

Data-Centric Systems and Applications

M.J. Carey
S. Ceri

Editorial Board

P. Bernstein
U. Dayal

C. Faloutsos
J.C. Freytag
G. Gardarin

W. Jonker
V. Krishnamurthy

M.-A. Neimat
P. Valduriez
G. Weikum

K.-Y. Whang
J. Widom

Series Editors

123

Bing Liu

Web Data

Exploring Hyperlinks, Contents,
and Usage Data

Second Edition

Mining

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

The use of general descriptive names, registered names, trademarks, etc. in this publication does not

laws and regulations and therefore free for general use.

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is

in its current version, and permission for use must always be obtained from Springer. Violations are

Springer London New York

concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,

liable to prosecution under the German Copyright Law.

University of Illinois, Chicago

Bing Liu

Chicago, IL 60607-7053
USA

Department of Computer Science

liub@cs.uic.edu

ISBN 978-3-642-19459-7 e-ISBN 978-3-642-19460-3

imply, even in the absence of a specific statement, that such names are exempt from the relevant protective

DOI 10.1007/978-3-642-19460-3

Library of Congress Control Number: 2011932320

reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication

ACM Codes: H.2, H.3, I.2, I.5, E.5

© Springer-Verlag Berlin Heidelberg 2007, 2011

Cover design: KünkelLopka GmbH

or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,

Heidelberg Dordrecht

851 S. Morgan St.

To my parents, my wife Yue and children Shelley and Kate

Preface

The rapid growth of the Web in the past two decades has made it the larg-
est publicly accessible data source in the world. Web mining aims to dis-
cover useful information or knowledge from Web hyperlinks, page con-
tents, and usage logs. Based on the primary kinds of data used in the
mining process, Web mining tasks can be categorized into three main
types: Web structure mining, Web content mining and Web usage mining.
Web structure mining discovers knowledge from hyperlinks, which repre-
sent the structure of the Web. Web content mining extracts useful informa-
tion/knowledge from Web page contents. Web usage mining mines user
activity patterns from usage logs and other forms of logs of user interac-
tions with Web systems. Since the publication of the first edition at the end
of 2006, there have been some important advances in several areas. To re-
flect these advances, new materials have been added to most chapters. The
major changes are in Chapter 11 and Chapter 12, which have been re-
written and significantly expanded. When the first edition was written,
opinion mining (Chapter 11) was still in its infancy. Since then, the re-
search community has gained a much better understanding of the problem
and has proposed many novel techniques to solve various aspects of the
problem. To include the latest developments for the Web usage mining
chapter (Chapter 12), the topics of recommender systems and collaborative
filtering, query log mining, and computational advertising have been
added. This new edition is thus considerably longer, from a total of 532
pages in the first edition to a total of 622 pages in this second edition.

The goal of the book is to present the above Web data mining tasks and
their core mining algorithms. The book is intended to be a text with a
comprehensive coverage, and therefore, for each topic, sufficient details
are given so that readers can gain a reasonably complete knowledge of its
algorithms or techniques without referring to any external materials. Five
of the chapters - partially supervised learning, structured data extraction,
information integration, opinion mining and sentiment analysis, and Web
usage mining - make this book unique. These topics are not covered by ex-
isting books, but yet are essential to Web data mining. Traditional Web
mining topics such as search, crawling and resource discovery, and social
network analysis are also covered in detail in this book.

Although the book is entitled Web Data Mining, it also includes the
main topics of data mining and information retrieval since Web mining
uses their algorithms and techniques extensively. The data mining part
mainly consists of chapters on association rules and sequential patterns,
supervised learning (or classification), and unsupervised learning (or clus-
tering), which are the three fundamental data mining tasks. The advanced
topic of partially (semi-) supervised learning is included as well. For in-
formation retrieval, its core topics that are crucial to Web mining are de-
scribed. The book is thus naturally divided into two parts. The first part,
which consists of Chapters 2–5, covers data mining foundations. The sec-
ond part, which consists of Chapters 6–12, covers Web specific mining.

Two main principles have guided the writing of this book. First, the ba-
sic content of the book should be accessible to undergraduate students, and
yet there should be sufficient in-depth materials for graduate students who
plan to pursue Ph.D. degrees in Web data mining or related areas. Few as-
sumptions are made in the book regarding the prerequisite knowledge of
readers. One with a basic understanding of algorithms and probability con-
cepts should have no problem with this book. Second, the book should ex-
amine the Web mining technology from a practical point of view. This is
important because most Web mining tasks have immediate real-world ap-
plications. In the past few years, I was fortunate to have worked directly or
indirectly with many researchers and engineers in several search engine
companies, e-commerce companies, opinion mining and sentiment analy-
sis companies, and also traditional companies that are interested in exploit-
ing the information on the Web in their businesses. During the process, I
gained practical experiences and first-hand knowledge of real-world prob-
lems. I try to pass those non-confidential pieces of information and knowl-
edge along in the book. The book, thus, has a good balance of theory and
practice. I hope that it will not only be a learning text for students, but also
a valuable source of information/knowledge and ideas for Web mining re-
searchers and practitioners.

Acknowledgements

Many researchers have assisted me technically in writing this book. With-
out their help, the book might never have become reality. My deepest
thanks go to Filippo Menczer, Bamshad Mobasher, and Olfa Nasraoui,
who were so kind to have helped write two essential chapters of the book.
They are all experts in their respective fields. Filippo wrote the entire
chapter on Web crawling. Bamshad and Olfa wrote all sections of the
chapter on Web usage mining except only the recommender systems sec-

VIII Preface

Preface IX

tion for which they also helped. I am also very grateful to Wee Sun Lee,
who helped a great deal in the writing of Chapter 5 on partially supervised
learning.

Jian Pei helped with the writing of the PrefixSpan algorithm in Chapter
2, and checked the MS-PS algorithm. Eduard Dragut assisted with the
writing of the last section of Chapter 10 and also read the chapter many
times. Yuanlin Zhang gave many great suggestions on Chapter 9. Simon
Funk, Yehuda Koren, Wee Sun Lee, Jing Peng, Arkadiusz Paterek, and
Domonkos Tikk helped with the recommender systems section in Chapter
12. I am indebted to all of them.

Many other researchers have also assisted in various ways. Yang Dai
and Rudy Setiono helped with Support Vector Machines (SVM). Chris
Ding helped with social network analysis. Clement Yu and ChengXiang
Zhai read Chapter 6. Amy Langville read Chapter 7. Kevin C.-C. Chang,
Ji-Rong Wen, and Clement Yu helped with many aspects of Chapter 10.
Justin Zobel helped clarify some issues related to index compression, and
Ion Muslea helped clarify some issues on wrapper induction. Divy
Agrawal, Yunbo Cao, Charles Elkan, Edward Fox, Jing Jiang, Hang Li,
Xiaoli Li, Ruihua Song, Zhaohui Tan, Dell Zhang, Xin Zhao and Zijian
Zheng helped check various chapters or sections. I am very grateful.

Discussions with many researchers also helped shape the book: Amir
Ashkenazi, Imran Aziz, Shenghua Bao, Roberto Bayardo, Wendell Baker,
Ling Bao, Jeffrey Benkler, Brian Davison, AnHai Doan, Byron Dom,
Juliana Freire, Michael Gamon, Robert Grossman, Natalie Glance, Jiawei
Han, Meichun Hsu, Wynne Hsu, Ronny Kohavi, Birgit König, David D.
Lewis, Ian McAllister, Wei-Ying Ma, Marco Maggini, Llew Mason,
Kamel Nigan, Julian Qian, Yan Qu, Thomas M. Tirpak, Andrew Tomkins,
Alexander Tuzhilin, Weimin Xiao, Gu Xu, Philip S. Yu, Mohammed Zaki,
Yuri Zelenkov, and Daniel Zeng.

My former and current students, Gao Cong, Xiaowen Ding, Murthy Ga-
napathibhotla, Minqing Hu, Nitin Jindal, Xin Li, Yiming Ma, Arjun Muk-
herjee, Quang Qiu (visiting student from Zhejiang University), William
Underwood, Yanhong Zhai, Zhongwu Zhai (visiting student from Tsinghua
University), Lei Zhang, and Kaidi Zhao contributed many research ideas
over the years and/or checked many algorithms and made numerous cor-
rections. Most chapters of the book have been used in my graduate classes
at the University of Illinois at Chicago. I thank the students in these classes
for implementing several algorithms. Their questions helped me improve
and, in some cases, correct the algorithms. It is not possible to list all their
names. Here, I would particularly like to thank John Castano, Hari Prasad
Divyakotti, Islam Ismailov, Suhyuk Park, Cynthia Kersey, Po-Hsiu Lin,
Srikanth Tadikonda, Makio Tamura, Ravikanth Turlapati, Guillermo

Vazquez, Haisheng Wang, and Chad Williams for pointing out errors in
texts, examples or algorithms. Michael Bombyk from DePaul University
also found several typing errors.

It was a pleasure working with the helpful staff at Springer. I thank my
editor Ralf Gerstner who asked me in early 2005 whether I was interested
in writing a book on Web mining. It has been a wonderful experience
working with him since. I also thank my copyeditor Mike Nugent for
helping me improve the presentation, and my production editor Michael
Reinfarth for guiding me through the final production process. Two
anonymous reviewers also gave me many insightful comments.

The Department of Computer Science at the University of Illinois at
Chicago provided computing resources and a supportive environment for
this project.

Finally, I thank my parents, brother and sister for their constant sup-
ports and encouragements. My greatest gratitude goes to my own family:
Yue, Shelley and Kate. They have helped me in so many ways. Despite
their young ages, Shelley and Kate actually read many parts of the book
and caught numerous typing errors. My wife has taken care of almost eve-
rything at home and put up with me and the long hours that I have spent on
this book. I dedicate this book to them.

Bing Liu

X Preface

Table of Contents

1. Introduction ·· 1

1.1. What is the World Wide Web? ··································· 1

1.2. A Brief History of the Web and the Internet ············· 2

1.3. Web Data Mining ·· 4
1.3.1. What is Data Mining? ·· 6

1.3.2. What is Web Mining? ·· 7

1.4. Summary of Chapters ·· 8

1.5. How to Read this Book ·· 11

 Bibliographic Notes ··· 12

 Bibliography ··· 13

Part I: Data Mining Foundations
2. Association Rules and Sequential Patterns ············ 17

2.1. Basic Concepts of Association Rules ····················· 17

2.2. Apriori Algorithm ··· 20
2.2.1. Frequent Itemset Generation ······························· 20

2.2.2 Association Rule Generation ······························· 24

 2.3. Data Formats for Association Rule Mining ············· 26

2.4. Mining with Multiple Minimum Supports ················· 26
2.4.1 Extended Model ··· 28

2.4.2. Mining Algorithm ··· 30

2.4.3. Rule Generation ·· 35

2.5. Mining Class Association Rules ······························ 36
2.5.1. Problem Definition ·· 36

2.5.2. Mining Algorithm ··· 38

2.5.3. Mining with Multiple Minimum Supports ············ 41

2.6. Basic Concepts of Sequential Patterns ··················· 41

2.7. Mining Sequential Patterns Based on GSP·············· 43
2.7.1. GSP Algorithm ··· 43

2.7.2. Mining with Multiple Minimum Supports ············ 45

2.8. Mining Sequential Patterns Based on PrefixSpan··· 49
2.8.1. PrefixSpan Algorithm ··· 50

2.8.2. Mining with Multiple Minimum Supports ············ 52

2.9. Generating Rules from Sequential Patterns ············ 53
2.9.1. Sequential Rules ··· 54

2.9.2. Label Sequential Rules ··· 54

2.9.3. Class Sequential Rules ··· 55

 Bibliographic Notes ··· 56

 Bibliography ··· 58

3. Supervised Learning ·· 63

3.1. Basic Concepts ··· 63

3.2. Decision Tree Induction ·· 67
3.2.1. Learning Algorithm ··· 70

3.2.2. Impurity Function ·· 71

3.2.3. Handling of Continuous Attributes ······················ 75

3.2.4. Some Other Issues ·· 76

3.3. Classifier Evaluation ·· 79
3.3.1. Evaluation Methods ·· 79

3.3.2. Precision, Recall, F-score and Breakeven Point 81
3.3.3. Receiver Operating Characteristic Curve ··········· 83

3.3.4. Lift Curve ··· 86

3.4. Rule Induction ·· 87
3.4.1. Sequential Covering ··· 87

3.4.2. Rule Learning: Learn-One-Rule Function ············ 90

3.4.3. Discussion ··· 93

3.5. Classification Based on Associations ······················· 93
3.5.1. Classification Using Class Association Rules ··· 94

3.5.2. Class Association Rules as Features ·················· 98

3.5.3. Classification Using Normal Association Rules 99

3.6. Naïve Bayesian Classification ····································

3.7. Naïve Bayesian Text Classification ·························· 103

XII Table of Contents

100

··

··

Table of Contents XIII

3.7.1. Probabilistic Framework ···································· 104

3.7.2. Naïve Bayesian Model ·· 105

3.7.3. Discussion ··· 108

3.8. Support Vector Machines ··· 109
3.8.1. Linear SVM: Separable Case ······························ 111

3.8.2. Linear SVM: Non-Separable Case ······················ 117

3.8.3. Nonlinear SVM: Kernel Functions ····················· 120

3.9. K-Nearest Neighbor Learning ···································· 124

3.10. Ensemble of Classifiers ··· 12
3.10.1. Bagging ·· 126

3.10.2. Boosting ··· 126

 Bibliographic Notes ··· 12
 Bibliography ··· 129

4. Unsupervised Learning ·· 133

4.1. Basic Concepts ·· 133

4.2. K-means Clustering ··· 136
4.2.1. K-means Algorithm ··· 136

4.2.2. Disk Version of the K-means Algorithm ············ 139

4.2.3. Strengths and Weaknesses ································ 140

4.3. Representation of Clusters ··· 144
4.3.1. Common Ways of Representing Clusters ········· 145

4.3.2 Clusters of Arbitrary Shapes ······························ 146

4.4. Hierarchical Clustering ·· 147
4.4.1. Single-Link Method ··· 149

4.4.2. Complete-Link Method ······································· 149

4.4.3. Average-Link Method ·· 150

4.4.4. Strengths and Weaknesses ································ 150

4.5. Distance Functions ··· 151
4.5.1. Numeric Attributes ·· 151

4.5.2. Binary and Nominal Attributes ··························· 152

4.5.3. Text Documents ·· 154

4.6. Data Standardization ·· 155

4.7. Handling of Mixed Attributes ······································ 157

4.8. Which Clustering Algorithm to Use? ······················· 159

4.9. Cluster Evaluation ·· 159

4.10. Discovering Holes and Data Regions ······················ 162

6

8

 Bibliographic Notes ··· 165

 Bibliography ··· 166

 5. Partially Supervised Learning ································· 171

5.1. Learning from Labeled and Unlabeled Examples · 171
5.1.1. EM Algorithm with Naïve Bayesian

5.1.2. Co-Training ·· 176

5.1.3. Self-Training ·· 178

5.1.4. Transductive Support Vector Machines ············ 179

5.1.5. Graph-Based Methods ·· 180

5.1.6. Discussion ··· 183

5.2. Learning from Positive and Unlabeled Examples · 184
5.2.1. Applications of PU Learning ······························ 185

