a large number of opinion holders. 
One opinion from a single holder is usually not sufficient for action. This 
indicates that some form of summary of opinions is needed. Opinion quin-
tuples defined above provide an excellent source of information for gener-
ating both qualitative and quantitative summaries. A common form of 
summary is based on aspects and is called aspect-based opinion sum-
mary (or feature-based opinion summary) [37, 72]. Below, we use an ex-
ample to illustrate this form of summary, which is widely used in industry.  

Example 5: Assume we summarize all the reviews of a particular cellular 
phone, cellular phone 1. The summary looks like that in Fig. 11.1, which 
was proposed in [37] and is called a structured summary. In the figure, 
GENERAL represents the phone itself (the entity). 125 reviews expressed 
positive opinions about the phone and 7 expressed negative opinions. 
Voice quality and size are two product aspects. 120 reviews expressed 
positive opinions about the voice quality, and only 8 reviews expressed 
negative opinions. The <individual review sentences> link points to the 
specific sentences and/or the whole reviews that give the positive or nega-
tive opinions. With such a summary, the user can easily see how existing 
customers feel about the phone. If he/she is interested in a particular as-
pect, he/she can drill down by following the <individual review sentences> 
link to see why existing customers like it and/or dislike it.  ▀ 

As mentioned earlier, the discovered quintuples can be stored in data-
base tables. Then a whole suite of database and visualization tools can be 
applied to see the results in all kinds of ways to gain insights of the opin-
ions in structured forms and displayed as bar charts and/or pie charts. For 
example, the aspect-based summary in Fig. 11.1 can be visualized using 
the bar chart in Fig. 11.2(A) [72]. In the figure, each bar above the X-axis 
shows the number of positive opinions on the aspect given at the top. The 
corresponding bar below the X-axis shows the number of negative opin-
ions on the same aspect. Obviously, other visualizations are also possible. 
For example, one may only show the percent of positive opinions. 



468      11 Opinion Mining and Sentiment Analysis 

Comparing opinion summaries of a few competing products is even 
more interesting [72]. Fig. 11.2(B) shows the visual opinion comparison of 
two competing phones. We can clearly see how consumers view each of 
them along different aspect dimensions.  

Researchers have also studied opinion summarization in the tradition fa-
shion, e.g., producing a short text summary [3, 10, 61, 106, 109]. Such a 

 Cellular phone 1:  
 Aspect: GENERAL 
  Positive:  125 <individual review sentences> 
  Negative:  7 <individual review sentences> 
 Aspect: Voice quality 
  Positive:  120 <individual review sentences> 
  Negative:  8 <individual review sentences> 
 Aspect: Battery 
  Positive:  80       <individual review sentences> 
   Negative:  12 <individual review sentences> 
 … 

Fig. 11.1. An aspect-based opinion summary. 

 
Fig. 11.2. Visualization of aspect-based summaries of opinions  

Voice  Battery  Size Weight Camera 

Negative Cellular Phone 1 

Voice  Battery  Size Weight Camera Positive 

Negative Cellular Phone 1 Cellular Phone 2

(A) Visualization of aspect-based summary of opinions on a cellular phone 

(B) Visual opinion comparison of two cellular phones 

GENERAL  

GENERAL  
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summary gives the reader a quick overview of what people think about a 
product or service. A weakness of such a text-based summary is that it is 
not quantitative but only qualitative, which is usually not suitable for ana-
lytical purposes. For example, a traditional text summary may say “Most 
people do not like this product.” However, a quantitative summary may say 
that 60% of the people do not like this product and 40% of them like it. In 
most opinion mining applications, the quantitative side is crucial just like 
in the traditional survey research. In survey research, aspect-based summa-
ries displayed as bar charts or pie charts are commonly used because they 
give the user a concise, quantitative and visual view. Instead of generating 
a text summary directly from input reviews, it is also possible to generate a 
text summary based on the mining results as displayed in Figs. 11.1 and 
11.2. For example, one can generate natural language sentences based on 
what are shown in the bar charts using some predefined sentence tem-
plates. For instance, the first two bars in Fig. 11.2(B) can be summarized 
as “Most people are positive about cellular phone 1 and negative about 
cellular phone 2.” Recently, researchers also tried to produce text summa-
ries similar to that in Fig. 11.1 but in a more readable form [89, 97, 113].  

11.2 Document Sentiment Classification 

We are now ready to discuss some main research topics of opinion mining. 
This section focuses on sentiment classification, which has been studied 
extensively in the literature (see a survey in [91]). It classifies an opinion 
document (e.g., a product review) as expressing a positive or negative opi-
nion or sentiment. The task is also commonly known as the document-
level sentiment classification because it considers the whole document as 
the basic information unit.  
Problem Definition: Given an opinionated document d evaluating an en-

tity e, determine the opinion orientation oo on e, i.e., determine oo on 
aspect GENERAL in the quintuple (e, GENERAL, oo, h, t). e, h, and t 
are assumed known or irrelevant.  

Assumption: Sentiment classification assumes that the opinion document 
d (e.g., a product review) expresses opinions on a single entity e and the 
opinions are from a single opinion holder h.  

This assumption holds for customer reviews of products and services 
because each such review usually focuses on a single product and is writ-
ten by a single reviewer. However, it may not hold for a forum and blog 
posting because in such a posting the author may express opinions on mul-
tiple products and compare them using comparative sentences.  
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Most existing techniques for document-level sentiment classification are 
based on supervised learning, although there are also some unsupervised 
methods. We give an introduction to them below.  

11.2.1  Classification Based on Supervised Learning 

Sentiment classification obviously can be formulated as a supervised learn-
ing problem with three classes, positive, negative, and neutral. Training 
and testing data used in the existing research are mostly product reviews, 
which is not surprising due to the above assumption. Since each review al-
ready has a reviewer-assigned rating (e.g., 1–5 stars), training and testing 
data are readily available. For example, a review with 4 or 5 stars is con-
sidered a positive review, a review with 1 or 2 stars is considered a nega-
tive review and a review with 3 stars is considered a neutral review.  

Sentiment classification is similar to but also somewhat different from 
classic topic-based text classification, which classifies documents into pre-
defined topic classes, e.g., politics, sciences, sports, etc. In topic-based 
classification, topic-related words are important. However, in sentiment 
classification, topic-related words are unimportant. Instead, opinion words 
(also called sentiment words) that indicate positive or negative opinions 
are important, e.g., great, excellent, amazing, horrible, bad, worst, etc.  

Any existing supervised learning methods can be applied to sentiment 
classification, e.g., naïve Bayesian classification, and support vector ma-
chines (SVM). Pang et al. [94] took this approach to classify movie re-
views into two classes, positive and negative. It was shown that using uni-
grams (a bag of individual words) as features in classification performed 
well with either naïve Bayesian or SVM.  

Subsequent research used many more features and techniques in learn-
ing [91]. As most machine learning applications, the main task of senti-
ment classification is to engineer an effective set of features. Some of the 
example features used in research and possibly in practice are listed below.  
Terms and their frequency. These features are individual words or word n-

grams and their frequency counts (they are also commonly used in tra-
ditional topic-based text classification). In some cases, word positions 
may also be considered. The TF-IDF weighting scheme from informa-
tion retrieval may be applied too. These features have been shown quite 
effective in sentiment classification.   

Part of speech. It was found in many researches that adjectives are impor-
tant indicators of opinions. Thus, adjectives have been treated as special 
features. 
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Opinion words and phrases. Opinion words are words that are commonly 
used to express positive or negative sentiments. For example, beautiful, 
wonderful, good, and amazing are positive opinion words, and bad, 
poor, and terrible are negative opinion words. Although many opinion 
words are adjectives and adverbs, nouns (e.g., rubbish, junk, and crap) 
and verbs (e.g., hate and like) can also indicate opinions. Apart from 
individual words, there are also opinion phrases and idioms, e.g., cost 
someone an arm and a leg. Opinion words and phrases are instrumental 
to sentiment analysis for obvious reasons.  

Rules of opinions. Although opinion words and phrases are important, 
there are also many other expressions that contain no opinion words or 
phrases but indicate opinions or sentiments. We will list and discuss 
some of such expressions in Sect. 11.5.2.   

Negations. Clearly negation words are important because their appearances 
often change the opinion orientation. For example, the sentence “I don’t 
like this camera” is negative. However, negation words must be handled 
with care because not all occurrences of such words mean negation. For 
example, “not” in “not only … but also” does not change the orientation 
direction (see opinion shifters in Sect. 11.5.1).  

Syntactic dependency. Words dependency-based features generated from 
parsing or dependency trees are also tried by several researchers. 

Instead of using a standard machine learning method, researchers have 
also proposed several custom techniques specifically for sentiment classi-
fication, e.g., the score function in [15] based on words in positive and 
negative reviews, and the aggregation method in [117] using manually 
compiled domain-specific words and phrases.  

Apart from classification of positive or negative sentiments, research 
has also been done on predicting the rating scores (e.g., 1–5 stars) of re-
views [92]. In this case, the problem is formulated as regression since the 
rating scores are ordinal. Another interesting research direction is transfer 
learning or domain adaptation, as it has been shown that sentiment classi-
fication is highly sensitive to the domain from which the training data is 
extracted. A classifier trained using opinionated documents from one do-
main often performs poorly when it is applied or tested on opinionated 
documents from another domain. The reason is that words and even lan-
guage constructs used in different domains for expressing opinions can be 
quite different. To make matters worse, the same word in one domain may 
mean positive but in another domain may mean negative. Thus, domain 
adaptation is needed. Existing research has used labeled data from one 
domain and unlabeled data from the target domain and general opinion 
words as features for adaptation [2, 6, 90, 133].  
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11.2.2  Classification Based on Unsupervised Learning 

It is not hard to imagine that opinion words and phrases are the dominating 
indicators for sentiment classification. Thus, using unsupervised learning 
based on such words and phrases would be quite natural. The method in 
[119] is such a technique. It performs classification based on some fixed 
syntactic phrases that are likely to be used to express opinions.  

The algorithm makes use of a natural language processing technique 
called part-of-speech (POS) tagging. The part-of-speech of a word is a 
linguistic category that is defined by its syntactic or morphological behav-

Table 11.1. Penn Treebank Part-Of-Speech (POS) tags  

Tag Description Tag Description 

CC Coordinating conjunction  PRP$  Possessive pronoun   
CD Cardinal number   RB Adverb   
DT Determiner RBR Adverb, comparative   
EX Existential there   RBS Adverb, superlative   
FW Foreign word   RP   Particle   
IN Preposition or subordinat-

ing conjunction   
SYM Symbol   

JJ Adjective TO to   
JJR Adjective, comparative   UH   Interjection   
JJS Adjective, superlative   VB   Verb, base form   
LS List item marker   VBD Verb, past tense   
MD Modal   VBG  Verb, gerund or present participle   
NN Noun, singular or mass   VBN  Verb, past participle   
NNS Noun, plural   VBP  Verb, non-3rd person singular present  
NNP Proper noun, singular   VBZ  Verb, 3rd person singular present   
NNPS Proper noun, plural   WDT Wh-determiner   
PDT Predeterminer   WP Wh-pronoun   
POS Possessive ending   WP$  Possessive wh-pronoun   
PRP Personal pronoun   WRB  Wh-adverb   
 

Table 11.2. Patterns of tags for extracting two-word phrases  

 First word Second word Third word 
(not extracted) 

1 JJ NN or NNS anything 
2 RB, RBR, or RBS JJ not NN nor NNS 
3 JJ JJ not NN nor NNS 
4 NN or NNS JJ not NN nor NNS 
5 RB, RBR, or RBS VB, VBD, VBN, or VBG anything 
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ior. Common POS categories in English grammar are: noun, verb, adjec-
tive, adverb, pronoun, preposition, conjunction, and interjection. Then, 
there are many categories which arise from different forms of these catego-
ries. For example, a verb can be a verb in its base form, in its past tense, 
etc. In this book, we use the standard Penn Treebank POS Tags as shown 
in Table 11.1. POS tagging is the task of labeling (or tagging) each word in 
a sentence with its appropriate part of speech. For details on part-of-speech 
tagging, please refer to the report by Santorini [104]. The Penn Treebank 
site is at http://www.cis.upenn.edu/~treebank/home.html. 

The algorithm given in [119] consists of three steps:  

Step 1: It extracts phrases containing adjectives or adverbs as adjectives 
and adverbs are good indicators of opinions. However, although an iso-
lated adjective may indicate opinion, there may be insufficient context to 
determine its opinion orientation (called semantic orientation in [119]). 
For example, the adjective “unpredictable” may have a negative orienta-
tion in an automotive review, in a phrase such as “unpredictable steer-
ing,” but it could have a positive orientation in a movie review, in a 
phrase such as “unpredictable plot.” Therefore, the algorithm extracts 
two consecutive words, where one member of the pair is an adjective or 
adverb, and the other is a context word. 

Two consecutive words are extracted if their POS tags conform to any 
of the patterns in Table 11.2. For example, the pattern in line 2 means 
that two consecutive words are extracted if the first word is an adverb 
and the second word is an adjective but the third word (which is not ex-
tracted) cannot be a noun. NNP and NNPS are avoided so that the names 
of entities in the review cannot influence the classification. 

Example 6: In the sentence “This camera produces beautiful pictures”, 
“beautiful pictures” will be extracted as it satisfies the first pattern.  ▀  

Step 2: It estimates the semantic orientation of the extracted phrases using the 
pointwise mutual information (PMI) measure given in Equation (1):  
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Here, Pr(term1  term2) is the co-occurrence probability of term1 and term2, 
and Pr(term1)Pr(term2) gives the probability that the two terms co-occur if 
they are statistically independent. The ratio between Pr(term1  term2) and 
Pr(term1)Pr(term2) is thus a measure of the degree of statistical dependence 
between them. The log of this ratio is the amount of information that we 
acquire about the presence of one of the words when we observe the other. 
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The semantic/opinion orientation (SO) of a phrase is computed based 
on its association with the positive reference word “excellent” and its as-
sociation with the negative reference word “poor”: 

SO(phrase) = PMI(phrase, “excellent”)  PMI(phrase, “poor”). (2) 

The probabilities are calculated by issuing queries to a search engine and 
collecting the number of hits. For each search query, a search engine 
usually gives the number of relevant documents to the query, which is 
the number of hits. Thus, by searching the two terms together and sepa-
rately, we can estimate the probabilities in Equation (1). Turney, the au-
thor of [119], used the AltaVista search engine because it has a NEAR 
operator, which constrains the search to documents that contain the 
words within ten words of one another in either order. Let hits(query) be 
the number of hits returned. Equation (2) can be rewritten as: 

.
)excellent""()"poor"  phrase(
)poor""()excellent""  phrase(log)( 2 



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


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hitsNEARhits

hitsNEARhits
phraseSO  (3) 

To avoid division by zero, 0.01 is added to the hits. 
Step 3: Given a review, the algorithm computes the average SO of all 

phrases in the review and classifies the review as recommended if the 
average SO is positive, not recommended otherwise.  

Final classification accuracies on reviews from various domains range 
from 84% for automobile reviews to 66% for movie reviews.  

To summarize this section, we can see that the main advantage of doc-
ument level sentiment classification is that it provides a prevailing opinion 
on an entity, topic or event. The main shortcomings are: 
 It does not give details on what people liked and/or disliked. In a typical 

evaluative document such as a review, the author usually writes specific 
aspects of an entity that he/she likes or dislikes. The ability to extract 
such details is very useful in practice.  

 It is not easily applicable to non-reviews, e.g., forum and blog postings, 
because many such postings evaluate multiple entities and compare 
them. Also, some of them may not be intended to be evaluations of 
products but may still contain a few opinion sentences. In such cases, 
these opinion sentences need to be identified and analyzed.  

11.3 Sentence Subjectivity and Sentiment Classification  

Naturally the same document-level sentiment classification techniques can 
also be applied to individual sentences. The task of classifying a sentence 
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as subjective or objective is often called subjectivity classification in the 
existing literature [36, 102, 103, 127, 130, 131, 136]. The resulting subjec-
tive sentences are also classified as expressing positive or negative opin-
ions, which is called sentence-level sentiment classification.  

Problem Definition: Given a sentence s, two sub-tasks are performed: 
1. Subjectivity classification. Determine whether s is a subjective sen-

tence or an objective sentence  
2. Sentence-level sentiment classification. If s is subjective, determine 

whether it expresses a positive, negative, or neutral opinion 

Notice that the quintuple (e, a, oo, h, t) is not used in defining the prob-
lem here because sentence-level classification is often an intermediate step. 
In most applications, one needs to know what entities or aspects of the en-
tities are the targets of opinions. Knowing that some sentences have posi-
tive or negative opinions, but not about what, is of limited use. However, 
the two sub-tasks of the sentence-level classification are still important be-
cause (1) it filters out those sentences which contain no opinions, and (2) 
after we know what entities and aspects of the entities are talked about in a 
sentence, this step can help us determine whether the opinions about the 
entities and their aspects are positive or negative.   

Most existing researches study both problems, although some of them 
focus only on one. Both problems are classification problems. Thus, tradi-
tional supervised learning methods are again applicable. For example, one 
of the early works reported in [124] performed subjectivity classification 
using the naïve Bayesian classifier. Subsequent researches also used other 
learning algorithms. 

One of the bottlenecks in applying supervised learning is the manual ef-
fort involved in annotating a large number of training examples. To save 
the manual labeling effort, a bootstrapping approach to label training data 
automatically was reported in [103]. The algorithm works by first using 
two high precision classifiers (HP-Subj and HP-Obj) to automatically iden-
tify some subjective and objective sentences. The high-precision classifiers 
use lists of lexical items (single words or n-grams) that are good subjectiv-
ity clues. HP-Subj classifies a sentence as subjective if it contains two or 
more strong subjective clues. HP-Obj classifies a sentence as objective if 
there are no strong subjective clues. These classifiers will give very high 
precision but low recall. The extracted sentences are then added to the 
training data to learn patterns. The patterns (which form the subjectivity 
classifiers in the next iteration) are then used to automatically identify 
more subjective and objective sentences, which are then added to the train-
ing set, and the next iteration of the algorithm begins.  
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For pattern learning, a set of syntactic templates are provided to restrict 
the kinds of patterns to be learned. Some example syntactic templates and 
example patterns are shown below.  

Syntactic template Example pattern 
<subj> passive-verb  <subj> was satisfied 
<subj> active-verb  <subj> complained 
active-verb <dobj>  endorsed <dobj> 
noun aux <dobj>  fact is <dobj> 
passive-verb prep <np>  was worried about <np> 

Before discussing algorithms which also perform sentiment classifica-
tion of subjective sentences, let us point out an assumption made in much 
of the research on the topic. 

Assumption of sentence-level sentiment classification: The sentence ex-
presses a single opinion from a single opinion holder.  

This assumption is only appropriate for simple sentences with a single opi-
nion, e.g., “The picture quality of this camera is amazing.” However, for 
compound and complex sentences, a single sentence may express more 
than one opinion. For example, the sentence, “The picture quality of this 
camera is amazing and so is the battery life, but the viewfinder is too small 
for such a great camera,” expresses both positive and negative opinions (it 
has mixed opinions). For “picture quality” and “battery life,” the sentence is 
positive, but for “viewfinder,” it is negative. It is also positive for the cam-
era as a whole (i.e., the GENERAL aspect).   

In [136], a study was reported that identifies subjective sentences and 
also determines their opinion orientations. For subjectivity, it applied su-
pervised learning. For sentiment classification of each subjective sentence, 
it used a similar method to that in Sect. 11.2.2 but with many more seed 
words, and the score function was log-likelihood ratio. The same problem 
was also studied in [36] considering gradable adjectives and in [27] using 
semi-supervised learning. In [54, 55, 57], researchers also built models to 
identify some specific types of opinions.  

As we mentioned earlier, sentence-level classification is not suitable for 
compound and complex sentences. It was pointed out in [130] that not only 
a single sentence may contain multiple opinions but also both subjective 
and factual clauses. It is useful to pinpoint such clauses. It is also important 
to identify the strength of opinions. A study of automatic sentiment classi-
fication was presented to classify clauses of every sentence by the strength 
of the opinions being expressed in individual clauses, down to four levels 
deep (neutral, low, medium, and high). The strength of neutral indicates 
the absence of opinion or subjectivity. Strength classification thus sub-
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sumes the task of classifying a sentence as subjective vs. objective. In 
[129], the problem was studied further using supervised learning by con-
sidering contextual sentiment influencers such as negation (e.g., not and 
never) and contrary (e.g., but and however). A list of influencers can be 
found in [98]. However, in many cases, identifying only clauses are insuf-
ficient because the opinions can be embedded in phrases, e.g., “Apple is 
doing very well in this terrible economy.” In this sentence, the opinion on 
“Apple” is clearly positive but on “economy” it is negative.   

Finally, as pointed out in Sect. 11.1.1, we should bear in mind that not 
all subjective sentences have opinions and those that do form only a subset 
of opinionated sentences. Many objective sentences can imply opinions 
too. Thus, to mine opinions from text, one needs to mine them from both 
subjective and objective sentences.  

11.4 Opinion Lexicon Expansion 

In the preceding sections, we mentioned that opinion words are employed 
in many sentiment classification tasks. We now discuss how such words 
are generated. In the research literature, opinion words are also known as 
polar words, opinion-bearing words, and sentiment words. Positive 
opinion words are used to express some desired states while negative opin-
ion words are used to express some undesired states. Examples of positive 
opinion words are beautiful, wonderful, good, and amazing. Examples of 
negative opinion words are bad, poor, and terrible. Apart from individual 
words, there are also opinion phrases and idioms, e.g., cost someone an 
arm and a leg. Collectively, they are called the opinion lexicon. They are 
instrumental for opinion mining for obvious reasons.  

Opinion words can, in fact, be divided into two types, the base type and 
the comparative type. All the examples above are of the base type. Opin-
ion words of the comparative type are used to express comparative and su-
perlative opinions. Examples of such words are better, worse, best, worst, 
etc., which are comparative and superlative forms of their base adjectives 
or adverbs, e.g., good and bad. Unlike opinion words of the base type, the 
words of the comparative type do not express a direct opinion on an entity 
but a comparative opinion on more than one entity, e.g., “Car-x is better 
than Car-y.” This sentence tells us something quite interesting. It does not 
express an opinion that any of the two cars is good or bad. It just says that 
compared to Car-y, Car-x is better, and compared to Car-x, Car-y is worse. 
Thus, although we still can assign a comparative word as positive or nega-
tive based on whether it represents a desirable or undesirable state, we may 
not use it in the same way as an opinion word of the base type. We will 
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discuss this issue further when we study comparative sentences. This sec-
tion focuses on opinion words of the base type.  

To compile or collect the opinion word list, three main approaches have 
been investigated: manual approach, dictionary-based approach, and cor-
pus-based approach. The manual approach is very time consuming and 
thus not usually used alone, but it is used when combined with automated 
approaches as the final check because automated methods make mistakes. 
Below, we discuss the two automated approaches.  

Dictionary-based approach: One of the simple techniques in this ap-
proach is based on bootstrapping using a small set of seed opinion words 
and an online dictionary, e.g., WordNet [81]. The strategy is to first collect 
a small set of opinion words manually with known orientations and then to 
grow this set by searching in the WordNet for their synonyms and anto-
nyms. The newly found words are added to the seed list. The next iteration 
starts. The iterative process stops when no more new words are found. 
This approach is used in [37, 55]. After the process completes, manual in-
spection can be carried out to remove and/or correct errors. Researchers 
have also used additional information (e.g., glosses) in WordNet and addi-
tional techniques (e.g., machine learning) to generate better lists [1, 21, 22, 
50]. Several opinion word lists have been produced [17, 23, 37, 108, 124].  

The dictionary-based approach and the opinion words collected from it 
have a major shortcoming. The approach is unable to find opinion words 
with domain and context-specific orientations, which is quite common. For 
example, for a speaker phone, if it is quiet, it is usually negative. However, 
for a car, if it is quiet, it is positive. The corpus-based approach can help 
deal with this problem. 

Corpus-based approach and sentiment consistency: The methods in 
the corpus-based approach rely on syntactic or co-occurrence patterns and 
also a seed list of opinion words to find other opinion words in a large cor-
pus. One of the key ideas is the one proposed by Hazivassiloglou and 
McKeown [35]. The technique starts with a list of seed opinion adjectives, 
and uses them and a set of linguistic constraints or conventions on connec-
tives to identify additional adjective opinion words and their orientations. 
One of the constraints is about the conjunction AND, which says that con-
joined adjectives usually have the same orientation. For example, in the 
sentence, “This car is beautiful and spacious,” if “beautiful” is known to be 
positive, it can be inferred that “spacious” is also positive. This is so be-
cause people usually express the same opinion on both sides of a conjunc-
tion. The following sentence is rather unnatural, “This car is beautiful and 
difficult to drive.” If it is changed to “This car is beautiful but difficult to 
drive,” it becomes acceptable. Rules or constraints are also designed for 
other connectives, OR, BUT, EITHER–OR, and NEITHER–NOR. This 
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idea is called sentiment consistency. Of course, in practice, it is not always 
consistent. Learning is applied to a large corpus to determine if two conjoined 
adjectives are of the same or different orientations. Same- and different-
orientation links between adjectives form a graph. Finally, clustering is per-
formed on the graph to produce two sets of words: positive and negative. In 
[51], Kanayama and Nasukawa expanded this approach by introducing the 
idea of intra-sentential (within a sentence) and inter-sentential (between 
neighboring sentences) sentiment consistency (called coherency in [44]). The 
intra-sentential consistency is similar to that in [35]. Inter-sentential consis-
tency applies the idea to neighboring sentences. That is, the same opinion ori-
entation (positive or negative) is usually expressed in a few consecutive sen-
tences. Opinion changes are indicated by adversative expressions such as but 
and however. Some criteria to determine whether to add a word to the posi-
tive or negative lexicon are also proposed. This study was based on Japanese 
text. In Sect. 11.5.4, a related but also quite different method will be de-
scribed. Other related work includes [48, 49].  

In [17], Ding et al. explored the idea of intra-sentential and inter-sentential 
sentiment consistency further. Instead of finding domain-dependent opinion 
words, they showed that the same word could indicate different orientations 
in different contexts even in the same domain. This fact was also clearly de-
picted by the basic rules of opinions in Sect. 11.5.2. For example, in the digi-
tal camera domain, the word “long” expresses opposite opinions in the two 
sentences: “The battery life is long” (positive) and “The time taken to focus is 
long” (negative). Thus, finding domain-dependent opinion words is insuffi-
cient. They then proposed to consider both possible opinion words and as-
pects together and use the pair (aspect, opinion_word) as the opinion con-
text, e.g., the pair (“battery life”, “long”). Their method thus determines 
opinion words and their orientations together with the aspects that they mod-
ify. The above rules about connectives are still applied. The work in [28] 
adopted the same context definition but used it for analyzing comparative 
sentences. In fact, the method in [112, 119] can also be considered as a 
method for finding context-specific opinions, but it does not use the senti-
ment consistency idea. Its opinion context is based on syntactic POS patterns 
rather than aspects and opinion words that modify them. All these context 
definitions, however, are still insufficient as the basic rules of opinions dis-
cussed in Sect. 11.5.2 show, i.e., many contexts can be more complex, e.g., 
consuming a large amount of resources. In [7], the problem of extracting 
opinion expressions with any number of words was studied. The Conditional 
Random Fields (CRF) method [62] was used as the sequence learning tech-
nique for extraction.  

Using the corpus-based approach alone to identify all opinion words, 
however, is not as effective as the dictionary-based approach because it is 
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hard to prepare a huge corpus to cover all English words. However, as we 
mentioned above, this approach has a major advantage that the dictionary-
based approach does not have. It can help find domain- and context-
specific opinion words and their orientations using a domain corpus.  

Finally, we should realize that populating an opinion lexicon (domain 
dependent or not) is different from determining whether a word or phrase 
is actually expressing an opinion and what its orientation is in a particular 
sentence. Just because a word or phrase is listed in an opinion lexicon does 
not mean that it actually is expressing an opinion in a sentence. For exam-
ple, in the sentence, “I am looking for a good health insurance,” “good” 
does not express either a positive or negative opinion on any particular in-
surance. The same is true for opinion orientation. We should also remem-
ber that opinion words and phrases are not the only expressions that bear 
opinions. There are many others as we will see in Sect. 11.5.2.  

11.5 Aspect-Based Opinion Mining 

Although classifying opinionated texts at the document level or at the sen-
tence level is useful in many cases, it does not provide the necessary detail 
needed for many other applications. A positive opinionated document 
about a particular entity does not mean that the author has positive opin-
ions on all aspects of the entity. Likewise, a negative opinionated docu-
ment does not mean that the author dislikes everything. In a typical opin-
ionated document, the author writes both positive and negative aspects of 
the entity, although the general sentiment on the entity may be positive or 
negative. Document and sentence sentiment classification does not provide 
such information. To obtain these details, we need to go to the aspect level. 
That is, we need the full model of Sect. 11.1.1, i.e., aspect-based opinion 
mining (also called feature-based opinion mining). Instead of treating 
opinion mining simply as a classification of sentiments, aspect-based opin-
ion mining introduces a suite of problems which require deeper natural 
language processing capabilities and also produce a richer set of results.  

Recall that, at the aspect level, the mining objective is to discover every 
quintuple (ei, aij, ooijkl, hk, tl) in a given document d. To achieve the objec-
tive, five tasks need to be performed. This section mainly focuses on the 
following two core tasks and they have also been studied more extensively 
by researchers (in Sect. 11.7, we will briefly discuss some other tasks):  

1. Aspect extraction: Extract aspects that have been evaluated. For ex-
ample, in the sentence, “The picture quality of this camera is amazing,” 
the aspect is “picture quality” of the entity represented by “this camera.” 
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Note that “this camera” does not indicate the GENERAL aspect be-
cause the evaluation is not about the camera as a whole, but about its 
picture quality. However, the sentence “I love this camera” evaluates 
the camera as a whole, i.e., the GENERAL aspect of the entity repre-
sented by “this camera.” Bear in mind whenever we talk about an as-
pect, we must know which entity it belongs to. In our discussion below, 
we often omit the entity just for simplicity of presentation. 

2. Aspect sentiment classification: Determine whether the opinions on 
different aspects are positive, negative, or neutral. In the first example 
above, the opinion on the “picture quality” aspect is positive, and in the 
second example, the opinion on the GENERAL aspect is also positive.     