5.2.2. Theoretical Foundation ······································ 187

5.2.3. Building Classifiers: Two-Step Approach ········· 190

5.2.4. Building Classifiers: Biased-SVM ······················ 197

5.2.5. Building Classifiers: Probability Estimation ····· 199

5.2.6. Discussion ··· 201

 Appendix: Derivation of EM for Naïve Bayesian

 Bibliographic Notes ··· 204

 Bibliography ··· 206

Part II: Web Mining

6. Information Retrieval and Web Search ·················· 211

6.1. Basic Concepts of Information Retrieval ················ 212

6.2. Information Retrieval Models ·································· 215
6.2.1. Boolean Model ··· 216

6.2.2. Vector Space Model ·· 21
6.2.3. Statistical Language Model ································ 219

6.3. Relevance Feedback ·· 220

6.4. Evaluation Measures ·· 223

XIV Table of Contents

Classification

Classification

7

173 ···

202··· ··

Table of Contents XV

6.5. Text and Web Page Pre-Processing ························· 227
6.5.1. Stopword Removal ·· 227

6.5.2. Stemming ··· 228

6.5.3. Other Pre-Processing Tasks for Text ················ 228

6.5.4. Web Page Pre-Processing ·································· 229

6.5.5. Duplicate Detection ··· 231

6.6. Inverted Index and Its Compression ························ 232
6.6.1. Inverted Index ·· 232

6.6.2. Search Using an Inverted Index ························· 234

6.6.3. Index Construction ··· 235

6.6.4. Index Compression ··· 23

6.7. Latent Semantic Indexing ··· 24
6.7.1. Singular Value Decomposition ·························· 243

6.7.2. Query and Retrieval ·· 24
6.7.3. An Example ·· 24
6.7.4. Discussion ··· 249

6.8. Web Search ·· 2

6.9. Meta-Search: Combining Multiple Rankings ········· 25
6.9.1. Combination Using Similarity Scores ··············· 254

6.9.2. Combination Using Rank Positions ·················· 255

6.10. Web Spamming ··· 257
6.10.1. Content Spamming ··· 258

6.10.2. Link Spamming ··· 259

6.10.3. Hiding Techniques ·· 26
6.10.4. Combating Spam ··· 26

 Bibliographic Notes ··· 263

 Bibliography ··· 264

7. Social Network Analysis ·· 269

7.1. Social Network Analysis ··· 270
7.1.1 Centrality ·· 270

7.1.2 Prestige ·· 273

7.2. Co-Citation and Bibliographic Coupling ················· 275
7.2.1. Co-Citation ··· 276

7.2.2. Bibliographic Coupling ······································· 277

7.3. PageRank ·· 277
7.3.1. PageRank Algorithm ··· 278

7.3.2. Strengths and Weaknesses of PageRank·········· 285

6

2

5
6

49

2

0
1

XVI Table of Contents

7.3.3. Timed PageRank and Recency Search ·············· 286

7.4. HITS ·· 288
7.4.1. HITS Algorithm ·· 289

7.4.2. Finding Other Eigenvectors ······························· 291

 7.4.3. Relationships with Co-Citation and

 Coupling ····································· 292
7.4.4. Strengths and Weaknesses of HITS ·················· 293

7.5. Community Discovery ··· 294
7.5.1. Problem Definition ·· 295
7.5.2. Bipartite Core Communities ······························· 29
7.5.3. Maximum Flow Communities ····························· 298

7.5.4. Email Communities Based on Betweenness ···· 301

7.5.5. Overlapping Communities of Named Entities ·· 30

Bibliographic Notes ·· 304

 Bibliography ··· 305

8. Web Crawling ·· 311

 8.1. A Basic Crawler Algorithm ····································· 312
8.1.1. Breadth-First Crawlers ······································· 313

8.1.2. Preferential Crawlers ·· 314

8.2. Implementation Issues ··· 315
8.2.1. Fetching ··· 315

8.2.2. Parsing ··· 316

8.2.3. Stopword Removal and Stemming ···················· 318

8.2.4. Link Extraction and Canonicalization ··············· 318

8.2.5. Spider Traps ·· 320

8.2.6. Page Repository ·· 321

8.2.7. Concurrency ·· 322

8.3. Universal Crawlers ·· 323
8.3.1. Scalability ·· 324

8.3.2. Coverage vs Freshness vs Importance ············· 326

8.4. Focused Crawlers ··· 327

8.5. Topical Crawlers ··· 330
8.5.1. Topical Locality and Cues ·································· 332

8.5.2. Best-First Variations ··· 338

8.5.3. Adaptation ··· 341

8.6. Evaluation ··· 348

8.7. Crawler Ethics and Conflicts ······································ 353

Bibliographic

7

3

. .

Table of Contents XVII

8.8. Some New Developments ··· 356

Bibliographic Notes ·· 358

 Bibliography ··· 359

9. Structured Data Extraction: Wrapper Generation · 363

 9.1 Preliminaries ·· 364
9.1.1. Two Types of Data Rich Pages ·························· 364

9.1.2. Data Model ··· 366

9.1.3. HTML Mark-Up Encoding of Data Instances ····· 368

9.2. Wrapper Induction ·· 370
9.2.1. Extraction from a Page ······································· 370

9.2.2. Learning Extraction Rules ·································· 373

9.2.3. Identifying Informative Examples ······················ 377

9.2.4. Wrapper Maintenance ··· 378

9.3. Instance-Based Wrapper Learning ··························· 378

9.4. Automatic Wrapper Generation: Problems ············ 381
9.4.1. Two Extraction Problems ··································· 382

9.4.2. Patterns as Regular Expressions ······················ 383

9.5. String Matching and Tree Matching ························· 384
9.5.1. String Edit Distance ·· 384

9.5.2. Tree Matching ·· 386

9.6. Multiple Alignment ·· 390
9.6.1. Center Star Method ··· 390

9.6.2. Partial Tree Alignment ·· 391

9.7. Building DOM Trees ··· 396

9.8. Extraction Based on a Single List Page:
 Flat Data Records ··· 397

9.8.1. Two Observations about Data Records ············ 398

9.8.2. Mining Data Regions ··· 399

9.8.3. Identifying Data Records in Data Regions ········ 404
9.8.4. Data Item Alignment and Extraction ·················· 405

9.8.5. Making Use of Visual Information ······················ 406

9.8.6. Some Other Techniques ····································· 406

9.9. Extraction Based on a Single List Page:

 Nested Data Records ··· 407

9.10. Extraction Based on Multiple Pages ························ 413
9.10.1. Using Techniques in Previous Sections ··········· 413

XVIII Table of Contents

9.10.2. RoadRunner Algorithm ······································· 414

9.11. Some Other Issues ··· 415
9.11.1. Extraction from Other Pages ······························ 416

9.11.2. Disjunction or Optional ······································ 416

9.11.3. A Set Type or a Tuple Type ································ 417

9.11.4. Labeling and Integration ····································· 418

9.11.5. Domain Specific Extraction ································ 418

9.12. Discussion ·· 419

Bibliographic Notes ·· 419

 Bibliography ··· 421

10. Information Integration ·· 425

10.1. Introduction to Schema Matching ··························· 426

10.2. Pre-Processing for Schema Matching ···················· 428

10.3. Schema-Level ··· 429
10.3.1. Linguistic Approaches ······································ 429

10.3.2. Constraint Based Approaches ························· 430

10.4. Domain and Instance-Level Matching ···················· 431

10.5. Combining Similarities ··· 434

10.6. 1: m Match ·· 435

10.7. Some Other Issues ·· 436
10.7.1. Reuse of Previous Match Results ····················· 436

10.7.2. Matching a Large Number of Schemas ··········· 437

 10.7.3 Schema Match Results ····································· 437

 10.7.4 User Interactions ··· 438

10.8. Integration of Web Query Interfaces ······················· 438
10.8.1. A Clustering Based Approach ·························· 441

10.8.2. A Correlation Based Approach ························· 444

10.8.3. An Instance Based Approach ··························· 447

10.9. Constructing a Unified Global Query Interface ···· 450

10.9.1. Structural Appropriateness and the

 Merge Algorithm ·· 45
10.9.2. Lexical Appropriateness ··································· 45
10.9.3. Instance Appropriateness ································ 45

Bibliographic Notes ·· 454

 Bibliography ··· 455

1
3
4

Matching

Table of Contents XIX

11. Opinion Mining and Sentiment Analysis ···················· 459

11.1. The Problem of Opinion Mining ······························· 460
11.1.1. Problem Definitions ··· 460

11.1.2. Aspect-Based Opinion Summary ····················· 467

11.2. Document Sentiment Classification ······················· 469
11.2.1. Classification Based on Supervised Learning 470

11.2.2. Classification Based on Unsupervised
7

11.3. Sentence Subjectivity and Sentiment
Classification

474

11.4. Opinion Lexicon Expansion ································· 477

11.5. Aspect-Based Opinion Mining ································· 480
11.5.1. Aspect Sentiment Classification ······················ 481

11.5.2. Basic Rules of Opinions ··································· 483

11.5.3. Aspect Extraction ·· 486

11.5.4. Simultaneous Opinion Lexicon Expansion

and Aspect Extraction ······································· 490

11.6. Mining Comparative Opinions ·································· 493
11.6.1. Problem Definitions ··· 493

11.6.2. Identification of Comparative Sentences ········ 495

11.6.3. Identification of Preferred Entities ··················· 496

11.7. Some Other Problems ·· 498

11.8. Opinion Search and Retrieval ·································· 503

11.9. Opinion Spam Detection ·· 506
11.9.1. Types of Spam and Spammers ························ 506

11.9.2. Hiding Techniques ·· 508

11.9.3. Spam Detection Based on Supervised
Learning 509

11.9.4. Spam Detection Based on Abnormal
Behaviors 511

11.9.5. Group Spam Detection······································· 513

11.10. Utility of Reviews ··· 514

Bibliographic Notes ·· 515

 Bibliography ··· 517

12. Web Usage Mining ·· 527

12.1. Data Collection and Pre-Processing ······················· 528

Learning 4 2··· ·····

···

··· ······

 ·· ·····

·

XX Table of Contents

12.1.1. Sources and Types of Data ······························ 530

12.1.2. Key Elements of Web Usage Data

Pre-Processing ·· 533

12.2. Data Modeling for Web Usage Mining ···················· 540

12.3. Discovery and Analysis of Web Usage Patterns · 544
12.3.1. Session and Visitor Analysis ···························· 544

12.3.2. Cluster Analysis and Visitor Segmentation ···· 545

12.3.3. Association and Correlation Analysis ············· 5

12.3.4. Analysis of Sequential and Navigational
550

 1 2.3.5. Classification and Prediction ased on Web
User Transactions ··· 554

12.4. Recommender Systems and Collaborative

12.4.1. The Recommendation ···················· 556

12.4.2. Content-Based Recommendation ···················· 557

12.4.3. Collaborative Filtering: K-Nearest Neighbor

559
12.4.4. Collaborative Filtering: Using Association

12.4.5. Collaborative Filtering: Matrix Factorization ··· 565

12.5. Query Log Mining ·· 571
12.5.1. Data Sources, Characteristics, and Challenge 573
12.5.2. Query Log Data Preparation ····························· 57
12.5.3. Query Log Data Models ···································· 577

12.5.4. Query Log Feature Extraction ·························· 582

12.5.5. Query Log Mining Applications ························ 583

12.5.6. Query Log Mining Methods ······························ 586

12.6. Computational Advertising ······································· 589

12.7. Discussion and Outlook ·· 593

Bibliographic Notes ·· 593

B ibliography ··· 59

Subject Index ··· 605

s··
4

4

49

b
 ··· ········Patterns

··Filtering 555

(KNN) ··· ············

5··· 61Rules

Problem ···

1 Introduction

When you read this book, you, without doubt, already know what the
World Wide Web is and have used it extensively. The World Wide Web
(or the Web for short) has impacted almost every aspect of our lives. It is
the biggest and most widely known information source that is easily acces-
sible and searchable. It consists of billions of interconnected documents
(called Web pages) which are authored by millions of people. Since its in-
ception, the Web has dramatically changed our information seeking behav-
ior. Before the Web, finding information meant asking a friend or an ex-
pert, or buying/borrowing a book to read. However, with the Web,
everything is just a few clicks away from the comfort of our homes or of-
fices. We can not only find needed information on the Web, but also easily
share our information and knowledge with others.

The Web has also become an important channel for conducting busi-
nesses. We can buy almost anything from online stores without needing to
go to a physical shop. The Web also provides a convenient means for us to
communicate with each other, to express our views and opinions, and to
discuss with people from anywhere in the world. The Web is truly a vir-
tual society. In this first chapter, we introduce the Web, its history, and the
topics that we will study in this book.

1.1 What is the World Wide Web?

The World Wide Web is officially defined as a “wide-area hypermedia in-
formation retrieval initiative aiming to give universal access to a large uni-
verse of documents.” In simpler terms, the Web is an Internet-based
computer network that allows users of one computer to access information
stored on another through the world-wide network called the Internet.