11.5.1  Aspect Sentiment Classification 

We study the second task first, determining the orientation of opinions ex-
pressed on each aspect in a sentence. Clearly, the sentence-level and 
clause-level sentiment classification methods discussed in Sect. 11.3 are 
useful here. That is, they can be applied to each sentence or clause which 
contains some aspects. The aspects in it will take the opinion orientation of 
the sentence or clause. However, these methods have difficulty dealing 
with mixed opinions in a sentence and opinions that need phrase level 
analysis, e.g., “Apple is doing very well in this terrible economy.” Clause-
level analysis also needs techniques to identify clauses which itself is a 
challenging task, especially with informal text of blogs and forum discus-
sions, which is full of grammatical errors. Here, we describe a lexicon-
based approach to solving the problem [17, 37], which tries to avoid these 
problems and has been shown to perform quite well. The extension of this 
method to handling comparative sentences is discussed in Sect. 11.6. In the 
discussion below, we assume that entities and their aspects are known. Their 
extraction will be discussed in Sects. 11.5.3, 11.5.4, and 11.7.  
 The lexicon-based approach basically uses an opinion lexicon, i.e., a list 
of opinion words and phrases, to determine the orientations of opinions in 
a sentence [17, 37]. It also considers opinion shifters and but-clauses. 
The approach works as follows:  
1. Mark opinion words and phrases: Given a sentence that contains one 

or more aspects, this step marks all opinion words and phrases in the 
sentence. Each positive word is assigned the opinion score of +1 and 
each negative word is assigned the opinion score of 1. For example, 
we have the sentence, “The picture quality of this camera is not great, 
but the battery life is long.” After this step, the sentence is turned into 
“The picture quality of this camera is not great[+1], but the battery life is 
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long” because “great” is a positive opinion word. The aspects are itali-
cized. Although “long” indicates positive for “battery life,” we assume 
that it is not known. In fact, “long” can be regarded as a context-
dependent opinion word, which we have discussed in Sect. 11.4.  

2. Handle opinion shifters: Opinion shifters (also called valence shifters 
[98]) are words and phrases that can shift or change opinion orienta-
tions. Negation words like not, never, none, nobody, nowhere, neither, 
and cannot are the most common type. In our example, this step turns 
the above sentence into “The picture quality of this camera is not great[-
1], but the battery life is long” due to the negation word “not.” Besides 
negation words, many other types of words and phrases can also alter 
opinion orientations. For example, some modal auxiliary verbs (e.g., 
would, should, could, might, must, and ought) are another type of opin-
ion shifters, e.g., “The brake could be improved.” So are some presup-
positional items. This case is typical for adverbs like barely and hardly 
as shown by comparing “It works” with “It hardly works.” “Works” in-
dicates positive, but “hardly works” does not: it presupposes that better 
was expected. Words like fail, omit, neglect behave similarly, e.g., 
“This camera fails to impress me.” Additionally, sarcasm changes ori-
entation too, e.g., “What a great car, it failed to start the first day.” Al-
though it is easy to recognize such shifters manually, spotting them and 
handling them correctly in actual sentences by an automated system is 
by no means easy. Furthermore, not every appearance of an opinion 
shifter changes the opinion orientation, e.g., “not only … but also.” 
Such cases need to be dealt with carefully.  

3. Handle but-clauses: In English, but means contrary. A sentence con-
taining but is handled by applying the following rule: the opinion orien-
tation before but and after but are opposite to each other if the opinion 
on one side cannot be determined. After this step, the above sentence is 
turned into “The picture quality of this camera is not great[-1], but the 
battery life is long[+1]” due to “but” (note that [+1] is added at the end 
of the but-clause). Apart from but, phrases such as “with the exception 
of,” “except that,” and “except for” behave similarly to but and are han-
dled in the same way. As in the case of negation, not every but means 
contrary, e.g., “not only … but also.” Such non-but phrases containing 
“but” also need to be considered separately. Finally, we should note that 
contrary words and phrases do not always indicate an opinion change, 
e.g., “Car-x is great, but Car-y is better.” Such cases need to be identi-
fied and dealt with separately.  

4. Aggregating opinions: This step applies an opinion aggregation func-
tion to the resulting opinion scores to determine the final orientation of 
the opinion on each aspect in the sentence. Let the sentence be s, which 
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contains a set of aspects {a1, …, am} and a set of opinion words or 
phrases {ow1, …, own} with their opinion scores obtained from steps 1, 
2, and 3. The opinion orientation for each aspect ai in s is determined by 
the following opinion aggregation function:  
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where owj is an opinion word/phrase in s, dist(owj, ai) is the distance be-
tween aspect ai and opinion word owj in s. owj.oo is the opinion score of 
owi. The multiplicative inverse is used to give lower weights to opinion 
words that are far away from aspect ai. If the final score is positive, then 
the opinion on aspect ai in s is positive. If the final score is negative, 
then the opinion on the aspect is negative. It is neutral otherwise.  

This simple algorithm can perform quite well in many cases, but it is not 
sufficient in others. One main shortcoming is that opinion words and 
phrases do not cover all types of expressions that convey or imply opin-
ions. There are in fact many other possible opinion bearing expressions. 
Most of them are also harder to deal with. Below, we list some of them, 
which we call the basic rules of opinions.  

11.5.2  Basic Rules of Opinions  

An opinion rule expresses a concept that implies a positive or negative 
opinion. In actual sentences, the concept can be expressed in many differ-
ent ways in natural language. We present these rules using a formalism 
similar to the BNF form. The top level rules are as follows:  

1. POSITIVE  ::=  P 
2. | PO 
3. |   orientation shifter N  
4 | orientation shifter NE 
5. NEGATIVE  ::=   N 
6. | NE 
7. |   orientation shifter P 
8. | orientation shifter PO 

The non-terminals P and PO represent two types of positive opinion ex-
pressions. The non-terminal N and NE represent two types of negative 
opinion expressions. “opinion shifter N” and ”opinion shifter NE” repre-
sent the negation of N and NE, respectively, and “opinion shifter P” and 
“opinion shifter PO” represent the negation of P and PO, respectively. We 
can see that these are not expressed in the actual BNF form but a pseudo 
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language stating some concepts. The reason is that we are unable to spec-
ify them precisely because for example, in an actual sentence, the opinion 
shifter may be in any form and can appear before or after N, NE, P, or PO. 
POSITIVE and NEGATIVE are the final orientations used to determine 
the opinions on the aspects in a sentence. 

We now define N, NE, P, and PO, which contain no opinion shifters. 
These opinion expressions are grouped into six conceptual categories 
based on their characteristics.  

1.  Opinion word or phrase: This is the most commonly used category, in 
which opinion words or phrases alone can imply positive or negative 
opinions on aspects, e.g., “great” in “The picture quality is great.” 
These words or phrases are reduced to P and N.   

9. P  ::=  a positive opinion word or phrase  
10. N  ::=  an negative opinion word or phrase 

Again, the details of the right-hand sides are not specified (which also 
apply to all the subsequent rules). It is assumed that a set of positive and 
negative opinion words/phrases exists for an application.  

2.  Desirable or undesirable fact: In this case, it is a factual statement, and 
the description uses no opinion words, but in the context of the entity, 
the description implies a positive or negative opinion. For example, the 
sentence “After my wife and I slept on it for two weeks, I noticed a 
mountain in the middle of the mattress” indicates a negative opinion 
about the mattress. However, the word “mountain” itself does not carry 
any opinion. Thus, we have the following two rules: 

11. P  ::=  desirable fact 
12. N  ::=  undesirable fact 

3.  High, low, increased and decreased quantity of a positive or negative 
potential item: For some aspects, a small value/quantity of them is neg-
ative, and a large value/quantity of them is positive, e.g., “The battery 
life is short” and “The battery life is long.” We call such aspects positive 
potential items (PPI). Here “battery life” is a positive potential item. 
For some other aspects, a small value/quantity of them is positive, and a 
large value/quantity of them is negative, e.g., “This phone costs a lot” 
and “Sony reduced the price of the camera.” We call such aspects neg-
ative potential items (NPI). “cost” and “price” are negative potential 
items. Both positive and negative potential items themselves express no 
opinions, i.e., “battery life” and “cost”, but when they are modified by 
quantity adjectives or quantity change words or phrases, positive or 
negative opinions are implied. The following rules cover these cases:  
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13. PO  ::=  no, low, less or decreased quantity of NPI  
14. | large, larger, or increased quantity of PPI  
15. NE  ::=  no, low, less, or decreased quantity of PPI 
16. | large, larger, or increased quantity of NPI 
17. NPI  ::= a negative potential item 
18. PPI  ::= a positive potential item 

4.  Decreased and increased quantity of an opinionated item (N and P): 
This set of rules is similar to the negation rules 3, 4, 7, and 8 above. 
Decreasing or increasing the quantity associated with an opinionated 
item (often nouns and noun phrases) can change the orientation of the 
opinion. For example, in the sentence “This drug reduced my pain sig-
nificantly,” “pain” is a negative opinion word, and the reduction of 
“pain” indicates a desirable effect of the drug. Hence, decreased pain 
implies a positive opinion on the drug. The concept of decreasing also 
extends to removal and disappearance, e.g., “My pain has disappeared 
after taking the drug.” We then have the following rules: 

19. PO  ::=  less or decreased N  
20. | more or increased P 
21. NE  ::=  less or decreased P 
22. |  more or increased N  

Rules 20 and 22 may not be needed as there is no change of opinion 
orientation, but they can change the opinion intensity. The key differ-
ence between this set of rules and the rules in the previous category is 
that no opinion words or phrases are involved in the previous category.  

5. Deviation from the norm or some desired value range: In some applica-
tion domains, the value of an aspect may have a desired range or norm. 
If it is above or below the normal range, it is negative, e.g., “This drug 
causes low (or high) blood pressure” and “This drug causes my blood 
pressure to reach 200.” Notice that no opinion word appeared in these 
sentences. We have the following rules: 

23. PO  ::=  within the desired value range  
24. NE  ::=  above or below the desired value range  

6. Producing and consuming resources and wastes: If an entity produces a 
lot of resources, it is positive. If it consumes a lot of resources, it is neg-
ative. For example, water is a resource. The sentence, “This washer 
uses a lot of water” gives a negative opinion about the washer. Like-
wise, if an entity produces a lot of wastes, it is negative. If it consumes 
a lot of wastes, it is positive. These give us the following rules:  
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25. PO  ::=  produce a large quantity of or more resource 
26. |  produce no, little or less waste 
27. |  consume no, little or less resource 
28. |  consume a large quantity of or more waste 
29. NE  ::=  produce no, little or less resource  
30. |  produce some or more waste 
31. |  consume a large quantity of or more resource 
32. |  consume no, little or less waste 

It should be stressed again that these are conceptual rules. They can be 
expressed in many ways using different words or phrases in actual sen-
tences, and in different domains they may also manifest in different forms. 
These rules also show the difficulty of opinion mining because recognizing 
them in different domains are highly challenging.  

We should also note that these rules may not be the only rules that gov-
ern expressions of positive and negative opinions. With further research, 
additional new rules may be discovered and the existing rules may be re-
vised. It is also important to know that any manifestation of such rules in 
text does not always imply opinions. In other words, just because a rule is 
satisfied in a sentence does not mean that it actually expresses an opinion. 
For example, “I want a reliable car” does not express an opinion on any 
specific car, although the positive opinion word “reliable” appeared.  

11.5.3  Aspect Extraction  

Existing research on aspect extraction (more precisely, aspect expression 
extraction) is mainly carried out in online reviews. We thus focus on re-
views here. There are two common review formats on the Web.  

Format 1  Pros, Cons, and the detailed review: The reviewer is asked to 
describe some brief pros and cons separately and also write a de-
tailed/full review. An example of such a review is given in Fig. 11.3.    

Format 2  Free format: The reviewer can write freely, i.e., no separation 
of pros and cons. An example of such a review is given in Fig. 11.4. 

To extract aspects from Pros and Cons in reviews of Format 1 (not the de-
tailed review, which is the same as that in Format 2), many information ex-
traction techniques can be applied, e.g., Conditional Random Fields (CRF) 
[62], and Hidden Markov Models (HMM) [25], and mining sequential 
rules [72]. An important observation about Pros and Cons is that they are 
usually very brief, consisting of short phrases or sentence segments. Each 
sentence segment typically contains only one aspect, and sentence seg-
ments are separated by commas, periods, semi-colons, hyphens, &, and, 
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but, etc. This observation helps the extraction algorithm to perform more 
accurately, see [72]. Since aspect extraction from Pros and Cons is rela-
tively simple, we will not discuss it further.  

We now focus on the more general case, i.e., extracting aspects from re-
views of Format 2, which usually consist of complete sentences. The 
above algorithm can also be applied. However, experiments have shown 
that it is not as effective because complete sentences are more complex and 
contain a large amount of noise. Below, we describe some unsupervised 
methods for finding explicit aspect expressions that are nouns and noun 
phrases. The first method is due to [37]. The method requires a large num-
ber of reviews and consists of two steps:  
1. Find frequent nouns and noun phrases: Nouns and noun phrases (or 

groups) are identified by a POS tagger. Their occurrence frequencies 
are counted, and only the frequent ones are kept. A frequency threshold 
can be decided experimentally. The reason for using this approach is 
that when people comment on different aspects of a product, the vo-
cabulary that they use usually converges. Thus, those nouns that are fre-
quently talked about are usually genuine and important aspects. Irrele-
vant contents in reviews are often diverse, i.e., they are quite different 
in different reviews. Hence, those infrequent nouns are likely to be non-
aspects or less important aspects.    

2. Find infrequent aspects by exploiting the relationships between aspects 
and opinion words: The above step can miss many genuine aspect ex-

My SLR is on the shelf 
by camerafun4. Aug 09 ‘04 
Pros: Great photos, easy to use, very small 
Cons: Battery usage; included memory is stingy. 
I had never used a digital camera prior to purchasing this Canon A70. I 
have always used a SLR … Read the full review 

Fig. 11.3. An example of a review of format 1. 

GREAT Camera., Jun 3, 2004  
Reviewer: jprice174 from Atlanta, Ga. 
I did a lot of research last year before I bought this camera... It kinda hurt 
to leave behind my beloved nikon 35mm SLR, but I was going to Italy, and 
I needed something smaller, and digital.  
The pictures coming out of this camera are amazing. The 'auto' feature 
takes great pictures most of the time. And with digital, you're not wasting 
film if the picture doesn't come out. … 

Fig. 11.4. An example of a review of format 2. 
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pressions which are infrequent. This step tries to find some of them. 
The idea is as follows: The same opinion word can be used to describe 
or modify different aspects. Opinion words that modify frequent aspects 
can also modify infrequent aspects and thus can be used to extract in-
frequent aspects. For example, “picture” has been found to be a frequent 
aspect, and we have the sentence, 

“The pictures are absolutely amazing.” 
If we know that “amazing” is an opinion word, then “software” can also 
be extracted as an aspect from the following sentence,  

“The software is amazing.” 
because the two sentences follow the same dependency pattern and 
“software” in the sentence is also a noun.  

This idea of using the modifying relationship of opinion words and 
aspects to extract aspects was later generalized to using dependency re-
lations [146], which was further developed into the double-propagation 
method for simultaneously extracting both opinion words and aspects 
[101]. The double-propagation method will be described in Sect. 11.5.4.  
The precision of step 1 of the above algorithm was improved in [99]. 

Their algorithm tries to remove those noun phrases that may not be prod-
uct aspects/features. It evaluates each noun phrase by computing a point-
wise mutual information (PMI) score between the phrase and some mero-
nymy discriminators associated with the product class, e.g., a scanner 
class. The meronymy discriminators for the scanner class are, “of scan-
ner,” “scanner has,” “scanner comes with,” etc., which are used to find 
components or parts of scanners by searching on the Web. The PMI meas-
ure is a simplified version of that in Sect. 11.2.2. 

,
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where a is a candidate aspect identified in step 1 and d is a discriminator. 
Web search is used to find the number of hits of individual terms and also 
their co-occurrences. The idea of this approach is clear. If the PMI value of 
a candidate aspect is too low, it may not be a component of the product be-
cause a and d do not co-occur frequently. The algorithm also distinguishes 
components/parts from attributes using WordNet’s is-a hierarchy (which 
enumerates different kinds of properties) and morphological cues (e.g., “-
iness,” “-ity” suffixes).  

Other related works on aspect extraction use existing knowledge, super-
vised learning, semi-supervised learning, topic modeling, and clustering. 
Several researchers also explored the idea of jointly modeling both aspects 
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and opinions. Lu et al. [75] exploited an ontology (Freebase: http://www 
.freebase.com) to obtain aspects to a topic and used them to organize scat-
tered opinions to generate structured summaries. Su et al. [111] proposed a 
clustering method with mutual reinforcement to identify implicit aspects. 
In [30], semi-supervised learning and domain knowledge are employed. 

If reviews with manually annotated aspects and opinion expressions are 
available, standard supervised learning methods can be applied. Jin and Ho 
[41] applied a lexicalized hidden Markov model to learn patterns to extract 
aspects and opinion expressions. Jakob and Gurevych [39] used condi-
tional random fields. Wu et al. [132] used dependency tree kernels.  

Topic modeling methods have been attempted as an unsupervised and 
knowledge-lean approach. Titov and McDonald [116] showed that global 
topic models such as LDA (Latent Dirichlet allocation [5]) might not be 
suitable for detecting rateable aspects. They proposed multigrain topic 
models to discover local rateable aspects. Here, each discovered aspect is a 
unigram language model, i.e., a multinomial distribution over words. Such 
a representation is thus not as easy to interpret as aspects extracted by pre-
vious methods, but its advantage is that different words expressing the 
same or related aspects (more precisely aspect expressions) can usually be 
automatically grouped together under the same aspect. However, Titov and 
McDonald [116] did not separate aspects and opinion words in the discov-
ery. Lin and He [69] proposed a joint topic-sentiment model also by ex-
tending LDA, where aspect words and opinion words were still not explic-
itly separated. To separate aspects and opinion words using topic models, 
Mei et al. [80] proposed to use a positive sentiment model and a negative 
sentiment model in additional to aspect models. Brody and Elhadad [8] 
proposed to first identify aspects using topic models and then identify as-
pect-specific opinion words by considering adjectives only. Zhao et al. 
[145] proposed a MaxEnt-LDA hybrid model to jointly discover both as-
pect words and aspect-specific opinion words, which can leverage syntac-
tic features to help separate aspects and opinion words. Topic modeling-
based approaches were also used by Liu et al. [74] and Lu et al. [76].  

Another line of work is to associate aspects with opinion/sentiment rat-
ings. It aims to predict ratings based on learned aspects or jointly model 
aspects and ratings. Titov and McDonald [115] proposed a statistical mod-
el that is able to discover aspects from text and to extract textual evidence 
from reviews supporting each aspect rating. Lu et al. [77] defined a prob-
lem of rated aspect summarization. They proposed to use the structured 
probabilistic latent semantic analysis method to learn aspects from a bag of 
phrases and a local/global method to predict aspect ratings. Wang et al. 
[121] proposed to infer both aspect ratings and aspect weights at the level 
of individual reviews based on learned latent aspects. 
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11.5.4  Simultaneous Opinion Lexicon Expansion and Aspect 
Extraction 

In [100, 101], a method was proposed to extract both opinion words and 
aspects simultaneously by exploiting certain syntactic relations of opinion 
words and aspects. Although it was originally designed to work with prod-
uct reviews, a reimplementation and extension of it has been applied on 
Twitter data, forum discussions, and blog postings. It has also been suc-
cessfully used to analyze Chinese online discussions [139]. The method 
needs only an initial set of opinion word seeds as the input and no seed as-
pects are required. It is based on the observation that opinions almost al-
ways have targets, and there are natural relations connecting opinion words 
and targets in a sentence due to the fact that opinion words are used to 
modify targets. Furthermore, it was found that opinion words have rela-
tions among themselves and so do targets. The opinion targets are usually 
aspects. Thus, opinion words can be recognized by identified aspects, and 
aspects can be identified by known opinion words. The extracted opinion 
words and aspects are utilized to identify new opinion words and new as-
pects, which are used again to extract more opinion words and aspects. 
This propagation process ends when no more opinion words or aspects can 
be found. As the process involves propagation through both opinion words 
and aspects, the method is called double propagation. Extraction rules are 
designed based on different relations between opinion words and aspects 
and also opinion words and aspects themselves. Dependency grammar 
[114] was adopted to describe these relations.  

The algorithm uses only a simple type of dependencies called direct 
dependencies to model useful relations. A direct dependency indicates 
that one word depends on the other word without any additional words in 
their dependency path or they both depend on a third word directly. Some 
constraints are also imposed. Opinion words are considered to be adjec-
tives and aspects nouns or noun phrases. Thus, the potential POS tags for 
opinion words are JJ (adjectives), JJR (comparative adjectives), and JJS 
(superlative adjectives), while those for aspects are NN (singular nouns) 
and NNS (plural nouns). The dependency relations describing relations be-
tween opinion words and aspects include mod, pnmod, subj, s, obj, obj2, 
and desc, while the relations for opinion words and aspects themselves 
contain only the conjunction relation conj. We use OA-Rel to denote the 
relations between opinion words and aspects, OO-Rel between opinion 
words themselves, and AA-Rel between aspects. Each relation in OA-Rel, 
OO-Rel, or AA-Rel can be formulated as a triple POS(wi), R, POS(wj), 
where POS(wi) is the POS tag of word wi and R is the relation. The values 
of POS(wi) and R were listed above.  
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 The extraction process uses a rule-based approach with the relations de-
fined above. For example, in an opinion sentence “Canon G3 produces 
great pictures,” the adjective “great” is parsed as directly depending on the 
noun “pictures” through mod, formulated as an OA-Rel JJ, mod, NNS. If 
we know “great” is an opinion word and are given the rule “a noun on 
which an opinion word directly depends through mod is taken as an as-
pect,” we can extract “pictures” as an aspect. Similarly, if we know “pic-
tures” is an aspect, we can extract “great” as an opinion word using a simi-
lar rule. The propagation performs four subtasks:  

 Observations Output Examples 

R11 
(OA-Rel) 

 

OO-DepA 
s.t. O{O}, O-Dep{MR}, 

POS(A){NN} 

a = A The phone has a good “screen”. 

goodmodscreen 

R12 
(OA-Rel) 

 

OO-DepHA-DepA 
s.t. O{O}, O/A-Dep{MR}, 

POS(A){NN} 

a = A “iPod” is the best mp3 player. 

bestmodplayersubjiPod 

R21 
(OA-Rel) 

 

OO-DepA 
s.t. A{A}, O-Dep{MR}, 

POS(O){JJ} 

o = O same as R11 with screen as the known 
word and good as the extracted word 

R22 
(OA-Rel) 

 

OO-DepHA-DepA 
s.t. A{A}, O/A-Dep{MR}, 

POS(O){JJ} 

o = O same as R12 with iPod is the known 
word and best as the extract word. 

R31 
(AA-Rel) 

Ai(j)Ai(j)-DepAj(i) 
s.t. Aj(i) {A}, Ai(j)-Dep{CONJ}, 

POS(Ai(j)){NN} 

a = Ai(j) Does the player play dvd with audio 
and “video”? 

videoconjaudio 

R32 
(AA-Rel) 

AiAi-DepHAj-DepAj 
s.t. Ai{A}, Ai-Dep=Aj-Dep OR 

(Ai-Dep = subj AND Aj-Dep = obj),
POS(Aj){NN} 

a = Aj Canon “G3” has a great len. 

lenobjhassubjG3 

R41 
(OO-Rel) 

Oi(j)Oi(j)-DepOj(i) 
s.t. Oj(i){O}, Oi(j)-Dep{CONJ}, 

POS(Oi(j)){JJ} 

o = Oi(j) The camera is amazing and “easy” to 
use. 

easyconjamazing 

R42 
(OO-Rel) 

OiOi-DepHOj-DepOj 
s.t. Oi{O}, Oi-Dep=Oj-Dep OR 

(Oi /Oj-Dep {pnmod, mod}), 
POS(Oj){JJ} 

o = Oj If you want to buy a sexy, “cool”, ac-
cessory-available mp3 player, you can 

choose iPod. 
sexymodplayermodcool 

Table 11.3. Rules for aspect and opinion word extraction.  
Column 1 is the rule ID, column 2 is the observed relation (line 1) and the con-
straints that it must satisfy (lines 2 – 4), column 3 is the output, and column 4 is 
an example. In each example, the underlined word is the known word and the 
word with double quotes is the extracted word. The corresponding instantiated 
relation is given right below the example.  
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1.  extracting aspects using opinion words  
2.  extracting aspects using the extracted aspects  
3.  extracting opinion words using the extracted aspects  
4.  extracting opinion words using both the given and the extracted opin-

ion words  
OA-Rels are used for tasks (1) and (3), AA-Rels are used for task (2), 

and OO-Rels are used for task (4). Four types of rules are defined, respec-
tively, for these four subtasks and the details are given in Table 11.3. In the 
table, o (or a) stands for the output (or extracted) opinion word (or aspect). 
{O} (or {A}) is the set of known opinion words (or the set of aspects) ei-
ther given or extracted. H means any word. POS(O(or A)) and O(or A)-
Dep stand for the POS tag and dependency relation of the word O (or A) 
respectively. {JJ} and {NN} are sets of POS tags of potential opinion 
words and aspects respectively. {JJ} contains JJ, JJR and JJS; {NN} con-
tains NN and NNS. {MR} consists of dependency relations describing rela-
tions between opinion words and aspects (mod, pnmod, subj, s, obj, obj2, 
and desc). {CONJ} contains conj only. 

The arrows mean dependency. For example, O  O-Dep  A means O 
depends on A through a syntactic relation O-Dep. Specifically, we employ 
R1i to extract aspects (a) using opinion words (O), R2i to extract opinion 
words (o) using aspects (A), R3i to extract aspects (a) using extracted as-
pects (Ai) and R4i to extract opinion words (o) using known opinion words 
(Oi). Take R11 as an example. Given the opinion word O, the word with 
the POS tag NN and satisfying the relation O-Dep is extracted as an aspect. 
For example, we have the sentence “The phone has good screen” whose 
corresponding dependency tree is in Fig. 11.5. If we know that “good” is 
an opinion word, and it depends on “screen” through mod which is con-
tained in {MR} and “screen” is tagged as NN, R11 can be applied to extract 
“screen” as an aspect. 

It should be noted that although this method only finds noun aspect 
words and adjective opinion words, it can be extended to aspects and opin-
ion words of other parts-of-speech by adding more dependency relations. It 
also has a method to join words to form aspect phrases and a method to de-
termine the opinion orientations of the extracted opinion words.  

 
Fig. 11.5: The dependency tree for “The phone has good screen” 

     subj                   obj 

  det                                       mod 

    The                                   good 

    phone                screen  

has 
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11.6 Mining Comparative Opinions 

Directly or indirectly expressing positive or negative opinions about an en-
tity and its aspects is only one form of evaluation. Comparing the entity 
with some other similar entities is another. Comparisons are related to but 
are also quite different from regular opinions. They not only have different 
semantic meanings but also different syntactic forms. For example, a typi-
cal regular opinion sentence is “The picture quality of this camera is 
great,” and a typical comparative sentence is “The picture quality of Cam-
era-x is better than that of Camera-y.” This section first defines the prob-
lem and then presents some existing methods to solve it [18, 28, 42, 43].  

11.6.1  Problem Definitions  

In general, a comparative sentence expresses a relation based on similari-
ties or differences of more than one entity. The comparison is usually con-
veyed using the comparative or superlative form of an adjective or adverb. 
A comparative sentence typically states that one entity has more or less of 
a certain attribute than another entity. A superlative sentence typically 
states that one entity has the most or least of a certain attribute among a set 
of similar entities. In general, a comparison can be between two or more 
entities, groups of entities, and one entity and the rest of the entities. It can 
also be between an entity and its previous versions. 

Two types of comparatives: In English, comparatives are usually 
formed by adding the suffix -er and superlatives are formed by adding the 
suffix -est to their base adjectives and adverbs. For example, in “The bat-
tery life of Camera-x is longer than that of Camera-y,” “longer” is the com-
parative form of the adjective “long.” In “The battery life of this camera is 
the longest,” “longest” is the superlative form of the adjective “long”. We 
call this type of comparatives and superlatives Type 1 comparatives and 
superlatives. Note that for simplicity, we often use comparative to mean 
both comparative and superlative if superlative is not explicitly stated.  

Adjectives and adverbs with two syllables or more and not ending in y 
do not form comparatives or superlatives by adding -er or -est. Instead, 
more, most, less, and least are used before such words, e.g., more beauti-
ful. We call this type of comparatives and superlatives Type 2 compara-
tives and Type 2 superlatives. Both Type 1 and Type 2 are called regular 
comparatives and superlatives.  

In English, there are also irregular comparatives and superlatives, i.e., 
more, most, less, least, better, best, worse, worst, further/farther and fur-
thest/farthest, which do not follow the above rules. However, they behave 
similarly to Type 1 comparatives and are thus grouped under Type 1.  
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Apart from these standard comparatives and superlatives, many other 
words or phrases can also be used to express comparisons, e.g., prefer and 
superior. For example, the sentence, “Camera-x’s quality is superior to 
Camera-y,” says that “Camera-x” is better or preferred. In [42], Jindal and 
Liu identified a list of such words. Since these words behave similarly to 
Type 1 comparatives, they are also grouped under Type 1. 

Types of comparative relations: Comparative relations or comparisons 
can be grouped into four main types. The first three types are called the 
gradable comparisons and the last one the non-gradable comparisons.  
1. Non-equal gradable comparisons: Relations of the type greater or less 

than that express an ordering of some entities with regard to some of 
their shared aspects, e.g., “The Intel chip is faster than that of AMD”. 
This type also includes user preferences, e.g., “I prefer Intel to AMD.”  

2. Equative comparisons: Relations of the type equal to that state two or 
more entities are equal with regard to some of their shared aspects, e.g., 
“The performance of Car-x is about the same as that of Car-y.” 

3. Superlative comparisons: Relations of the type greater or less than all 
others that rank one entity over all others, e.g., “The Intel chip is the 
fastest.” 

4. Non-gradable comparisons: Relations that compare aspects of two or 
more entities, but do not grade them. There are three main sub-types:  
 Entity A is similar to or different from entity B with regard to some 

of their shared aspects, e.g., “Coke tastes differently from Pepsi.” 
 Entity A has aspect a1, and entity B has aspect a2 (a1 and a2 are usu-

ally substitutable), e.g., “Desktop PCs use external speakers but 
laptops use internal speakers.” 

 Entity A has aspect a, but entity B does not have, e.g., “Phone-x has 
an earphone, but Phone-y does not have.” 

Comparative words used in non-equal gradable comparisons can be fur-
ther categorized into two groups according to whether they express in-
creased or decreased quantities, which are useful in opinion analysis.  

 Increasing comparatives: Such a comparative expresses an increased 
quantity, e.g., more and longer.  

 Decreasing comparatives: Such a comparative expresses a decreased 
quantity, e.g., less and fewer.  

Objective of mining comparative opinions: Given a collection of opin-
ionated documents D, discover in D all comparative opinion sextuples 
of the form:  

 (E1, E2, A, PE, h, t),  
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where E1 and E2 are the entity sets being compared based on their 
shared aspects A (entities in E1 appear before entities in E2 in the sen-
tence), PE ( {E1, E2}) is the preferred entity set of the opinion holder 
h, and t is the time when the comparative opinion is expressed.  

Example 7: Consider the comparative sentence “Canon’s optics is better 
than those of Sony and Nikon,” written by John in 2010. The extracted 
comparative opinion is: 

 ({Canon}, {Sony, Nikon}, {optics}, preferred:{Canon}, John, 2010) 

The entity set E1 is {Canon}, the entity set E2 is {Sony, Nikon}, their 
shared aspect set A being compared is {optics}, the preferred entity set is 
{Canon}, the opinion holder h is John, and the time t when this compara-
tive opinion was written is 2010.  ▀ 

To mine comparative opinions, the tasks of extracting entities, aspects, 
opinion holders, and times are the same as those for mining regular opin-
ions. In [43], a method based on label sequential rules (LSR) is proposed 
to extract entities and aspects that are compared. A similar approach is de-
scribed in [66] for extracting the compared entities. Clearly, the ap-
proaches discussed in previous sections are applicable as well, and so are 
many other information extraction methods. Below, we only focus on 
studying two comparative opinion mining specific problems, i.e., identify-
ing comparative sentences and identifying the preferred entity set.   

11.6.2  Identification of Comparative Sentences  

Although most comparative sentences contain comparative adjectives and 
comparative adverbs, e.g., better, and longer, many sentences that contain 
such words are not comparative sentences, e.g., “I cannot agree with you 
more.” Similarly, many sentences that do not contain such indicators are 
comparative sentences (usually non-gradable), e.g., “Cellphone-x has 
Bluetooth, but Cellphone-y does not have.”  

It was shown in [42] that almost every comparative sentence has a key-
word or a key phrase indicating comparison. Using a set of 83 keywords 
and key phrases, 98% of the comparative sentences (recall = 98%) were 
identified with a precision of 32% using the authors’ data set. The key-
words and key phrases are: 

1. Comparative adjectives (JJR) and comparative adverbs (RBR), e.g., 
more, less, better, and words ending with -er.  

2. Superlative adjectives (JJS) and superlative adverbs (RBS), e.g., most, 
least, best, and words ending with -est. 



496      11 Opinion Mining and Sentiment Analysis 

3. Other indicative words and phrases such as same, similar, differ, as well 
as, favor, beat, win, exceed, outperform, prefer, ahead, than, superior, 
inferior, number one, up against, etc.  

Since keywords and key phrases alone are able to achieve a high recall, 
the set of keywords and key phrases can be used to filter out those sen-
tences that are unlikely to be comparative sentences. We can then improve 
the precision of the remaining set of sentences.  

It was also observed in [42] that comparative sentences have strong pat-
terns involving comparative keywords, which is not surprising. These pat-
terns can be used as features in machine learning. To discover these pat-
terns, class sequential rule (CSR) mining was used in [42]. Class 
sequential rule mining is a sequential pattern mining method (see Sect. 
2.9.3). Each training example used for mining CSRs is a pair (si, yi), where 
si is a sequence and yi is a class, e.g., yi  {comparative, non-
comparative}. The sequence is generated from a sentence. Instead of using 
each full sentence, only words near a comparative keyword are used to 
generate each sequence. Each sequence is also labeled with a class indicat-
ing whether the sentence is a comparative sentence or not. Using the train-
ing data, CSRs can be generated. The detailed mining algorithm can be 
found in Sect. 2.9.3.  

For classification model building, the left-hand side sequence patterns of 
the CSR rules with high conditional probabilities were used as features in 
[42]. Each sentence produces a vector. If the sentence matches a pattern, 
the feature value for the pattern of the vector is set to 1, and otherwise it is 
set to 0. Bayesian classification was employed for model building.  
Classifying comparative sentences into four types: After comparative 
sentences are identified, we also want to classify them into the four types 
or classes, non-equal gradable, equative, superlative, and non-gradable. 
For this task, [42] showed that keywords and key phrases were already suf-
ficient, i.e., the set of keywords and key phrases were used as features for 
machine learning. SVM was shown to give the best results. 

11.6.3  Identification of Preferred Entities 

Similar to opinion mining of normal sentences, opinion mining of com-
parative sentences also needs to determine whether a comparative sentence 
is opinionated or not. However, unlike normal sentences, it does not make 
much sense to apply sentiment classification to a comparative sentence as 
a whole because an opinionated comparative sentence does not express a 
direct positive or negative opinion. Instead, it compares multiple entities 
by ranking the entities based on their shared aspects to give a comparative 
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opinion. In other words, it presents a preference order of the entities based 
on the comparison of some of their shared aspects. Since most comparative 
sentences compare two sets of entities, analysis of an opinionated com-
parative sentence means identifying the preferred entity set. However, for 
application purposes, one may assign positive opinions to the aspects of 
the entities in the preferred set, and negative opinions to the aspects of the 
entities in the not preferred set. Since little research has been done on clas-
sifying whether a comparative sentence is opinionated or not, below we 
only describe a method for identifying the preferred entity set [28].  

The approach bears some resemblance to the lexicon-based approach to 
identifying opinion orientations on aspects. Thus, it needs opinion words 
used for comparisons. Similar to opinion words of the base type, these opi-
nion words of comparative type can be divided into two categories.   

1.  Comparative opinion words: For Type 1 comparatives, this category in-
cludes words like better, worse, etc., which have explicit opinions. In 
sentences involving such words, it is usually easy to determine which 
entity set is the preferred one of the sentence author.  

In the case of Type 2 comparatives, formed by adding more, less, 
most, and least before adjectives/adverbs, the preferred entity set is de-
termined by both words. The following rules are applicable: 

Comparative Negative ::=  increasing comparative N 
    | decreasing comparative P   
Comparative Positive  ::=  increasing comparative P  
  | decreasing comparative N 

 An increasing comparative expresses an increased value of a quantity, 
e.g., “more,” and “longer,” and a decreasing comparative expresses a 
decreased value of a quantity, e.g., “less,” and “fewer.” The first rule 
above says that the combination of an increasing comparative (e.g., 
more) and a negative opinion word (e.g., awful) implies a Type 2 com-
parative negative opinion (on the left). The other rules have similar 
meanings. P (respectively N) denotes a positive (negative) opinion 
word or phrase of the base type. In fact, the above four rules are already 
covered by the basic rules of opinions in Sect. 11.5.2.  

2.  Context-dependent comparative opinion words: In the case of Type 1 
comparatives, such words include higher, lower, etc. For example, 
“Car-x has higher mileage per gallon than Car-y” carries a positive sen-
timent on “Car-x” and a negative sentiment on “Car-y” comparatively, 
i.e., “Car-x” is preferred. However, without domain knowledge it is 
hard to know whether “higher” is positive or negative. The combination 
of “higher” and “mileage” with the domain knowledge tells us that 
“higher mileage” is desirable. Again, these cases are already included in 
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the basic rules of opinions in Sect. 11.5.2. In this case, “mileage” is a 
positive potential item.  

In the case of Type 2 comparatives, the situation is similar. However, 
in this case, the comparative word (more, most, less or least), the adjec-
tive/adverb, and the aspect are all important in determining the opinion 
or preference. If we know whether the comparative word is increasing 
or decreasing (which is easy since there are only four of them), then the 
opinion can be determined by applying the four rules in (1).  

As discussed in Sect. 11.4, the pair (aspect, opinion_word) forms an 
opinion context. To determine whether a pair is positive or negative, the 
algorithm in [28] resorts to the external information, i.e., a large corpus 
of Pros and Cons from product reviews. It basically determines whether 
the aspect and opinion_word are more associated with each other in 
Pros or in Cons. If they are more associated in Pros, opinion_word is 
positive. Otherwise, it is negative. Using Pros and Cons is natural be-
cause they are short phrases and thus have little noise, and their opinion 
orientations are also known.  

Due to the observation below, we can obtain comparative opinion words 
by simply converting opinion adjectives/adverbs of the base form to their 
comparative forms, which can be done automatically based on the English 
comparative formation rules described earlier and the WordNet. 

Observation: If an adjective or adverb of the base form is positive (or neg-
ative), then its comparative or superlative form is also positive (or nega-
tive), e.g., good, better, and best.  

After the conversion, these words are manually categorized into increas-
ing and decreasing comparatives. 

Once all the information is available, determining which entity set is 
preferred is relatively simple. Without negation, if the comparative is posi-
tive (or negative), then the entities before (or after) than is preferred.  Oth-
erwise, the entities after (or before) than are preferred. Additional details 
can be found in [28]. In [24], Fiszman et al. also studied the problem of 
identifying which entity has more of certain aspects in comparative sen-
tences in biomedical texts, but it does not analyze opinions.  

11.7 Some Other Problems  

Besides the problems discussed in previous sections, there are still many 
other challenges in opinion mining. This section gives an introduction to 
some of them. As we will see, most of these problems are related to their 
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general problems that have been studied before but the opinion text pro-
vides more clues for their solutions and also has additional requirements.  

Entity, opinion holder, and time extraction: In some applications, it is 
useful to identify and extract opinion holders and the times when opinions 
are given. As we mentioned earlier, opinion holders are more useful for 
news articles or other types of formal documents in which the persons or 
organizations who expressed opinions are stated explicitly in the text. Such 
holders need to be identified by the system, and so do the dates and times 
when opinions are expressed. These extraction tasks are collectively called 
Named Entity Recognition (NER). They have been studied extensively in 
the literature. See a comprehensive survey of information extraction tasks 
and algorithms in [105].  

In the case of social media on the Web, the opinion holders are often the 
authors of the discussion postings, bloggers, or reviewers, whose login ids 
are known although their true identities in the real world may be unknown. 
The date and time when an opinion is submitted are also known and dis-
played on the page, so their extraction is easy (see Chap. 9 on how to ex-
tract them).  

Entity name extraction is also a NER problem, but there is a difference 
here. In a typical opinion mining application, the user wants to find opin-
ions on some competing entities, e.g., competing products or brands. How-
ever, he/she often can only provide a few names because there are so many 
different brands and models. Furthermore, Web users also write names of 
the same product brands in many ways. For example, “Motorola” may be 
written as “Moto” or “Mot,” and “Samsung” may be written as “Sammy.” 
Product model names have even more variations. It is thus important for a 
system to automatically discover them from a relevant corpus (e.g., blogs 
and forum discussions). The key requirement of this discovery is that the 
discovered entities must be of the same class/type as entities provided by 
the user (e.g., phone brands and models).  

In [67], this problem was modeled a set expansion problem [29, 95], 
which expands a set of given seed entities (e.g., product names). Formally, 
the problem is stated as follows: Given a set Q of seed entities of a particu-
lar class C, and a set D of candidate entities, we wish to determine which 
of the entities in D belong to C. That is, we “grow” the class C based on 
the set of seed examples Q. Although this is a classification problem, in 
practice, the problem is often solved as a ranking problem, i.e., to rank the 
entities in D based on their likelihoods of belonging to C.  

The classic methods for solving this problem in NLP are based on dis-
tributional similarity [63, 95]. The approach works by comparing the simi-
larity of the surround words distributions of each candidate entity with the 
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seed entities and then ranking the candidate entities based on the similarity 
values. However, it was shown in [67] that this approach is inaccurate, and 
PU learning based on S-EM (Chap. 5) performed considerably better based 
on the results from 10 corpora. To apply PU learning, the given seeds are 
used to automatically extract some positive examples, which are sentence 
segments that contain one of the seed product names. The rest of the sen-
tences are treated as unlabeled examples. Additionally, it was also shown 
that S-EM outperforms the machine learning technique Bayesian Sets [29], 
which was designed specifically for set expansion.  

Grouping aspect expressions indicating the same aspects: It is common 
that people use different words or phrases (which are called aspect expres-
sions in Sect. 11.1) to describe the same aspect. For example, photo and 
picture refer to the same aspect in digital camera reviews. Identifying and 
grouping aspect expressions indicating the same aspect are essential for 
applications. Although WordNet [81] and other thesaurus dictionaries help 
to some extent, they are far from sufficient due to the fact that many syno-
nyms are domain dependent. For example, picture and movie are syno-
nyms in movie reviews, but they are not synonyms in digital camera re-
views as picture is more related to photo while movie refers to video. It is 
also important to note that although most aspect expressions of an aspect 
are domain synonyms, they are not always synonyms. For example, “ex-
pensive” and “cheap” can both indicate the aspect price but they are not 
synonyms of price.  

Carenini et al. [11] proposed the first method to solve this problem in 
the context of opinion mining. Their method is based on several similarity 
metrics defined using string similarity, synonyms, and distances measured 
using WordNet (they are similar to those for information integration in 
Chap. 10). It requires a taxonomy of aspects to be given for a particular 
domain. The algorithm merges each discovered aspect expression to an as-
pect node in the taxonomy. Experiments based on digital camera and DVD 
reviews showed promising results.  

In [138], Zhai et al. proposed a semi-supervised learning method to 
group aspect expressions into the user-specified aspect groups. Each group 
represents a specific aspect. To reflect the user needs, he/she first manually 
labels a small number of seeds for each group. The system then assigns the 
rest of the discovered aspect expressions to suitable groups using semi-
supervised learning (LU learning) based on labeled seeds and unlabeled 
examples. The method used the Expectation-Maximization (EM) algo-
rithm, specifically, the naïve Bayesian EM formulation (see Sect. 5.1.1). 
When the algorithm ends, each unlabeled aspect expression is assigned to 
a suitable group.  
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The method in [138] uses two pieces of prior knowledge to provide a 
better initialization for EM. The two pieces of prior knowledge are (1) as-
pect expressions sharing some common words are likely to belong to the 
same group, e.g., “battery life” and “battery power,” and (2) aspect expres-
sions that are synonyms in a dictionary are likely to belong to the same 
group, e.g., “movie” and “picture.” These two pieces of knowledge help 
EM produce better classification results.  

Mapping implicit aspect expressions to aspects: There are many types 
of implicit aspect expressions. Adjectives are perhaps the most common 
type. Many adjectives modify or describe some specific attributes or prop-
erties of entities. For example, the adjective “heavy” usually describes the 
aspect weight of an entity. “Beautiful” is normally used to describe (posi-
tively) the aspect look or appearance of an entity. By no means, however, 
does this say that these adjectives only describe such aspects. Their exact 
meanings can be domain dependent. For example, “heavy” in the sentence 
“the traffic is heavy” does not describe the weight of the traffic. One way to 
map implicit aspect expressions to aspects is to manually compile a list of 
such mappings during training data annotation, which can then be used in 
the same domain in the future. However, we should note that some implicit 
aspect expressions are very difficult to extract and to map, e.g., “fit in 
pockets” in the sentence “This phone will not easily fit in pockets.” 

Coreference resolution: This problem has been extensively studied in the 
NLP community. We use the following example blog to illustrate the 
problem: “I bought a Canon S500 camera yesterday. It looked beautiful. I 
took a few photos last night. They were amazing”. “It” in the second 
sentence refers to “Canon S500 camera,” which is an entity. “They” in the 
fourth sentence refers to “photos,” which is an aspect of “Canon S500 
camera”. Recognizing these coreference relationships is called coreference 
resolution. Its usefulness in this case is clear. Without resolving them, we 
lose recall. That is, although we know that the second and fourth sentences 
express opinions, we do not know about what. Without knowing the 
opinion target, the opinion is of limited use.  

In [16], the problem of entity and aspect coreference resolution was 
proposed. It determines which mentions of entities and/or aspects refer to 
the same entities. Here entities refer to both entities and aspects. Like most 
coreference resolution techniques, this paper took the supervised learning 
approach. The key interesting points were the design and testing of two 
opinion-related features to help classification. The first feature is based on 
opinion analysis of regular sentences (non-comparative sentences) and 
comparative sentences, and the idea of sentiment consistency. For exam-
ple, we have the sentences, “The Sony camera is better than the Canon 
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camera. It is cheap too.” It is clear that “It” means “Sony” because in the 
first sentence, the opinion about “Sony” is positive (comparative positive), 
but it is negative (comparative negative) about “Canon,” and the second 
sentence is positive. Thus, we can conclude that “It” refers to “Sony” be-
cause people usually express sentiments in a consistent way. It is unlikely 
that “It” refers to “Canon.” As we can see, to obtain this feature, the sys-
tem needs to have the ability to determine positive and negative opinions 
expressed in regular and comparative sentences.  

The second feature considers what entities and aspects are modified by 
what opinion words. Consider these sentences, “The picture quality of the 
Canon camera is very good. It is not expensive either.” The question is 
what “It” refers to, “Canon camera” or “picture quality.” Clearly, we know 
that “It” refers to “Canon camera” because “picture quality” cannot be ex-
pensive. To obtain this feature, the system needs to identify what opinion 
words are usually associated with what entities or aspects, which means 
that the system needs to discover such relationships from the corpus. These 
two features can boost the coreference resolution accuracy.  

Other NLP problems: The preceding problems are just some of the 
problems. In fact, there are many other NLP problems that need to be 
solved in order to produce accurate regular opinion quintuples (Sect. 11.1) 
and comparative opinion sextuples (Sect. 11.6.1). However, little research 
has been done to solve these problems. We use seven example sentences to 
illustrate some of them.  

(1) Trying out Google chrome because Firefox keeps crashing.  
(2) I am so happy because my new iPhone is nothing like my old ugly 

Nokia phone. 
(3) After my wife and I slept on the mattress for only a week, I found a 

hill in the middle.  
(4) Since I had a lot of pain on my back my doctor put me on the drug, 

and only two weeks after I have no more pain.  
(5) Anyone knows a good Sony camera? 
(6) If I can find a good Sony camera, I will buy it.  
(7) What a great car, it stopped working in the second day.  

For sentence (1), the opinion about Firefox is clearly negative, but for 
Google chrome, there is no opinion. We need to segment the sentence into 
clauses to decide that “crashing” only applies to Firefox. “Trying out” also 
indicates that there is no opinion yet. For sentence (2), it is easy to know 
that the opinion on the Nokia phone is negative, but it is not so easy to 
know whether the opinion on iPhone is positive or negative unless we real-
ize that this is a comparative sentence. For sentence (3), the difficulty is 
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that there is no adjective or adverb opinion word. In fact, this is an objec-
tive sentence rather than a subjective sentence. However, “hill”, which is a 
noun, does imply a negative opinion for the mattress although “hill” itself 
bears no opinion. The issue is how to detect such cases. Some initial work 
has been done in [140] but the accuracy is still low. Sentence (4) shows an 
indirect opinion. This sentence has two conflict opinion expressions “a lot 
of pain” and “no more pain.” The question is whether the drug is effective 
or not. Sentence (5) is a question and expresses no opinion, although the 
opinion word “good” is there. However, in some cases, question sentences 
can express opinions, e.g., “Any idea how to repair this lousy Sony cam-
era?” Sentence (6) is a conditional sentence, which again has no opinion. 
However, conditional sentences can express opinions in many cases too, 
e.g., “If you are looking for a good camera, get this Sony” [85]. The first 
part of sentence (7) is sarcastic. Sarcasm is difficult to deal with. Some ini-
tial work has been done in [118].  

In summary, to handle all these sentences and their associated problems, 
we need deeper sentence analysis and in many cases even at the semantic 
level. So far, not much research has been done.  

11.8 Opinion Search and Retrieval  

As Web search has proven to be valuable, it is not hard to imagine that 
opinion search will also be of great use. Two typical kinds of opinion 
search queries are as follows:    

1. Find public opinions on a particular entity or an aspect of the entity, 
e.g., find customer opinions on a digital camera or the picture quality 
of the camera, and find public opinions on a political topic.  

2. Find opinions of a person or organization (i.e., opinion holder) on a 
particular entity or an aspect of the entity, e.g., find Barack Obama’s 
opinion on abortion. This type of search is particularly relevant to 
news articles, where individuals or organizations who express opinions 
are explicitly stated.  

For the first type of queries, the user may simply give the name of the 
entity or the name of the aspect together with the name of the entity. For 
the second type of queries, the user may give the name of the opinion 
holder and the name of the entity.  

Similar to traditional Web search, opinion search also has two major 
tasks: 1) retrieving relevant documents/sentences to the user query and 2) 
ranking the retrieved documents/sentences. However, there are also major 
differences. On retrieval, opinion search needs to perform two sub-tasks:  
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1. Find documents or sentences that are relevant to the query topic. This 
is the only task performed in the traditional Web search or retrieval.  

2. Determine whether the documents or sentences express opinions and 
whether the opinions are positive or negative. This is the task of sen-
timent analysis. Traditional search does not perform this sub-task.  

As for ranking, traditional Web search engines rank Web pages based 
on authority and relevance scores (Chap. 6). The basic premise is that the 
top ranked pages (ideally the first page) contain sufficient information to 
satisfy the user’s information need. This paradigm is adequate for factual 
information search because one fact equals to any number of the same fact. 
That is, if the first page contains the required information, there is no need 
to see the rest of the relevant pages. For opinion search, this paradigm is 
fine for the second type of queries because the opinion holder usually has 
only one opinion on a particular entity or topic, and the opinion is con-
tained in a single document or page. However, for the first type of opinion 
queries, this paradigm needs to be modified because ranking in opinion 
search has two objectives. First, it needs to rank those opinionated docu-
ments or sentences with high utilities or information contents at the top 
(see Sect. 11.10). Second, it needs to reflect the natural distribution of 
positive and negative opinions. This second objective is important because 
in most applications the actual proportions of positive and negative opin-
ions are the most important pieces of information. Only reading the top 
ranked results as in the traditional search is problematic because the top re-
sult only represents the opinion of a single opinion holder. Thus, ranking 
in opinion search needs to capture the natural distribution of positive and 
negative sentiments of the whole population. One simple solution is to 
produce two rankings, one for positive opinions and one for negative opin-
ions, and also display the numbers of positive and negative opinions.   

Providing an aspect-based summary for each opinion search will be 
even better. However, it is an extremely challenging problem because as-
pect extraction, aspect grouping, and associating entities to its aspects are 
all very difficult problems. Without effective solution for them, such sum-
mary will not be possible.  

To give a favor of opinion search, we present an example system [143], 
which is the winner of the blog track in the 2007 TREC evaluation 
(http://trec.nist.gov/). The task is exactly opinion search (or retrieval). This 
system has two components. The first component is for retrieving relevant 
documents for each query. The second component is for classifying the re-
trieved documents as opinionated or not-opinionated (subjectivity classifi-
cation). The opinionated documents are further classified into positive, 
negative, or mixed (containing both positive and negative opinions).  
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Retrieval component: This component performs the traditional informa-
tion retrieval (IR) task. This component considers both keywords and con-
cepts. Concepts are named entities (e.g., names of people or organizations) or 
various types of phrases from dictionaries and other sources (e.g., Wikipedia 
entries). The strategy for processing a user query is as follows [142, 143]: It 
first recognizes and disambiguates the concepts within the user query. It then 
broadens the search query with its synonyms. After that, it recognizes con-
cepts in the retrieved documents and also performs pseudo-feedback to auto-
matically extract relevant words from the top-ranked documents to expand the 
query. Finally, it computes a similarity (or relevance score) of each document 
with the expanded query using both concepts and keywords.  

Opinion classification component: This component performs two tasks: 
(1) classifying each document into one of the two categories, opinionated and 
not-opinionated, and (2) classifying each opinionated document as expressing 
a positive, negative, or mixed opinion. For both tasks, the system uses super-
vised learning. For the first task, it obtains a large amount of opinionated (sub-
jective) training data from review sites such as rateitall.com and epinion.com. 
The data are also collected from different domains involving consumer goods 
and services as well as government policies and political viewpoints. The not-
opinionated training data are obtained from sites that give objective information 
such as Wikipedia. From these training data, a SVM classifier is constructed.  

This classifier is then applied to each retrieved document as follows: 
The document is first partitioned into sentences. The SVM classifier then 
classifies each sentence as opinionated or not-opinionated. If a sentence is 
classified to be opinionated, its strength as determined by SVM is also 
noted. A document is regarded opinionated if there is at least one sentence 
that is classified as opinionated. To ensure that the opinion of the sentence 
is directed to the query topic, the system requires that enough query con-
cepts/words are found in its vicinity. The totality of the opinionated sen-
tences and their strengths in a document together with the document’s si-
milarity with the query is used to rank the document.  

To determine whether an opinionated document expresses a positive, 
negative or mixed opinion, the second classifier is constructed. The train-
ing data are reviews from review sites containing review ratings (e.g., ra-
teitall.com). A low rating indicates a negative opinion while a high rating 
indicates a positive opinion. Using positive and negative reviews as train-
ing data, a sentiment classifier is built to classify each document as ex-
pressing positive, negative, or mixed opinion.  

There are many other approaches for opinion retrieval. The readers are 
encouraged to read the papers at the TREC site (http://trec.nist.gov/ 
pubs/trec16/t16_proceedings.html) and the overview paper of 2007 TREC 
blog track [78]. 
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11.9 Opinion Spam Detection  

In Sect. 6.10, we discussed Web spam, which refers to the use of 
“illegitimate means” to boost the search rank position of some target Web 
pages. The reason for spamming is because of the economic and/or 
publicity value of the rank position of a page returned by a search engine. 
In the context of opinions, the problem is similar but also quite different.  

It has become a common practice for people to find and to read opinions 
on the Web for many purposes. For example, if one wants to buy a prod-
uct, one typically goes to a merchant or review site (e.g., amazon.com) to 
read some reviews of existing users of the product. If one sees many posi-
tive reviews of the product, one is very likely to buy the product. However, 
if one sees many negative reviews, he/she will most likely choose another 
product. Positive opinions can result in significant financial gains and/or 
fames for organizations and individuals. This, unfortunately, gives good 
incentives for opinion spam, which refers to human activities (e.g., write 
spam reviews) that try to deliberately mislead readers or automated opin-
ion mining systems by giving undeserving positive opinions to some target 
entities in order to promote the entities and/or by giving unjust or false 
negative opinions to some other entities in order to damage their reputa-
tion. Such opinions are also called fake opinions, bogus opinions, or fake 
reviews. We can predict that as opinions on the Web are increasingly used 
in practice by consumers and organizations, the problem of detecting spam 
opinions will become more and more critical.  

Opinion spam is very different from Web spam because the two main 
types of Web spam, i.e., content spam and link spam, seldom occur in opi-
nion documents such as product reviews. Recall that link spam is spam on 
hyperlinks, which almost does not exist in reviews as there is usually no 
links among reviews. Content spam tries to add irrelevant or remotely re-
levant words in target Web pages in order to fool search engines, which 
again hardly occurs in reviews. This section uses consumer reviews of 
products as an example to study opinion spam.  

11.9.1 Types of Spam and Spammers 

There are generally three types of spam reviews as identified in [44, 45]:  

Type 1 (fake review): These are reviews that deliberately mislead readers 
or opinion mining systems by giving undeserving positive opinions to 
some target entities in order to promote the entities and/or by giving un-
just or malicious negative opinions to some other entities in order to 
damage their reputation.  
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Type 2 (review on brand only): These reviews do not comment on the 
specific products that they are supposed to review, but only comment 
on the brands, the manufacturers, or the sellers of the products. Al-
though they may be useful, they are considered as spam because they 
are not targeted at the specific products and are often biased. For exam-
ple, in a review for a HP printer, the reviewer only wrote “I hate HP. I 
never buy any of their products”. 

Type 3 (non-review): These are not reviews or opinionated although they 
appear as reviews. There are two main sub-types: (1) advertisements 
and (2) other irrelevant texts containing no opinions (e.g., questions, 
answers, and random texts).  

Harmful Fake Reviews: According to [44], types 2 and 3 spam reviews 
are rare and also easy to detect. We thus focus on type 1 fake reviews. In 
order to detect such reviews, let us first discuss what kinds of fake reviews 
are harmful. Table 11.4 gives a simple view of type 1 spam. The goal of 
spam reviews in regions 1, 3 and 5 is to promote the product. Although 
opinions expressed in region 1 may be true, the reviewers do not announce 
their conflict of interests. Note that good, bad, and average products can be 
defined based on the average rating given to the product (this definition 
can be dangerous if there are spammer groups that work together, see be-
low). The goal of spam reviews in regions 2, 4, and 6 is to damage the rep-
utation of some entities. Although opinions in reviews of region 4 may be 
true, the reviewers do not announce their conflict of interests and have bad 
intensions. Clearly, spam reviews in regions 1 and 4 are not so damaging, 
while spam reviews in regions 2, 3, 5, and 6 are very harmful. Thus, spam 
detection techniques should focus on identifying reviews in these regions.  

Individual Spammers and Group Spammers: A spammer may act indi-
vidually (e.g., the author of a book) or as a member of a group (e.g., a 
group of employees of a company).  
Individual spammers: In this case, a spammer, who does not work with 

anyone else, writes spam reviews. The spammer may register at a review 
site as a single user, or as many fake users using different user-ids. 
He/she can also register at multiple review sites and write spam reviews.  

Table 11.4. Spam reviews vs. product quality 

 Positive spam review Negative spam review 
Good quality product 1 2 

Bad quality product 3 4 
Average quality product 5 6 

 



508      11 Opinion Mining and Sentiment Analysis 

Group spammers: A group of spammers works together to promote a tar-
get entity and/or to damage the reputation of another. They may also reg-
ister at multiple sites and spam on these sites. Group spam can be very 
damaging because they may take control of the sentiment on a product 
and completely mislead potential customers. 

11.9.2 Hiding Techniques 

In order to avoid being detected, spammers may take a variety of precau-
tions. We study individual and group spammers separately. The lists are by 
no means exhaustive and should be considered as just examples. 

An Individual Spammer 

1. The spammer builds up reputation by reviewing other products in the 
same or different categories/brands that he/she does not care about and 
give them agreeable ratings and reasonable reviews. Then, he/she be-
comes a trustworthy reviewer. However, he/she may write spam re-
views on the products that he/she really cares about. This hiding 
method is useful because some sites rank reviewers based on their re-
views that are found helpful by readers, e.g., amazon.com. Some sites 
also have trust systems that allow readers to assign trust scores to re-
viewers.  

2. The spammer registers multiple times at a site using different user-ids 
and write multiple spam reviews under these user-ids so that their re-
views or ratings will not appear as outliers. The spammer may even use 
different machines to avoid being detected by server log-based detec-
tion methods that can compare IP addresses of reviewers.   

3. Spammers write either only positive reviews on his/her own products or 
only negative reviews on the products of his/her competitors, but not 
both. This is to hide from spam detection methods that compare one’s 
reviews on competing products from different brands.   

4. The spammer gives a reasonably high rating but write a critical (nega-
tive) review. This may fool detection methods that find outliers based 
on ratings alone. Yet, automated review mining systems will pick up all 
the negative sentiments in the actual review content.  

A Group of Spammers 

1. Every member of the group reviews the same product to lower the rat-
ing deviation.  

2. Every member of the group writes a review roughly at the time when 
the product is launched in order to take control of sentiment on the 
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product. It is generally not a good idea to write many spam reviews at 
the same time after many reviews have been written by others because a 
spike will appear, which can be easily detected.  

3. Members of the group write reviews at random intervals to hide spikes.  
4. If the group is sufficiently large, it may be divided into sub-groups so 

that each sub-group can spam at different Web sites (instead of only 
spam at the same site) to avoid being detected by methods that compare 
average ratings and content similarities of reviews from different sites. 

11.9.3  Spam Detection Based on Supervised Learning 

In general, spam detection can be formulated as a classification problem 
with two classes, spam and non-spam. Due to the specific nature of differ-
ent types of spam, they need to be dealt with differently. For spam reviews 
of type 2 and type 3, they can be detected based on traditional classifica-
tion learning using manually labeled spam and non-spam reviews because 
these two types of spam reviews are easily recognizable manually. The 
main task is to find a set of effective features for model building. In [44, 
45], three sets of features were identified for learning:  

Review centric features: These are features about the content of reviews. 
Example features include actual words in a review, the number of times 
that brand names are mentioned, the percentage of opinion words, the 

Reviewer centric features: These are features about each reviewer. 
Example features include the average rating given by the reviewer, the 
standard deviation in rating, the ratio of the number of reviews that the 
reviewer wrote which were the first reviews of the products to the total 
number of reviews that he/she wrote, and the ratio of the number of 
cases in which he/she was the only reviewer. 