The Web's implementation follows a standard client-server model. In
this model, a user relies on a program (called the client) to connect to a
remote machine (called the server) where the data is stored. Navigating
through the Web is done by means of a client program called the browser,
e.g., Netscape, Internet Explorer, Firefox, Chrome, etc. Web browsers
work by sending requests to remote servers for information and then inter-

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 1
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_1,
© Springer-Verlag Berlin Heidelberg 2011

2 1 Introduction

preting the returned documents written in HTML and laying out the text
and graphics on the user’s computer screen on the client side.

The operation of the Web relies on the structure of its hypertext docu-
ments. Hypertext allows Web page authors to link their documents to other
related documents residing on computers anywhere in the world. To view
these documents, one simply follows the links (called hyperlinks).

The idea of hypertext was invented by Ted Nelson in 1965 [14], who
also created the well known hypertext system Xanadu (http://xanadu.com/).
Hypertext that also allows other media (e.g., image, audio and video files)
is called hypermedia.

1.2 A Brief History of the Web and the Internet

Creation of the Web: The Web was invented in 1989 by Tim Berners-
Lee, who, at that time, worked at CERN (Centre European pour la Recher-
che Nucleaire, or European Laboratory for Particle Physics) in Switzer-
land. He coined the term “World Wide Web,” wrote the first World Wide
Web server, httpd, and the first client program (a browser and editor),
“WorldWideWeb.”

It began in March 1989 when Tim Berners-Lee submitted a proposal ti-
tled “Information Management: A Proposal” to his superiors at CERN. In
the proposal, he discussed the disadvantages of hierarchical information
organization and outlined the advantages of a hypertext-based system. The
proposal called for a simple protocol that could request information stored
in remote computer systems through networks, and for a scheme by which
information could be exchanged in a common format and documents of
individuals could be linked by hyperlinks to other documents. It also pro-
posed methods for reading text and graphics using the display technology
at CERN at that time. The proposal essentially outlined a distributed hy-
pertext system, which is the basic architecture of the Web.

Initially, the proposal did not receive the needed support. However, in
1990, Berners-Lee re-circulated the proposal and received the support to
begin the work. With this project, Berners-Lee and his team at CERN laid
the foundation for the future development of the Web as a distributed hy-
pertext system. They introduced their server and browser, the protocol
used for communication between clients and the server, the HyperText
Transfer Protocol (HTTP), the HyperText Markup Language (HTML)
used for authoring Web documents, and the Universal Resource Locator
(URL). And so it began.

1.2 A Brief History of the Web and the Internet 3

Mosaic and Netscape Browsers: The next significant event in the de-
velopment of the Web was the arrival of Mosaic. In February of 1993,
Marc Andreesen from the University of Illinois’ NCSA (National Center
for Supercomputing Applications) and his team released the first "Mosaic
for X" graphical Web browser for UNIX. A few months later, different
versions of Mosaic were released for Macintosh and Windows operating
systems. This was an important event. For the first time, a Web client, with
a consistent and simple point-and-click graphical user interface, was im-
plemented for the three most popular operating systems available at the
time. It soon made big splashes outside the academic circle where it had
begun. In mid-1994, Silicon Graphics founder Jim Clark collaborated with
Marc Andreessen, and they founded the company Mosaic Communications
(later renamed as Netscape Communications). Within a few months, the
Netscape browser was released to the public, which started the explosive
growth of the Web. The Internet Explorer from Microsoft entered the
market in August, 1995 and began to challenge Netscape.

The creation of the World Wide Web by Tim Berners-Lee followed by
the release of the Mosaic browser are often regarded as the two most sig-
nificant contributing factors to the success and popularity of the Web.

Internet: The Web would not be possible without the Internet, which
provides the communication network for the Web to function. The Inter-
net started with the computer network ARPANET in the Cold War era. It
was produced as the result of a project in the United States aiming at main-
taining control over its missiles and bombers after a nuclear attack. It was
supported by the Advanced Research Projects Agency (ARPA), which was
part of the Department of Defense in the United States. The first
ARPANET connections were made in 1969, and in 1972, it was demon-
strated at the First International Conference on Computers and Communi-
cation, held in Washington D.C. At the conference, ARPA scientists linked
together computers from 40 different locations.

In 1973, Vinton Cerf and Bob Kahn started to develop the protocol later
to be called TCP/IP (Transmission Control Protocol/Internet Proto-
col). In the next year, they published the paper “Transmission Control Pro-
tocol”, which marked the beginning of TCP/IP. This new protocol allowed
diverse computer networks to interconnect and communicate with each
other. In subsequent years, many networks were built, and many compet-
ing techniques and protocols were proposed and developed. However,
ARPANET was still the backbone to the entire system. During the period,
the network scene was chaotic. In 1982, the TCP/IP was finally adopted,
and the Internet, which is a connected set of networks using the TCP/IP
protocol, was born.

4 1 Introduction

Search Engines: With information being shared worldwide, there was a
need for individuals to find information in an orderly and efficient manner.
Thus began the development of search engines. The search system Excite
was introduced in 1993 by six Stanford University students. EINet Galaxy
was established in 1994 as part of the MCC Research Consortium at the
University of Texas. Jerry Yang and David Filo created Yahoo! in 1994,
which started out as a listing of their favorite Web sites, and offered direc-
tory search. In subsequent years, many search systems emerged, e.g., Ly-
cos, Inforseek, AltaVista, Inktomi, Ask Jeeves, Northernlight, etc.

Google was launched in 1998 by Sergey Brin and Larry Page based on
their research project at Stanford University. Microsoft started to commit
to search in 2003, and launched the MSN search engine in spring 2005
(which is now called Bing). Yahoo! provided a general search capability
in 2004 after it purchased Inktomi in 2003.

W3C (The World Wide Web Consortium): W3C was formed in the
December of 1994 by MIT and CERN as an international organization to
lead the development of the Web. W3C's main objective was “to promote
standards for the evolution of the Web and interoperability between
WWW products by producing specifications and reference software.” The
first International Conference on World Wide Web (WWW) was also
held in 1994, which has been a yearly event ever since.

From 1995 to 2001, the growth of the Web boomed. Investors saw
commercial opportunities and became involved. Numerous businesses
started on the Web, which led to irrational developments. Finally, the bub-
ble burst in 2001. However, the development of the Web was not stopped,
but has only become more rational since.

1.3 Web Data Mining

The rapid growth of the Web in the last decade makes it the largest pub-
licly accessible data source in the world. The Web has many unique char-
acteristics, which make mining useful information and knowledge a fasci-
nating and challenging task. Let us review some of these characteristics.

1. The amount of data/information on the Web is huge and still growing.
The coverage of the information is also very wide and diverse. One can
find information on almost anything on the Web.

2. Data of all types exist on the Web, e.g., structured tables, semi-
structured pages, unstructured texts, and multimedia files (images,
audios, and videos).

1.3 Web Data Mining 5

3. Information on the Web is heterogeneous. Due to diverse authorships
of Web pages, multiple pages may present the same or similar information
using completely different words and/or formats. This makes integra-
tion of information from multiple pages a challenging problem.

4. A significant amount of information on the Web is linked. Hyperlinks
exist among Web pages within a site and across different sites. Within a
site, hyperlinks serve as an information organization mechanism.
Across different sites, hyperlinks represent implicit conveyance of au-
thority to the target pages. That is, those pages that are linked (or
pointed) to by many other pages are usually high quality pages or au-
thoritative pages simply because many people trust them.

5. The information on the Web is noisy. The noise comes from two main
sources. First, a typical Web page contains many pieces of information,
e.g., the main content of the page, navigation links, advertisements,
copyright notices, privacy policies, etc. For a particular application,
only part of the information is useful. The rest is considered noise. To
perform fine-grained Web information analysis and data mining, the
noise should be removed. Second, due to the fact that the Web does not
have quality control of information, i.e., one can write almost anything
that one likes, a large amount of information on the Web is of low qual-
ity, erroneous, or even misleading.

6. The Web is also about businesses and commerce. All commercial Web
sites allow people to perform useful operations at their sites, e.g., to
purchase products, to pay bills, and to fill in forms. To support such ap-
plications, the Web site needs to provide many types of automated ser-
vices, e.g., recommendation services using recommender systems.

7. The Web is dynamic. Information on the Web changes constantly.
Keeping up with the change and monitoring the change are important
issues for many applications.

8. The Web is a virtual society. It is not just about data, information and
services, but also about interactions among people, organizations and
automated systems. One can communicate with people anywhere in the
world easily and instantly, and also express one’s views and opinions
on anything in Internet forums, blogs, review sites and social network
sites. Such information offers new types of data that enable many new
mining tasks, e.g., opinion mining and social network analysis.

All these characteristics present both challenges and opportunities for min-
ing and discovery of information and knowledge from the Web. In this
book, we focus only on mining textual data. For mining of images, videos
and audios, please refer to [15, 26].

To explore information mining on the Web, it is necessary to know data

6 1 Introduction

mining, which has been applied in many Web mining tasks. However,
Web mining is not entirely an application of data mining. Due to the rich-
ness and diversity of information and other Web specific characteristics
discussed above, Web mining has developed many of its own algorithms.

1.3.1 What is Data Mining?

Data mining is also called knowledge discovery in databases (KDD). It
is commonly defined as the process of discovering useful patterns or
knowledge from data sources, e.g., databases, texts, images, the Web, etc.
The patterns must be valid, potentially useful, and understandable. Data
mining is a multi-disciplinary field involving machine learning, statistics,
databases, artificial intelligence, information retrieval, and visualization.

There are many data mining tasks. Some of the common ones are su-
pervised learning (or classification), unsupervised learning (or cluster-
ing), association rule mining, and sequential pattern mining. We will
study all of them in this book.

A data mining application usually starts with an understanding of the
application domain by data analysts (data miners), who then identify
suitable data sources and the target data. With the data, data mining can be
performed, which is usually carried out in three main steps:

 Pre-processing: The raw data is usually not suitable for mining due to
various reasons. It may need to be cleaned to remove noises or abnor-
malities. The data may also be too large and/or involve many irrelevant
attributes, which call for data reduction through sampling and attribute
or feature selection. Details about data pre-processing can be found in
any standard data mining textbook.

 Data mining: The processed data is then fed to a data mining algorithm
which will produce patterns or knowledge.

 Post-processing: In many applications, not all discovered patterns are
useful. This step identifies those useful ones for applications. Various
evaluation and visualization techniques are used to make the decision.

The whole process (also called the data mining process) is almost always
iterative. It usually takes many rounds to achieve the final satisfactory re-
sult, which is then incorporated into real-world operational tasks.

Traditional data mining uses structured data stored in relational tables,
spread sheets, or flat files in the tabular form. With the growth of the Web
and text documents, Web mining and text mining are becoming increas-
ingly important and popular. Web mining is the focus of this book.

1.3 Web Data Mining 7

1.3.2 What is Web Mining?

Web mining aims to discover useful information or knowledge from the
Web hyperlink structure, page content, and usage data. Although Web
mining uses many data mining techniques, as mentioned above it is not
purely an application of traditional data mining techniques due to the het-
erogeneity and semi-structured or unstructured nature of the Web data.
Many new mining tasks and algorithms were invented in the past decade.
Based on the primary kinds of data used in the mining process, Web min-
ing tasks can be categorized into three types: Web structure mining, Web
content mining and Web usage mining.

 Web structure mining: Web structure mining discovers useful knowl-
edge from hyperlinks (or links for short), which represent the structure
of the Web. For example, from the links, we can discover important
Web pages, which is a key technology used in search engines. We can
also discover communities of users who share common interests. Tradi-
tional data mining does not perform such tasks because there is usually
no link structure in a relational table.

 Web content mining: Web content mining extracts or mines useful in-
formation or knowledge from Web page contents. For example, we can
automatically classify and cluster Web pages according to their topics.
These tasks are similar to those in traditional data mining. However, we
can also discover patterns in Web pages to extract useful data such as
descriptions of products, postings of forums, etc., for many purposes.
Furthermore, we can mine customer reviews and forum postings to dis-
cover consumer opinions. These are not traditional data mining tasks.

 Web usage mining: Web usage mining refers to the discovery of user
access patterns from Web usage logs, which record every click made by
each user. Web usage mining applies many data mining algorithms. One
of the key issues in Web usage mining is the pre-processing of click-
stream data in usage logs in order to produce the right data for mining.

In this book, we will study all these three types of mining. However, due
to the richness and diversity of information on the Web, there are a large
number of Web mining tasks. We will not be able to cover them all. We
will only focus on some important tasks and their fundamental algorithms.

The Web mining process is similar to the data mining process. The dif-
ference is usually in the data collection. In traditional data mining, the data
is often already collected and stored in a data warehouse. For Web mining,
data collection can be a substantial task, especially for Web structure and
content mining, which involves crawling a large number of target Web
pages. We will devote a whole chapter to crawling.

8 1 Introduction

Once the data is collected, we go through the same three-step process:
data pre-processing, Web data mining and post-processing. However, the
techniques used for each step can be quite different from those used in tra-
ditional data mining.

1.4 Summary of Chapters

This book consists of two main parts. The first part, which includes Chaps.
2–5, covers the major topics of data mining. The second part, which com-
prises the rest of the chapters, covers Web mining (including a chapter on
Web search). In the Web mining part, Chaps. 7 and 8 are on Web structure
mining, which are closely related to Web search (Chap. 6). Since it is dif-
ficult to draw a boundary between Web search and Web mining, Web
search and mining are put together. Chaps 9–11 are on Web content min-
ing, and Chap. 12 is on Web usage mining. Below we give a brief intro-
duction to each chapter.

Chapter 2 – Association Rules and Sequential Patterns: This chapter
studies two important data mining models that have been used in many
Web mining tasks, especially in Web usage and content mining. Associa-
tion rule mining finds sets of data items that occur together frequently. Se-
quential pattern mining finds sets of data items that occur together fre-
quently in some sequences. Clearly, they can be used to find regularities in
the Web data. For example, in Web usage mining, association rule mining
can be used to find users’ visit and purchase patterns, and sequential pat-
tern mining can be used to find users’ navigation patterns.

Chapter 3 – Supervised Learning: Supervised learning is perhaps the
most frequently used mining/learning technique in both practical data min-
ing and Web mining. It is also called classification, which aims to learn a
classification function (called a classifier) from data that are labeled with
pre-defined classes or categories. The resulting classifier is then applied to
classify future data instances into these classes. Due to the fact that the
data instances used for learning (called the training data) are labeled with
pre-defined classes, the method is called supervised learning.