Product centric features: These are features about each product. Example 
features include the price of the product, the sales rank of the product 
(amazon.com assigns sales rank to ‘now selling products’ according to 
their sales volumes), the average review rating of the product, and the 
standard deviation in ratings of the reviews for the product. 
Logistic regression was used in learning. Experimental results based on 

a large number of amazon.com reviews showed that type 2 and type 3 
spam reviews are fairly easy to detect.  

However, this cannot be said about type 1 spam, i.e., fake opinions or 
reviews. In fact, it is very difficult to detect such reviews because manual 
labeling training data is very hard, if not impossible. The problem is that 
identifying spam reviews by simply reading the reviews is extremely diffi-

review length, and the number of helpful feedbacks.  
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cult because a spammer can carefully craft a spam review that is just like 
any innocent review.  

Since manually labeling training data is hard, other ways have to be ex-
plored in order to find training examples for detecting possible fake re-
views. In [44], it exploited duplicate reviews. In their study of 5.8 million 
reviews, 2.14 million reviewers and 6.7 million products from ama-
zon.com, they found a large number of duplicate and near-duplicate re-
views, which indicates that review spam is widespread. These duplicates 
(which include near-duplicates) can be divided into four groups: 

1. Duplicates from the same userid on the same product  
2. Duplicates from different userids on the same product 
3. Duplicates from the same userid on different products 
4. Duplicates from different userids on different products  

The first type of duplicates can be the results of reviewers mistakenly 
clicking the submit button multiple times (which of course can be detected 
based on the submission dates and times), or the same reviewers coming 
back to write updated reviews after using the product for some time. How-
ever, the last three kinds of duplicates are almost certainly fake reviews. 
Further sanity check was performed on these duplicate reviews because 
amazon.com cross-posts reviews to different formats of the same product, 
e.g., hardcover and paperback of the same book. Such duplicates were re-
moved. These three types of duplicates and near duplicates were treated as 
type 1 spam reviews, and the rest of the reviews were treated as non-spam 
reviews. Logistic regression was used to build a classification model. The 
experiments showed some tentative but interesting results.  

 Negative outlier reviews (ratings with significant negative deviations 
from the average rating) tend to be heavily spammed. This is quite in-
tuitive. Positive outlier reviews are not badly spammed.   

 Those reviews that are the only reviews of some products are likely to 
be spammed. This can be explained by the tendency of promoting an 
unpopular product by writing a spam review.  

 Top-ranked reviewers are more likely to be spammers. Amazon.com 
gives a rank to each member/reviewer based on the frequency that 
he/she gets helpful feedback on his/her reviews. Additional analysis 
showed that top-ranked reviewers generally wrote a large number of re-
views. People who wrote a large number of reviews are natural sus-
pects. Some top reviewers wrote thousands or even tens of thousands of 
reviews, which is unlikely for an ordinary consumer.  

 Spam reviews can get good helpful feedbacks and non-spam reviews 
can get bad feedbacks. This is important as it shows that if usefulness or 
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quality of a review is defined based on the helpful feedbacks that the 
review gets, people can be readily fooled by spam reviews. Note that 
the number of helpful feedbacks can be spammed too.  

 Products of lower sale ranks are more likely to be spammed. This is 
good news because spam activities seem to be limited to low selling 
products, which is actually quite intuitive as it is difficult to damage the 
reputation of a popular product by writing a spam review. 

Finally, it should be noted again that these results are only tentative be-
cause (1) it is not confirmed that the three types of duplicates are abso-
lutely spam reviews, and (2) many spam reviews are not duplicated and 
they are not considered as spam in model building but as non-spam due to 
the difficulty of manual labeling. For additional analysis and more spam 
detection strategies, please refer to [44, 45].  

11.9.4  Spam Detection Based on Abnormal Behaviors  

Due to the difficulty of manually labeling training data, treating opinion 
spam detection as a supervised learning problem is problematic. This 
section describes two techniques that try to identify atypical behaviors of 
reviewers for detecting spammers. For example, if a reviewer wrote all 
negative reviews for a brand but other reviewers were all positive about 
the brand, then this reviewer is naturally a spam suspect.  

The first technique, which is due to [68], identifies several unusual 
reviewer behavior models based on different review patterns that suggest 
spamming. Each model assigns a numeric spamming behavior score to a 
reviewer by measuring the extent to which the reviewer practices 
spamming behavior of the type. All the scores are then combined to 
produce the final spam score. The spamming behavior models are:   
(a)  Targeting products: To game an online review system, it is hypothe-

sized that a spammer will direct most of his efforts on promoting or 
victimizing a few products which are collectively called the targeted 
products. He is expected to monitor the targeted products closely and 
mitigate the ratings by writing fake reviews when time is appropriate. 

(b) Targeting groups: This spam behavior model defines the pattern of 
spammers manipulating ratings of a set of products sharing some at-
tribute(s) within a short span of time. For example, a spammer may 
target several products of a brand within a few hours. This pattern of 
ratings saves the spammers’ time as they do not need to log on to the 
review system many times. To achieve maximum impact, the ratings 
given to these target groups of products are either very high or low. 



512      11 Opinion Mining and Sentiment Analysis 

(c)  General rating deviation: A reasonable reviewer is expected to give 
ratings similar to other raters of the same product. As spammers at-
tempt to promote or demote products, their ratings could be quite dif-
ferent from other reviewers.   

(d)  Early rating deviation: Early deviation captures the behavior of a 
spammer contributing a spam review soon after product is launched. 
Such spam reviews are likely to attract attention from other reviewers, 
allowing spammers to manipulate the views of subsequent reviewers. 

The second technique, which is due to [46], identifies unusual reviewer 
behavior patterns through unexpected rule discovery. For example, if a 
reviewer wrote all negative reviews on products of a brand but other 
reviewers are generally positive about the brand, this reviewer is a spam 
suspect. To find unusual behaviors, the conventional approach is to write 
an application-specific heuristic program to find such behaviors as the first 
technique above. However, this is undesirable. It is much better to propose 
a general framework for solving this class of problems so that the resulting 
system can also be applied to other domains. Such a general approach is 
proposed in [46], which shows that the problem can be formulated as 
finding unexpected class association rules/patterns from data (Sect. 2.5).  

Recall that the data for mining class association rules (CAR) consists of 
a set of data records, which are described by a set of normal attributes A = 
{A1, , An}, and a class attribute C = {c1, , cm} of m discrete values, 
called classes (Sect. 2.5). A CAR rule is of the form: X  ci, where X is a 
set of conditions from the attributes in A and ci is a class in C. Such a rule 
gives the conditional probability of Pr(ci | X) (called the confidence) and 
the joint probability Pr(X, ci) (called the support).  

For the spam detection application, the data for mining is produced as fol-
lows: Each review forms a data record with a set of attributes, e.g., reviewer-
id, brand-id, product-id, and a class. The class represents the sentiment of the 
reviewer on the product, positive, negative, or neutral based on the review rat-
ing. In most review sites (e.g., amazon.com), each review has a rating between 
1 (lowest) and 5 (highest) assigned by its reviewer. We can assign the rating of 
4 or 5 as positive, 3 as neutral, and 1 or 2 as negative. A rule could be that a re-
viewer gives all positive ratings to a particular brand of products. The method 
in [46] finds four types of unexpected rules based on four unexpectedness 
definitions. The unexpected rules represent atypical behaviors of reviewers. 
Below, an example behavior is given for each type of unexpectedness defini-
tion. Their detailed definitions, which can be found in [46], are quite involved.      

 Confidence unexpectedness: Using this measure, we can find review-
ers who give all high ratings to products of a brand, but most other re-
viewers are generally negative about the brand.  
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 Support unexpectedness: Using this measure, we can find reviewers 
who write multiple reviews for a single product, while other reviewers 
only write one review.  

 Attribute distribution unexpectedness: Using this measure, we can 
find that most positive reviews for a brand of products are from only 
one reviewer although there are a large number of reviewers who have 
reviewed the products of the brand.  

 Attribute unexpectedness: Using this measure, we can find reviewers 
who write only positive reviews to one brand and only negative reviews 
to another brand. 

The advantage of this approach is that all the measures are defined based 
on CARs rules, and are not specific to any application domain, and thus 
can be used in other domains to find unexpected rules. The weakness is 
that some behaviors cannot be detected, e.g., time-related behaviors, be-
cause class association rules do not consider time.  

Experimental results of both papers [46, 68] using amazon.com reviews 
showed that many spammers can be detected based on their behaviors.  

11.9.5  Group Spam Detection 

A group spam detection algorithm was reported in [84]. It finds groups of 
spammers who work together to promote or demote some products. The 
method works in two steps:  

1.  Frequent pattern mining: First, it pre-processes the review data to 
produce a set of transactions. Each transaction represents a unique 
product and consists of all the reviewers (their ids) who have reviewed 
that product. Using all the transactions, it performs frequent pattern 
mining. The patterns give us a set of candidate groups who might have 
spammed together. The reason for using frequent pattern mining is as 
follows: If a group of reviewers who only worked together once to 
promote or to demote a single product, it can be hard to detect based on 
their collective or group behavior. However, these fake reviewers (es-
pecially those who get paid to write) cannot be just writing one review 
for a single product because they would not make enough money that 
way. Instead, they work on many products, i.e., write many reviews 
about many products, which unfortunately also give them away. Fre-
quent pattern mining can be used to find them working together on mul-
tiple products. 

2.  Rank groups based on a set of group spam indicators: The groups 
discovered in step 1 may not all be spammer groups. Many of the re-
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viewers are grouped together in pattern mining simply due to chance. 
Then, this step first uses a set of indicators to catch different types of 
unusual group behaviors. These indicators include writing reviews to-
gether in a short time window, writing reviews right after the product 
launch, group content similarity, group rating deviation, etc. (see [84] 
for details). It then ranks the discovered groups from step 1 based on 
their indicator values using SVM rank (also called Ranking SVM) [47].  

11.10 Utility of Reviews 

A related problem that has also been studied in the past few years is the 
determination of the usefulness, helpfulness, or utility of each review [31, 
57, 73, 144]. This is a meaningful task as it is desirable to rank reviews 
based on utilities or qualities when showing reviews to the user, with the 
most useful reviews first. In fact, many review aggregation sites have been 
practicing this for years. They obtain the helpfulness or utility score of 
each review by asking readers to provide helpfulness feedbacks to each 
review. For example, in amazon.com, the reader can indicate whether 
he/she finds a review helpful by responding to the question “Was the 
review helpful to you?” just below each review. The feedback results from 
all those responded are then aggregated and displayed right before each 
review, e.g., “15 of 16 people found the following review helpful.” 
Although most review sites already provide the service, automatically 
determining the quality of a review is still useful because many reviews 
have few or no feedbacks. This is especially true for new reviews.  

Determining the utility of reviews is usually formulated as a regression 
problem. The learned model assigns a utility value to each review, which 
can be used in review ranking. In this area of research, the ground truth 
data used for both training and testing are usually the user-helpfulness 
feedback given to each review, which as we discussed above is provided 
for each review at many review sites. So unlike fake review detection, the 
training and testing data here is not an issue.  

Researchers have used many types of features for model building. 
Example features include review length, review rating (the number of 
stars), counts of some specific POS tags, opinion words, tf-idf weighting 
scores, wh-words, product attribute mentions, comparison with product 
specifications, comparison with editorial reviews, and many more. 
Subjectivity classification was also applied in [31]. In [73], Liu et al. 
formulated the problem slightly differently. They made it a binary 
classification problem. Instead of using the original helpfulness feedback 
as the target or dependent variable, they performed manual annotation 
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based on whether the review evaluates many product aspects or not.  
Finally, we should note that review utility regression/classification and 

review spam detections are different concepts. Not-helpful or low quality re-
views are not necessarily fake reviews or spam, and helpful reviews may not 
be non-spam. A user often determines whether a review is helpful or not 
based on whether the review expresses opinions on many aspects of the 
product. A spammer can satisfy this requirement by carefully crafting a re-
view that is just like a normal helpful review. Using the number of helpful 
feedbacks to define review quality is also problematic because user feed-
backs can be spammed too. Feedback spam is a sub-problem of click fraud 
in search advertising, where a person or robot clicks on some online adver-
tisements to give the impression of real customer clicks. Here, a robot or a 
human spammer can also click on helpfulness feedback button to increase 
the helpfulness of a review. Another important point is that a low quality re-
view is still a valid review and should not be discarded, but a spam review is 
untruthful and/or malicious and should be removed once detected.  

Bibliographic Notes 

An attempt to define the opinion mining and sentiment analysis problem 
was made in the first edition of this book. Improvements were made in my 
book chapter “Sentiment Analysis and Subjectivity” [70] for the second 
edition of Handbook of Natural Language Processing [38]. The purpose 
was to provide a common framework for different research directions and 
to abstract a structure from the intimidating unstructured text. Needless to 
say, the definitions were influenced by many early researches. The main 
idea was from the aspect-based opinion mining model proposed in [37], 
which was then called feature-based opinion mining. The improvements in 
[70] and in Sect. 11.1 of this chapter were also shaped by my 1.5 years of 
involvement in a startup company on opinion mining and hands-on experi-
ences in serving industry clients and understanding their diverse needs.  

Much of the early research on opinion mining focused on sentiment 
classification at the document and sentence levels. Representative works 
on classification at the document level in the early years include those by 
Turney [119] and Pang et al. [94]. They have been discussed in this chap-
ter. Representative works on classification at the sentence level include 
those by Hatzivassiloglou and Wiebe [36] and Riloff and Wiebe [103] 
among others, which determines whether a sentence is subjective or objec-
tive. Sentence level sentiment or opinion classification (positive, negative 
and neutral) was studied by Kim and Hovy [55], Wiebe and Riloff [126], 
among others. Some of these methods have been discussed in Sect. 11.3.3. 
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Other related works at both the document and sentence levels include those 
by Dave et al [15], Tong [117], Das and Chen [14], Morinaga et al. [83], 
Beineke et al. [3], Nasukawa and Yi [86], Nigam and Hurst [88], Gamon 
[26], Gamon et al. [27], Pang and Lee [92, 93], Ng et al. [87], McDonald 
et al. [79], Wilson et al. [129-131], Yessenalina et al. [134], Li et al. [65], 
and many others. A survey on this literature can be found in [91].  

The model of aspect-based opinion mining and summarization was in-
troduced by Hu and Liu [37] and Liu et al. [72] (originally called feature-
based opinion mining and summarization). Some initial methods for per-
forming the task were also proposed. Popescu and Etzioni [99], Carenini et 
al [11], Ku et al. [60, 61], Ding et al. [17], Jin and Ho [41], and Lu et al. 
[75] explored the problem further. These works typically find aspects first 
and then determine their associated opinions, e.g., [17, 37, 99]. Recently, 
researchers also proposed many statistical models to find aspects and their 
associated opinions at the same time, e.g., those by Titov and McDonald 
[115, 116], Brody and Elhadad [8], Wang et al. [121], Lin and He [69], 
Mei et al. [80], Zhao et al. [145], Lu et al. [77], etc. We have briefly dis-
cussed these ideas in Sect. 11.5.3. The work of Qiu et al. [100, 101] deals 
with the same problem but by exploiting some syntactic relations between 
opinion words and their target aspects to extract both. Other related works 
include [9, 12, 16, 18, 20, 33, 34, 39, 40, 48, 49, 53, 56, 58, 59, 64, 87, 89, 
97, 107, 110, 113, 122, 125, 131, 135, 137, 138, 141, 146] 

Most document level, sentence level, and aspect level techniques need a 
list of opinion words or phrases, which is called the opinion lexicon. There 
are two types of approaches to compiling and expanding an opinion lexi-
con: (1) corpus-based approaches and (2) dictionary-based. approaches. 
Corpus-based approaches find co-occurrence patterns of words to deter-
mine their opinion orientations, which have been studied by Turney [119], 
Riloff and Wiebe [103], Hatzivassiloglou and McKeown [35], Yu and 
Hatzivassiloglou [136], Grefenstette et al. [32], Kanayama and Nasukawa 
[51], Ding et al. [17], Murthy and Liu [28], and Kaji and Kitsuregawa [48, 
49]. Qiu et al. [100, 101] proposed a double-propagation method, which 
discovers aspects and expands a given opinion lexicon simultaneously. 
Dictionary-based approaches use synonyms, antonyms, hierarchies, and 
gloss in WordNet to determine word opinions, e.g., Hu and Liu [37], 
Kamps et al. [50], Valitutti et al. [120], Kim and Hovy [55], Esuli and Se-
bastiani [21, 22], Andreevskaia and Bergler [1], and Dragut et al. [19].  

On mining comparative sentences, Jindal and Liu [42, 43] defined the 
problem and proposed some initial techniques, which were improved by 
Ganapathibhotla and Liu [28] and Ding et al. [18]. Li et al. [66] further 
studied the extraction of compared entities. Research in linguistics on syn-
tax and semantics of comparatives can be found in [52, 82]. 
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The problem of opinion spam was introduced by Jindal and Liu in [44, 
45]. They also proposed a supervised approach to detect fake reviews. De-
tecting spammers (or reviewers who write fake reviews) by studying their 
atypical behaviors were investigated by Lim et al. [68] and Jindal et al. 
[46]. Group spam detection was studied by Mukherjee et al. in [84]. 
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12  Web Usage Mining 

With the continued growth and proliferation of e-commerce, Web services, 
and Web-based information systems, the volumes of clickstream, 
transaction data, and user profile data collected by Web-based 
organizations in their daily operations has reached astronomical 
proportions. Analyzing such data can help these organizations determine 
the life-time value of clients, design cross-marketing strategies across 
products and services, evaluate the effectiveness of promotional 
campaigns, optimize the functionality of Web-based applications, provide 
more personalized content to visitors, and find the most effective logical 
structure for their Web space. This type of analysis involves the automatic 
discovery of meaningful patterns and relationships from a large collection 
of primarily semi-structured data, often stored in Web and applications 
server access logs, as well as in related operational data sources. 

Web usage mining refers to the automatic discovery and analysis of 
patterns in clickstreams, user transactions and other associated data 
collected or generated as a result of user interactions with Web resources 
on one or more Web sites [28, 82, 118]. The goal is to capture, model, and 
analyze the behavioral patterns and profiles of users interacting with a 
Web site. The discovered patterns are usually represented as collections of 
pages, objects, or resources that are frequently accessed or used by groups 
of users with common needs or interests.  

Following the standard data mining process [38], the overall Web usage 
mining process can be divided into three inter-dependent stages: data 
collection and pre-processing, pattern discovery, and pattern analysis. In 
the pre-processing stage, the clickstream data is cleaned and partitioned 
into a set of user transactions representing the activities of each user during 
different visits to the site. Other sources of knowledge such as the site 
content or structure, as well as semantic domain knowledge from site 
ontologies (such as product catalogs or concept hierarchies), may also be 
used in pre-processing or to enhance user transaction data. In the pattern 
discovery stage, statistical, database, and machine learning operations are 
performed to obtain hidden patterns reflecting the typical behavior of 
users, as well as summary statistics on Web resources, sessions, and users. 
In the final stage of the process, the discovered patterns and statistics are 
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further processed, filtered, possibly resulting in aggregate user models that 
can be used as input to applications such as recommendation engines, 
visualization tools, and Web analytics and report generation tools. The 
overall process is depicted in Fig. 12.1.  

In the remainder of this chapter, we first provide a detailed examination of 
Web usage mining as a process, and discuss the relevant concepts and 
techniques commonly used in all the stages mentioned above. We then focus 
on the important problem of recommendation. It is followed by another 
special case of Web usage mining targeting search query logs, and known as 
query log mining (QLM). To complete our discussion of mining Web usage 
data, we finally introduce the new field of Ad click mining. 

12.1 Data Collection and Pre-Processing 

An important task in any data mining application is the creation of a 
suitable target data set to which data mining and statistical algorithms can 
be applied. This is particularly important in Web usage mining due to the 
characteristics of clickstream data and its relationship to other related data 
collected from multiple sources and across multiple channels. The data 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 12.1. The Web usage mining process 
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preparation process is often the most time consuming and computationally 
intensive step in the Web usage mining process, and often requires the use 
of special algorithms and heuristics not commonly employed in other 
domains. This process is critical to the successful extraction of useful 
patterns from the data. The process may involve pre-processing the 
original data, integrating data from multiple sources, and transforming the 
integrated data into a form suitable for input into specific data mining 
operations. Collectively, we refer to this process as data preparation.  

Much of the research and practice in usage data preparation has been 
focused on pre-processing and integrating these data sources for different 
analysis. Usage data preparation presents a number of unique challenges 
which have led to a variety of algorithms and heuristic techniques for pre-

Fig. 12.2. Steps in data preparation for Web usage mining. 



530      12  Web Usage Mining 

processing tasks such as data fusion and cleaning, user and session 
identification, pageview identification [27]. The successful application of 
data mining techniques to Web usage data is highly dependent on the 
correct application of the pre-processing tasks. Furthermore, in the context 
of e-commerce data analysis, these techniques have been extended to allow 
for the discovery of important and insightful user and site metrics [64]. 

Figure 12.2 provides a summary of the primary tasks and elements in 
usage data pre-processing. We begin by providing a summary of data types 
commonly used in Web usage mining and then provide a brief discussion 
of some of the primary data preparation tasks. 

12.1.1 Sources and Types of Data 

The primary data sources used in Web usage mining are the server log 
files, which include Web server access logs and application server logs. 
Additional data sources that are also essential for both data preparation and 
pattern discovery include the site files and meta-data, operational databases, 
application templates, and domain knowledge. In some cases and for some 
users, additional data may be available due to client-side or proxy-level 
(Internet Service Provider) data collection, as well as from external 
clickstream or demographic data sources such as those provided by data 
aggregation services from ComScore (www.comscore.com), NetRatings 
(www.nielsen-netratings.com), and Acxiom (www.acxiom.com). 

The data obtained through various sources can be categorized into four 
primary groups [27, 118].  

Usage Data: The log data collected automatically by the Web and 
application servers represents the fine-grained navigational behavior of 
visitors. It is the primary source of data in Web usage mining. Each hit 
against the server, corresponding to an HTTP request, generates a single 
entry in the server access logs. Each log entry (depending on the log 
format) may contain fields identifying the time and date of the request, the 
IP address of the client, the resource requested, possible parameters used in 
invoking a Web application, status of the request, HTTP method used, the 
user agent (browser and operating system type and version), the referring 
Web resource, and, if available, client-side cookies which uniquely 
identify a repeat visitor.  A typical example of a server access log is 
depicted in Fig. 12.3, in which six partial log entries are shown. The user 
IP addresses in the log entries have been changed to protect privacy. 

For example, log entry 1 shows a user with IP address “1.2.3.4” 
accessing a resource: “/classes/cs589/papers.html” on the server (maya.cs. 
depaul.edu). The browser type and version, as well as operating system 
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information on the client machine are captured in the agent field of the 
entry. Finally, the referrer field indicates that the user came to this location 
from an outside source: “http://dataminingresources.blogspot.com/”. The 
next log entry shows that this user has navigated from “papers.html” (as 
reflected in the referrer field of entry 2) to access another resource: 
“/classes/cs589/papers/cms-tai.pdf”. Log entry 3 shows a user who has 
arrived at the resource “/classes/ds575/papers/hyperlink.pdf” by doing a 
search on Google using keyword query: “hyperlink analysis for the web 
survey”. Finally, entries 46 all correspond to a single click-through by a 
user who has accessed the resource “/classes/cs480/announce.html”. 
Entries 5 and 6 are images embedded in the file “announce.html” and thus 
two additional HTTP request are registered as hits in the server log 
corresponding to these images. 

Depending on the goals of the analysis, this data needs to be 
transformed and aggregated at different levels of abstraction. In Web usage 
mining, the most basic level of data abstraction is that of a pageview. A 
pageview is an aggregate representation of a collection of Web objects 
contributing to the display on a user’s browser resulting from a single user 
action (such as a click-through). Conceptually, each pageview can be 
viewed as a collection of Web objects or resources representing a specific 

1 2006-02-01 00:08:43 1.2.3.4 - GET /classes/cs589/papers.html - 200 9221 
HTTP/1.1 maya.cs.depaul.edu 
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1;+.NET+CLR+2.0.50727) 
http://dataminingresources.blogspot.com/

2 2006-02-01 00:08:46 1.2.3.4 - GET /classes/cs589/papers/cms-tai.pdf - 200 4096 
HTTP/1.1 maya.cs.depaul.edu 
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1;+.NET+CLR+2.0.50727) 
http://maya.cs.depaul.edu/~classes/cs589/papers.html

3 2006-02-01 08:01:28 2.3.4.5 - GET /classes/ds575/papers/hyperlink.pdf - 200 
318814 HTTP/1.1 maya.cs.depaul.edu 
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1) 
http://www.google.com/search?hl=en&lr=&q=hyperlink+analysis+for+the+web+survey

4 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/announce.html - 200 3794 
HTTP/1.1 maya.cs.depaul.edu 
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1) 
http://maya.cs.depaul.edu/~classes/cs480/

5 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/styles2.css - 200 1636 
HTTP/1.1 maya.cs.depaul.edu 
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1) 
http://maya.cs.depaul.edu/~classes/cs480/announce.html

6 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/header.gif - 200 6027 
HTTP/1.1 maya.cs.depaul.edu 
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1) 
http://maya.cs.depaul.edu/~classes/cs480/announce.html

Fig. 12.3. Portion of a typical server log 
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“user event,” e.g., reading an article, viewing a product page, or adding a 
product to the shopping cart.  At the user level, the most basic level of 
behavioral abstraction is that of a session. A session is a sequence of 
pageviews by a single user during a single visit. The notion of a session 
can be further abstracted by selecting a subset of pageviews in the session 
that are significant or relevant for the analysis tasks at hand. 

Content Data:  The content data in a site is the collection of objects and 
relationships that is conveyed to the user. For the most part, this data is 
comprised of combinations of textual materials and images. The data 
sources used to deliver or generate this data include static HTML/XML 
pages, multimedia files, dynamically generated page segments from 
scripts, and collections of records from the operational databases. The site 
content data also includes semantic or structural meta-data embedded 
within the site or individual pages, such as descriptive keywords, 
document attributes, semantic tags, or HTTP variables. The underlying 
domain ontology for the site is also considered part of the content data. 
Domain ontologies may include conceptual hierarchies over page contents, 
such as product categories, explicit representations of semantic content and 
relationships via an ontology language such as RDF, or a database schema 
over the data contained in the operational databases. 

Structure Data: The structure data represents the designer’s view of the 
content organization within the site. This organization is captured via the 
inter-page linkage structure among pages, as reflected through hyperlinks. 
The structure data also includes the intra-page structure of the content 
within a page. For example, both HTML and XML documents can be 
represented as tree structures over the space of tags in the page. The 
hyperlink structure for a site is normally captured by an automatically 
generated “site map.” A site mapping tool must have the capability to capture 
and represent the inter- and intra-pageview relationships. For dynamically 
generated pages, the site mapping tools must either incorporate intrinsic 
knowledge of the underlying applications and scripts that generate HTML 
content, or must have the ability to generate content segments using a 
sampling of parameters passed to such applications or scripts. 

User Data: The operational database(s) for the site may include additional 
user profile information. Such data may include demographic information 
about registered users, user ratings on various objects such as products or 
movies, past purchases or visit histories of users, as well as other explicit 
or implicit representations of users’ interests. Some of this data can be 
captured anonymously as long as it is possible to distinguish among 
different users. For example, anonymous information contained in client-
side cookies can be considered a part of the users’ profile information, and 
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used to identify repeat visitors to a site. Many personalization applications 
require the storage of prior user profile information.  

12.1.2 Key Elements of Web Usage Data Pre-Processing 

As noted in Fig. 12.2, the required high-level tasks in usage data pre-
processing include the fusion and synchronization of data from multiple 
log files, data cleaning, pageview identification, user identification, session 
identification (or sessionization), episode identification, and the integration 
of clickstream data with other data sources such as content or semantic 
information, as well as user and product information from operational 
databases.  We now examine some of the essential tasks in pre-processing. 

Data Fusion and Cleaning 

In large-scale Web sites, it is typical that the content served to users comes 
from multiple Web or application servers. In some cases, multiple servers 
with redundant content are used to reduce the load on any particular server. 
Data fusion refers to the merging of log files from several Web and 
application servers. This may require global synchronization across these 
servers. In the absence of shared embedded session ids, heuristic methods 
based on the “referrer” field in server logs along with various sessionization 
and user identification methods (see below) can be used to perform the 
merging. This step is essential in “inter-site” Web usage mining where the 
analysis of user behavior is performed over the log files of multiple related 
Web sites [121]. 

Data cleaning is usually site-specific, and involves tasks such as, 
removing extraneous references to embedded objects that may not be 
important for the purpose of analysis, including references to style files, 
graphics, or sound files. The cleaning process also may involve the 
removal of at least some of the data fields (e.g., number of bytes 
transferred or version of HTTP protocol used, etc.) that may not provide 
useful information in analysis or data mining tasks. 

Data cleaning also entails the removal of references due to crawler 
navigations. It is not uncommon for a typical log file to contain a significant 
(sometimes as high as 50%) percentage of references resulting from search 
engine or other crawlers (or spiders). Well-known search engine crawlers can 
usually be identified and removed by maintaining a list of known crawlers. 
Other “well-behaved” crawlers which abide by standard robot exclusion 
protocols, begin their site crawl by first attempting to access to exclusion file 
“robots.txt” in the server root directory. Such crawlers, can therefore, be 
identified by locating all sessions that begin with an (attempted) access to this 
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file. However, a significant portion of crawlers references are from those that 
either do not identify themselves explicitly (e.g., in the “agent” field) or 
implicitly; or from those crawlers that deliberately masquerade as legitimate 
users. In this case, identification of crawler references may require the use of 
heuristic methods that distinguish typical behavior of Web crawlers from 
those of actual users. Some work has been done on using classification 
algorithms to build models of crawlers and Web robot navigations [120], but 
such approaches have so far been met with only limited success and more 
work in this area is required.  

Pageview Identification 

Identification of pageviews is heavily dependent on the intra-page 
structure of the site, as well as on the page contents and the underlying site 
domain knowledge. Recall that, conceptually, each pageview can be 
viewed as a collection of Web objects or resources representing a specific 
“user event,” e.g., clicking on a link, viewing a product page, adding a 
product to the shopping cart. For a static single frame site, each HTML file 
may have a one-to-one correspondence with a pageview. However, for 
multi-framed sites, several files make up a given pageview. For dynamic 
sites, a pageview may represent a combination of static templates and 
content generated by application servers based on a set of parameters.  

In addition, it may be desirable to consider pageviews at a higher level of 
aggregation, where each pageview represents a collection of pages or objects, 
for examples, pages related to the same concept category. In e-commerce Web 
sites, pageviews may correspond to various product-oriented events, such as 
product views, registration, shopping cart changes, purchases, etc. In this case, 
identification of pageviews may require a priori specification of an “event 
model” based on which various user actions can be categorized.  

In order to provide a flexible framework for a variety of data mining 
activities a number of attributes must be recorded with each pageview. 
These attributes include the pageview id (normally a URL uniquely 
representing the pageview), static pageview type (e.g., information page, 
product view, category view, or index page), and other metadata, such as 
content attributes (e.g., keywords or product attributes). 

User Identification 

The analysis of Web usage does not require knowledge about a user’s 
identity. However, it is necessary to distinguish among different users. 
Since a user may visit a site more than once, the server logs record 
multiple sessions for each user. We use the phrase user activity record to 
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refer to the sequence of logged activities belonging to the same user. 
In the absence of authentication mechanisms, the most widespread 

approach to distinguishing among unique visitors is the use of client-side 
cookies. Not all sites, however, employ cookies, and due to privacy concerns, 
client-side cookies are sometimes disabled by users. IP addresses, alone, are 
not generally sufficient for mapping log entries onto the set of unique visitors. 
This is mainly due to the proliferation of ISP proxy servers which assign 
rotating IP addresses to clients as they browse the Web. It is not uncommon 
to find many log entries corresponding to a limited number of proxy server IP 
addresses from large Internet Service Providers such as America Online. 
Therefore, two occurrences of the same IP address (separated by a sufficient 
amount of time), in fact, might correspond to two different users. Without 
user authentication or client-side cookies, it is still possible to accurately 
identify unique users through a combination of IP addresses and other 
information such as user agents and referrers [27].  

Consider, for instance, the example of Fig. 12.4. On the left, the figure 
depicts a portion of a partly preprocessed log file (the time stamps are 
given as hours and minutes only). Using a combination of IP and Agent 
fields in the log file, we are able to partition the log into activity records 
for three separate users (depicted on the right). 

 

Time IP URL Ref Agent
0:01 1.2.3.4 A - IE5;Win2k
0:09 1.2.3.4 B A IE5;Win2k
0:10 2.3.4.5 C - IE6;WinXP;SP1
0:12 2.3.4.5 B C IE6;WinXP;SP1
0:15 2.3.4.5 E C IE6;WinXP;SP1
0:19 1.2.3.4 C A IE5;Win2k
0:22 2.3.4.5 D B IE6;WinXP;SP1
0:22 1.2.3.4 A - IE6;WinXP;SP2
0:25 1.2.3.4 E C IE5;Win2k
0:25 1.2.3.4 C A IE6;WinXP;SP2
0:33 1.2.3.4 B C IE6;WinXP;SP2
0:58 1.2.3.4 D B IE6;WinXP;SP2
1:10 1.2.3.4 E D IE6;WinXP;SP2
1:15 1.2.3.4 A - IE5;Win2k
1:16 1.2.3.4 C A IE5;Win2k
1:17 1.2.3.4 F C IE6;WinXP;SP2
1:26 1.2.3.4 F C IE5;Win2k
1:30 1.2.3.4 B A IE5;Win2k
1:36 1.2.3.4 D B IE5;Win2k

0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C
1:15 1.2.3.4 A -
1:26 1.2.3.4 F C
1:30 1.2.3.4 B A
1:36 1.2.3.4 D B

User 1

0:22 1.2.3.4 A -
0:25 1.2.3.4 C A
0:33 1.2.3.4 B C
0:58 1.2.3.4 D B
1:10 1.2.3.4 E D
1:17 1.2.3.4 F C

User 3

0:10 2.3.4.5 C -
0:12 2.3.4.5 B C
0:15 2.3.4.5 E C
0:22 2.3.4.5 D B

User 2

Fig. 12.4. Example of user identification using IP + Agent 
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Sessionization 

Sessionization is the process of segmenting the user activity record of each 
user into sessions, each representing a single visit to the site. Web sites 
without the benefit of additional authentication information from users and 
without mechanisms such as embedded session ids must rely on heuristics 
methods for sessionization. The goal of a sessionization heuristic is to 
reconstruct, from the clickstream data, the actual sequence of actions 
performed by one user during one visit to the site.  

We denote the “conceptual” set of real sessions by R, representing the 
real activity of the user on the Web site. A sessionization heuristic h 
attempts to map R into a set of constructed sessions, denoted by Ch. For the 
ideal heuristic, h*, we have Ch* = R. In other words, the ideal heuristic can 
re-construct the exact sequence of user navigation during a session. 
Generally, sessionization heuristics fall into two basic categories: time-
oriented or structure-oriented. Time-oriented heuristics apply either global 
or local time-out estimates to distinguish between consecutive sessions, 
while structure-oriented heuristics use either the static site structure or the 
implicit linkage structure captured in the referrer fields of the server logs. 
Various heuristics for sessionization have been identified and studied [27]. 
More recently, a formal framework for measuring the effectiveness of such 
heuristics has been proposed [115], and the impact of different heuristics 
on various Web usage mining tasks has been analyzed [13]. 

As an example, two variations of time-oriented heuristics and a basic 
navigation-oriented heuristic are given below. Each heuristic h scans the 
user activity logs to which the Web server log is partitioned after user 
identification, and outputs a set of constructed sessions: 

 h1: Total session duration may not exceed a threshold . Given t0, the 
timestamp for the first request in a constructed session S, the request 
with a timestamp t is assigned to S, iff t  t0  . 

 h2: Total time spent on a page may not exceed a threshold . Given t1, 
the timestamp for request assigned to constructed session S, the next 
request with timestamp t2 is assigned to S, iff t2  t1 . 

 h-ref: A request q is added to constructed session S if the referrer for q 
was previously invoked in S. Otherwise, q is used as the start of a new 
constructed session. Note that with this heuristic it is possible that a 
request q may potentially belong to more than one “open” constructed 
session, since q may have been accessed previously in multiple sessions. 
In this case, additional information can be used for disambiguation. For 
example, q could be added to the most recently opened session 
satisfying the above condition. 
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An example of the application of sessionization heuristics is given in 
Fig. 12.5 and Fig. 12.6. In Fig. 12.5, the heuristic h1, described above, with 
 = 30 minutes has been used to partition a user activity record (from the 
example of Fig. 12.4) into two separate sessions.  

If we were to apply h2 with a threshold of 10 minutes, the user record 
would be seen as three sessions, namely, ABCE, A, and FBD. 
On the other hand, Fig. 12.6 depicts an example of using h-ref heuristic on 
the same user activity record. In this case, once the request for F (with time 
stamp 1:26) is reached, there are two open sessions, namely, ABCE 
and A. But F is added to the first because its referrer, C, was invoked in 
session 1. The request for B (with time stamp 1:30) may potentially belong 
to both open sessions, since its referrer, A, is invoked both in session 1 and 
in session 2. In this case, it is added to the second session, since it is the 
most recently opened session. 

Episode identification can be performed as a final step in pre-processing 
of the clickstream data in order to focus on the relevant subsets of 
pageviews in each user session. An episode is a subset or subsequence of a 
session comprised of semantically or functionally related pageviews. This 
task may require the automatic or semi-automatic classification of 

Time IP URL Ref
0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C
1:15 1.2.3.4 A -
1:26 1.2.3.4 F C
1:30 1.2.3.4 B A
1:36 1.2.3.4 D B

User 1

0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C

Session 1

1:15 1.2.3.4 A -
1:26 1.2.3.4 F C
1:30 1.2.3.4 B A
1:36 1.2.3.4 D B

Session 2

Fig. 12.5. Example of sessionization with a time-oriented heuristic 

Time IP URL Ref
0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C
1:15 1.2.3.4 A -
1:26 1.2.3.4 F C
1:30 1.2.3.4 B A
1:36 1.2.3.4 D B

User 1

0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C
1:26 1.2.3.4 F C

Session 1

1:15 1.2.3.4 A -
1:30 1.2.3.4 B A
1:36 1.2.3.4 D B

Session 2

Fig. 12.6. Example of sessionization with the h-ref heuristic
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pageviews into different functional types or into concept classes according 
to a domain ontology or concept hierarchy. In highly dynamic sites, it may 
also be necessary to map pageviews within each session into “service-
based” classes according to a concept hierarchy over the space of possible 
parameters passed to script or database queries [14]. For example, the 
analysis may ignore the quantity and attributes of an item added to the 
shopping cart, and focus only on the action of adding the item to the cart. 

Path Completion 

Another potentially important pre-processing task which is usually 
performed after sessionization is path completion. Client- or proxy-side 
caching can often result in missing access references to those pages or 
objects that have been cached. For instance, if a user returns to a page A 
during the same session, the second access to A will likely result in 
viewing the previously downloaded version of A that was cached on the 
client-side, and therefore, no request is made to the server. This results in 
the second reference to A not being recorded on the server logs. Missing 
references due to caching can be heuristically inferred through path 
completion which relies on the knowledge of site structure and referrer 
information from server logs [27]. In the case of dynamically generated 
pages, form-based applications using the HTTP POST method result in all 
or part of the user input parameter not being appended to the URL 
accessed by the user (though, in the latter case, it is possible to recapture 
the user input through packet sniffers which listen to all incoming and 
outgoing TCP/IP network traffic on the server side).  

A simple example of missing references is given in Fig. 12.7. On the 
left, a graph representing the linkage structure of the site is given. The 
dotted arrows represent the navigational path followed by a hypothetical 
user. After reaching page E, the user has backtracked (e.g., using the 
browser’s “back” button) to page D and then B from which she has 
navigated to page C. The back references to D and B do not appear in the 
log file because these pages where cached on the client-side (thus no 
explicit server request was made for these pages). The log file shows that 
after a request for E, the next request by the user is for page C with a 
referrer B. In other words, there is a gap in the activity record 
corresponding to user’s navigation from page E to page B.  Given the site 
graph, it is possible to infer the two missing references (i.e., E  D and D 
 B) from the site structure and the referrer information given above. It 
should be noted that there are, in general, many (possibly infinite), 
candidate completions (for example, consider the sequence E  D, D  
B, B  A, A  B). A simple heuristic that can be used for disambiguating 
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among candidate paths is to select the one requiring the fewest number of 
“back” references. 

Data Integration 

The above pre-processing tasks ultimately result in a set of user sessions 
(or episodes), each corresponding to a delimited sequence of pageviews. 
However, in order to provide the most effective framework for pattern 
discovery, data from a variety of other sources must be integrated with the 
preprocessed clickstream data. This is particularly the case in e-commerce 
applications where the integration of both user data (e.g., demographics, 
ratings, and purchase histories) and product attributes and categories from 
operational databases is critical. Such data, used in conjunction with usage 
data, in the mining process can allow for the discovery of important 
business intelligence metrics such as customer conversion ratios and 
lifetime values [64].  

In addition to user and product data, e-commerce data includes various 
product-oriented events such as shopping cart changes, order and shipping 
information, impressions (when the user visits a page containing an item 
of interest), click-throughs (when the user actually clicks on an item of 
interest in the current page), and other basic metrics primarily used for data 
analysis. The successful integration of these types of data requires the 
creation of a site-specific “event model” based on which subsets of a user’s 
clickstream are aggregated and mapped to specific events such as the addition 
of a product to the shopping cart. Generally, the integrated e-commerce data 
is stored in the final transaction database. To enable full-featured Web 
analytics applications, this data is usually stored in a data warehouse called an 
e-commerce data mart. The e-commerce data mart is a multi-dimensional 

A 

B C

D E F

User’s actual navigation path: 
 

A B  D  E  D  B  C 

What the server log shows: 
 

URL   Referrer 
 A         -- 
 B         A 
 D         B 
 E         D 
 C         B 

Fig. 12.7. Missing references due to caching. 
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database integrating data from various sources, and at different levels of 
aggregation. It can provide pre-computed e-metrics along multiple 
dimensions, and is used as the primary data source for OLAP (Online 
Analytical Processing), for data visualization, and in data selection for a 
variety of data mining tasks [18, 63] . Some examples of such metrics include 
frequency or monetary value of purchases, average size of market baskets, 
the number of different items purchased, the number of different item 
categories purchased, the amount of time spent on pages or sections of the 
site, day of week and time of day when a certain activity occurred, response 
to recommendations and online specials, etc. 

12.2 Data Modeling for Web Usage Mining 

Usage data pre-processing results in a set of n pageviews, P = {p1, p2, ···, pn}, 
and a set of m user transactions, T = {t1,t2,···,tm}, where each ti in T is a subset 
of P. Pageviews are semantically meaningful entities to which mining tasks 
are applied (such as pages or products). Conceptually, we view each 
transaction t as an l-length sequence of ordered pairs: 

,))(,(,)),(,()),(,( 2211
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where each pt
i = pj for some j in {1, 2, ···, n}, and w(pt

i)  is the weight 
associated with pageview pt

i in transaction t, representing its significance. 
The weights can be determined in a number of ways, in part based on the 
type of analysis or the intended personalization framework. For example, 
in collaborative filtering applications which rely on the profiles of similar 
users to make recommendations to the current user, weights may be based 
on user ratings of items. In most Web usage mining tasks the weights are 
either binary, representing the existence or non-existence of a pageview in the 
transaction; or they can be a function of the duration of the pageview in the 
user’s session. In the case of time durations, it should be noted that usually 
the time spent by a user on the last pageview in the session is not available. 
One commonly used option is to set the weight for the last pageview to be the 
mean time duration for the page taken across all sessions in which the 
pageview does not occur as the last one. In practice, it is common to use a 
normalized value of page duration instead of raw time duration in order to 
account for user variances. In some applications, the log of pageview 
duration is used as the weight to reduce the noise in the data. 

For many data mining tasks, such as clustering and association rule 
mining, where the ordering of pageviews in a transaction is not relevant, 
we can represent each user transaction as a vector over the n-dimensional 
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space of pageviews. Given the transaction t above, the transaction vector t 
(we use a bold face lower case letter to represent a vector) is given by: 
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where each wt
pi = w(pt

j), for some j in {1, 2, ···, n}, if pj appears in the 
transaction t, and wt

pi = 0 otherwise. Thus, conceptually, the set of all user 
transactions can be viewed as an m×n user-pageview matrix (also called 
the transaction matrix), denoted by UPM. 

An example of a hypothetical user-pageview matrix is depicted in Fig. 
12.8. In this example, the weights for each pageview is the amount of time 
(e.g., in seconds) that a particular user spent on the pageview. In practice, 
these weights must be normalized to account for variances in viewing 
times by different users. It should also be noted that the weights may be 
composite or aggregate values in cases where the pageview represents a 
collection or sequence of pages and not a single page. 

Given a set of transactions in the user-pageview matrix as described 
above, a variety of unsupervised learning techniques can be applied to 
obtain patterns. These techniques such as clustering of transactions (or 
sessions) can lead to the discovery of important user or visitor segments. 
Other techniques such as item (e.g., pageview) clustering and association 
or sequential pattern mining can find important relationships among 
items based on the navigational patterns of users in the site.  

As noted earlier, it is also possible to integrate other sources of 
knowledge, such as semantic information from the content of Web pages 
with the Web usage mining process. Generally, the textual features from 
the content of Web pages represent the underlying semantics of the site. 

A B C D E F
user0 15 5 0 0 0 185
user1 0 0 32 4 0 0
user2 12 0 0 56 236 0
user3 9 47 0 0 0 134
user4 0 0 23 15 0 0
user5 17 0 0 157 69 0
user6 24 89 0 0 0 354
user7 0 0 78 27 0 0
user8 7 0 45 20 127 0
user9 0 38 57 0 0 15

Sessions /
users 

Pageviews 

Fig. 12.8. An example of a user-pageview matrix (or transaction matrix) 
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Each pageview p can be represented as a r-dimensional feature vector, 
where r is the total number of extracted features (words or concepts) from 
the site in a global dictionary. This vector, denoted by p, can be given by:  

 )(),...,(),( 21 r
ppp ffwffwffwp   

where fwp( fj ) is the weight of the jth feature (i.e., fj ) in pageview p, for 1 ≤  
j ≤ r. For the whole collection of pageviews in the site, we then have an 
n×r pageview-feature matrix PFM = {p1, p2, …, pn}. The integration 
process may, for example, involve the transformation of user transactions 
(in user-pageview matrix) into “content-enhanced” transactions containing 
the semantic features of the pageviews. The goal of such a transformation 
is to represent each user session (or more generally, each user profile) as a 
vector of semantic features (i.e., textual features or concept labels) rather 
than as a vector over pageviews. In this way, a user’s session reflects not 
only the pages visited, but also the significance of various concepts or 
context features that are relevant to the user’s interaction. 

While, in practice, there are several ways to accomplish this 
transformation, the most direct approach involves mapping each pageview 
in a transaction to one or more content features. The range of this mapping 
can be the full feature space, or feature sets (composite features) which in 
turn may represent concepts and concept categories. Conceptually, the 
transformation can be viewed as the multiplication of the user-pageview 
matrix UPM, defined earlier, with the pageview-feature matrix PFM. The 
result is a new matrix, TFM = {t1, t2, …, tm}, where each ti  is a r-
dimensional vector over the feature space. Thus, a user transaction can be 
represented as a content feature vector, reflecting that user’s interests in 
particular concepts or topics. 

As an example of content-enhanced transactions, consider Fig. 12.9 
which shows a hypothetical matrix of user sessions (user-pageview 
matrix) as well as a document index for the corresponding Web site 
conceptually represented as a term-pageview matrix. Note that the 
transpose of this term-pageview matrix is the pageview-feature matrix. 
The user-pageview matrix simply reflects the pages visited by users in 
various sessions. On the other hand, the term-pageview matrix represents 
the concepts that appear in each page. For simplicity we have assumed 
that all the weights are binary (however, note that in practice weights in 
the user transaction data are usually not binary and represent some 
measure of significance of the page in that transaction; and the weights in 
the term-pageview matrix are usually a function of term frequencies).  

In this case, the corresponding content-enhanced transaction matrix 
(derived by multiplying the user-pageview matrix and the transpose of 
the term-pageview matrix) is depicted in Fig. 12.10. The resulting matrix 
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shows, for example, that users 4 and 6 are more interested in Web 
information retrieval, while user 3 is more interested in data mining. 

Various data mining tasks can now be performed on the content-enhanced 
transaction data. For example, clustering the enhanced transaction matrix of 
Fig. 12.10 may reveal segments of users that have common interests in 
different concepts as indicated from their navigational behaviors.  

If the content features include relational attributes associated with items 
on the Web site, then the discovered patterns may reveal user interests at 
the deeper semantic level reflected in the underlying properties of the 
items that are accessed by the users on the Web site. As an example, 
consider a site containing information about movies. The site may contain 
pages related to the movies themselves, as well as attributes describing the 
properties of each movie, such as actors, directors, and genres. The mining 
process may, for instance, generate an association rule such as: {“British”, 

 A.html B.html C.html D.html E.html 
user1 1 0 1 0 1 
user2 1 1 0 0 1 
user3 0 1 1 1 0 
user4 1 0 1 1 1 
user5 1 1 0 0 1 
user6 1 0 1 1 1 

 
 A.html B.html C.html D.html E.html 
web 0 0 1 1 1 
data 0 1 1 1 0 
mining 0 1 1 1 0 
business 1 1 0 0 0 
intelligence 1 1 0 0 1 
marketing 1 1 0 0 1 
ecommerce 0 1 1 0 0 
search 1 0 1 0 0 
information 1 0 1 1 1 
retrieval 1 0 1 1 1 

Fig. 12.9. Examples of a user-pageview matrix (top) and a term-pageview matrix 
(bottom) 

 web data mining business intelligence marketing ecommerce search information retrieval 
user1 2 1 1 1 2 2 1 2 3 3 
user2 1 1 1 2 3 3 1 1 2 2 
user3 2 3 3 1 1 1 2 1 2 2 
user4 3 2 2 1 2 2 1 2 4 4 
user5 1 1 1 2 3 3 1 1 2 2 
user6 3 2 2 1 2 2 1 2 4 4 

Fig. 12.10. The content-enhanced transaction matrix from matrices of Fig. 12.9  
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“Romance”, “Comedy”  “Hugh Grant”}, suggesting that users who are 
interested in British romantic comedies may also like the actor Hugh Grant 
(with a certain degree of confidence). Therefore, the integration of 
semantic content with Web usage mining can potentially provide a better 
understanding of the underlying relationships among objects. 

12.3 Discovery and Analysis of Web Usage Patterns 

The types and levels of analysis, performed on the integrated usage data, 
depend on the ultimate goals of the analyst and the desired outcomes. In 
this section we describe some of the most common types of pattern 
discovery and analysis techniques employed in the Web usage mining 
domain and discuss some of their applications. 

12.3.1 Session and Visitor Analysis 

The statistical analysis of pre-processed session data constitutes the most 
common form of analysis. In this case, data is aggregated by predetermined 
units such as days, sessions, visitors, or domains. Standard statistical 
techniques can be used on this data to gain knowledge about visitor 
behavior. This is the approach taken by most commercial tools available 
for Web log analysis. Reports based on this type of analysis may include 
information about most frequently accessed pages, average view time of a 
page, average length of a path through a site, common entry and exit 
points, and other aggregate measures. Despite a lack of depth in this type 
of analysis, the resulting knowledge can be potentially useful for 
improving the system performance, and providing support for marketing 
decisions. Furthermore, commercial Web analytics tools are increasingly 
incorporating a variety of data mining algorithms resulting in more 
sophisticated site and customer metrics. 

Another form of analysis on integrated usage data is Online Analytical 
Processing (OLAP). OLAP provides a more integrated framework for analysis 
with a higher degree of flexibility. The data source for OLAP analysis is 
usually a multidimensional data warehouse which integrates usage, content, 
and e-commerce data at different levels of aggregation for each dimension. 
OLAP tools allow changes in aggregation levels along each dimension during 
the analysis. Analysis dimensions in such a structure can be based on various 
fields available in the log files, and may include time duration, domain, 
requested resource, user agent, and referrers. This allows the analysis to be 
performed on portions of the log related to a specific time interval, or at a 
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higher level of abstraction with respect to the URL path structure. The 
integration of e-commerce data in the data warehouse can further enhance the 
ability of OLAP tools to derive important business intelligence metrics [18]. 
The output from OLAP queries can also be used as the input for a variety of 
data mining or data visualization tools.  

12.3.2 Cluster Analysis and Visitor Segmentation 

Clustering is a data mining technique that groups together a set of items 
having similar characteristics. In the usage domain, there are two kinds of 
interesting clusters that can be discovered: user clusters and page clusters.  

Clustering of user records (sessions or transactions) is one of the most 
commonly used analysis tasks in Web usage mining and Web analytics. 
Clustering of users tends to establish groups of users exhibiting similar 
browsing patterns. Such knowledge is especially useful for inferring user 
demographics in order to perform market segmentation in e-commerce 
applications or provide personalized Web content to the users with similar 
interests. Further analysis of user groups based on their demographic attributes 
(e.g., age, gender, income level, etc.) may lead to the discovery of valuable 
business intelligence. Usage-based clustering has also been used to create 
Web-based “user communities” reflecting similar interests of groups of users 

 
Given the mapping of user transactions into a multi-dimensional space 

as vectors of pageviews (see Fig. 12.8), standard clustering algorithms, 
such as k-means, can partition this space into groups of transactions that 
are close to each other based on a measure of distance or similarity among 
the vectors (see Chap. 4). Transaction clusters obtained in this way can 
represent user or visitor segments based on their navigational behavior or 
other attributes that have been captured in the transaction file. However, 
transaction clusters by themselves are not an effective means of capturing 
the aggregated view of common user patterns. Each transaction cluster 
may potentially contain thousands of user transactions involving hundreds 
of pageview references. The ultimate goal in clustering user transactions is 
to provide the ability to analyze each segment for deriving business 
intelligence, or to use them for tasks such as personalization. 

One straightforward approach in creating an aggregate view of each 
cluster is to compute the centroid (or the mean vector) of each cluster. The 
dimension value for each pageview in the mean vector is computed by 
finding the ratio of the sum of the pageview weights across transactions to 
the total number of transactions in the cluster. If pageview weights in the 

[91], and to learn user models that can be used to provide dynamic 
recommendations in Web personalization application [85].
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original transactions are binary, then the dimension value of a pageview p 
in a cluster centroid represents the percentage of transactions in the cluster 
in which p occurs. Thus, the centroid dimension value of p provides a 
measure of its significance in the cluster. Pageviews in the centroid can be 
sorted according to these weights and lower weight pageviews can be 
filtered out. The resulting set of pageview-weight pairs can be viewed as 
an “aggregate usage profile” representing the interests or behavior of a 
significant group of users.  

More formally, given a transaction cluster cl, we can construct the 
aggregate profile prcl as a set of pageview-weight pairs by computing the 
centroid of cl: 

},),(|)),(,{(  clclcl prpweightprpweightppr  (1) 

where: 
 the significance weight, weight(p, prcl ), of the page p within the 

aggregate profile prcl is given by 
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 | cl | is the number of transactions in cluster cl; 
 w(p,s) is the weight of page p in transaction vector s of cluster cl; and 
 the threshold µ is used to focus only on those pages in the cluster that 

appear in a sufficient number of vectors in that cluster. 

Each such profile, in turn, can be represented as a vector in the original 
n -dimensional space of pageviews. This aggregate representation can be 
used directly for predictive modeling and in applications such as 
recommender systems: given a new user, u , who has accessed a set of 
pages, Pu, so far, we can measure the similarity of Pu to the discovered 
profiles, and recommend to the user those pages in matching profiles 
which have not yet been accessed by the user.  

As an example, consider the transaction data depicted in Fig. 12.11 
(left). For simplicity we assume that feature (pageview) weights in each 
transaction vector are binary (in contrast to weights based on a function of 
pageview duration). We assume that the data has already been clustered 
using a standard clustering algorithm such as k-means, resulting in three 
clusters of user transactions. The table on the right of Fig. 12.11 shows the 
aggregate profile corresponding to cluster 1. As indicated by the pageview 
weights, pageviews B and F are the most significant pages characterizing 
the common interests of users in this segment. Pageview C, however, only 
appears in one transaction and might be removed given a filtering 
threshold greater than 0.25. Such patterns are useful for characterizing user 
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or customer segments. This example, for instance, indicates that the 
resulting user segment is clearly interested in items B and F and to a lesser 
degree in item A. Given a new user who shows interest in items A and B, 
this pattern may be used to infer that the user might belong to this segment 
and, therefore, we might recommend item F to that user. Other clustering 
approaches discover user profiles by optimizing objective functions that 
avoid the known limitations of the k-means algorithm. For instance, 
Nasraoui et al. presented clustering algorithms that are not only less 
sensitive to initialization, but also can resist noise and outliers in the data, 
and can automatically determine the number of clusters [87].  

Clustering of pages (or items) can be performed based on the usage data 
(i.e., starting from the user sessions or transaction data), or based on the 
content features associated with pages or items (keywords or product 
attributes). In the case of content-based clustering, the result may be 
collections of pages or products related to the same topic or category. In 
usage-based clustering, items that are commonly accessed or purchased 
together can be automatically organized into groups. It can also be used to 
provide permanent or dynamic HTML pages that suggest related hyperlinks to 
the users according to their past history of navigational or purchase activities.  

A variety of stochastic methods have also been proposed recently for 
clustering of user transactions, and more generally for user modeling. For 
example, recent work in this area has shown that mixture models are able 
to capture more complex, dynamic user behavior. This is, in part, because 
the observation data (i.e., the user-item space) in some applications (such 
as large and very dynamic Web sites) may be too complex to be modeled 
by basic probability distributions such as a normal or a multinomial 

Fig. 12.11. Derivation of aggregate profiles from Web transaction clusters 

 A B C D E F
user 1 0 0 1 1 0 0 
user 4 0 0 1 1 0 0 
user 7 0 0 1 1 0 0 
user 0 1 1 0 0 0 1 
user 3 1 1 0 0 0 1 
user 6 1 1 0 0 0 1 
user 9 0 1 1 0 0 1 
user 2 1 0 0 1 1 0 
user 5 1 0 0 1 1 0 
user 8 1 0 1 1 1 0 

Aggregated Profile 
for Cluster 1 

Weight Pageview 
1.00 B 
1.00 F 
0.75 A 
0.25 C 

Cluster 0 

Cluster 1 

Cluster 2 
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distribution. In particular, each user may exhibit different “types” of 
behavior corresponding to different tasks, and common behaviors may 
each be reflected in a different distribution within the data. 

The general idea behind mixture models (such as a mixture of Markov 
models) is as follow. We assume that there exist k types of user behavior (or k 
user clusters) within the data, and each user session is assumed to be generated 
via a generative process which models the probability distributions of the 
observed variables and hidden variables. First, a user cluster is chosen with 
some probability. Then, the user session is generated from a Markov model 
with parameters specific to that user cluster. The probabilities of each user 
cluster is estimated, usually via the EM [35] algorithm, as well as the 
parameters of each mixture component. Mixture-based user models can 
provide a great deal of flexibility. For example, a mixture of first-order 
Markov models [19] not only can probabilistically cluster user sessions based 
on similarities in navigation behavior, but also characterize each type of user 
behavior using a first-order Markov model, thus capturing popular navigation 
paths or characteristics of each user cluster. A mixture of hidden Markov 
models was proposed in [128] for modeling clickstream of Web surfers. In 
addition to user-based clustering, this approach can also be used for automatic 
page classification. Incidentally, mixture models have been discussed in Sect. 
3.7 in the context of naïve Bayesian classification. The EM algorithm is used 
in the same context in Sect. 5.1.   

Mixture models tend to have their own shortcomings. From the data 
generation perspective, each individual observation (such as a user session) is 
generated from one and only one component model. The probability 
assignment to each component only measures the uncertainty about this 
assignment. This assumption limits this model’s ability of capturing complex 
user behavior, and more seriously, may result in overfitting.  

Probabilistic Latent Semantic Analysis (PLSA) provides a reasonable 
solution to the above problem [52]. In the context of Web user navigation, 
each observation (a user visiting a page) is assumed to be generated based 
on a set of unobserved (hidden) variables which “explain” the user-page 
observations. The data generation process is as follows: a user is selected 
with a certain probability, next conditioned on the user, a hidden variable 
is selected, and then the page to visit is selected conditioned on the chosen 
hidden variable. Since each user usually visits multiple pages, this data 
generation process ensures that each user is explicitly associated with 
multiple hidden variables, thus reducing the overfitting problems 
associated with the above mixture models. The PLSA model also uses the 
EM algorithm to estimate the parameters which probabilistically 
characterize the hidden variables underlying the co-occurrence observation 
data, and measure the relationship among hidden and observed variables.  
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This approach provides a great deal of flexibility since it provides a 
single framework for quantifying the relationships between users, between 
items, between users and items, and between users or items and hidden 
variables that “explain” the observed relationships [59]. Given a set of n 
user profiles (or transaction vectors), UP = {u1, u2, … , un}, and a set of m 
items (e.g., pages or products), I = {i1, i2, … , im}, the PLSA model 
associates a set of unobserved factor variables Z = {z1, z2, …, zq} with 
observations in the data (q is specified by the user). Each observation 
corresponds to a weight wuk(ij) for an item ij in the user profile for a user uk. 
This weight may, for example, correspond to the significance of the page 
in the user transaction or the user rating associated with the item. For a 
given user u and a given item i, the following joint probability can be 
derived (see [59] for details of the derivation): 
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In order to explain the observations in (UP, I), we need to estimate the 
parameters Pr(zk), Pr(u|zk), and Pr(i|zk), while maximizing the following 
likelihood L(UP, I) of the observation data: 
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The ExpectationMaximization (EM) algorithm is used to perform maximum 
likelihood parameter estimation. Based on initial values of Pr(zk), Pr(u|zk), 
and Pr(i|zk), the algorithm alternates between an expectation step and 
maximization step. In the expectation step, posterior probabilities are 
computed for latent variables based on current estimates, and in the 
maximization step the re-estimated parameters are obtained. Iterating the 
expectation and maximization steps monotonically increases the total 
likelihood of the observed data L(UP, I), until a local optimal solution is 
reached. Details of this approach can be found in [59]. 