Chapter 4 – Unsupervised Learning: In unsupervised learning, the data
used for learning has no pre-defined classes. The learning algorithm has to
find the hidden structures or regularities in the data. One of the key unsu-
pervised learning techniques is clustering, which organizes data instances
into groups or clusters according to their similarities (or differences).
Clustering is widely used in Web mining. For example, we can cluster

1.4 Summary of Chapters 9

Web pages into groups, where each group may represent a particular topic.
We can also cluster documents into a hierarchy of clusters, which may rep-
resent a topic hierarchy.

Chapter 5 – Partially Supervised Learning: Supervised learning re-
quires a large number of labeled data instances to learn an accurate classi-
fier. Labeling, which is often done manually, is labor intensive and time
consuming. To reduce the manual labeling effort, learning from labeled
and unlabeled examples (or LU learning) was proposed to use a small
set of labeled examples (data instances) and a large set of unlabeled exam-
ples for learning. This model is also called semi-supervised learning.

Another learning model that we will study is called learning from posi-
tive and unlabeled examples (or PU learning), which is for two-class
classifications (the two classes are often called the positive and negative
classes). However, there are no labeled negative examples for learning.
This model is useful in many situations. For example, we have a set of
Web mining papers and we want to identify other Web mining papers in a
research paper repository which contains all kinds of papers. The set of
Web mining papers can be treated as the positive data, and the papers in
the research repository can be treated as the unlabeled data.

Chapter 6 – Information Retrieval and Web Search: Search is probably
the largest application on the Web. It has its root in information retrieval
(or IR for short), which is a field of study that helps the user find needed
information from a large collection of text documents. Given a query (e.g.,
a set of keywords), which expresses the user’s information need, an IR
system finds a set of documents that is relevant to the query from its un-
derlying collection. This is also how a Web search engine works.

Web search brings IR to a new height. It applies some IR techniques,
but also presents a host of interesting problems due to special characteris-
tics of the Web data. First of all, Web pages are not the same as plain text
documents because they are semi-structured and contain hyperlinks. Thus,
new methods have been designed to produce better Web IR (or search)
systems. Another major issue is efficiency. Document collections used in
traditional IR systems are not large, but the number of pages on the Web is
huge. For example, Google claimed that it indexed more than 8 billion
pages when the first edition of this book was written. Web users demand
very fast responses. No matter how accurate a retrieval algorithm is, if the
retrieval cannot be done extremely efficiently, few people will use it. In
the chapter, several other search related issues will also be discussed.

Chapter 7 – Social Network Analysis: Hyperlinks are a special feature of
the Web, which link Web pages to form a huge network. They have been

10 1 Introduction

exploited for many purposes, especially for Web search. Google’s early
success was largely attributed to its hyperlink-based ranking algorithm
called PageRank, which was originated from social network analysis
[24]. In this chapter, we will first introduce some main concepts of social
network analysis and then describe two most well known Web hyperlink
analysis algorithms, PageRank and HITS. In addition, we will also study
several community finding algorithms. When Web pages link to one an-
other, they form Web communities, which are groups of content creators
that share some common interests. Communities not only manifest in hy-
perlinks, but also in other contexts such as emails, Web page contents, and
friendship networks on social networking sites.

Chapter 8 – Web Crawling: A Web crawler is a program that automati-
cally traverses the Web’s hyperlink structure and downloads each linked
page to a local storage. Crawling is often the first step of Web mining or
building a Web search engine. Although conceptually easy, implementing
a practical crawler is by no means simple. Due to efficiency and many
other concerns, it involves a great deal of engineering. There are two main
types of crawlers: universal crawlers and topic crawlers. A universal
crawler downloads all pages irrespective of their contents, while a topic
crawler downloads only pages of certain topics. The difficulty in topic
crawling is how to recognize such pages. We will study several techniques
for this purpose.

Chapter 9 – Structured Data Extraction: Wrapper Generation: A
large number of pages on the Web contain structured data, which are usu-
ally data records retrieved from underlying databases and displayed in
Web pages following some fixed templates. Structured data often represent
their host pages’ essential information, e.g., lists of products and services.
Extracting such data allows one to provide value added services, e.g.,
comparative shopping and meta-search. There are two main approaches to
extraction. One is the supervised approach, which uses supervised learning
to learn data extraction rules. The other is the unsupervised pattern discov-
ery approach, which finds repeated patterns (hidden templates) in Web
pages for data extraction.

Chapter 10 – Information Integration: Due to diverse authorships of the
Web, different Web sites typically use different words or terms to express
the same or similar information. In order to make use of the data or infor-
mation extracted from multiple sites to provide value added services, we
need to semantically integrate the data/information from these sites in or-
der to produce a consistent and coherent database. Intuitively, integration
means (1) to match columns in different data tables that contain the same

1.5 How to Read this Book 11

type of information (e.g., product names) and (2) to match data values that
are semantically the same but expressed differently at different sites.

Chapter 11 – Opinion Mining and Sentiment Analysis: Apart from
structured data, the Web also contains a huge amount of unstructured text.
Analyzing such text is also of great importance. It is perhaps even more
important than extracting structured data because of the sheer volume of
valuable information of almost any imaginable types contained in it. This
chapter focuses only on mining people’s opinions and sentiments ex-
pressed in product reviews, forum discussions and blogs. The task is not
only technically challenging, but also very useful in practice because busi-
nesses and organizations always want to know consumer opinions on their
products and services.

Chapter 12 – Web Usage Mining: Web usage mining aims to study user
clicks and their applications to e-commerce and business intelligence. The
objective is to capture and model behavioral patterns and profiles of us-
ers who interact with a Web site. Such patterns can be used to better un-
derstand the behaviors of different user segments, to improve the organiza-
tion and structure of the site, and to create personalized experiences for
users by providing dynamic suggestions of products and services using re-
commender systems. This chapter also covers the important topics of
query log mining and computational advertising, which have emerged
as active research areas in recent years.

1.5 How to Read this Book

This book is a textbook although two chapters are mainly contributed by
three other researchers. The contents of the two chapters have been care-
fully edited and integrated into the common framework of the whole book.
The book is suitable for both graduate students and senior undergraduate
students in the fields of computer science, information science, engineer-
ing, statistics, and social sciences. It can also be used as a reference by re-
searchers and practitioners who are interested in or are working in the field
of Web mining, data mining or text mining.

As mentioned earlier, the book is divided into two parts. Part I (Chaps.
2–5) covers the major topics of data mining. Text classification and clus-
tering are included in this part as well. Part II, which includes the rest of
the chapters, covers Web mining (and search). In general, all chapters in
Part II require some techniques in Part I. Within each part, the dependency
is minimal except Chap. 5, which needs several techniques from Chap. 4.

12 1 Introduction

To Instructors: This book can be used as a class text for a one-semester
course on Web data mining. In this case, there are two possibilities. If the
students already have a data mining or machine learning background, the
chapters in Part I can be skipped. If the students do not have any data min-
ing background, I recommend covering some selected sections from each
chapter of Part I before going to Part II. The chapters in Part II can be cov-
ered in any sequence. You can also select a subset of the chapters accord-
ing to your needs.

The book may also be used as a class text for an introductory course on
data mining where Web mining concepts and techniques are introduced. In
this case, I recommend first covering all the chapters in Part I and then se-
lectively covering some chapters or sections from each chapter in Part II
depending on needs. It is usually a good idea to cover some sections of
Chaps. 6 and 7 as search engines fascinate most students. I also recom-
mend including one or two lectures on data pre-processing for data mining
since the topic is important for practical data mining applications but is not
covered in this book. You can find teaching materials on data pre-processing
from most introductory data mining books.

Supporting Materials: Updates to chapters and teaching materials, in-
cluding lecture slides, data sets, implemented algorithms, and other re-
sources, are available at http://www.springer.com/3-540-37881-2.

Bibliographic Notes

The W3C Web site (http://www.w3.org/) is the most authoritative resource
site for information on Web developments, standards and guidelines. The
history of the Web and hypertext, and Tim Berners-Lee’s original proposal
can all be found there. Many other sites also contain information about the
history of the Web, the Internet and search engines, e.g., http://www.elsop.
com/wrc/h_web.htm, http://www.zeltser.com/web-history/, http://www.isoc.
org/internet/history/, http://www.livinginternet.com, http://www.w3c.rl.ac.uk/
primers/history/origins.htm and http://searchenginewatch.com/.

There are some earlier introductory texts on Web mining, e.g., those by
Baldi et al. [1] and Chakrabarti [3]. There are also several application ori-
ented books, e.g., those by Linoff and Berry [12], and Thuraisingham [22],
and edited volumes by Zaiane et al. [26], Scime [19], and Zhong et al. [27].

On data mining, there are many textbooks, e.g., those by Duda et al. [4],
Dunham [5], Han and Kamber [8], Hand et al. [9], Larose [11], Langley
[10], Mitchell [13], Roiger and Geatz [17], Tan et al. [20], and Witten and
Frank [25]. Application oriented books include those by Berry and Linoff

Bibliography 13

[2], Pyle [16], Rud [18], and Tang and MacLennan [21]. Several edited
volumes exist as well, e.g., those by Fayyad et al. [6], Grossman et al. [7],
and Wang et al. [23].

Latest research results on Web mining can be found in a large number
of conferences and journals (too many to list) due to the interdisciplinary
nature of the field. All the journals and conferences related to the Web
technology, information retrieval, data mining, databases, artificial intelli-
gence, natural language processing, and machine learning may contain
Web mining related papers.

Bibliography

1. Baldi, P., P. Frasconi, and P. Smyth. Modeling the Internet and the Web:
Probabilistic methods and algorithms. 2003: John Wiley & Sons Inc.

2. Berry, M. and G. Linoff. Data mining techniques: for marketing, sales, and
customer relationship management. 2004: Wiley New York.

3. Chakrabarti, S. Mining the Web: discovering knowledge from hypertext data.
2003: Morgan Kaufmann Publishers.

4. Duda, R., P. Hart, and D. Stork. Pattern classification. 2001: John Wiley &
Sons Inc.

5. Dunham, M. Data mining: Introductory and advanced topics. 2002: Pearson
Education.

6. Fayyad, U., G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in
knowledge discovery and data mining. 1996: MIT Press.

7. Grossman, R., C. Kamath, P. Kegelmeyer, V. Kumar, and R. Namburu. Data
mining for scientific and engineering applications. 2001: Springer.

8. Han, J. and M. Kamber. Data mining: concepts and techniques. 2006: Morgan
Kaufmann Publishers.

9. Hand, D., H. Mannila, and P. Smyth. Principles of data mining. 2001: MIT
Press.

10. Langley, P. Elements of machine learning. 1996: Morgan Kaufmann
Publishers.

11. Larose, D.T. Discovering Knowledge in Data: an Introduction to Data
Mining. 2004: John Wiley.

12. Linoff, G. and M. Berry. Mining the web: transforming customer data into
customer value. 2002: John Wiley & Sons, Inc.

13. Mitchell, T. Machine Learning. 1997: McGraw Hill.
14. Nelson, T. A file structure for the complex, the changing and the

indeterminate. In Proceedings of ACM National Conference, 1965.
15. Perner, P. Data mining on multimedia data. 2002: Springer.
16. Pyle, D. Business modeling and data mining. 2003: Morgan Kaufmann

Publishers.

14 1 Introduction

17. Roiger, R. and M. Geatz. Data mining: a tutorial-based primer. 2003:
Addison Wesley Boston.

18. Rud, O.P. Data Mining Cookbook. 2003: John Wiley & Sons.
19. Scime, A. Web Mining: applications and techniques. 2005: Idea Group

Publishers.
20. Tan, P., M. Steinbach, and V. Kumar. Introduction to data mining. 2006:

Pearson Addison Wesley Boston.
21. Tang, Z. and J. Maclennan. Data mining with SQL Server 2005. 2005: Wiley

Publishing, Inc.
22. Thuraisingham, B.M. Web Data Mining and Applications in Business

Intelligence and Counter-Terrorism. 2003: CRC Press.
23. Wang, J., M. Zaki, H. Toivonen, and D. Shasha. Data mining in

bioinformatics. 2005: Springer Verlag.
24. Wasserman, S. and K. Faust. Social Network Analysis. 1994: Cambridge

University Press.
25. Witten, I. and E. Frank. Data Mining: Practical machine learning tools and

techniques. 2005: Morgan Kaufmann Publishers.
26. Zaiane, O., S. Simoff, and C. Djeraba. Mining multimedia and complex data.

2003: Springer.
27. Zhong, N., Y. Yao, and J. Liu. Web Intelligence. 2003: Springer.

 Part I

Data Mining Foundations

2 Association Rules and Sequential Patterns

Association rules are an important class of regularities in data. Mining of
association rules is a fundamental data mining task. It is perhaps the most
important model invented and extensively studied by the database and data
mining community. Its objective is to find all co-occurrence relationships,
called associations, among data items. Since it was first introduced in
1993 by Agrawal et al. [2], it has attracted a great deal of attention. Many
efficient algorithms, extensions and applications have been reported.

The classic application of association rule mining is the market basket
data analysis, which aims to discover how items purchased by customers
in a supermarket (or a store) are associated. An example association rule is

 Cheese  Beer [support = 10%, confidence = 80%].

The rule says that 10% customers buy Cheese and Beer together, and
those who buy Cheese also buy Beer 80% of the time. Support and confi-
dence are two measures of rule strength, which we will define later.

This mining model is in fact very general and can be used in many ap-
plications. For example, in the context of the Web and text documents, it
can be used to find word co-occurrence relationships and Web usage pat-
terns as we will see in later chapters.

Association rule mining, however, does not consider the sequence in
which the items are purchased. Sequential pattern mining takes care of
that. An example of a sequential pattern is “5% of customers buy bed first,
then mattress and then pillows”. The items are not purchased at the same
time, but one after another. Such patterns are useful in Web usage mining
for analyzing clickstreams in server logs. They are also useful for finding
language or linguistic patterns from natural language texts.