Again, one of the main advantages of PLSA model in Web usage 
mining is that using probabilistic inference with the above estimated 
parameters, we can derive relationships among users, among pages, and 
between users and pages. Thus this framework provides a flexible 
approach to model a variety of types of usage patterns.  

12.3.3 Association and Correlation Analysis 

Association rule discovery and statistical correlation analysis can find 
groups of items or pages that are commonly accessed or purchased 
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together. This, in turn, enables Web sites to organize the site content more 
efficiently, or to provide effective cross-sale product recommendations.  

Most common approaches to association discovery are based on the 
Apriori algorithm (see Sect. 2.2). This algorithm finds groups of items 
(pageviews appearing in the preprocessed log) occurring frequently 
together in many transactions (i.e., satisfying a user specified minimum 
support threshold). Such groups of items are referred to as frequent 
itemsets. Association rules which satisfy a minimum confidence threshold 
are then generated from the frequent itemsets.  

Recall an association rule is an expression of the form XY [sup, conf], 
where X and Y are itemsets, sup is the support of the itemset X  Y 
representing the probability that X and Y occur together in a transaction, 
and conf is the confidence of the rule, defined by sup(XY) / sup(X), 
representing the conditional probability that Y occurs in a transaction given 
that X has occurred in that transaction. More details on association rule 
discovery can be found in Chap. 2. 

The mining of association rules in Web transaction data has many 
advantages. For example, a high-confidence rule such as  

special-offers/, /products/software/  shopping-cart/  

might provide some indication that a promotional campaign on software 
products is positively affecting online sales. Such rules can also be used to 
optimize the structure of the site. For example, if a site does not provide 
direct linkage between two pages A and B, the discovery of a rule, A  B, 
would indicates that providing a direct hyperlink from A to B might aid 
users in finding the intended information. Both association analysis 
(among products or pageviews) and statistical correlation analysis 
(generally among customers or visitors) have been used successfully in 
Web personalization and recommender systems [48, 86]. In fact, the main 
applications of association rule mining based on Web usage data or e-
commerce data are in recommendations, which we will discuss in detail in 
Section 12.4.4.  

12.3.4 Analysis of Sequential and Navigational Patterns 
 
The technique of sequential pattern mining attempts to find inter-session 
patterns such that the presence of a set of items is followed by another item 
in a time-ordered set of sessions or episodes. By using this approach, Web 
marketers can predict future visit patterns which will be helpful in placing 
advertisements aimed at certain user groups. Other types of temporal 
analysis that can be performed on sequential patterns include trend 
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analysis, change point detection, or similarity analysis. In the context of 
Web usage data, sequential pattern mining can be used to capture 
frequent navigational paths among user trails.  

Sequential patterns (SPs) in Web usage data capture the Web page trails 
that are often visited by users, in the order that they were visited. 
Sequential patterns are those sequences of items that frequently occur in a 
sufficiently large proportion of (sequence) transactions. A sequence 
s1s2…sn occurs in a transaction t = p1, p2, . . . , pm (where n ≤ m) if there 
exist n positive integers 1 ≤ a1 < a2 < . . . < an ≤ m, and si = pai for all i. 
We say that cs1 cs2…csn is a contiguous sequence in t if there exists an 
integer 0 ≤ b ≤ m − n, and csi = pb+i for all i = 1 to n. In a contiguous 
sequential pattern (CSP), each pair of adjacent items, si and si+1, must 
appear consecutively in a transaction t which supports the pattern. A 
normal sequential pattern can represent non-contiguous frequent sequences 
in the underlying set of sequence transactions.  

Given a sequence transaction set T, the support (denoted by sup(S)) of a 
sequential (respectively, contiguous sequential) pattern S in T is the 
fraction of transactions in T that contain S. The confidence of the rule X  
Y, where X and Y are (contiguous) sequential patterns, is defined as:  

conf(X  Y) = sup(X ° Y ) / sup(X) ,  

where ° denotes the concatenation operator.  
In the context of Web usage data, CSPs can be used to capture frequent 

navigational paths among user trails [114]. In contrast, items appearing in 
SPs, while preserving the underlying ordering, need not be adjacent, and 
thus they represent more general navigational patterns within the site. Note 
that sequences and sequential patterns or rules discussed here are special 
cases of those defined in Sect. 2.9.  

The view of Web transactions as sequences of pageviews allows for a 
number of useful and well-studied models to be used in discovering or 
analyzing user navigation patterns. One such approach is to model the 
navigational activities in the Web site as a Markov model: each pageview 
(or a category) can be represented as a state and the transition probability 
between two states can represent the likelihood that a user will navigate 
from one state to the other. This representation allows for the computation 
of a number of useful user or site metrics. For example, one might 
compute the probability that a user will make a purchase, given that she 
has performed a search in an online catalog. Markov models have been 
proposed as the underlying modeling machinery for link prediction as well 
as for Web prefetching to minimize system latencies [36, 104]. The goal of 
such approaches is to predict the next user action based on a user’s 
previous surfing behavior. They have also been used to discover high 
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probability user navigational trails in a Web site [15]. More sophisticated 
statistical learning techniques, such as mixtures of Markov models, have 
also been used to cluster navigational sequences and perform exploratory 
analysis of users’ navigational behavior in a site [19].  

More formally, a Markov model is characterized by a set of states {s1, 
s2, ..., sn} and a transition probability matrix, [Pri,j]nn, where Pri,j 
represents the probability of a transition from state si to state sj. Markov 
models are especially suited for predictive modeling based on contiguous 
sequences of events. Each state represents a contiguous subsequence of 
prior events. The order of the Markov model corresponds to the number of 
prior events used in predicting a future event. So, a kth-order Markov 
model predicts the probability of next event by looking the past k events. 
Given a set of all paths R, the probability of reaching a state sj from a state 
si via a (non-cyclic) path r  R is the product of all the transition 
probabilities along the path and is given by Pr(r) = Prm,m+1, where m 
ranges from i to j − 1. The probability of reaching sj from si is the sum of 
these path probabilities over all paths: Pr(j|i) = rR Pr(r). 

As an example of how Web transactions can be modeled as a Markov 
model, consider the set of Web transaction given in Fig. 12.12 (left). The 
Web transactions involve pageviews A, B, C, D, and E. For each 
transaction the frequency of occurrences of that transaction in the data is 
given in the table’s second column (thus there are a total of 50 transactions 
in the data set). The (absorbing) Markov model for this data is also given 
in Fig. 12.12 (right). The transitions from the “start” state represent the 
prior probabilities for transactions starting with pageviews A and B. The 
transitions into the “final” state represent the probabilities that the paths 
end with the specified originating pageviews. For example, the transition 
probability from the state A to B is 16/28 = 0.57 since out of the 28 
occurrences of A in transactions, in 16 cases, B occurs immediately after A. 

Higher-order Markov models generally provide a higher prediction 
accuracy. However, this is usually at the cost of lower coverage (or recall) 
and much higher model complexity due to the larger number of states. In 
order to remedy the coverage and space complexity problems, Pitkow and 
Pirolli [98] proposed all-kth-order Markov models (for coverage 
improvement) and a new state reduction technique, called longest 
repeating subsequences (LRS) (for reducing model size). The use of all-
kth-order Markov models generally requires the generation of separate 
models for each of the k orders: if the model cannot make a prediction 
using the kth order, it will attempt to make a prediction by incrementally 
decreasing the model order. This scheme can easily lead to even higher 
space complexity since it requires the representation of all possible states 
for each k. Deshpande and Karypis [36] proposed selective Markov 
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models, introducing several schemes in order to tackle the model 
complexity problems with all-kth-order Markov models. The proposed 
schemes involve pruning the model based on criteria such as support, 
confidence, and error rate. In particular, the support-pruned Markov 
models eliminate all states with low support determined by a minimum 
frequency threshold. 

Another way of efficiently representing contiguous navigational trails is 
by inserting each trail into a trie structure. A good example of this 
approach is the notion of aggregate tree introduced as part of the WUM 
(Web Utilization Miner) system [114]. The aggregation service of WUM 
extracts the transactions from a collection of Web logs, transforms them 
into sequences, and merges those sequences with the same prefix into the 
aggregate tree (a trie structure). Each node in the tree represents a 
navigational subsequence from the root (an empty node) to a page and is 
annotated by the frequency of occurrences of that subsequence in the 
transaction data (and possibly other information such as markers to 
distinguish among repeat occurrences of the corresponding page in the 
subsequence). WUM uses a mining query language, called MINT, to 
discover generalized navigational patterns from this trie structure. MINT 
includes mechanisms to specify sophisticated constraints on pattern 
templates, such as wildcards with user-specified boundaries, as well as 
other statistical thresholds such as support and confidence. This approach 
and its extensions have proved useful in evaluating the navigational design 
of a Web site [113]. 

As an example, again consider the set of Web transactions given in the 
previous example. Fig. 12.13 shows a simplified version of WUM’s 

Transaction Frequen
cy 

A, B, E 10 
B, D, B, C 4 

B, C, E 10 
A, B, E, F 6 
A, D, B 12 

B, D, B, E 8 

6/34 

F 

28/34 

6/6 

28/50 

22/50 

16/28 12/62 
24/24 

12/62 4/14 

14/62 

24/62 

10/14 

12/28 
A

B

C

E

start

final

D

Fig. 12.12. An example of modeling navigational trails as a Markov chain 
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aggregate tree structure derived from these transactions. Each node in the 
tree represents a navigational subsequence from the root (an empty node) 
to a page and is annotated by the frequency of occurrences of that 
subsequence in the session data.  The advantage of this approach is that the 
search for navigational patterns can be performed very efficiently and the 
confidence and support for the navigational patterns can be readily 
obtained from the node annotations in the tree. For example, consider the 
contiguous navigational sequence <A, B, E, F>. The support for this 
sequence can be computed as the support of the last page in the sequence, 
F, divided by the support of the root node: 6/50 = 0.12, and the confidence 
of the sequence is the support of F divided by the support of its 
predecessor, E, or 6/16 = 0.375. If there are multiple branches in the tree 
containing the same navigational sequence, then the support for the 
sequence is the sum of the supports for all occurrences of the sequence in 
the tree and the confidence is updated accordingly. For example, the 
support of the sequence <D, B> is (12+12)/50 = 0.48, while the confidence 
is the aggregate support for B divided by the aggregate support for D, i.e., 
24/24 = 1.0. The disadvantage of this approach is the possibly high space 
complexity, especially in a site with many dynamically generated pages.  

12.3.5 Classification and Prediction based on Web User 
Transactions 

Classification is the task of mapping a data item into one of several 
predefined classes (Chap. 2). In the Web domain, one is interested in 
developing a profile of users belonging to a particular class or category. 
This requires extraction and selection of features that best describe the 
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Fig. 12.13. An example of modeling navigational trails in an aggregate tree 
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properties of given the class or category. Classification can be done by 
using supervised learning algorithms such as decision trees, naive 
Bayesian classifiers, k-nearest neighbor classifiers, and Support Vector 
Machines (Chap. 3). It is also possible to use previously discovered 
clusters and association rules for classification of new users (Sect. 3.5). 

Classification techniques play an important role in Web analytics 
applications for modeling the users according to various predefined 
metrics. For example, given a set of user transactions, the sum of 
purchases made by each user within a specified period of time can be 
computed. A classification model can then be built based on this enriched 
data in order to classify users into those who have a high propensity to buy 
and those who do not, taking into account features such as users’ 
demographic attributes, as well their navigational activities.  

There are also a large number of other classification problems that are 
based the Web usage data. The problem of solving any classification 
problem is basically the same, i.e., (1) model the problem as a 
classification learning problem, (2) identify and/or construct a set of 
relevant features for learning, and (3) apply a supervised learning method 
or regression method. We will not discuss it further here.  

However, there is a special kind of classification and prediction systems 
on the Web called recommender systems that warrant much further 
studies because it has a wide range of applications and has also been 
investigated extensively by researchers. We study this topic next.  

12.4 Recommender Systems and Collaborative Filtering 

Recommender systems are widely used on the Web for recommending 
products and services to users. Most e-commerce Web sites have such 
systems. These systems serve two important functions. First, they help 
users deal with the information overload by giving them personalized 
recommendations. For example, given thousands of movies, a 
recommender system selects and recommends some movies to each user 
that he/she will most likely enjoy watching. Second, they help businesses 
make more profits. Due to the problem rich nature and abundance of 
applications, numerous research papers have been published on 
recommender systems in the fields of computer science, information 
systems, marketing, and management science (see [1] for a survey of the 
field). We use the movie recommendation as an example to explain what a 
recommender system does. 

Movie recommendation is a well-known application of recommender 
systems and has been investigated extensively (including a highly 



556      12  Web Usage Mining 

publicized contest, which we will describe later). There are different 
variations of the application. The most common one goes like this. A set of 
users has initially rated some subset of movies (e.g., on the scale of 1 to 5) 
that they have already seen. These ratings serve as the input. The 
recommendation system uses these known ratings to predict the ratings 
that each user would give to those not rated movies by him/her. 
Recommendations of movies are then made to each user based on the 
predicted ratings. In some applications, there is no rating information 
while in some others there are also additional attributes about each user 
(e.g., age, gender, income, marital status, etc.) and/or about each movie 
(e.g., title, genre, director, leading actors or actresses, etc.). When there is 
no rating information, the system will not predict ratings but predict the 
likelihood that a user will enjoy watching a movie. With this example in 
mind, we can formally define the recommendation problem.  

12.4.1 The Recommendation Problem  

We have a set of users U and a set of items S to be recommended to the 
users. Each user u in U is defined with a user profile that includes various 
user characteristics or features, such as age, gender, income, marital status, 
tastes, preferences, needs, etc. In the simplest case, the profile contains 
only a single (unique) element, such as User ID. Similarly, each item in S 
is also defined with a set of characteristics or features. For example, in a 
movie recommendation application, where S is a collection of movies, 
each movie can be represented by its ID, title, genre, director, year of 
release, leading actors, etc. Again, in the simplest case, a movie may be 
represented only by a unique Movie ID. In most applications, the spaces of 
both U and S can be very large.  

Let p be an utility function that measures the usefulness of item s to user 
u, i.e., p:U×S  R, where R is a totally ordered set (e.g., non-negative 
integers or real numbers within a certain range). The task of a recommender 
system is twofold:  

1. Learn the utility function p. The objective function for learning p can 
be arbitrary (e.g., user satisfaction or seller profitability) depending 
on applications.   

2. Use p to predict the utility value of each item s ( S) to each user u 
( U), except those items that already have utility values for u from 
the input data, and then recommend the top k items to user u.  

From a prediction point of view, a recommender system typically performs 
one of the following two prediction tasks:  
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1. Rating prediction, i.e., predict the rating score that a user is likely to 
give to an item that s/he has not seen or used before, e.g., rating on an 
unseen movie. In this case, the utility of item s to user u is the rating 
given to s by u.  

2. Item prediction, i.e., predict a ranked list of items that a user is likely 
to buy or use. In such applications, the interactions between users and 
items are typically binary (e.g., purchased or not purchased) or multi-
scaled (e.g., with ratings given by users) but the concrete values are 
not of concern. The utility of item s to user u is typically expressed as 
the probability that user u will buy or use item s.  

There are two basic approaches to recommendations [1, 11]: 

 Content-based recommendations: The user will be recommended 
items similar to the ones the user preferred in the past. 

 Collaborative filtering (or collaborative recommendations): The 
user will be recommended items that people with similar tastes and 
preferences liked in the past. 

There are also many approaches that combine collaborative and content-
based methods. These methods are called the hybrid methods. They 
typically work in one of the following ways [1, 11]:   

1.  Implementing collaborative filtering and content-based methods 
separately and combining their predictions just like ensemble 
techniques in classification learning (Sect. 3.10) 

2.  Incorporating some content-based characteristics into a collaborative 
approach 

3.  Incorporating some collaborative characteristics into a content-based 
approach 

4.  Constructing a general unifying model that incorporates both content-
based and collaborative characteristics 

All of these approaches have been employed by researchers. See a survey 
in [1]. Here, we only focus on the two basic approaches.  

12.4.2 Content-Based Recommendation 

Content-based recommendation methods perform item recommendations 
by predicting the utility of items for a particular user based on how 
“similar” the items are to those that he/she liked in the past. In this 
approach, an item is usually represented by a set of features. For example, 
in a movie recommendation application, a movie may be represented by 
such features as specific actors, director, genre, subject matter, etc. The 
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user’s interest or preference is also represented by the same set of features 
called the user profile. The profile can be elicited from the user explicitly, 
e.g., through questionnaires, or implicitly learned from his/her transactional 
behavior over time. The recommendations are made by comparing the user 
profile with candidate items expressed in the same set of features. The top-k 
best matched or most similar items are recommended to the user.  

The simplest approach to content-based recommendation is to compute 
the similarity of the user profile with each item. The similarity measures 
discussed in Chaps. 4 and 6 are all applicable depending on application 
needs. Most of the applications of content-based recommendations are in 
the domain of text documents recommendation, e.g., recommending news 
articles, Web pages, and blogs. We now use the text domain to give some 
details of this type of recommendation.  

In the text domain, the input for recommendation consists of a set of 
documents that the user liked in the past and a large set of candidate 
documents (i.e., items) to be considered for recommendation. Most of the 
existing techniques are based on those in information retrieval (Chap. 5). For 
example, the documents are represented as vectors of keywords using the TF-
IDF scheme in the vector space model. The cosine similarity is typically the 
similarity measure. The user profile is also represented by such a vector and 
is computed based on the set of relevant documents provided by the user. 
One common way to produce a user profile is to compute an average (or 
prototype) vector of the relevant documents using techniques such as the 
Rocchio method (Sect. 6.3). The system then compares the similarity of this 
average vector with the candidate document vectors.  

It is also possible not to compute a user profile as an average vector 
explicitly, but just use the user-given relevant documents as they are in the 
context of machine learning. In such cases, PU learning is applicable. We 
can simply treat the user-given documents as the positive class documents 
and the set of candidate documents as the unlabeled documents. Then we 
can employ any one of the PU learning methods discussed in Chap. 5.  

If the user can provide both relevant documents (which he/she liked in the 
past) and irrelevant documents, then all the supervised learning methods 
discussed in Chap. 3 can be used. If the set of relevant and irrelevant 
documents is small, semi-supervised learning (LU learning) in Chap. 5 may 
be applied.  

One key weakness of the content-based recommendation approach is 
that it is unable to recommend items that are dissimilar to the items that the 
user liked in the past. This is bad for the user because he/she will never see 
anything that is completely new or novel but could be of interest. It is also 
bad for the business because it will make less profit from the user. For 
example, a user has never eaten in a Chinese restaurant. Then, he will 
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never be recommended a Chinese restaurant (even if he may like the 
Chinese food if he/she ever tries it). This shortcoming is overcome by 
collaborative filtering, which we discuss in the next three sub-sections.   

12.4.3 Collaborative Filtering: K-Nearest Neighbor (kNN) 

Collaborative filtering (CF) [49, 100, 107] is perhaps the most studied and 
also the most widely used recommendation approach in practice. The key 
characteristic of CF is that it predicts the utility of items for a particular 
user based on the items previously rated or purchased by other like-minded 
users. It often utilizes only consumer–product interaction data and ignores 
consumer and product attributes [1]. Below, we discuss some popular 
collaborative filtering algorithms, i.e., k-nearest neighbor, association 
rules based prediction, and matrix factorization. This sub-section 
focuses on k-nearest neighbor, which is widely used in industry.  

kNN (which is also called the memory-based approach) utilizes the entire 
user-item database to generate predictions directly, i.e., there is no model 
building. This approach includes both the user-based [16, 93] and item-
based [77, 105] algorithms. In essence, such an algorithm explicitly finds 
similar users or items (which are called neighbors) and uses them to predict 
the preference of the target user. Specially, it uses k-nearest neighbor 
classifiers to predict user ratings or purchase propensity by measuring the 
correlation between the profile of the target user (which may be a set of item 
ratings or a set of items visited or purchased) and the profiles of other users in 
order to find users in the database with similar characteristics or preferences 
[48]. Once the k nearest “neighbors” are found, predictions are made based 
on some kind of aggregation of the values from these neighbors. Below, we 
describe a user-based kNN algorithm first. 

A typical user-based kNN collaborative filtering method consists of two 
primary phrases: the neighborhood formation phase and the recommendation 
phase. In the first phrase, it compares the activity record of a target user (also 
called a visitor) with the historical records T of other users in order to find the 
top k users who have similar tastes or interests. The mapping of a visitor 
record to its neighborhood could be based on similarity in ratings of items, 
access to similar content or pages, or purchase of similar items. In most 
typical collaborative filtering applications, the user records or profiles are a 
set of ratings for a subset of items. Let the record (or profile) of the target user 
be u (represented as a vector) and the record of another user be v (v  T). The 
top k most similar records to u are considered to be the neighborhood of u. 
For simplicity, we will also use u and v to denote the two users. The 
similarity between the target user, u, and a neighbor, v, can be calculated 
using the Pearson’s correlation coefficient: 
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where C is the set of items that are co-rated by users u and v (i.e., items 
that have been rated by both of them), ru,i and rv,i are the ratings (or 
weights) given to item i by the target user u and a possible neighbor v 
respectively, and ur and vr are the average ratings (or weights) of u and v 
respectively. Once similarities are calculated, the most similar users are 
selected. It is also common to filter out neighbors with a similarity of less 
than a specific threshold to prevent predictions being based on very distant 
or negative correlations.  

Once the most similar user transactions (neighbors) are identified, the 
recommendation phase can use the following formula to compute the 
rating prediction of item i for target user u (see [1] for other possible 
formulas for this purpose):  
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where V is the set of k similar users, rv,i is the rating of user v given to  
item i, ur and vr are the average ratings of user u and v respectively, and 
sim(u, v) is the Pearson correlation described above. The formula basically 
computes the preference of all the neighbors weighted by their similarity 
and then adds this to the target user’s average rating. The idea is that 
different users may have different “baselines” around which their ratings 
are distributed. Once the ratings are predicted, we simply choose those 
highly rated items to recommend to the user.  

The problem with the user-based formulation of the collaborative 
filtering problem is the lack of scalability: it requires the real-time 
comparison of the target user to all user records in order to generate 
predictions. A variation of this approach that remedies this problem is 
called item-based collaborative filtering [105], which can pre-compute 
all pairwise item to item similarity values. The item-based approach works 
by comparing items based on their pattern of ratings across users. Again, a 
nearest-neighbor approach can be applied, which attempts to find k similar 
items that are co-rated by different users similarly. The similarity measure 
typically used is the adjusted cosine similarity given below: 
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where U is the set of all users, i and j are items, ru,i is the rating of user u  
U on item i, and ur is the average of the user u’s ratings as before. Note 
that in this case, we are computing the pairwise similarities among items 
(not users) based on the ratings for these items across all users. After 
computing the similarity between items, we select a set of k most similar 
items to the target item (i.e., the item for which we are interested in 
predicting a rating value) and generate a predicted value of user u’s rating 
by using the following formula: 
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where J is the set of k similar items, ru,j is the rating of user u on item j, 
and sim(i, j) is the similarity between items i and j as defined above. It is 
also common to ignore items with negative similarity to the target item. 
The idea here is to use the user’s own ratings for the similar items to 
extrapolate the prediction for the target item. 

The problem with the straightforward user-based or item-based kNN 
approach is that the high dimensionality of item or user often makes the 
computation of pairwise user or item similarities practically infeasible. In 
response to this problem, a number of dimensionality reduction methods 
[45, 106] have been proposed to downsize the scale of user and item 
profile. These methods either project the user–item matrix into a lower 
dimensional space using technique like Principal Component Analysis or 
factorize the user–item matrix to obtain lower-rank representation of users 
(items) using techniques like Singular Value Decomposition, and then 
identify similar users (items) in the subspace.  

12.4.4 Collaborative Filtering: Using Association Rules 

Using association rules for recommendation is quite natural as the items 
purchased by each user can naturally be treated as a transaction. 
Association rules can then be mined from the transactions of all users for 
prediction or classification as we studied in Sect. 3.5.3 (ratings are usually 
not used). In particular, the left-hand side of a rule can be used to predict 
the right-hand-side of the rule. The approach has been used by several 
researchers and also commonly used in industry. For example, in the 
collaborative filtering context, Sarwar et al. [105] used association rules in 
the context of a top-N recommender system for e-commerce. The 
preferences of the target user are matched against the items on the left-
hand side (or antecedent) X of each rule (e.g., X  Y), and the items on the 
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right-hand side of the matching rules are sorted according to the 
confidence values. Then the top N items from this list are recommended to 
the target user (see also Sect. 3.5.3). Note that in most applications, the set 
X contains one or more items, but the set Y contains only a single predicted 
item [recall that in general Y can contain any number of items as in the 
case of association rule mining (see Chap. 2)].   

One problem for association rule recommendation systems is that a 
system has difficulty to give recommendations when the dataset is sparse, 
which is often the case in collaborative filtering applications. The reason 
for this sparsity is that any given user visits (or rates) only a very small 
fraction of the available items, and thus, it is often difficult to find a 
sufficient number of common items in multiple user profiles. Sarwar et al. 
[106] relied on some standard dimensionality reduction techniques to 
alleviate this problem. One deficiency of this and other dimensionality 
reduction approaches is that some of the useful or interesting items may be 
removed and, therefore, may not appear in the final patterns. Fu et al. [43] 
proposed two potential solutions to this problem. The first solution is to 
rank all the discovered rules based on the degree of intersection between 
the left-hand side of each rule and the user’s active session and then to 
generate the top k recommendations. This approach will relax the 
constraint of having to obtain a complete match with the left-hand side of 
the rules. The second solution is to utilize collaborative filtering: the 
system finds “close neighbors” who have similar interest to a target user 
and makes recommendations based on the close neighbors’ histories.  

Lin et al. [76] proposed a collaborative recommendation system using 
association rules that finds an appropriate number of rules for each target 
user by automatically selecting a minimum support. The system generates 
association rules among users (user associations), as well as among items 
(item associations). If a user minimum support is greater than a threshold, 
the system generates recommendations based on user associations, else it 
uses item associations. 

Because it is difficult to find a matching rule antecedent with a full user 
profile (e.g., a full user session or transaction), association-based 
recommendation algorithms typically use a sliding window w over the 
target user’s active profile or session. The window represents the portion 
of user’s history that will be used to predict future user actions (based on 
matches with the left-hand sides of the discovered rules). The size of this 
window is iteratively decreased until an exact match with the antecedent of 
a rule is found. A problem with the naive approach to this algorithm is that 
it requires repeated search through the rule-base. However, efficient trie-
based data structure can be used to store the discovered itemsets and allow 
for efficient generation of recommendations without the need to generate 
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all association rules from frequent itemsets [86]. Such data structures are 
commonly used for string or sequence searching applications. In the 
context of association rule mining, the frequent itemsets are stored in a 
directed acyclic graph. This frequent itemset graph is an extension of the 
lexicographic tree used in the tree projection mining algorithm of Agarwal 
et al. [4]. The graph is organized into levels from 0 to k, where k is the 
maximum size among all frequent itemsets. Each node at depth d in the 
graph corresponds to an itemset, X, of size d and is linked to itemsets of 
size d + 1 that contain X at level d + 1. The single root node at level 0 
corresponds to the empty itemset. To be able to search for different 
orderings of an itemset, all itemsets are sorted in lexicographic order 
before being inserted into the graph. If the graph is used to recommend 
items to a new target user, that user’s active session is also sorted in the 
same manner before matching with itemsets. 

As an example, suppose that in a hypothetical Web site with user 
transaction data depicted in the left table of Fig. 12.14. Using a minimum 
support (minsup) threshold of 4 (i.e., 80%), the Apriori algorithm 
discovers the frequent itemsets given in the right table. For each itemset, 
the support is also given. The corresponding frequent itemset graph is 
depicted in Fig. 12.15. 

A recommendation engine based on this framework matches the current 
user session window with the previously discovered frequent itemsets to 
find candidate items (pages) for recommendation. Given an active session 
window w and a group of frequent itemsets, the algorithm considers all the 
frequent itemsets of size |w| + 1 containing the current session window by 
performing a depth-first search of the Frequent Itemset Graph to level |w|. 
The recommendation value of each candidate is based on the confidence of 
the corresponding association rule whose consequent is the singleton 
containing the page to be recommended. If a match is found, then the 
children of the matching node n containing w are used to generate 

Fig. 12.14. Web transactions and resulting frequent itemsets (minsup = 4) 
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candidate recommendations. In practice, the window w can be incrementally 
decreased until a match is found with an itemset. For example, given user 
active session window <B, E>, the recommendation algorithm, using the 
graph of Fig. 12.15, finds items A and C as candidate recommendations. The 
recommendation scores of item A and C are 1 and 4/5, corresponding to the 
confidences of the rules, B, E  A and B, E  C, respectively. 

A problem with using a single global minimum support threshold in 
association rule mining is that the discovered patterns will not include 
“rare” but important items which may not occur frequently in the 
transaction data. This is particularly important when dealing with Web 
usage data, it is often the case that references to deeper content or product-
oriented pages occur far less frequently than those of top level navigation-
oriented pages. Yet, for effective Web personalization, it is important to 
capture patterns and generate recommendations that contain these items. A 
mining method based on multiple minimum supports is proposed in [78] 
that allows users to specify different support values for different items. In 
this method, the support of an itemset is defined as the minimum support 
of all items contained in the itemset. For more details on mining using 
multiple minimum supports, see Sect. 2.4. The specification of multiple 
minimum supports thus allows frequent itemsets to potentially contain rare 
items which are deemed important. It has been shown that the use of 
multiple support association rules in the context of Web personalization 
can dramatically increase the coverage (or recall) of recommendations 
while maintaining a reasonable precision [86]. 

A(5) B(5) C(4)
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E(5)

AB (5) AC (4) AE (5) BC (4) CE (4)BE (5)

ABC (4) 

ABCE (4)

ACE (4)ABE (5) BCE (4)

Fig. 12.15.  A frequent itemset graph 
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12.4.5 Collaborative Filtering: Matrix Factorization  

In general, the idea of matrix factorization is to decompose a matrix M 
into the product of several factor matrices, i.e., M = F1F2Fn, where n can 
be any number, but it is usually 2 or 3. Matrix factorization has been 
gaining popularity for collaborative filtering in recent years due to its 
superior performance both in terms of recommendation quality and 
scalability [67]. Part of its success is due to the Netflix Prize contest for 
movie recommendation, which popularized a Singular Value 
Decomposition (SVD) based matrix factorization algorithm. Since then 
various matrix factorization methods have been studied for collaborative 
filtering, including Nonnegative Matrix Factorization [75, 94], Maximum 
Margin Matrix Factorization [57], and Probabilistic Matrix Factorization 
[102]. The prize winning method of the Netflix Prize contest employed an 
adapted version of SVD called timeSVD++ [68]. 

For collaborative filtering, matrix factorization belongs to a class of 
latent factor models [51, 58]. In such models, latent variables (also 
called features, aspects, or factors) are introduced to account for the 
underlying reasons of a user purchasing/using a product. When the 
connections between the latent variables and observed variables (user, 
product, rating, etc.) are estimated during the training phase, 
recommendations can be made to users by computing their possible 
interactions with each product through the latent variables.  

In this sub-section, we study a SVD method used by many contestants 
in the Netflix Prize contest. Before discussing the method, let us first 
briefly describe the contest itself (see http://www.netflixprize.com/).  

In 2006, the online DVD rental company Netflix announced the Netflix 
Prize contest with a $1 million reward to the first team who can improve 
its recommender system’s root mean square error (RMSE) performance 
by 10% or more. Contestants were allowed to build models based on a 
released training set consisting of about 100 million movie ratings, on a 
scale of 1 – 5 stars, submitted by 500,000 anonymous users on more than 
17,000 movies. The participating teams need to submit their predicted 
ratings for a test set consisting of approximately 3 million ratings, and 
Netflix calculated the RMSE based on a held-out truth set. This large size 
of publicly available data created a perfect setting for standardized 
benchmarking experiments and attracted significant attention to the field of 
recommender systems, and in particular collaborative filtering. 

The data given were quadruples, i.e., (user, movie, rating, time), which 
means that the user gives the movie a particular rating at the specific time. 
For our purpose here, we only use triplets, i.e., (user, movie, rating) (the 
time has also been used by some algorithms, e.g., timeSVD++, to account 
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for the temporal effects of ratings). For example, one entry might be 
(132456, 13546, 4), which means that the user with ID 132456 gave the 
movie with ID 13546 a rating of 4 (out of 5). The Netflix task is to predict 
the rating of each triplet (user, movie, ?) in the test data set, i.e., to predict 
how the given user would rate the given movie.  

The technique discussed here is based on the SVD method given by 
Simon Funk at his blog site [44], the derivation of Funk’s method 
described by Wagman in the Netflix forums [123], and the paper by 
Takacs et al. [119]. The method was later improved by Koren et al. [67], 
Paterek [92], and several other researchers, and combined with many other 
prediction methods (or predictors). It was widely considered as the key 
component to winning the Netflix Prize contest. 

This SVD method factors the user–movie–rating matrix into two smaller 
matrices which capture the latent aspects of movies and user preferences 
on these aspects. These latent aspects are then used for rating prediction. 

Let us, for a moment, forget about matrix factorization. We can imagine 
that there might be some latent or hidden aspects (or variables) that people 
use to give their ratings to movies. For instance, any given movie may be 
described in terms of such basic attributes as overall quality, whether it is 
an action movie or a comedy, what stars are in it, and so on. And, every 
user’s preferences can likewise be described in terms of whether they 
prefer action movies or comedies, what stars they like, and so on. If these 
basic assumptions are true, then most ratings, if not all, should be 
explainable by these aspects or attributes. We can then use a linear 
combination of them to produce rating predictions. That is, we simply 
multiply each user preference by the corresponding movie aspect, and then 
sum them up to give a rating indicating how much that user likes the 
movie. In short, if we can use the training data with ratings to discover 
such latent aspects, and user–aspects and movie–aspects relationships, we 
can use them to predict user ratings of movies that they have not rated. In 
fact, that is exactly what the SVD method below does.  

The SVD here is slightly different from the SVD that we studied in Sect. 
6.7 as the diagonal scaling matrix is not used here, which is included into 
the two side matrices. Let us represent the given user–movie–rating data as 
a matrix R, which has 17,000×500,000 = 8.5 billion cells or entries. Each 
non-empty cell rij of R represents a known rating of user i on movie j. Our 
SVD will decompose R into two matrices, i.e., user–aspect U (= [u1, u2, 
…, uI]) and movie–aspect M (= [m1, m2, …, mJ]) matrices, where ui and 
mj are K × 1 vectors and K is the number of aspects. That is, we want to 
use UTM to approximate R,  

MUR T  . (9) 
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Let us use K = 90 latent aspects (K needs to be set experimentally). Then, 
each movie will be described by only 90 aspect values indicating how 
much that movie exemplifies each aspect. Correspondingly, each user is 
also described by 90 aspect values indicating how much he/she prefers 
each aspect. As suggested above, to combine these together into a rating, 
we multiply each user preference by the corresponding movie aspect and 
then sum them up to give a rating to indicate how much that user likes that 
movie. Using SVD, we can perform this task:  
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k
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where ui and mj are K × 1 column vectors for user i and movie j respectively; 
k is the index of the singular vectors 1, …, K (which also represent the 
aspects); uki is the kth aspect value for user i, and mkj is the kth aspect value 
for movie j. Incidentally, the size of the movie–aspect matrix M is 
90×17,000, and the size of the user–aspect matrix U is 90 × 500,000. SVD is 
a mathematical way to find these two smaller matrices which minimizes the 
resulting approximation error, the mean square error (MSE), which happens 
to be the evaluation criterion of the Netflix Prize competition (RMSE is 
monotonically related to MSE). Thus, SVD is supposed to find us the “best” 
solution! We can use the resulting matrices U and M to predict the ratings in 
the test set. Let pij be the predicted rating of user i on movie j. The SVD 
formulation says that the prediction is computed by:  
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However, the problem is that matrix R does not have 8.5 billion entries, 
but only 100 million entries and 8.4 billion empty cells. Thus, the 
traditional factorization methods for SVD will not work. Simon Funk 
proposed a simple incremental solution based on gradient descent by 
taking derivatives of the approximation error. In training, it trains one 
aspect at a time to approximate R with the current U and M matrices. That 
is, it starts by training a single singular vector for U and M, and then one 
by one more singular vectors are added until the user provided number K 
(e.g., 90) is reached. A major advantage of this method is that it can ignore 
the errors on the 8.4 billion empty cells. We now give the derivation.  

Let eij be the error in the prediction of rating rij. We have:  

ijijij pre  . (12) 

For gradient descent, we take the partial derivative of the square error with 
respect to each parameter, i.e., with respect to each uki and mkj. So, let us 
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take the partial derivative for one particular rating of user i on movie j, and 
one singular vector k, with respect to the user aspect value. We have  
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Note that gradient descent using this way of computing the gradient is called 
the stochastic gradient descent, i.e., taking the gradient at each single 
example, which is an approximation of the standard (or batch) gradient 
descent method, for which we take partial derivatives of the sum of all the 
squared errors. We will work out a derivation for the batch method later.  

Since rij in Equation (12) is given in the training data and is a constant, 
then we have 
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Now since pij is just a sum over K terms (one for each singular vector), and 
only one of them is a function of uki, namely the term uki×mkj. Its derivative 
with respect to uki is just mkj, and the derivatives of all the other terms are zero. 
Thus, for the single rating by user i for item j, and one singular vector k, we 
have  
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If you follow the same procedure to take the partial derivative with respect 
to mkj, we get  
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When using gradient descent, one uses a parameter  called the learning 
rate as a multiplier on the gradient to use as the step to add to the 
parameter, so we get the following gradient descent update rule (from 
iteration t to t+1):  
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 is an arbitrary constant, and Funk used 0.0005 for the Netflix Prize 
contest data. By the same reasoning, we can also compute the update rule 
for mkj. Finally, we have both rules 
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After adding regularization to deal with overfitting, we have the final 
regularized update rules:  
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where  is the regularization constant. These rules are used in training when 
each (user, movie, rating) triplet is presented to the system. In Funk’s original 
method, aspects are trained one by one incrementally. That is, when an aspect 
is done training, it moves on to the next aspect. The whole training process 
thus has three main loops, the outer most (top-level) loop is the incremental 
addition of aspects (or features), the second level loop is the training of each 
aspect using the stochastic gradient descent method, and the inner most loop 
runs through all the given rating triplets: user (i), movie (j) and rating (rij), 
using the update rules (20) and (21). For the gradient descent, we need to 
choose some initial values for the two row vectors uk and mk, e.g., they were 
assigned all 0.1’s in [44]. One can also use some small random numbers with 
0 mean. As for the stopping criterion for the gradient descent, there are many 
possibilities, e.g., the sum of the squared errors has little change, or just a fixed 
number of iterations, see [67, 92, 119]. However, in actual applications, one 
needs to be careful about the choices of the initialization vector and the 
stopping criterion as they can greatly affect the generalization and the 
accuracy result on the unseen test data. The stopping criterion can be critical in 
preventing overfitting as the experiences of the contestants showed. One often 
needs to stop before hitting the bottom of the gradient, which tends to overfit. 

Regarding the training process, instead of training the aspects incre-
mentally, it is also possible to train all aspects at once. That is, given a user 
and a movie, the algorithm makes a gradient step on all their respective 
aspects before moving on to the next training example [69]. Of course, 
these two methods can generate different results. The incremental method 
has the nice property that each new aspect to be trained is the most 
significant one among the remaining aspects.  

The final rating prediction of the test data can be made using Equation 
(11). However, this can be improved by considering some priors or biases, 
e.g., the overall rating mean, the individual movie rating mean (some are 
good movies and get higher average ratings), and also the user rating mean 
(some users tend to give higher or lower ratings). These pieces of prior 
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information should be factored into the prediction. Indeed, they have been 
used by Netflix Prize contestants [69, 92]. Even after these enhancements, we 
still only see a very basic algorithm. A great deal of refinements and 
additions to the algorithm have been made by several Netflix Prize competing 
teams in order to achieve better results, see [44, 67-70, 92] for details. 
Additionally, the top ranked teams all employed multiple techniques (tens 
and even hundreds of them) in combination to stay competitive.  

Yet another consideration is the temporal dimension. Since the interest 
of users is usually dynamic and tends to change with time, some 
recommendation methods [73, 127] have been proposed to deal with the 
long-term and short-term interest of users. In fact, the temporal factor is a 
very important aspect of the earlier mentioned timeSVD++ method [68] 
used by the Netflix Prize winning team (BellKor’s Pragmatic Chaos). 
When the temporal factor is taken into consideration, the traditional matrix 
factorization methods are often extended to tensor decomposition methods 
[65] to deal with the new dimension.  

Finally, we note that a similar line of research is based on latent 
clustering models. In an early work, two alternative probabilistic models 
were proposed: clustering and a Bayesian network model [16]. A 
limitation of this work is that every user is forced into a single class while 
in reality users tend to have diverse interests. More recent algorithms were 
designed to capture multiple interests of users by classifying them into 
multiple clusters. Examples include the personality diagnosis model [33], 
the flexible mixture model [110], the Probabilistic Latent Semantic 
Analysis Model (PLSA) [51], the nonparametric model [129], and the 
Latent Dirichlet Allocation model [3]. These probabilistic models 
constitute another mainstream research for collaborative filtering in 
addition to matrix factorization approaches. Clearly, there are also other 
types of methods, e.g., graph-based methods [54, 55].  

Recently, the widely deployed social tagging systems have triggered a 
new stream of research, i.e., tag-aware information item recommendation. 
In social tagging systems, a data record is a tuple typically consisting of 
three fields in the form of <user, item, tag>, with the tags (a user–item 
interaction can be annotated by multiple tags) explaining why the user is 
interested in the target item. Tagging data presents interesting opportunities 
as well as challenges to collaborative filtering as the meta-level tags are 
available in addition to typical bipartite information concerning users and 
products. A number of methods have been proposed for tag-based 
collaborative filtering [95, 96, 122, 125, 132].  
Batch Gradient Descent: To end this sub-section, let us have a look at the 
standard (or batch) gradient descent for SVD. Again, let the user–aspect 
matrix be U = [u1, u2, …, uI] and the movie–aspect matrix be M = [m1, m2, 
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…, mJ], where ui and mj are K×1 vectors and K is the number of aspects 
(or dimensions). Let W be an indicator matrix, wij = 1 if user i rated movie 
j, otherwise 0. The symbol “°” after W represents entry-wise product or 
Hadamard product. The sum of squared errors is  

2

1 1

T2T )()()( j

I

i

J

j
iijijF

rw, f mu
 

 MURWMU . (22) 

We then take the partial derivatives of f with respect to ui and mj:  
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The final update rules are: 
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We can see that these update rules are similar but also different from 
Equations (18) and (19). Using these rules, the optimization process is slower.   

12.5 Query Log Mining 

Finding information on the Web has become a critical ingredient of 
everyday personal, educational, and business life. An information seeker 
communicates with a search engine by typing a query, which in its 
simplest form, consists of a few keywords or terms, with the aim of finding 
Web pages whose content matches these terms. Search query logs are files 
that record queries submitted by users along with the results returned by 
the search engine and the results that have been clicked by the user. The 
formulation of a query is very important since it must convey the exact 
need of the user, meaning that the words in the query should match all and 
only the documents being sought. However, studies that have analyzed 
search logs found that users’ queries suffered from two limitations. First, 
queries tend to be short, in fact too short to correctly convey the user’s 
intent. Second, the distribution of the content of the queries does not 
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correspond to that of the documents, which means that it is difficult for 
users to express their information needs in such a way that it could 
describe the documents that they are seeking. This gap between queries 
and document contents is due to many reasons, including the ambiguity of 
some terms that have multiple meanings, as well as the existence of 
different words that possess the same meaning. Thus it has become 
imperative to go beyond the single query submitted by the user in order to 
discover the true intention of the user, also known as the information 
need, with the final aim of providing the accurate information being 
sought. Recent research on search query log mining has addressed this 
problem by using data mining techniques that bridge the three areas of 
Web usage mining, text mining, and, in some cases, Web structure mining. 

Search engines would not survive without a suitable source of revenue. 
This revenue has mainly come from the sponsored search business model. 
For this reason, recent research has also addressed the problem of discovering 
the user’s intent, for an aim that is different from serving only the correct 
results during search. Instead, their aim has been to target sponsored search 
advertisements (often called Ads in short) more accurately to the right user at 
the right time. Thus, the accurate identification of the user’s information need 
is a prerequisite to both aims: (1) providing the user with the correct list of 
results to their query and (2) displaying the sponsored Ads that most 
accurately match the user’s preferences. 

Query logs contain a historic record of the activities of the users of a 
search engine and, as such, contain a trove of hidden knowledge about the 
wisdom of the crowds. Query log data is considered a kind of Web usage 
data, thus making Query Log Mining (QLM) fall under the umbrella of Web 
usage mining. However, we will see that it is common to complement the 
query usage data with content and structure data, making some techniques 
from this emerging field embrace more than one aspect of Web mining, i.e., 
usage (queries, search results, and clicked documents), content (actual text 
contents of the queries, search results, and clicked documents), and structure 
(hyperlinks between search results and clicked documents). 

A typical QLM endeavor starts with the data preparation (including data 
cleaning), then selects an appropriate input data model (e.g., a query 
graph), and extracts features (e.g., degree of a query node in the graph) that 
can be exploited by the particular QLM methods that follow. Next, a 
particular machine learning or data mining task (e.g., clustering) is applied 
resulting in knowledge models that are suitable to be used by the ultimate 
application of QLM (e.g., query suggestions). 

QLM can serve applications that target various aims. One important aim is 
to improve the search engine’s information retrieval efficacy (ranking) and 
efficiency (better indexing for faster retrieval), typically via personalized 
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query suggestions and automated query reformulations, improved spam 
filtering, and effective handling of the ambiguity of polysemous queries. 
Some other important aims address the source of revenue that fuels search 
engines, i.e., maximizing Ad revenue in sponsored search, as well as 
improved Web site organization. Finally, QLM can go beyond the scope of 
user-driven information retrieval to such applications as detecting and 
tracking health epidemics (e.g., flu trends), as well as monitoring and tracking 
public preferences and interests in domains varying from consumer brands 
and socio-political topics to news events. 

In the following sections, we will describe the sources, formats, and 
characteristics of query logs and then present several models that can be 
used to represent this data. Next, we introduce several applications of 
QLM, and common techniques used for QLM.  

12.5.1 Data Sources, Characteristics, and Challenges  

The main source of data for query log mining is the search engine query 
logs, which are files collected either on the server side, the client side 
(typically through search engine toolbars), or occasionally on the Internet 
Service Provider (ISP) side (via proxy loggers). Query data can also be 
collected as part of Web site access logs in case a Web site has its own 
internal search engine, or even from the conventional Web site access log 
REFERRER fields, in case users land on a Web site after clicking on one 
of the results returned by an external search engine [88]. Other sources of 
data include packet sniffers, typically located midway between the client 
machine and the server or proxy that collect all packets of the network 
data, not limited to search queries. Except for when the network data is 
encrypted, the packets can be pre-processed and analyzed by such tools as 
wireshark or tcpdump, in order to yield the information pertinent to QLM. 

A typical search engine query log file consists of requests submitted by 
users, with one request per line, typically in the order of their arrival, as in 
the case of most Web server access logs. Hence, requests by the same user 
may end up dispersed among requests by other users. A typical request 
contains the following fields [130]: 

•  Timestamp: It indicates when the query is submitted.  
•  IP address: This is usually the IP address of the client computer from 

which the query has originated. However, this is not the case for users 
who connect through ISPs or other proxies. In this case, the IP address 
will be that of the proxy server, or one of a set of dynamically assigned 
IP addresses in case of an ISP. For these reasons, proxies may be 
insufficient for identifying some users. 
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•  User agent: It identifies the type and version number of the client browser. 
•  CookieID: This is a unique string that can identify a user more 

accurately than simply using the IP address since it can avoid the proxy 
and dynamic IP problems. 

•  Query: This is the text string submitted by the user, which consists of 
one or more query terms (also called keywords). 

•  Result list (also called ranking): the URLs returned by the search 
engine as the answer to the submitted query. 

•  Clicked URL: A subset of the above URLs that have been clicked by the 
user. 

Like terms in documents, search queries and the terms in these queries 
tend to follow a biased Zipf law, which means that queries tend to contain 
a few words that are extremely common, while the majority of words 
occur in queries rarely, constituting the long tail of the distribution [103]. 
The frequency of query words follow a Zipf’s law with parameter α, 
meaning that the ith most frequent query has O(i−α) occurrences. The value 
of α ranges from 0.6 to 1.4 perhaps due to language and cultural 
differences [6]. Compared to the Web text, with α close to 2, queries have 
a less biased distribution. Most queries are short with one or two terms 
each [111], which makes it very challenging for a search engine to infer 
the intent of the searcher. Also, studies have found that searchers rarely 
look beyond the first two pages of results. This rarity of clicks and terms in 
queries makes query log data very sparse, and as in the case of other Web 
usage data, this will have profound effects on any subsequent mining 
efforts. Even with such a small number of clicks, however, a more recent 
study [72] found that these “search initiated” clicks lead to 21.4% of all 
page views of the Internet. Studies also found that user query refinement, 
by adding and removing words in consecutive queries, was quite common 
[56, 74]. There is also evidence that search trends have evolved from 
leisure to e-commerce over the years [116, 117] with product-related 
searches amounting to approximately one-fifth of all searches [72]. 
Another challenge to search engines comes from the low correlation (0.15) 
between the frequency of words in the Web pages and queries [9]. This 
means that what people seek on search engines is different from what 
people publish on the Web [6]. 

12.5.2 Query Log Data Preparation  

As in the case of most Web usage mining endeavors, the data preparation 
phase is critical to the success of the subsequent mining effort. Below, we 
present the steps within this first stage of QLM [131]. 
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Step 1 - Extracting query sessions: Most Web search engine servers have 
used the IP address of the client machine to identify unique visitors. 
However users who connect through Internet Service Providers (ISP) get 
assigned dynamic IP addresses that change throughout the same visit or 
session, thus a single IP address may not always correspond to a unique 
visitor. For this reason, using the IP address in combination with the user 
agent has become a more reliable way to distinguish different users, and 
piece together sessions. An even more reliable way is using cookies for 
user identification. Yet even after the user identification problem is 
resolved, all the above heuristics are not sufficient to construct an accurate 
model of a search session which should correspond to a single search 
episode by one user, targeting a single information need or request, as 
opposed to say, several visits during the same or several days targeting 
different needs (such as searching for a digital camera to buy and 
performing literature search on the subject of nanotechnology).  

In [56], three methods to delineate query sessions were compared: (1) IP 
address and cookie; (2) IP address, cookie, and a time window cut-off; and 
(3) IP address, cookie, and context changes (as estimated from change in 
the query content).  

Method 1 defined the session as the period, lasting from the first 
interaction by the searcher to the last interaction as recorded in the 
transaction log. The searcher’s IP address and the browser cookie were 
used to determine the initial query and all subsequent queries to establish 
the session length, which was defined as the period from the time of the 
initial query to the time of the last interaction with the search engine. A 
change in either IP address or cookie always identified a new session. 

Method 2 used the searcher’s IP address and the browser cookie to 
determine the initial query and subsequent queries. However, a maximal 
period of 30-min between consecutive interactions was used to delineate 
the boundary of each session. The 30-min period was chosen based on the 
industry standard view of a session (OneClick.com and Nielsen 
Netranking), which is most likely based on Catledge and Pitkow’s study 
on browsing activities, which reported that the typical Web session 
duration was 25.5 minutes on average [24]. 

Method 3 used a contextual method to identify sessions, in addition to 
using the searcher’s IP address and the browser cookie to determine the 
initial query and subsequent queries in a session. The contextual 
delineation of sessions is based on changes in the content of the user 
queries instead of a temporal cut-off in order to delineate the boundary of a 
session. Each query was assigned into a mutually exclusive group based on 
the IP address, cookie, query content, use of the feedback feature, and 
query length. The classifications are [56]: 
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 Assistance: the current query was generated by the searcher’s selection 
of a special feature on the dogpile search engine called an Are You 
Looking For? query. 

 Content change: the current query is identical but executed on another 
content collection. 

 Generalization: the current query is on the same topic as the previous 
query (there is overlap between the current and previous queries) but 
targets more general information. This happens when the new query 
length is shorter (in number of words). 

 New: the query is on a new topic (no overlap between the current and 
previous queries). 

 Reformulation: the current query is on the same topic as the searcher’s 
previous query (there is overlap between the current and previous 
queries), and they are of the length. 

 Specialization: the current query is on the same topic as the previous 
query (there is overlap between the current and previous queries), but 
targets more specific information. This happens when the new query 
length is longer (in number of words). 

The empirical study in [56] concluded that Method 3 (IP address, 
cookie, and query content) provided the best session identification, 
resulting in the most accurate identification of search context.  

Step 2 - Filtering robot and abnormal visits: Search engine servers may 
receive many daily abnormal and robot/crawler visits that need to be 
filtered during the data preparation phase. To recognize such abnormal 
visits, most systems (e.g., [131]) rely on a set of heuristics to flag them, 
e.g., repeated identical queries, too many queries by a single user in a fixed 
time period, queries in regular intervals, etc. However, solely using such 
heuristics does not guarantee detecting all abnormal visits and may result 
in labeling some normal visits as abnormal. Recently, researchers have 
also experimented with machine learning approaches, e.g., [62]. Despite 
these efforts, the problem remains to be difficult as robots or crawlers are 
increasingly using sophisticated strategies to hide themselves.  

Step 3 - Query text preprocessing: It is common to precede any text 
mining effort by eliminating stopwords from the collection of documents 
and then stemming the words in them. Both these preprocessing steps can 
have a profound impact on the later mining, e.g., in assessing the similarity 
between different queries. For example, if string-based text similarity such 
as the Edit distance is used to compare queries, then stemming may harm 
this assessment. Also, certain words such as “who” and “where” are 
considered stopwords and are typically eliminated in text mining. 
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However, these words are very important when comparing two queries 
because they tell us what kind of information the searcher is seeking (a 
person or a location). Thus, one needs to decide whether to do text 
preprocessing and how much to do according to the goals and to the 
specific mining techniques that will be used subsequently [124]. 

12.5.3 Query Log Data Models  

The most basic model in QLM is that of a query, which is typically 
represented as a bag of words in a similar way to a document, defined for a 
query containing m words. 

Definition 1: The basic bag of words model for a query is 

 qw = {w1, w2, , wm}. 
An extension that takes into account the set D of top-ranked documents 

viewed by a searcher after the query is given by the following definition: 

Definition 2: The extended bag of words and viewed documents model for 
a query is 

 qw+D = {w1, w2, , wm}, D. 
An even richer extension, that also takes into account the set C of 

documents clicked by a searcher after the query, is defined as follows: 

Definition 3: The extended bag of words and clicked documents model for 
a query is 

 qw+C = {w1, w2, , wm}, C = {w1, w2, , wm}, {d1, d2, d|C|}.  
One may also simply represent a query by the clicked documents. 

Definition 4: The clicked document model for a query represents a query 
solely by the documents that a user clicked on in response to the query. 
It is given by 

 qC = C = {d1, d2, d|C|}. 

The next more advanced data model is that of a session, which in the 
query log context is defined as a series of queries submitted by a user 
during one episode of interaction between the user and the Web search 
engine [56]. Additional constraints that may modify the definition of a 
session include whether to include the viewing of Web pages [47] and 
temporal cut-offs between query submissions [111]. We have explained 
how to identify sessions in Sect. 12.5.2. We now define a session formally 
and in a more comprehensive manner.  
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Definition 5: A user session si of user i is a set (if the order of queries is 
not considered important) or a sequence (if the order of queries is 
important depending on the QLM’s goal) of tuples Ki, q1, t1, D1, C1, 
Ki, q2, t2, D2, C2, …,  Ki, qn, tn, Dn, Cn, such that tj+1  tj < Tmax for all 
j = 1 to n  1. Ki is a unique cookieID (or alternatively IP 
address+agent) for a visit, qj is the submitted query, tj is the timestamp 
of arrival of the query, Dj is the set of top document URLs returned as a 
result to the query by the search engine, Cj is the set of document URLs 
clicked by user i after submitting query qj, often referred to as the 
clickthrough data, and Tmax is a time window threshold value for the 
cut-off between different sessions.  

Notice that depending on applications and the subsequent data mining 
needs, one may use fewer components in each tuple or even simplify it. 
Also, of importance is the special case of the set of consecutive queries 
submitted in a session s: Qs = {q1, q2, , qn} which was used in [130].  

Definition 6: A search log L is the collection of all N sessions of all search 
engine users:  

 L = {s1, s2, , sN}. 

In addition to the query session model, clickthrough data models have 
also been prominently used in QLM. Beeferman and Berger defined a 
click graph as follows [12], using the notation of [22] to be consistent for 
the subsequent graph models that extend the click graph. 
Definition 7: A click graph C = (VQ, VD, E) is an undirected bipartite graph 

consisting of a node set VQ  VD and an edge set E. Nodes in VQ 
represent the set of distinct queries occurring in a query log, while 
nodes in VD represent a set of distinct documents, and an edge (q, d)  
E means that a user clicked on the document d  VD after submitting 
the query q  VQ.  

There are also other clickthrough data models, e.g., the triplet model in 
[60]. 

Definition 8: The clickthrough data is a set of triplets (q, r, c) consisting 
of the query q, the ranking r presented to the user (the results and their 
positions), and the set c of URLs that the user clicked on. 

This clickthrough data (q, r, c) is rich in information, as can be inferred 
from the strong dependencies therein [60]. The presented ranked results r 
depends on query q as determined by the search engine retrieval function. 
The set c of clicked-on links depends on both the query q and the 
presented ranked results r. First, a user is more likely to click on a link, if it 
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is relevant to q. However, the clicks also depend on the presented ranking 
r. Obviously, a user is less likely to click on a link that is very low in the 
ranking, regardless of how relevant it is. Therefore, in order to get 
interpretable and meaningful results from the clickthrough data, it is 
necessary to consider and model the dependencies of c on q and r 
appropriately [60]. 

Zhang and Nasraoui [130] represented queries using a consecutive 
query similarity graph for each session, to allow the computation of the 
contextual similarity between any two queries in a query log data set. 

Definition 9 [130]: A consecutive query similarity graph, (VQ, E), is an 
undirected, weighted graph with a node set VQ and an edge set E. Nodes 
in VQ represent the set of distinct queries occurring in a session, while 
an edge (qi, qj)  E means that a user submitted the two queries qi and qj 
one immediately after the other (in any order). Every edge (qi, qj)  E 
has an associated weight (qi, qj) =  (a damping factor used to define 
the similarity between consecutive queries in the same session). 

In this way, the similarity between any two queries that are not 
neighbors in the same session is calculated by multiplying the weights of 
the edges on the path that connects them. For example, in Fig. 12.16, the 
similarity between query1 and query3 would be (1, 3) = · = 2. Thus, 
the longer the distance between two queries (in terms of the number of 
hops on the path joining them), the smaller the similarity. The overall 
similarity between two queries is an accumulation of the above measures 
for all the sessions in the query log, in which the query pair is present. 

 
Fig. 12.16: A consecutive query similarity graph 

In [22], six types of graphs are defined, with the most basic one being an 
extension of the bipartite click graph defined by [12]. 

Definition 10 [12]: An extended click graph C = (VQ, VD, E) is an 
undirected, weighted, and labeled bipartite graph consisting of a node 
set VQ  VD and an edge set E. Nodes in VQ represent the set of distinct 
queries occurring in a query log, while nodes in VD represent a set of 

(1,3) = 2
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(2,3) =  
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distinct documents, and an edge (q, d)  E represents that a user clicked 
on document d  VD after submitting the query q  VQ. Every edge (q, 
d)  E has an associated weight w(q, d), which can be (i) the number of 
times a user clicked on document d after submitting query q; or (ii) the 
number of distinct search-sessions in which, after query q, the searcher 
clicked on d.  

Furthermore, Castillo et al. [22] defined two concepts of neighborhood 
of a node in a click graph as follows: 

Definition 11: The k-neighborhood Nk(x) of a node x in a click graph G is 
the set of nodes in G that are at distance exactly k from node x.  

Definition 12: The within-k-neighborhood N≤k(x) relative to node x is 
N≤k(x) = i=1, , k Ni(x), i.e., it is the set of nodes in G that are at distance 
at most k from node x. 

Click graphs contain a trove of knowledge that can be extracted, e.g.,   

 The edge weight from q to d can be considered as a vote from query q 
for document d.  

 High degree document nodes are documents that are reachable by many 
different queries. These documents could be portals or auction sites. 
High degree query nodes correspond to queries that are not precise, for 
instance polysemous queries.  

Click graphs present several challenges for mining because of the 
following characteristics: 

 Click graphs tend to be sparse because many relevant documents are 
possibly not clicked due to many reasons, ranging from bias in ranking 
that places them in unfavorable locations away from the top of the list, 
to having poor representative content or snippets. 

 Click graphs tend to be noisy because many non-relevant documents 
may have been clicked, again possibly due to favorable placements in 
ranking (closer to the top) or misleading text descriptions or snippets. 