2.1 Basic Concepts of Association Rules

The problem of mining association rules can be stated as follows: Let I =
{i1, i2, …, im} be a set of items. Let T = (t1, t2, …, tn) be a set of transac-
tions (the database), where each transaction ti is a set of items such that ti
 I. An association rule is an implication of the form,

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 17
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_2,
© Springer-Verlag Berlin Heidelberg 2011

18 2 Association Rules and Sequential Patterns

 X  Y, where X  I, Y  I, and X  Y = .

X (or Y) is a set of items, called an itemset.

Example 1: We want to analyze how the items sold in a supermarket are
related to one another. I is the set of all items sold in the supermarket. A
transaction is simply a set of items purchased in a basket by a customer.
For example, a transaction may be:

{Beef, Chicken, Cheese},

which means that a customer purchased three items in a basket, Beef,
Chicken, and Cheese. An association rule may be:

 Beef, Chicken  Cheese,

where {Beef, Chicken} is X and {Cheese} is Y. For simplicity, brackets
“{” and “}” are usually omitted in transactions and rules. ▀

A transaction ti  T is said to contain an itemset X if X is a subset of ti
(we also say that the itemset X covers ti). The support count of X in T
(denoted by X.count) is the number of transactions in T that contain X. The
strength of a rule is measured by its support and confidence.
Support: The support of a rule, X  Y, is the percentage of transactions in

T that contains X  Y, and can be seen as an estimate of the probability,
Pr(XY). The rule support thus determines how frequent the rule is ap-
plicable in the transaction set T. Let n be the number of transactions in T.
The support of the rule X  Y is computed as follows:

.). (
n

countYX
support


 (1)

Support is a useful measure because if it is too low, the rule may just oc-
cur due to chance. Furthermore, in a business environment, a rule cover-
ing too few cases (or transactions) may not be useful because it does not
make business sense to act on such a rule (not profitable).

Confidence: The confidence of a rule, X  Y, is the percentage of transac-
tions in T that contain X also contain Y. It can be seen as an estimate of
the conditional probability, Pr(Y | X). It is computed as follows:

.
.

). (
countX

countYX
confidence


 (2)

Confidence thus determines the predictability of the rule. If the confi-
dence of a rule is too low, one cannot reliably infer or predict Y from X.
A rule with low predictability is of limited use.

2.1 Basic Concepts of Association Rules 19

Objective: Given a transaction set T, the problem of mining association
rules is to discover all association rules in T that have support and confi-
dence greater than or equal to the user-specified minimum support (de-
noted by minsup) and minimum confidence (denoted by minconf).

The keyword here is “all”, i.e., association rule mining is complete. Previ-
ous methods for rule mining typically generate only a subset of rules based
on various heuristics (see Chap. 3).

Example 2: Fig. 2.1 shows a set of seven transactions. Each transaction ti
is a set of items purchased in a basket in a store by a customer. The set I is
the set of all items sold in the store.

t1: Beef, Chicken, Milk
t2: Beef, Cheese
t3: Cheese, Boots
t4: Beef, Chicken, Cheese
t5: Beef, Chicken, Clothes, Cheese, Milk
t6: Chicken, Clothes, Milk
t7: Chicken, Milk, Clothes

Fig. 2.1. An example of a transaction set

Given the user-specified minsup = 30% and minconf = 80%, the following
association rule (sup is the support, and conf is the confidence)

Chicken, Clothes  Milk [sup = 3/7, conf = 3/3]

is valid as its support is 42.86% (> 30%) and its confidence is 100% (>
80%). The rule below is also valid, whose consequent has two items:

 Clothes  Milk, Chicken [sup = 3/7, conf = 3/3].

Clearly, more association rules can be discovered, as we will see later. ▀

We note that the data representation in the transaction form of Fig. 2.1 is
a simplistic view of shopping baskets. For example, the quantity and price
of each item are not considered in the model.

We also note that a text document or even a sentence in a single docu-
ment can be treated as a transaction without considering word sequence
and the number of occurrences of each word. Hence, given a set of docu-
ments or a set of sentences, we can find word co-occurrence relations.

A large number of association rule mining algorithms have been re-
ported in the literature, which have different mining efficiencies. Their re-
sulting sets of rules are, however, all the same based on the definition of
association rules. That is, given a transaction data set T, a minimum sup-
port and a minimum confidence, the set of association rules existing in T is

20 2 Association Rules and Sequential Patterns

uniquely determined. Any algorithm should find the same set of rules al-
though their computational efficiencies and memory requirements may be
different. The best known mining algorithm is the Apriori algorithm pro-
posed in [3], which we study next.

2.2 Apriori Algorithm

The Apriori algorithm works in two steps:

1. Generate all frequent itemsets: A frequent itemset is an itemset that
has transaction support above minsup.

2. Generate all confident association rules from the frequent itemsets:
A confident association rule is a rule with confidence above minconf.

We call the number of items in an itemset its size, and an itemset of size k
a k-itemset. Following Example 2 above, {Chicken, Clothes, Milk} is a fre-
quent 3-itemset as its support is 3/7 (minsup = 30%). From the itemset, we
can generate the following three association rules (minconf = 80%):

Rule 1: Chicken, Clothes  Milk [sup = 3/7, conf = 3/3]
Rule 2: Clothes, Milk  Chicken [sup = 3/7, conf = 3/3]
Rule 3: Clothes  Milk, Chicken [sup = 3/7, conf = 3/3].

Below, we discuss the two steps in turn.

2.2.1 Frequent Itemset Generation

The Apriori algorithm relies on the apriori or downward closure property
to efficiently generate all frequent itemsets.

Downward Closure Property: If an itemset has minimum support, then
every non-empty subset of this itemset also has minimum support.

The idea is simple because if a transaction contains a set of items X,
then it must contain any non-empty subset of X. This property and the
minsup threshold prune a large number of itemsets that cannot be frequent.

To ensure efficient itemset generation, the algorithm assumes that the
items in I are sorted in lexicographic order (a total order). The order is
used throughout the algorithm in each itemset. We use the notation {w[1],
w[2], …, w[k]} to represent a k-itemset w consisting of items w[1], w[2],
…, w[k], where w[1] < w[2] < … < w[k] according to the total order.

The Apriori algorithm for frequent itemset generation, which is given in
Fig. 2.2, is based on level-wise search. It generates all frequent itemsets

2.2 Apriori Algorithm 21

by making multiple passes over the data. In the first pass, it counts the sup-
ports of individual items (line 1) and determines whether each of them is
frequent (line 2). F1 is the set of frequent 1-itemsets. In each subsequent
pass k, there are three steps:

1. It starts with the seed set of itemsets Fk1 found to be frequent in the
(k1)-th pass. It uses this seed set to generate candidate itemsets Ck
(line 4), which are possible frequent itemsets. This is done using the
candidate-gen() function.

2. The transaction database is then scanned and the actual support of each
candidate itemset c in Ck is counted (lines 5–10). Note that we do not
need to load the whole data into memory before processing. Instead, at

Algorithm Apriori(T)
1 C1  init-pass(T); // the first pass over T
2 F1  {f | f  C1, f.count/n  minsup}; // n is the no. of transactions in T
3 for (k = 2; Fk1  ; k++) do // subsequent passes over T
4 Ck  candidate-gen(Fk1);
5 for each transaction t  T do // scan the data once
6 for each candidate c  Ck do
7 if c is contained in t then
8 c.count++;
9 endfor
10 endfor
11 Fk  {c  Ck | c.count/n  minsup}
12 endfor
13 return F  ∪k Fk;

Fig. 2.2. The Apriori algorithm for generating frequent itemsets

Function candidate-gen(Fk1)
1 Ck  ; // initialize the set of candidates
2 forall f1, f2  Fk1 // find all pairs of frequent itemsets
3 with f1 = {i1, … , ik2, ik1} // that differ only in the last item
4 and f2 = {i1, … , ik2, i’k1}
5 and ik1 < i’k1 do // according to the lexicographic order
6 c  {i1, …, ik1, i’k1}; // join the two itemsets f1 and f2
7 Ck  Ck  {c}; // add the new itemset c to the candidates
8 for each (k1)-subset s of c do
9 if (s  Fk1) then
10 delete c from Ck; // delete c from the candidates
11 endfor
12 endfor
13 return Ck; // return the generated candidates

Fig. 2.3. The candidate-gen function

22 2 Association Rules and Sequential Patterns

any time, only one transaction resides in memory. This is a very impor-
tant feature of the algorithm. It makes the algorithm scalable to huge da-
ta sets, which cannot be loaded into memory.

3. At the end of the pass or scan, it determines which of the candidate
itemsets are actually frequent (line 11).

The final output of the algorithm is the set F of all frequent itemsets (line
13). The candidate-gen() function is discussed below.

Candidate-gen function: The candidate generation function is given in
Fig. 2.3. It consists of two steps, the join step and the pruning step.

Join step (lines 2–6 in Fig. 2.3): This step joins two frequent (k1)-
itemsets to produce a possible candidate c (line 6). The two frequent
itemsets f1 and f2 have exactly the same items except the last one (lines
3–5). c is added to the set of candidates Ck (line 7).

Pruning step (lines 8–11 in Fig. 2.3): A candidate c from the join step may
not be a final candidate. This step determines whether all the k1 sub-
sets (there are k of them) of c are in Fk1. If anyone of them is not in
Fk1, c cannot be frequent according to the downward closure property,
and is thus deleted from Ck.

The correctness of the candidate-gen() function is easy to show (see [3]).
Here, we use an example to illustrate the working of the function.

Example 3: Let the set of frequent itemsets at level 3 be
F3 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}}.

For simplicity, we use numbers to represent items. The join step (which
generates candidates for level 4) will produce two candidate itemsets, {1, 2,
3, 4} and {1, 3, 4, 5}. {1, 2, 3, 4} is generated by joining the first and the
second itemsets in F3 as their first and second items are the same respec-
tively. {1, 3, 4, 5} is generated by joining {1, 3, 4} and {1, 3, 5}.

After the pruning step, we have only:
C4 = {{1, 2, 3, 4}}

because {1, 4, 5} is not in F3 and thus {1, 3, 4, 5} cannot be frequent.

Example 4: Let us see a complete running example of the Apriori algo-
rithm based on the transactions in Fig. 2.1. We use minsup = 30%.

F1: {{Beef}:4, {Cheese}:4, {Chicken}:5, {Clothes}:3, {Milk}:4}

 Note: the number after each frequent itemset is the support count of the
itemset, i.e., the number of transactions containing the itemset. A mini-
mum support count of 3 is sufficient because the support of 3/7 is greater
than 30%, where 7 is the total number of transactions.

2.2 Apriori Algorithm 23

C2: {{Beef, Cheese}, {Beef, Chicken}, {Beef, Clothes}, {Beef, Milk},
 {Cheese, Chicken}, {Cheese, Clothes}, {Cheese, Milk},
 {Chicken, Clothes}, {Chicken, Milk}, {Clothes, Milk}}

F2: {{Beef, Chicken}:3, {Beef, Cheese}:3, {Chicken, Clothes}:3,
 {Chicken, Milk}:4, {Clothes, Milk}:3}

C3: {{Chicken, Clothes, Milk}}

 Note: {Beef, Cheese, Chicken} is also produced in line 6 of Fig. 2.3.
However, {Cheese, Chicken} is not in F2, and thus the itemset {Beef,
Cheese, Chicken} is not included in C3.

F3: {{Chicken, Clothes, Milk}:3}. ▀

Finally, some remarks about the Apriori algorithm are in order:

 Theoretically, this is an exponential algorithm. Let the number of items
in I be m. The space of all itemsets is O(2m) because each item may or
may not be in an itemset. However, the mining algorithm exploits the
sparseness of the data and the high minimum support value to make the
mining possible and efficient. The sparseness of the data in the context
of market basket analysis means that the store sells a lot of items, but
each shopper only purchases a few of them.

 The algorithm can scale up to large data sets as it does not load the en-
tire data into the memory. It only scans the data K times, where K is the
size of the largest itemset. In practice, K is often small (e.g., < 10). This
scale-up property is very important in practice because many real-world
data sets are so large that they cannot be loaded into the main memory.

 The algorithm is based on level-wise search. It has the flexibility to stop
at any level. This is useful in practice because in many applications,
long frequent itemsets or rules are not needed as they are hard to use.

 As mentioned earlier, once a transaction set T, a minsup and a minconf
are given, the set of frequent itemsets that can be found in T is uniquely
determined. Any algorithm should find the same set of frequent item-
sets. This property about association rule mining does not hold for many
other data mining tasks, e.g., classification or clustering, for which dif-
ferent algorithms may produce very different results.

 The main problem with association rule mining is that it often produces
a huge number of itemsets (and rules), tens of thousands, or more,
which makes it hard for the user to analyze them to find those useful
ones. This is called the interestingness problem. Researchers have pro-
posed several methods to tackle this problem (see Bibliographic Notes).

An efficient implementation of the Apriori algorithm involves sophisti-
cated data structures and programming techniques, which are beyond the

24 2 Association Rules and Sequential Patterns

scope of this book. Apart from the Apriori algorithm, there is a large num-
ber of other algorithms, e.g., FP-growth [17] and many others.

2.2.2 Association Rule Generation

In many applications, frequent itemsets are already useful and sufficient.
Then, we do not need to generate association rules. In applications where
rules are desired, we use frequent itemsets to generate all association rules.

Compared with frequent itemset generation, rule generation is relatively
simple. To generate rules for every frequent itemset f, we use all non-
empty subsets of f. For each such subset , we output a rule of the form

(f  )  , if

,
).(

.
minconf

countf

countf
confidence 





 (3)

where f.count (or (f).count) is the support count of f (or (f  )). The
support of the rule is f.count/n, where n is the number of transactions in the
transaction set T. All the support counts needed for confidence computa-
tion are available because if f is frequent, then any of its non-empty subsets
is also frequent and its support count has been recorded in the mining
process. Thus, no data scan is needed in rule generation.

This exhaustive rule generation strategy is, however, inefficient. To de-
sign an efficient algorithm, we observe that the support count of f in the
above confidence computation does not change as  changes. It follows
that for a rule (f  )   to hold, all rules of the form (f  sub)  sub
must also hold, where sub is a non-empty subset of , because the support
count of (f  sub) must be less than or equal to the support count of (f  ).
For example, given an itemset {A, B, C, D}, if the rule (A, B  C, D) holds,
then the rules (A, B, C  D) and (A, B, D  C) must also hold.