Definition 13 [22]: A view graph V is defined by considering as edges (q, 
d) all the documents d in the results set of query q.  

The view graph is a generalization of the click graph since each click is 
also a view. Moreover, a query could produce no clicks and so be not 
present in the click graph, but be present in the view graph. The view 
graph is noisier than the click graph because it does not contain any user 
feedback. Nonetheless it was found in [22] that the view graph could still 
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be useful to detect spam sites, since spam sites try to be in the answer lists 
of many different queries, while users do not necessarily click on them. 

Definition 14 [22]: An anti-click graph Ak is defined by considering an 
edge (q, d) whenever all the following conditions are met: (i) the 
document d appears in the top-k positions of the ranked list of results 
for query q, (ii) the user who submitted q did not click on d, but (iii) 
that user clicked on another document ranked below d.  

The anti-click graph intends to capture the negative judgment that 
users give implicitly with their clicks. Castillo et al. [22] used small values 
for k (k = 3), considering that most users look only at the first few results. 
To reduce the sparsity of the data, the above graphs (click, view and anti-
click) can be defined on hosts rather than URLs [22], by replacing the set 
of document nodes with their hosts (denoted by VH). Therefore, in total, six 
types of graphs ({Click, View, Anti-click}×{documents, hosts}) were 
defined [22]. These graphs are called Cd and Ch, Vd and Vh, Ad and Ah, 
respectively. Additionally, for every node x  VQ  VD  VH, a string ℓ(x) 
is used to describe the node: if x  VQ, ℓ(x) is the query string, otherwise x 
 VD or x  VH, in which case, ℓ(x) is the document URL/host string. 

Finally, Baeza-Yates et al. [8] model queries using a term-weight vector 
defined on a vocabulary consisting of the set of all different words in the 
clicked URLs, except for stopwords. Each term is weighted based on the 
number of occurrences and the number of clicks of the documents in 
which the term appears. 

Definition 15 [8]: The semantic vector space query model is defined as 
follows:  Given a query q, and a URL u, let Pop(q, u) be the popularity 
of u (defined as the fraction of clicks) in the answers of q, and Tf(t, u) 
the number of occurrences of term t in URL u. The query model is a 
vector representation q for query q, where the ith component of the 
vector qi is associated to the ith term of the vocabulary, as follows: 
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The sum ranges over all clicked URLs, and the click popularity plays 
the role of the inverse document frequency in the tf-idf scheme.  

The reason for using this model is that it allows for a more complete 
assessment of the similarity between different queries that suffer from 
being sparse. In fact, although semantically similar queries may not share 
query terms, they do share terms in the documents clicked by the users. 
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12.5.4 Query Log Feature Extraction 

Features are important in many data mining methods, in particular in 
clustering and classification. In some models [e.g., the semantic vector 
space model for queries (Definition 15)], the features are explicit. They are 
the individual query vector components corresponding to each term from 
the clicked documents’ vocabulary. However, in other cases (e.g., graph 
models), features may need to be defined and extracted prior to applying 
data mining algorithms. For example, in [22], both syntactic and semantic 
query-graph features are defined and extracted. Syntactic features are 
defined for document nodes. They capture the query attractiveness of a 
document, i.e., to what extent it attracts distinct queries. This attractiveness 
can be an indication of a spam page. Semantic features are defined for 
both document and query nodes. They capture the semantic diversity of 
queries and documents using an entropy measure defined on the 
distributions of topics that are inferred from the graph. The topics are 
inferred by using a small set of documents that are labeled by human 
editors (e.g., DMOZ) as seeds and then propagating the topic labels to the 
unlabeled documents in the graph. 

Syntactic features: For a document d, the degree of a node |N(d)| is the 
number of queries adjacent to d. Note that the set N(d) provides a good 
description of the content of document d. A similar definition is used for 
a query q by considering its degree |N(q)|, i.e., the number of distinct 
documents clicked for q. This feature can be further refined by 
concentrating on popular queries, thus defining for each document d, 
topQx(d) as the set of queries adjacent to d in graph G that happen to be 
among the fraction x of the most frequent queries in the query log. The 
cardinality |topQx(u)| is used as a feature. The authors of [22] found x = 
0.01 to work well for their query polysemy and query spam detection 
applications. This definition can also be extended to work at the 
individual query term level (instead of the query level).  

Semantic features: Semantic features are extracted to deal with the lack of 
robustness of the syntactic features in estimating the semantic coverage 
of a document [22]. For instance, a site serving movie reviews can be 
reached by many distinct queries (e.g., the titles of many movies) but 
still be topically coherent. The semantic coverage may be a useful 
measure to detect spam hosts effectively. For instance, cloaked hosts are 
returned as results to queries that are semantically diverse. They thus 
propose some new measures of semantic coverage of a document or 
query node, by combining the information in the click graphs with 
information in Web directories, such as the Open Directory Project 
(DMOZ.org). The feature extraction occurs in two phases:  
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1.  Categorization of the subset of documents in VD that can be found in 
DMOZ,  

2. Propagation of the category labels assigned to the (few) documents/ 
hosts nodes in G to other document/host nodes, in order to amplify 
the DMOZ coverage. At the end, a node may end up being labeled by 
many categories, indicating that it is polysemous, if it is a query node, 
or multi-topical, if it is a document/host node. Furthermore, each 
category will have an assignment strength denoting the relation 
between the node content and the category label. This weighting, 
along with multi-category information, is used to calculate three 
dispersion measures that capture the semantic spread of every node 
(either document/host or query) in the click graph [22]. 

12.5.5 Query Log Mining Applications 

Query log mining has found its use in a variety of applications [7, 8, 10, 
12, 21-23, 26, 30-32, 53, 88, 99, 108, 109, 124, 126, 130, 131]. Below, we 
give some examples.  

Query Modification and Recommendation 

Because searchers often submit queries that are short and ambiguous, it is 
challenging to infer their intent.  The following approaches are commonly 
used to address this problem: 

Query suggestion or recommendation: The goal of query recommendation 
or suggestion is to improve user queries by suggesting or recommending 
modified queries, in order to retrieve more relevant documents 
corresponding to the user intent. QLM efforts that achieve this goal 
include [8, 12, 21, 53, 124, 130, 131]. For example, in [8], Baeza-Yates et 
al. presented several methods to obtain query recommendations by using 
the clickthrough data.  

Query expansion and refinement: In query expansion, queries are 
expanded by adding terms to them, while in query refinement or 
modification, the queries are transformed (gradually or in several 
iterations) to yield new related but improved queries that are suggested or 
recommended to the user. Query expansion and refinement are quite 
similar to query recommendation. In [30, 31], Cui et al. developed a query 
expansion technique based mainly on the user’s clickthrough data. Wen et 
al. [124] mined query clusters to identify Frequently Asked Queries 
(FAQ). FAQs are then used to map the user’s new query to suggest a new 
query or even to return previous verified answers. In [90], an enhanced k-
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means method was used to cluster the query logs of the Internet yellow 
page services for query expansion. In [60] and [41], support vector 
machines (SVM) classification and anchor text mining were used for 
query modification and for query refinement, respectively. 

Discovering Semantically Related Queries  

Fonseca et al. [42] discovered related queries by mining association rules. 
Chien and Immorlica [25] discovered semantically related search queries 
based on their temporal correlation. Two queries are considered related if 
their popularities behave similarly over time. To this end, they defined a 
new measure of the temporal correlation of two queries based on the 
correlation coefficient of their frequency functions. Davison et al. [34] 
discovered queries that are related to the queries typically leading to a 
specific Web site being highly ranked. The goal of this QLM is to improve 
the ranking of a specific Web site, which is also known as search engine 
optimization (SEO).  

Detecting Query Polysemy, Spam Queries, and Spam Hosts  

Finding ambiguous or polysemous queries: Most early efforts addressed 
the ambiguity of queries and their relations in information retrieval 
using natural language processing techniques, such as language models, 
WordNet, thesauri [42, 71, 111]. Vivisimo.com or Clusty.com clustered 
the search results at the query time and presented the page clusters to 
the searcher to cope with polysemous queries. That is, the searcher is 
expected to judge the query polysemy for him/herself. Later efforts 
such as [7, 112] and [22] relied on user feedback in query log mining to 
detect polysemous queries.  

Web and host-spam detection: Web spam [22, 46] has been discussed in 
Sect. 6.10. However, most early techniques for addressing the problem 
were based on content analysis or link analysis [23, 40, 46, 89, 126]. 
Usage data has recently started serving as a vital source of information 
for spam detection [22, 80]. For example, in [80], browse logs from a 
tool-bar were used to detect spam pages, with a set of query 
independent features. In [22], syntactic and semantic features from the 
query click-graphs were extracted to detect those “query-attracting” 
hosts and to improve known (host-) spam detection algorithms.  

Query spam detection: Spam queries generate a high number of spam 
pages placed in the top positions of their results. They are therefore 
called spam-attracting queries. Detecting such queries can help improve 
the search quality, since such queries can be used to design sophisticated 
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spam-detection algorithms. The problem of detecting spam-attracting 
queries was studied in [22]. 

Sponsored Search Advertising Click Prediction  

Commercial search engines collect their revenue from Ads (also called 
sponsored results) that they display at the top of or to the right of the 
organic search results in response to user queries. The sponsored results 
provide revenue based on a “cost-per-click” billing model. Advertisers bid 
to have their Ads shown on the search result page, then the search engine 
determines which Ads to show and their positions on the results page, by 
maximizing Ad revenue. Ad revenue is estimated based on the probability 
that an Ad will be clicked (the Ad click rate or clickthrough rate) and the 
cost of the Ad [101]. While Ad revenue seems to depend only on the click 
rate and cost of the Ads, thus suggesting that displaying more Ads with 
high click rate and low cost is optimal. Displaying Ads that are not 
relevant to the query can turn off users of a search engine. Thus, Ad 
relevance has recently become a central issue [50]. 

Despite being related, the Ad relevance and clickthrough rate have 
several important differences. Relevance captures how related an Ad is to 
a query, while the clickthrough rate (CTR) captures the attractiveness of 
the Ad. Suppose that a searcher types the query “coca cola.” Then an Ad 
to “Buy Coke Online” would be highly related. However, its CTR would 
be low because few people are interested in buying Coke online [50]. On 
the other hand, an Ad for “Coca Cola Company Jobs” might be more 
attractive to more searchers, and thus attract more clicks, even though it 
seems to be less related to the query.  

This challenging problem of estimating the relevance of an Ad to a 
search query was addressed in [50] with an approach for determining the 
relevance and ranking of Ads, in a similar way to ranking in information 
retrieval (IR). Their experiments showed that historical click features 
extracted from the previous usage data did improve precision compared to 
a baseline Ad relevance model (that is based on text overlap features only). 
The predicted relevance score was used to filter out low quality Ads, to 
produce more accurate rankings for Ads, and to optimize page placements 
of Ads to reduce prominent placements of low relevance Ads. 

Early Influenza Epidemic Detection (Google Trends)  

Google developed a method to monitor health-seeking behavior in the 
form of queries to online search engines, which are submitted by millions 
of users around the world each day (http://www.google.org/flutrends/). 
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Their method is based on analyzing large numbers of Google search queries 
to track influenza-like illness in a population because the relative frequency of 
certain queries is highly correlated with the percentage of physician visits 
in which a patient presents with influenza-like symptoms. Their method 
accurately estimates the current level of weekly influenza activity in each 
region of the United States, with a reporting lag of about 1 day. 

12.5.6 Query Log Mining Methods 

Researchers have used all kinds of data mining methods for query log 
mining based on application needs. Supervised methods basically try to 
provide, based on the past and current query activities, a prediction in the 
form of a numerical score, a probability or a prediction in the form of a 
label out of a finite set of possibilities, e.g., whether an Ad is relevant to a 
search query or not [50], to which topic a given query belongs [108], 
whether a Web page is spam or not [22], or whether a given result page is 
more relevant than another result page [60].  

On the other hand, unsupervised methods do not have the requirement 
of available prior labels. They rely solely on the hidden or latent 
information within the past query activity data to discover clusters of query 
activities or to assess semantic relatedness between different queries or 
different Web pages based on past searching activities. 

Supervised Learning Techniques  

Since supervised QLM methods have a predictive or labeling aim, they 
have used a variety of supervised learning methods, e.g., query 
classification, and a new type of learning, called learning to rank [60]. 
Below, we briefly introduce these methods.  

Query classification: Query classification aims to categorize queries 
according to a set of predefined topics/classes. Since queries contain very 
few terms, snippets and other meta-information are needed [108]. In [22], 
features that were computed based on the propagation of DMOZ 
categories were introduced. The method started by propagating the DMOZ 
categories of a few labeled nodes in the graph in order to label other query 
and document nodes in the graph using a distribution over a set of 
categories. These labels were later used for computing an entropy measure 
to be used in generating features for spam detection. 

Propagation-based methods: One can use the link structure of the Web 
graph or the click graph to propagate meta-information (query content, 
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document content, topics, etc.) to find similar queries [22] or to derive 
metrics for query classification [29, 108]. Category-based taxonomies are 
propagated on the extended click graph, the view graph, and the anti-click 
graph, defined in Definitions 10, 13, and 14. At the end of propagation, 
after assigning labels to queries or document nodes in the graph, these 
queries and documents are judged based on the number of labels that get 
assigned to them. Thus the higher the number of assigned labels, the 
higher the diversity of the query, sending a cue that it is polysemous. 
Similarly, the higher the number of assigned labels to a document, the 
more likely that the document is a spam document.  

Learning to rank using SVM rank: Joachims [60] pioneered the use of 
clickthrough data. The goal was to automatically optimize the retrieval 
quality of a search engine using clickthrough data for training. First, the 
problem is defined as learning improved retrieval functions by analyzing 
which links the users clicked on in the presented search results, referred to 
as ranking. This leads to a new type of machine learning, i.e., learning 
with preference examples such as “for query q, document da should be 
ranked higher than document db.” This is essentially the Information 
Retrieval (IR) problem. Thus, IR is regarded as a learning problem, and 
learning is done using examples with “rankings” instead of class labels. 
An SVM-based approach is formulated using as input, a query log training 
data that is modeled using the clickthrough model from Definition 8, 
consisting of triplets (q, r, c). This model associates the query q, the 
ranking r presented to the user (the results and their position order), and 
the set c of URLs that the user has clicked on. See [60] for more details on 
this new model of learning, i.e., learning to rank. This model of learning 
has been studied extensively by many researchers subsequently. A survey 
of the field can be found in [79].   

Unsupervised Learning Techniques  

In general unsupervised methods have found their use for finding related 
queries, frequently asked queries, or query clusters. Most of these methods 
can be used to provide query recommendation or modification. Due to the 
rich data types, various sophisticated similarity or distance measures have 
been proposed for clustering and other methods. In general, these methods 
can be distinguished in many ways, for instance based on the data model 
that they use, and in particular the following characteristics: 

 Whether a single query (Definitions 14) or an entire query session (the 
search context as in Definition 5) forms the basic entity for mining 

 Whether the query content is used 
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 Whether clickthrough data is used, and if so, whether the clicked 
document content is considered in addition to queries 

The first categorization leads us to divide the existing methods into 
those that treat queries separately (non-contextual query models) and 
those that treat entire sessions of queries (contextual query models).  

Modeling only the queries but not the query sessions: Most earlier work 
focused on clustering similar queries in search logs, and used queries in the 
same cluster as suggestions for each other [8, 12, 124]. For example, in 
[12], bipartite graphs of queries and URLs are constructed: a query and a 
URL are connected if a user clicked on a URL displayed in the result list 
of the query (See Definition 7). This algorithm clusters queries according 
to the co-occurrences of URLs within their clickthrough data and ignored 
the content of queries and URLs. In [81], two bipartite graphs (user-query 
and query-URL) are proposed to recommend semantically relevant queries 
by mining these graphs. In [124], FAQs are mined by query clustering 
which combines the query content and the clickthrough data. They use 
both the bag-of-words query content data model from Definition 1 and the 
extended bag-of-words and clicked document data model from Definition 
3. They also proposed four query distance functions for clustering.  

Modeling entire query sessions: The above approaches focus only on 
individual queries when relating or clustering queries. However, in most 
cases, the information need or intent of the user may be embedded in the 
entire session and cannot be inferred from only one (the current) query. 
This has motivated context-aware methods that model the entire query 
session, including previous queries, and not only the current query [21, 42, 
53, 61, 130]. For example, Zhang and Nasraoui [130] used the consecutive 
query graph model (see Definition 9) to assess the similarity between queries 
based on their co-occurrences within the same sessions. In addition to the 
consecutive search behavior-based query similarity, a content-based 
similarity is also defined based on the cosine similarity. Finally, the 
consecutive search behavior-based query similarity and the content-based 
similarity are combined linearly to obtain the final query similarity, and this 
forms the basis for recommending the most similar queries. However, those 
most frequent queries (such as weather) may bias the assessment of query 
similarity because they tend to co-occur with too many unrelated queries. 
Therefore, they should be pruned from the consecutive query similarity 
computation, and only their content-based similarity is considered. 

A different approach was proposed by Cao et al. [21], which consists of 
the following steps: (1) summarize the queries into concepts by clustering the 
clickthrough bipartite graph, (2) map a new session into an ordered concept 
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sequence, and (3) choose candidate query suggestions from the sequences 
that had similar order to that of the current user sequence. Further work in 
[20] modeled sessions using Hidden Markov Models (HMM).  

Association rule-based techniques: Fonseca et al. used association rule 
mining to discover rules that relate queries based on their co-occurrence in 
query sessions [42]. They discovered frequent query pairs which were 
often adjacent in the same query sessions and treated these query pairs as 
related queries. This method is similar to the method used in association 
rule-based recommendation and classification (see Sects. 3.5 and 12.4.3).  

12.6 Computational Advertising 

Section 12.5.5 introduced the application of QLM to Ad click prediction in 
sponsored search. Below, we first introduce the more general problem of 
online advertising, which encompasses all Internet advertising activities, 
not just the sponsored search. After that, we focus only on how the 
sponsored search has been handled, in particular from a QLM viewpoint. 
Online advertising is a multi-billion dollar industry with big financial 
stakes and advanced computational challenges, thus making it sit at the 
crossroads between the fields of economics and computational sciences, 
attracting efforts from economics, marketing, statistical modeling, 
information retrieval, data mining, and machine learning. The key to 
successful online advertising is to monetize (or make profits) more and 
better by learning from the data, which has given rise to a new discipline, 
called computational advertising [2].  

Online advertising typically operates in the following steps: 

1. A browser requests a Web page from a content provider.  
2. Ads are picked by an Ad Network (e.g., Yahoo, Google, or Bing).  
3. Ads are displayed on the requested Web page.  

The Ad network draws its revenue from advertisers who in turn pay for 
each Ad [2]. The Ad network, in its turn, rewards the content providers 
with an amount that is commensurate with the displayed Ad. Thus, money 
flows from advertisers to Ad networks and from Ad networks to content 
providers. Online advertising occurs in three main settings: 

Display advertising: Ads are displayed on a Web page, in the form of 
graphical banners or other visual or multimedia components, typically to 
increase brand awareness and without considering the content of the Web 
page. They are usually shown on Web sites with high visit rates, such as 
Web portals and popular news sites. Also, these Ads are typically targeted 
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at particular user demographics, such as “females between 35 and 45 
years old.” The computational problem typically reduces to estimating the 
optimal allocation of Ads to demographics subject to supply (number of 
available impressions) and demand (desirability of each demographic 
segment for the advertiser) constraints. 

Content match-based advertising: Ads whose content matches the 
content of the requested Web page are selected by the Ad network and 
displayed on the page. Typically the Ads are of a textual type or have 
associated text descriptions to enable the content matching. An example 
of this model is the Google AdSense. Clearly, this setting allows 
targeted advertising. The matching algorithm can be based on 
information retrieval methods or text classification methods.  

Sponsored search advertising: A searcher submits a query to a search 
engine. The search engine picks the Ads to display by matching the 
query and/or the search results to a set of sponsored Ads and then 
displays these Ads on top of and/or to the right of the non-sponsored 
(organic) results. Again, the matching algorithm can be based on 
information retrieval methods or text classification methods. 

The above three Ad settings are based on different revenue models that 
depend on the goals of the advertising campaign [2]. Display advertising 
aims at raising brand awareness, and draws its revenue from a “Pay-Per-
Impression” or “Cost-Per-Impression” model (CPM), that charges the 
advertiser each time that the Ad is displayed to a user (called an 
impression). Content Match and Sponsored Search Ads, on the other 
hand, aim at attracting Web surfers to click on the Ads. They are typically 
based on a “Cost-Per-Click” model (CPC) that pays only when the user 
clicks on an Ad, or a “Cost-Per-Action” (CPA) model, that requires not 
only that the user clicks on an Ad, but also that the user completes a 
purchasing transaction (called a conversion) on the Web site that they land 
on as a result of clicking on the Ad.  

Suppose we show an Ad N times on the same spot, then the revenue, R, 
under each revenue model would be as follows [2]: 

Under CPM: R = N * CPM 
Under CPC: R = N * CTR * CPC 
Under CPA: R = N * CTR * Conv.Rate * CPA, 

where the clickthrough rate, CTR, is the probability of a click given an 
impression and the conversion rate, Conv.Rate, is the probability of a user 
conversion on the advertiser’s landing page, given a click. Thus, we see 
that an accurate estimation of CTR is paramount to estimating Ad revenue. 

The prevalent revenue model for sponsored search Ad listings is “Cost-
Per-Click” (CPC) where the advertiser pays only if the Ad is clicked. The 
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advertiser targets special keyword markets by bidding on search queries 
[50]. An advertising campaign usually consists of many Ad groups. Each 
Ad group consists of a set of phrases or keywords that the advertiser bids 
on. Each Ad group is also associated with a creative made up of a short 
title, a longer description, and a display URL. The URL points to the 
landing page where the user ends up after clicking the Ad. To show Ads, 
an advertiser can choose to use exact matching between search queries and 
the Ad group keywords, or advanced matching which, in addition to exact 
match, also matches Ads to related queries. A bid is associated with each 
keyword and the second price auction model determines how much the 
advertiser pays the search engine for each click [37]. The second price 
auction model means that bidders (advertisers) submit bids without 
knowing the bids of the other people in the auction, and the highest bidder 
wins, but the price paid is the second-highest bid. Given a search query, 
most search engines take a three-step approach to sponsored search:  

Step 1: Finding relevant Ads for a query  
Step 2: Estimating the click through rate (CTR) for the retrieved Ads 

and ranking them  
Step 3: Displaying a subset of the top ranked Ads on the search page 

Step 1, finding relevant Ads to a query, looks like an information retrieval 
(IR) problem. However, the collection of Web documents indexed by a 
search engine is much larger than the collection of Ad groups. Also, 
matching Ads to queries is much more flexible than matching documents 
to queries. This is because the way that Ads may be related to queries is 
much broader and subtle than how documents relate to queries. Moreover, 
determining relevant candidate Ads for infrequent queries is very 
important for sponsored search because the power law of queries makes it 
so that infrequent queries together make up the bulk of all submitted 
queries (the long tail), and there is consequently a tremendous financial 
stake in benefiting from this long tail. Despite these differences, IR-based 
Ad relevance estimation methods exist. However, machine learning or data 
mining based methods that take into account click-feedbacks are gaining 
more attention. They typically perform the tasks in step 1 and step 2 
simultaneously by directly estimating the CTR value for each Ad. Below, 
we briefly explain each family of methods. 

IR-based methods: An information retrieval (IR) based method typically 
uses one of the three different approaches [2]: 

Vector space models: Match a query to an Ad using the cosine similarity 
between their vector space representations. 

Probabilistic models: Predict, for each (ad, query) pair, the probability that 
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the ad is relevant to the query, e.g., using the Okapi BM25 model. 
Language models: Assume that Ads and queries are generated by 

statistical models (e.g., multinomial models) of how words are used in 
the language, and based on the models, translate query and Ad 
generation probabilities into relevance scores.  

The main problem with the IR approach is that it is solely based on 
word matches, which might not always work. For example, they work well 
for frequent words, but cannot handle rare words that make up the bulk of 
the queries, i.e., the long tail. Another problem is that IR-based methods do 
not capture the dynamic effect of external factors, which can be captured 
by user click-feedbacks. Finally, relevance scores may not correspond to 
CTR and do not provide estimates of the expected revenue. Typically 
some simple heuristics are used to estimate CTR for each retrieved Ad 
(step 2). To a great extent, these shortcomings are analogous to the 
weaknesses of content-based recommendations discussed in Sect. 12.4.2. 
The click mining-based methods discussed below are analogous to 
collaborative filtering methods in recommender systems.  

Click mining-based methods: Taking into account the past click history 
presents enormous advantages because it can adapt to dynamic settings 
and because the click history data is available at low cost and in large 
quantities. The task of this family of methods is to estimate the CTR, i.e.,  

CTR = Pr(click| query, ad, user) 
Below, we briefly explain three approaches for click mining-based 
methods [2]: 

 Feature-based modeling: It represents both the queries and the Ads 
using features such as bag of words, phrases, or topics, and for the Ad, 
optional additional presentation features such as size, etc. Then the 
CTR of an Ad can be estimated using machine learning methods, for 
instance logistic regression as in [101]. 

 Similarity-based collaborative filtering: It predicts the CTR of an Ad 
i in response to a new query q based on the past CTRs for past Ads, as 
observed in the click history data, and on the similarity between the 
new Ad and the past Ads. The k-nearest neighbor method discussed in 
Sect. 12.4.3 or one of its variations can be applied.  

 Matrix factorization: It predicts the CTR of an Ad i in response to a 
new query q based on a factorization model of the past CTRs for past 
Ads, as observed in the click history data. In this case, the method 
discussed in Sect. 12.4.5 or one of its variations can be used.  
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12.7 Discussion and Outlook 

Web usage mining has emerged as the essential tool for realizing more 
personalized, user-friendly, and business-optimal Web services. Advances 
in data pre-processing, modeling, and mining techniques, applied to the 
Web data, have already resulted in many successful applications in 
adaptive information systems, personalization services, Web analytics 
tools, and content management systems. As the complexity of Web 
applications and user’s interaction with these applications increases, the 
need for intelligent analysis of the Web usage data will continue to grow. 

Usage patterns discovered through Web usage mining are effective in 
capturing item-to-item and user-to-user relationships and similarities at the 
level of user sessions. However, without the benefit of deeper domain 
knowledge, such patterns provide little insight into the underlying reasons 
for which such items or users are grouped together. Furthermore, the 
inherent and increasing heterogeneity of the Web has required Web-based 
applications to more effectively integrate a variety of types of data across 
multiple channels and from different sources.  

Thus, a focus on techniques and architectures for more effective 
integration and mining of content, usage, and structure data from different 
sources is likely to lead to the next generation of more useful and more 
intelligent applications, and more sophisticated tools that can derive 
intelligence from user transactions on the Web, not limited to their clicks 
during sessions on regular Web sites, but also their queries and entire 
interactions with search engines, and even online Ads that they encounter.  

Bibliographic Notes 

Web usage mining as a complete process, integrating various stages of 
data mining cycle, including data preparation, pattern discovery, and 
interpretation, was initially introduced by Cooley et al. [28]. This initial 
work was later extended by Srivastava et al. [118].  

Proper data preparation is an essential activity that enables the discovery 
of actionable knowledge from usage data. A complete discussion of the 
stages and tasks in data preparation for Web usage mining can be found in 
the paper by Cooley et al. [27]. One of these tasks is that of sessionization 
of the user activity records in the log data which is generally accomplished 
through the use of various heuristics [27]. Berendt et al. [13] and 
Spiliopoulou et al. [115] introduced several additional sessionization 
heuristics and developed a comprehensive framework for the evaluation of 
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these heuristics in the context of various applications in Web usage 
mining. Much of the discussion of Sect. 12.1 is based on these sources. 

One of the primary applications of Web usage mining has been in Web 
personalization and predictive user modeling. Initially, Web usage mining 
as a tool for personalization was introduced by Mobasher et al. [84]. A 
comprehensive framework for Web Usage Mining to discover evolving 
user profiles, while automatically taking into account the semantics of 
dynamic web pages, as well as the characterization of profile evolution and 
a validation methodology for the discovered user profiles was presented in 
[88]. More recent surveys of issues and techniques related to personalization 
based on Web usage mining can be found in the papers by Pierrakos et al. 
[97], Mobasher [83], and Anand and Mobasher [5].  

Another important application of Web usage mining is the analysis of 
customer and visitor behavior in e-commerce for Web marketing. Web 
usage mining applied to e-commerce data enables the discovery of 
important business intelligence metrics such as customer conversion ratios 
and lifetime values. A good discussion of lessons and challenges in e-
business data analysis can be found in the paper by Kohavi et al. [64]. 

On recommendation systems, the survey article [1] by Adomavicius and 
Tuzhilin, the book [17] by Brusilovsky et al., and two journal special 
issues [39, 66] give great information about the field. There is also an 
annual ACM conference on recommender systems. These highlight the 
massive amount of work that has been done and the sustained interest in 
the area. There are also some nice algorithm papers presented at the KDD 
Cup and Workshop 2007 by some top teams of the Netflix Prize contest 
(http://www.cs.uic.edu/~liub/KDD-cup-2007/proceedings.html). After the 
workshop, major improvements were made by many teams. The popularity 
of matrix factorization is largely attributed to the contest and the SVD 
algorithm given by Simon Funk at his blog site: http://sifter.org/~simon/ 
journal/20061211.html. This method was improved by several researchers, 
e.g., Paterek [92] and Koren et al. [67, 69, 70].  

Finally, query log mining has been studied by many researchers and it is 
important for all types of search related activities [7, 8, 10, 12, 21-23, 26, 
30-32, 53, 88, 99, 108, 109, 124, 126, 130, 131]. A good introduction of 
computational advertising can be found in [2].  
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mutual information measure, 449 
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naïve best-first, 339 
name match, 429–430 
named entity community, 302 
navigational pattern, 550 
nearest neighbor learning, 180 

negative potential items, 484 
negatively correlated, 444 
nested data record, 407 
nested relation, 366 
NET, 407–408 
Netflix Prize contest, 565 
Netscape, 3 
neutral, 411 
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non-gradable comparisons, 494 
nonlinear SVM, 120 
normal vector, 111 
normalized edit distance, 386 
normalized term frequency, 217 
normalized tree match, 389 

O 
occurrence type, 251–252 
ODP, see Open Directory Project 
Okapi, 218 
online advertising, 589 
Open Directory Project, 327, 583 
open tag, 368 
opinion context, 479 
opinion definition, 463 
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spider, 311 
spider trap, 320–321 
sponsored Ads, 572 
sponsored results, 585 
sponsored search, 572, 589 
sponsored search advertising, 585–

586, 590 
spy technique, 191–192 
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input space, 120 
kernel function, 122–123 
kernel trick, 123 
polynomial kernel, 122–123 



   619 

Kuhn-Tucker conditions, 114, 118 
Lagrange multiplier, 113, 118 
Lagrangian, 113 
linear learning system, 109 
linear separable case, 111–116 
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test set, 79 
testing phase, 66 
text clustering, 154 
text mining, 6 
TF, 337 
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user activity record, 535 
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