Thus, for a given frequent itemset f, if a rule with consequent  holds,
then so do rules with consequents that are subsets of . This is similar to
the downward closure property that, if an itemset is frequent, then so are
all its subsets. Therefore, from the frequent itemset f, we first generate all
rules with one item in the consequent. We then use the consequents of
these rules and the function candidate-gen() (Fig. 2.3) to generate all pos-
sible consequents with two items that can appear in a rule, and so on. An
algorithm using this idea is given in Fig. 2.4. Note that all 1-item conse-
quent rules (rules with one item in the consequent) are first generated in
line 2 of the function genRules(). The confidence is computed using (3).

2.2 Apriori Algorithm 25

Example 5: We again use transactions in Fig. 2.1, minsup = 30% and
minconf = 80%. The frequent itemsets are as follows (see Example 4):

F1: {{Beef}:4, {Cheese}:4, {Chicken}:5, {Clothes}:3, {Milk}:4}
F2: {{Beef, Cheese}:3, {Beef, Chicken}:3, {Chicken, Clothes}:3,
 {Chicken, Milk}:4, {Clothes, Milk}:3}
F3: {{Chicken, Clothes, Milk}:3}.

We use only the itemset in F3 to generate rules (generating rules from each
itemset in F2 can be done in the same way). The itemset in F3 generates the
following possible 1-item consequent rules:

Rule 1: Chicken, Clothes  Milk [sup = 3/7, conf = 3/3]
Rule 2: Chicken, Milk  Clothes [sup = 3/7, conf = 3/4]
Rule 3: Clothes, Milk  Chicken [sup = 3/7, conf = 3/3].

Due to the minconf requirement, only Rule 1 and Rule 3 are output in line
2 of the algorithm genRules(). Thus, H1 = {{Chicken}, {Milk}}. The function
ap-genRules() is then called. Line 2 of ap-genRules() produces H2 =
{{Chicken, Milk}}. The following rule is then generated:

Rule 4: Clothes  Milk, Chicken [sup = 3/7, conf = 3/3].

Algorithm genRules(F) // F is the set of all frequent itemsets
1 for each frequent k-itemset fk in F, k  2 do
2 output every 1-item consequent rule of fk with confidence  minconf and

support  fk.count / n // n is the total number of transactions in T
3 H1 {consequents of all 1-item consequent rules derived from fk above};
4 ap-genRules(fk, H1);
5 endfor

Procedure ap-genRules(fk, Hm) // Hm is the set of m-item consequents
1 if (k > m + 1) AND (Hm  ) then
2 Hm+1  candidate-gen(Hm);
3 for each hm+1 in Hm+1 do
4 conf  fk.count / (fk  hm+1).count;
5 if (conf  minconf) then
6 output the rule (fk  hm+1)  hm+1 with confidence = conf and

support = fk.count / n; // n is the total number of transactions in T
7 else
8 delete hm+1 from Hm+1;
9 endfor
10 ap-genRules(fk, Hm+1);
11 endif

Fig. 2.4. The association rule generation algorithm

26 2 Association Rules and Sequential Patterns

Thus, three association rules are generated from the frequent itemset
{Chicken, Clothes, Milk} in F3, namely Rule 1, Rule 3 and Rule 4. ▀

2.3 Data Formats for Association Rule Mining

So far, we have used only transaction data for mining association rules.
Market basket data sets are naturally of this format. Text documents can be
seen as transaction data as well. Each document is a transaction, and each
distinctive word is an item. Duplicate words are removed.

However, mining can also be performed on relational tables. We just
need to convert a table data set to a transaction data set, which is fairly
straightforward if each attribute in the table takes categorical values. We
simply change each value to an attribute–value pair.
Example 6: The table data in Fig. 2.5(A) can be converted to the transac-
tion data in Fig. 2.5(B). Each attribute–value pair is considered an item.
Using only values is not sufficient in the transaction form because different
attributes may have the same values. For example, without including at-
tribute names, value a’s for Attribute1 and Attribute2 are not distinguish-
able. After the conversion, Fig. 2.5(B) can be used in mining. ▀

If an attribute takes numerical values, it becomes complex. We need to
first discretize its value range into intervals, and treat each interval as a ca-
tegorical value. For example, an attribute’s value range is from 1–100. We
may want to divide it into 5 equal-sized intervals, 1–20, 21–40, 41–60, 61–
80, and 81–100. Each interval is then treated as a categorical value. Discre-
tization can be done manually based on expert knowledge or automati-
cally. There are several existing algorithms [14, 40].

A point to note is that for a table data set, the join step of the candidate
generation function (Fig. 2.3) needs to be slightly modified in order to en-
sure that it does not join two itemsets to produce a candidate itemset con-
taining two items from the same attribute.

 Clearly, we can also convert a transaction data set to a table data set us-
ing a binary representation and treating each item in I as an attribute. If a
transaction contains an item, its attribute value is 1, and 0 otherwise.

2.4 Mining with Multiple Minimum Supports

The key element that makes association rule mining practical is the minsup
threshold. It is used to prune the search space and to limit the number of
frequent itemsets and rules generated. However, using only a single min-

2.4 Mining with Multiple Minimum Supports 27

sup implicitly assumes that all items in the data are of the same nature
and/or have similar frequencies in the database. This is often not the case
in real-life applications. In many applications, some items appear very fre-
quently in the data, while some other items rarely appear. If the frequen-
cies of items vary a great deal, we will encounter two problems [23]:

1. If the minsup is set too high, we will not find rules that involve infre-
quent items or rare items in the data.

2. In order to find rules that involve both frequent and rare items, we have
to set the minsup very low. However, this may cause combinatorial ex-
plosion and make mining impossible because those frequent items will
be associated with one another in all possible ways.

Let us use an example to illustrate the above problem with a very low min-
sup, which will actually introduce another problem.

Example 7: In a supermarket transaction data set, in order to find rules in-
volving those infrequently purchased items such as FoodProcessor and
CookingPan (they generate more profits per item), we need to set the min-
sup very low. Let us use only frequent itemsets in this example as they are
generated first and rules are produced from them. They are also the source
of all the problems. Now assume we set a very low minsup of 0.005%. We
find the following meaningful frequent itemset:
 {FoodProcessor, CookingPan} [sup = 0.006%].

However, this low minsup may also cause the following two meaningless
itemsets being discovered:

f1: {Bread, Cheese, Egg, Bagel, Milk, Sugar, Butter} [sup = 0.007%],

f2: {Bread, Egg, Milk, CookingPan} [sup = 0.006%].

Knowing that 0.007% of the customers buy the seven items in f1 together is
useless because all these items are so frequently purchased in a supermar-

Attribute1 Attribute2 Atribute3
a a x
b n y

(A) Table data

t1: (Attribute1, a), (Attribute2, a), (Attribute3, x)
t2: (Attribute1, b), (Attribute2, n), (Attribute3, y)

(B) Transaction data

Fig. 2.5. From a table data set to a transaction data set

28 2 Association Rules and Sequential Patterns

ket. Worst still, they will almost certainly cause combinatorial explosion!
For itemsets involving such items to be useful, their supports have to be
much higher. Similarly, knowing that 0.006% of the customers buy the
four items in f2 together is also meaningless because Bread, Egg and Milk
are purchased on almost every grocery shopping trip. ▀

This dilemma is called the rare item problem. Using a single minsup
for the whole data set is inadequate because it cannot capture the inherent
natures and/or frequency differences of items in the database. By the na-
tures of items we mean that some items, by nature, appear more frequently
than others. For example, in a supermarket, people buy FoodProcessor and
CookingPan much less frequently than Bread and Milk. The situation is the
same for online stores. In general, those durable and/or expensive goods
are bought less often, but each of them generates more profit. It is thus im-
portant to capture rules involving less frequent items. However, we must
do so without allowing frequent items to produce too many meaningless
rules with very low supports and cause combinatorial explosion [23].

One common solution to this problem is to partition the data into several
smaller blocks (subsets), each of which contains only items of similar fre-
quencies. Mining is then done separately for each block using a different
minsup. This approach is, however, not satisfactory because itemsets or
rules that involve items across different blocks will not be found.

A better solution is to allow the user to specify multiple minimum sup-
ports, i.e., to specify a different minimum item support (MIS) to each
item. Thus, different itemsets need to satisfy different minimum supports
depending on what items are in the itemsets. This model thus enables us to
achieve our objective of finding itemsets involving rare items without
causing frequent items to generate too many meaningless itemsets. This
method helps solve the problem of f1. To deal with the problem of f2, we
prevent itemsets that contain both very frequent items and very rare items
from being generated. A constraint will be introduced to realize this.

An interesting by-product of this extended model is that it enables the
user to easily instruct the algorithm to generate only itemsets that contain
certain items but not itemsets that contain only the other items. This can be
done by setting the MIS values to more than 100% (e.g., 101%) for these
other items. This capability is very useful in practice because in many ap-
plications the user is only interested in certain types of itemsets or rules.

2.4.1 Extended Model

To allow multiple minimum supports, the original model in Sect. 2.1 needs
to be extended. In the extended model, the minimum support of a rule is

2.4 Mining with Multiple Minimum Supports 29

expressed in terms of minimum item supports (MIS) of the items that
appear in the rule. That is, each item in the data can have a MIS value spe-
cified by the user. By providing different MIS values for different items,
the user effectively expresses different support requirements for different
rules. It seems that specifying a MIS value for each item is a difficult task.
This is not so as we will see at the end of Sect. 2.4.2.

Let MIS(i) be the MIS value of item i. The minimum support of a rule
R is the lowest MIS value among the items in the rule. That is, a rule R,

 i1, i2, …, ik  ik+1, …, ir,

satisfies its minimum support if the rule’s actual support in the data is
greater than or equal to:

 min(MIS(i1), MIS(i2), …, MIS(ir)).

Minimum item supports thus enable us to achieve the goal of having
higher minimum supports for rules that involve only frequent items, and
having lower minimum supports for rules that involve less frequent items.

Example 8: Consider the set of items in a data set, {Bread, Shoes,
Clothes}. The user-specified MIS values are as follows:

MIS(Bread) = 2% MIS(Clothes) = 0.2% MIS(Shoes) = 0.1%.

The following rule doesn’t satisfy its minimum support:

 Clothes  Bread [sup = 0.15%, conf = 70%].

This is so because min(MIS(Bread), MIS(Clothes)) = 0.2%. The following
rule satisfies its minimum support:

 Clothes  Shoes [sup = 0.15%, conf = 70%].

because min(MIS(Clothes), MIS(Shoes)) = 0.1%. ▀

As we explained earlier, the downward closure property holds the key
to pruning in the Apriori algorithm. However, in the new model, if we use
the Apriori algorithm to find all frequent itemsets, the downward closure
property no longer holds.

Example 9: Consider the four items 1, 2, 3 and 4 in a data set. Their min-
imum item supports are:

 MIS(1) = 10% MIS(2) = 20% MIS(3) = 5% MIS(4) = 6%.

If we find that itemset {1, 2} has a support of 9% at level 2, then it does not
satisfy either MIS(1) or MIS(2). Using the Apriori algorithm, this itemset
is discarded since it is not frequent. Then, the potentially frequent itemsets
{1, 2, 3} and {1, 2, 4} will not be generated for level 3. Clearly, itemsets {1,

30 2 Association Rules and Sequential Patterns

2, 3} and {1, 2, 4} may be frequent because MIS(3) is only 5% and MIS(4)
is 6%. It is thus wrong to discard {1, 2}. However, if we do not discard {1,
2}, the downward closure property is lost. ▀

Below, we present an algorithm to solve this problem. The essential idea
is to sort the items according to their MIS values in ascending order to
avoid the problem.

Note that MIS values prevent low support itemsets involving only fre-
quent items from being generated because their individual MIS values are
all high. To prevent very frequent items and very rare items from appear-
ing in the same itemset, we introduce the support difference constraint.

Let sup(i) be the actual support of item i in the data. For each itemset s,
the support difference constraint is as follows:

 maxis{sup(i)}  minis{sup(i)} ≤ ,

where 0 ≤  ≤ 1 is the user-specified maximum support difference, and it
is the same for all itemsets. The constraint basically limits the difference
between the largest and the smallest actual supports of items in itemset s to
. This constraint can reduce the number of itemsets generated dramati-
cally, and it does not affect the downward closure property.

2.4.2 Mining Algorithm

The new algorithm generalizes the Apriori algorithm for finding frequent
itemsets. We call the algorithm, MS-Apriori. When there is only one MIS
value (for all items), it reduces to the Apriori algorithm.

Like Apriori, MS-Apriori is also based on level-wise search. It generates
all frequent itemsets by making multiple passes over the data. However,
there is an exception in the second pass as we will see later.

The key operation in the new algorithm is the sorting of the items in I in
ascending order of their MIS values. This order is fixed and used in all
subsequent operations of the algorithm. The items in each itemset follow
this order. For example, in Example 9 of the four items 1, 2, 3 and 4 and
their given MIS values, the items are sorted as follows: 3, 4, 1, 2. This or-
der helps solve the problem identified above.

Let Fk denote the set of frequent k-itemsets. Each itemset w is of the fol-
lowing form, {w[1], w[2], …, w[k]}, which consists of items, w[1], w[2],
…, w[k], where MIS(w[1])  MIS(w[2])  …  MIS(w[k]). The algorithm
MS-Apriori is given in Fig. 2.6. Line 1 performs the sorting on I according
to the MIS value of each item (stored in MS). Line 2 makes the first pass
over the data using the function init-pass(), which takes two arguments, the

2.4 Mining with Multiple Minimum Supports 31

data set T and the sorted items M, to produce the seeds L for generating
candidate itemsets of length 2, i.e., C2. init-pass() has two steps:

1. It first scans the data once to record the support count of each item.
2. It then follows the sorted order to find the first item i in M that meets

MIS(i). i is inserted into L. For each subsequent item j in M after i, if
j.count/n  MIS(i), then j is also inserted into L, where j.count is the
support count of j, and n is the total number of transactions in T.

Frequent 1-itemsets (F1) are obtained from L (line 3). It is easy to show
that all frequent 1-itemsets are in F1.

Example 10: Let us follow Example 9 and the given MIS values for the
four items. Assume our data set has 100 transactions (not limited to the
four items). The first pass over the data gives us the following support
counts: {3}.count = 6, {4}.count = 3, {1}.count = 9 and {2}.count = 25. Then,

L = {3, 1, 2}, and F1 = {{3}, {2}}.

Item 4 is not in L because 4.count/n < MIS(3) (= 5%), and {1} is not in F1
because 1.count / n < MIS(1) (= 10%). ▀

For each subsequent pass (or data scan), say pass k, the algorithm per-
forms three operations.

Algorithm MS-Apriori(T, MS, ) // MS stores all MIS values
1 M  sort(I, MS); // according to MIS(i)’s stored in MS
2 L  init-pass(M, T); // make the first pass over T
3 F1  {{l} | l  L, l.count/n  MIS(l)}; // n is the size of T
4 for (k = 2; Fk1  ; k++) do
5 if k = 2 then
6 Ck  level2-candidate-gen(L, ) // k = 2
7 else Ck  MScandidate-gen(Fk1, )
8 endif;
9 for each transaction t  T do
10 for each candidate c  Ck do
11 if c is contained in t then // c is a subset of t
12 c.count++
13 if c – {c[1]} is contained in t then // c without the first item
14 (c – {c[1]}).count++
15 endfor
16 endfor
17 Fk  {c  Ck | c.count/n  MIS(c[1])}
18 endfor
19 return F  ∪k Fk;

Fig. 2.6. The MS-Apriori algorithm

32 2 Association Rules and Sequential Patterns

1. The frequent itemsets in Fk1 found in the (k–1)th pass are used to gen-
erate the candidates Ck using the MScandidate-gen() function (line 7).
However, there is a special case, i.e., when k = 2 (line 6), for which the
candidate generation function is different, i.e., level2-candidate-gen().

2. It then scans the data and updates various support counts of the candi-
dates in Ck (line 9–16). For each candidate c, we need to update its sup-
port count (lines 11–12) and also the support count of c without the first
item (lines 13–14), i.e., c – {c[1]}, which is used in rule generation and
will be discussed in Sect. 2.4.3. If rule generation is not required, lines
13 and 14 can be deleted.

3. The frequent itemsets (Fk) for the pass are identified in line 17.
We present candidate generation functions level2-candidate-gen() and

MScandidate-gen() below.

Level2-candidate-gen function: It takes an argument L, and returns a su-
perset of the set of all frequent 2-itemsets. The algorithm is given in Fig.
2.7. Note that in line 5, we use |sup(h)  sup(l)| ≤  because sup(l) may not
be lower than sup(h), although MIS(l) ≤ MIS(h).

Example 11: Let us continue with Example 10. We set  = 10%. Recall
the MIS values of the four items are (in Example 9):

 MIS(1) = 10% MIS(2) = 20%
 MIS(3) = 5% MIS(4) = 6%.

The level2-candidate-gen() function in Fig. 2.7 produces

 C2 = {{3, 1}}.

{1, 2} is not a candidate because the support count of item 1 is only 9 (or
9%), less than MIS(1) (= 10%). Hence, {1, 2} cannot be frequent. {3, 2} is
not a candidate because sup(3) = 6% and sup(2) = 25% and their difference
is greater than  = 10% ▀

Note that we must use L rather than F1 because F1 does not contain those
items that may satisfy the MIS of an earlier item (in the sorted order) but
not the MIS of itself, e.g., item 1 in the above example. Using L, the prob-
lem discussed in Sect. 2.4.1 is solved for C2.

MScandidate-gen function: The algorithm is given in Fig. 2.8, which is
similar to the candidate-gen function in the Apriori algorithm. It also has
two steps, the join step and the pruning step. The join step (lines 2–6) is
the same as that in the candidate-gen() function. The pruning step (lines 8–
12) is, however, different.

For each (k-1)-subset s of c, if s is not in Fk1, c can be deleted from Ck.
However, there is an exception, which is when s does not include c[1]

2.4 Mining with Multiple Minimum Supports 33

(there is only one such s). That is, the first item of c, which has the lowest
MIS value, is not in s. Even if s is not in Fk1, we cannot delete c because
we cannot be sure that s does not satisfy MIS(c[1]), although we know that
it does not satisfy MIS(c[2]), unless MIS(c[2]) = MIS(c[1]) (line 9).

Example 12: Let F3 = {{1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {1, 4,
6}, {2, 3, 5}}. Items in each itemset are in the sorted order. The join step
produces (we ignore the support difference constraint here)

 {1, 2, 3, 5}, {1, 3, 4, 5} and {1, 4, 5, 6}.

The pruning step deletes {1, 4, 5, 6} because {1, 5, 6} is not in F3. We are
then left with C4 = {{1, 2, 3, 5}, {1, 3, 4, 5}}. {1, 3, 4, 5} is not deleted al-
though {3, 4, 5} is not in F3 because the minimum support of {3, 4, 5} is
MIS(3), which may be higher than MIS(1). Although {3, 4, 5} does not sat-
isfy MIS(3), we cannot be sure that it does not satisfy MIS(1). However, if
MIS(3) = MIS(1), then {1, 3, 4, 5} can also be deleted. ▀

Function level2-candidate-gen(L, )
1 C2  ; // initialize the set of candidates
2 for each item l in L in the same order do
3 if l.count/n  MIS(l) then
4 for each item h in L that is after l do
5 if h.count/n  MIS(l) and |sup(h)  sup(l)| ≤  then
6 C2  C2  {{l, h}}; // insert the candidate {l, h} into C2

Fig. 2.7. The level2-candidate-gen function

Function MScandidate-gen(Fk1, )
1 Ck  ; // initialize the set of candidates
2 forall f1, f2  Fk // find all pairs of frequent itemsets
3 with f1 = {i1, … , ik2, ik1} // that differ only in the last item
4 and f2 = {i1, … , ik2, i’k1}
5 and ik-1 < i’k1 and |sup(ik-1)  sup(i’k1)| ≤  do
6 c  {i1, …, ik1, i’k1}; // join the two itemsets f1 and f2
7 Ck  Ck  {c}; // insert the candidate itemset c into Ck
8 for each (k1)-subset s of c do
9 if (c[1]  s) or (MIS(c[2]) = MIS(c[1])) then
10 if (s  Fk1) then
11 delete c from Ck; // delete c from the set of candidates
12 endfor
13 endfor
14 return Ck; // return the generated candidates

Fig. 2.8. The MScandidate-gen function

34 2 Association Rules and Sequential Patterns

The problem discussed in Sect. 2.4.1 is solved for Ck (k > 2) because,
due to the sorting, we do not need to extend a frequent (k1)-itemset with
any item that has a lower MIS value. Let us see a complete example.

Example 13: Given the following seven transactions,
 Beef, Bread

 Bread, Clothes
Bread, Clothes, Milk
Cheese, Boots
Beef, Bread, Cheese, Shoes
Beef, Bread, Cheese, Milk
Bread, Milk, Clothes

and MIS(Milk) = 50%, MIS(Bread) = 70%, and 25% for all other items.
Again, the support difference constraint is not used. The following fre-
quent itemsets are produced:

F1 = {{Beef}, {Cheese}, {Clothes}, {Bread}}
F2 = {{Beef, Cheese}, {Beef, Bread}, {Cheese, Bread}
 {Clothes, Bread}, {Clothes, Milk}}
F3 = {{Beef, Cheese, Bread}, {Clothes, Milk, Bread}}. ▀

To conclude this sub-section, let us further discuss two important issues:

1. Specify MIS values for items: This is usually done in two ways:
 Assign a MIS value to each item according to its actual sup-

port/frequency in the data set T. For example, if the actual support of
item i in T is sup(i), then the MIS value for i may be computed with
sup(i), where  is a parameter (0    1) and is the same for all
items in T.

 Group items into clusters (or blocks). Items in each cluster have simi-
lar frequencies. All items in the same cluster are given the same MIS
value. We should note that in the extended model frequent itemsets
involving items from different clusters will be found.

2. Generate itemsets that must contain certain items: As mentioned earlier,
the extended model enables the user to instruct the algorithm to generate
itemsets that must contain certain items, or not to generate any itemsets
consisting of only the other items. Let us see an example.

Example 14: Given the data set in Example 13, if we want to generate
frequent itemsets that must contain at least one item in {Boots, Bread,
Cheese, Milk, Shoes}, or not to generate itemsets involving only Beef
and/or Clothes, we can simply set

 MIS(Beef) = 101%, and MIS(Clothes) = 101%

2.4 Mining with Multiple Minimum Supports 35

Then the algorithm will not generate the itemsets, {Beef}, {Clothes}
and {Beef, Clothes}. However, it will still generate such frequent item-
sets as {Cheese, Beef} and {Cheese, Bread, Beef}. ▀

In many applications, this feature comes quite handy because the user
is often only interested in certain types of itemsets or rules.

2.4.3 Rule Generation

Association rules are generated using frequent itemsets. In the case of a
single minsup, if f is a frequent itemset and fsub is a subset of f, then fsub
must also be a frequent itemset. All their support counts are computed and
recorded by the Apriori algorithm. Then, the confidence of each possible
rule can be easily calculated without seeing the data again.

However, in the case of MS-Apriori, if we only record the support count
of each frequent itemset, it is not sufficient. Let us see why.

Example 15: Recall in Example 8, we have
MIS(Bread) = 2% MIS(Clothes) = 0.2% MIS(Shoes) = 0.1%.

If the actual support for the itemset {Clothes, Bread} is 0.15%, and for the
itemset {Shoes, Clothes, Bread} is 0.12%, according to MS-Apriori,
{Clothes, Bread} is not a frequent itemset since its support is less than
MIS(Clothes). However, {Shoes, Clothes, Bread} is a frequent itemset as
its actual support is greater than
 min(MIS(Shoes), MIS(Clothes), MIS(Bread)) = MIS(Shoes)).

We now have a problem in computing the confidence of the rule,

Clothes, Bread  Shoes

because the itemset {Clothes, Bread} is not a frequent itemset and thus its
support count is not recorded. In fact, we may not be able to compute the
confidences of the following rules either:

Clothes  Shoes, Bread
Bread  Shoes, Clothes

because {Clothes} and {Bread} may not be frequent. ▀

Lemma: The above problem may occur only when the item that has the
lowest MIS value in the itemset is in the consequent of the rule (which
may have multiple items). We call this problem the head-item problem.

Proof by contradiction: Let f be a frequent itemset, and a  f be the item
with the lowest MIS value in f (a is called the head item). Thus, f uses

36 2 Association Rules and Sequential Patterns

MIS(a) as its minsup. We want to form a rule, X  Y, where X, Y  f, X 
Y = f and X  Y = . Our examples above already show that the head-item
problem may occur when a  Y. Now assume that the problem can also
occur when a  X. Since a  X and X  f, a must have the lowest MIS
value in X and X must be a frequent itemset, which is ensured by the MS-
Apriori algorithm. Hence, the support count of X is recorded. Since f is a
frequent itemset and its support count is also recorded, then we can com-
pute the confidence of X  Y. This contradicts our assumption. ▀

The lemma indicates that we need to record the support count of f – {a}.
This is achieved by lines 13–14 in MS-Apriori (Fig. 2.6). All problems in
Example 15 are solved. A similar rule generation function as genRules() in
Apriori can be designed to generate rules with multiple minimum supports.

2.5 Mining Class Association Rules

The mining models studied so far do not use any targets. That is, any item
can appear as a consequent or condition of a rule. However, in some appli-
cations, the user is interested in only rules with some fixed target items on
the right-hand side [22]. For example, the user has a collection of text doc-
uments from some topics (target items), and he/she wants to know what
words are correlated with each topic. In [25], a data mining system based
entirely on such rules, called class association rules, is reported, which
has been in use in Motorola for many different applications since 2006. In
the Web environment, class association rules are also useful because many
types of Web data are in the form of transactions, e.g., search queries is-
sued by users and pages clicked by visitors. Such applications often have
target items, e.g., advertisements. Web sites want to know how user activi-
ties are related to advertisements that the users may view or click (see
Chap. 12). This touches the issue of classification or prediction, which we
will study in the next chapter where we will see that such rules can be used
either directly for classification or indirectly as features for classification.

2.5.1 Problem Definition

Let T be a transaction data set consisting of n transactions. Each transac-
tion is labeled with a class y. Let I be the set of all items in T, Y be the set
of all class labels (or target items) and I  Y = . A class association
rule (CAR) is an implication of the form

 X  y, where X  I, and y  Y.

2.5 Mining Class Association Rules 37

The definitions of support and confidence are the same as those for nor-
mal association rules. In general, a class association rule is different from a
normal association rule in two ways:
1. The consequent of a CAR has only a single item, while the consequent

of a normal association rule can have any number of items.
2. The consequent y of a CAR can only be from the class label set Y, i.e., y
 Y. No item from I can appear as the consequent, and no class label
can appear as a rule condition. In contrast, a normal association rule can
have any item as a condition or a consequent.

Objective: The problem of mining CARs is to generate the complete set of
CARs that satisfies the user-specified minimum support (minsup) and min-
imum confidence (minconf) constraints.

Example 16: Fig. 2.9 shows a data set which has seven text documents.
Each document is a transaction and consists of a set of keywords. Each
transaction is also labeled with a topic class (education or sport).

I = {Student, Teach, School, City, Game, Baseball, Basketball, Team,
Coach, Player, Spectator}

Y = {Education, Sport}.

 Transactions Class
doc 1: Student, Teach, School : Education
doc 2: Student, School : Education
doc 3: Teach, School, City, Game : Education
doc 4: Baseball, Basketball : Sport
doc 5: Basketball, Player, Spectator : Sport
doc 6: Baseball, Coach, Game, Team : Sport
doc 7: Basketball, Team, City, Game : Sport

Fig. 2.9. An example of a data set for mining class association rules

Let minsup = 20% and minconf = 60%. The following are two examples of
class association rules:

Student, School  Education [sup= 2/7, conf = 2/2]
Game  Sport [sup= 2/7, conf = 2/3]. ▀

A question that one may ask is: can we mine the data by simply using the
Apriori algorithm and then perform a post-processing of the resulting rules
to select only those class association rules? In principle, the answer is yes
because CARs are a special type of association rules. However, in practice
this is often difficult or even impossible because of combinatorial explo-
sion, i.e., the number of rules generated in this way can be huge.

38 2 Association Rules and Sequential Patterns

2.5.2 Mining Algorithm

Unlike normal association rules, CARs can be mined directly in a single
step. The key operation is to find all ruleitems that have support above
minsup. A ruleitem is of the form:

(condset, y),

where condset  I is a set of items, and y  Y is a class label. The support
count of a condset (called condsupCount) is the number of transactions in
T that contain the condset. The support count of a ruleitem (called rule-
supCount) is the number of transactions in T that contain the condset and
are labeled with class y. Each ruleitem basically represents a rule:

 condset  y,

whose support is (rulesupCount / n), where n is the total number of trans-
actions in T, and whose confidence is (rulesupCount / condsupCount).

Ruleitems that satisfy the minsup are called frequent ruleitems, while
the rest are called infrequent ruleitems. For example, ({Student, School},
Education) is a ruleitem in T of Fig. 2.9. The support count of the condset
{Student, School} is 2, and the support count of the ruleitem is also 2. Then
the support of the ruleitem is 2/7 (= 28.6%), and the confidence of the rule-
item is 100%. If minsup = 10%, then the ruleitem satisfies the minsup
threshold. We say that it is frequent. If minconf = 80%, then the ruleitem
satisfies the minconf threshold. We say that the ruleitem is confident. We
thus have the class association rule:

Student, School  Education [sup= 2/7, conf = 2/2].

The rule generation algorithm, called CAR-Apriori, is given in Fig.
2.10, which is based on the Apriori algorithm. Like the Apriori algorithm,
CAR-Apriori generates all the frequent ruleitems by making multiple
passes over the data. In the first pass, it computes the support count of each
1-ruleitem (containing only one item in its condset) (line 1). The set of all
1-candidate ruleitems considered is:

C1 = {({i}, y) | i  I, and y  Y},

which basically associates each item in I (or in the transaction data set T)
with every class label. Line 2 determines whether the candidate 1-
ruleitems are frequent. From frequent 1-ruleitems, we generate 1-condition
CARs (rules with only one condition) (line 3). In a subsequent pass, say k,
it starts with the seed set of (k1)-ruleitems found to be frequent in the
(k1)-th pass, and uses this seed set to generate new possibly frequent k-
ruleitems, called candidate k-ruleitems (Ck in line 5). The actual support

2.5 Mining Class Association Rules 39

counts, both condsupCount and rulesupCount, are updated during the scan
of the data (lines 6–13) for each candidate k-ruleitem. At the end of the da-
ta scan, it determines which of the candidate k-ruleitems in Ck are actually
frequent (line 14). From the frequent k-ruleitems, line 15 generates k-
condition CARs (class association rules with k conditions).

One interesting note about ruleitem generation is that if a ruleitem/rule
has a confidence of 100%, then extending the ruleitem with more condi-
tions (adding items to its condset) will also result in rules with 100% con-
fidence although their supports may drop with additional items. In some
applications, we may consider these subsequent rules redundant because
additional conditions do not provide any more information. Then, we
should not extend such ruleitems in candidate generation for the next level,
which can reduce the number of generated rules substantially. If desired,
redundancy handling can be added in the CAR-Apriori algorithm easily.

The CARcandidate-gen() function is very similar to the candidate-gen()
function in the Apriori algorithm, and it is thus omitted. The only differ-
ence is that in CARcandidate-gen() ruleitems with the same class are
joined by joining their condsets.

Example 17: Let us work on a complete example using our data in Fig.
2.9. We set minsup = 20%, and minconf = 60%.

F1: { ({School}, Education):(3, 3), ({Student}, Education):(2, 2),
 ({Teach}, Education):(2, 2), ({Baseball}, Sport):(2, 2),

Algorithm CAR-Apriori(T)
1 C1  init-pass(T); // the first pass over T
2 F1  {f | f  C1, f. rulesupCount / n  minsup};
3 CAR1  {f | f  F1, f.rulesupCount / f.condsupCount  minconf};
4 for (k = 2; Fk1  ; k++) do
5 Ck  CARcandidate-gen(Fk1);
6 for each transaction t  T do
7 for each candidate c  Ck do
8 if c.condset is contained in t then // c is a subset of t
9 c.condsupCount++;
10 if t.class = c.class then
11 c.rulesupCount++
12 endfor
13 end-for
14 Fk  {c  Ck | c.rulesupCount / n  minsup};
15 CARk  {f | f  Fk, f.rulesupCount / f.condsupCount  minconf};
16 endfor
17 return CAR  ∪k CARk;

Fig. 2.10. The CAR-Apriori algorithm

40 2 Association Rules and Sequential Patterns

 ({Basketball}, Sport):(3, 3), ({Game}, Sport):(3, 2),
 ({Team}, Sport):(2, 2)}

Note: The two numbers within the parentheses after each ruleitem are its
condSupCount and ruleSupCount respectively.

CAR1: School  Education [sup = 3/7, conf = 3/3]
 Student  Education [sup = 2/7, conf = 2/2]
 Teach  Education [sup = 2/7, conf = 2/2]
 Baseball  Sport [sup = 2/7, conf = 2/2]
 Basketball  Sport [sup = 3/7, conf = 3/3]
 Game  Sport [sup = 2/7, conf = 2/3]
 Team  Sport [sup = 2/7, conf = 2/2]

Note: We do not deal with rule redundancy in this example.

C2: { ({School, Student}, Education), ({School, Teach}, Education),
 ({Student, Teach}, Education), ({Baseball, Basketball}, Sport),
 ({Baseball, Game}, Sport), ({Baseball, Team}, Sport),

 ({Basketball, Game}, Sport), ({Basketball, Team}, Sport),
 ({Game, Team}, Sport)}

F2: { ({School, Student}, Education):(2, 2),
 ({School, Teach}, Education):(2, 2), ({Game, Team}, Sport):(2, 2)}

CAR2: School, Student  Education [sup = 2/7, conf = 2/2]
 School, Teach  Education [sup = 2/7, conf = 2/2]
 Game, Team  Sport [sup = 2/7, conf = 2/2] ▀

We note that for many applications involving target items, the data sets
used are relational tables. They need to be converted to transaction forms
before mining. We can use the method in Sect. 2.3 for the purpose.

Example 18: In Fig. 2.11(A), the data set has three data attributes and a
class attribute with two possible values, positive and negative. It is con-
verted to the transaction data in Fig. 2.11(B). Notice that for each class, we
only use its original value. There is no need to attach the attribute “Class”

Attribute1 Attribute2 Atribute3 Class
a a x positive
b n y negative

(A) Table data

t1: (Attribute1, a), (Attribute2, a), (Attribute3, x) : Positive
t2: (Attribute1, b), (Attribute2, n), (Attribute3, y) : negative

(B) Transaction data

Fig. 2.11. Converting a table data set (A) to a transaction data set (B)

2.6 Basic Concepts of Sequential Patterns 41

because there is no ambiguity. As discussed in Sect. 2.3, for each numeric
attribute, its value range needs to be discretized into intervals either manu-
ally or automatically before conversion and rule mining. There are many
discretization algorithms. Interested readers are referred to [14]. ▀

2.5.3 Mining with Multiple Minimum Supports

The concept of mining with multiple minimum supports discussed in Sect.
2.4 can be incorporated in class association rule mining in two ways:

1. Multiple minimum class supports: The user can specify different min-
imum supports for different classes. For example, the user has a data set
with two classes, Yes and No. Based on the application requirement,
he/she may want all rules of class Yes to have the minimum support of
5% and all rules of class No to have the minimum support of 20%.

2. Multiple minimum item supports: The user can specify a minimum
item support for every item (either a class item/label or a non-class
item). This is more general and is similar to normal association rule
mining discussed in Sect. 2.4.

For both approaches, similar mining algorithms to that given in Sect. 2.4
can be devised. The support difference constraint in Sect. 2.4.1 can be in-
corporated as well. Like normal association rule mining with multiple min-
imum supports, by setting minimum class and/or item supports to more
than 100% for some items, the user effectively instructs the algorithm not
to generate rules involving only these items.

Finally, although we have discussed only multiple minimum supports so
far, we can easily use different minimum confidences for different classes
as well, which provides an additional flexibility in applications.

2.6 Basic Concepts of Sequential Patterns

Association rule mining does not consider the order of transactions. How-
ever, in many applications such orderings are significant. For example, in
market basket analysis, it is interesting to know whether people buy some
items in sequence, e.g., buying bed first and then buying bed sheets some
time later. In Web usage mining, it is useful to find navigational patterns
in a Web site from sequences of page visits of users (see Chap. 12). In text
mining, considering the ordering of words in a sentence is vital for finding
linguistic or language patterns (see Chap. 11). For these applications, asso-
ciation rules will not be appropriate. Sequential patterns are needed. Be-

42 2 Association Rules and Sequential Patterns

low, we define the problem of mining sequential patterns and introduce the
main concepts involved.

Let I = {i1, i2, …, im} be a set of items. A sequence is an ordered list of
itemsets. Recall an itemset X is a non-empty set of items X  I. We denote
a sequence s by a1a2…ar, where ai is an itemset, which is also called an
element of s. We denote an element (or an itemset) of a sequence by {x1,
x2, …, xk}, where xj  I is an item. We assume without loss of generality
that items in an element of a sequence are in lexicographic order. An item
can occur only once in an element of a sequence, but can occur multiple
times in different elements. The size of a sequence is the number of ele-
ments (or itemsets) in the sequence. The length of a sequence is the num-
ber of items in the sequence. A sequence of length k is called a k-sequence.
If an item occurs multiple times in different elements of a sequence, each
occurrence contributes to the value of k. A sequence s1 = a1a2…ar is a
subsequence of another sequence s2 = b1b2…bv, or s2 is a supersequence
of s1, if there exist integers 1 ≤ j1 < j2 < … < jr1 < jr  v such that a1  bj1,
a2  bj2, …, ar  bjr. We also say that s2 contains s1.

Example 19: Let I = {1, 2, 3, 4, 5, 6, 7, 8, 9}. The sequence {3}{4, 5}{8} is
contained in (or is a subsequence of) {6} {3, 7}{9}{4, 5, 8}{3, 8} because {3}
 {3, 7}, {4, 5}  {4, 5, 8}, and {8}  {3, 8}. However, {3}{8} is not con-
tained in {3, 8} or vice versa. The size of the sequence {3}{4, 5}{8} is 3,
and the length of the sequence is 4. ▀

Objective: Given a set S of input data sequences (or sequence database),
the problem of mining sequential patterns is to find all sequences that
have a user-specified minimum support. Each such sequence is called a
frequent sequence, or a sequential pattern. The support for a se-
quence is the fraction of total data sequences in S that contains this se-
quence.

Example 20: We use the market basket analysis as an example. Each se-
quence in this context represents an ordered list of transactions of a par-
ticular customer. A transaction is a set of items that the customer pur-
chased at a time (called the transaction time). Then transactions in the
sequence are ordered by increasing transaction time. Table 2.1 shows a
transaction database which is already sorted according to customer ID (the
major key) and transaction time (the minor key). Table 2.2 gives the data
sequences (also called customer sequences). Table 2.3 gives the output
sequential patterns with the minimum support of 25%, i.e., two customers.
 ▀

2.7 Mining Sequential Patterns Based on GSP 43

Table 2.1. A set of transactions sorted by customer ID and transaction time

Customer ID Transaction Time Transaction (items bought)
1 July 20, 2005 30
1 July 25, 2005 90
2 July 9, 2005 10, 20
2 July 14, 2005 30
2 July 20, 2005 10, 40, 60, 70
3 July 25, 2005 30, 50, 70, 80
4 July 25, 2005 30
4 July 29, 2005 30, 40, 70, 80
4 August 2, 2005 90
5 July 12, 2005 90

Table 2.2. The sequence database produced from the transactions in Table 2.1.

Customer ID Data Sequence
1 {30} {90}
2 {10, 20} {30} {10, 40, 60, 70}
3 {30, 50, 70, 80}
4 {30} {30, 40, 70, 80} {90}
5 {90}

Table 2.3. The final output sequential patterns

 Sequential Patterns with Support  25%
1-sequences {30}, {40}, {70}, {80}, {90}
2-sequences {30} {40}, {30} {70}, {30}, {90}, {30, 70},

{30, 80}, {40, 70}, {70, 80}
3-sequences {30} {40, 70}, {30, 70, 80}

2.7 Mining Sequential Patterns Based on GSP

This section describes two algorithms for mining sequential patterns based
on the GSP algorithm in [41]: the original GSP, which uses a single mini-
mum support, and MS-GSP, which uses multiple minimum supports.

2.7.1 GSP Algorithm

GSP works in almost the same way as the Apriori algorithm. We still use
Fk to store the set of all frequent k-sequences, and Ck to store the set of all

44 2 Association Rules and Sequential Patterns

candidate k-sequences. The algorithm is given in Fig. 2.12. The main dif-
ference is in the candidate generation, candidate-gen-SPM(), which is giv-
en in Fig. 2.13. We use an example to illustrate the function.

Example 21: Table 2.4 shows F3, and C4 after the join and prune steps. In
the join step, the sequence {1, 2}{4} joins with {2}{4, 5} to produce {1,
2}{4, 5}, and joins with {2}{4}{6} to produce {1, 2}{4} {6}. The other se-
quences cannot be joined. For instance, {1}{4, 5} does not join with any
sequence since there is no sequence of the form {4, 5}{x} or {4, 5, x}. In
the prune step, {1, 2}{4} {6} is removed since {1}{4} {6} is not in F3. ▀

Algorithm GSP(S)
1 C1  init-pass(S); // the first pass over S
2 F1  {{f}| f  C1, f.count/n  minsup}; // n is the number of sequences in S
3 for (k = 2; Fk1  ; k++) do // subsequent passes over S
4 Ck  candidate-gen-SPM(Fk1);
5 for each data sequence s  S do // scan the data once
6 for each candidate c  Ck do
7 if c is contained in s then
8 c.count++; // increment the support count
9 endfor
10 endfor
11 Fk  {c  Ck | c.count/n  minsup}
12 endfor
13 return F  ∪k Fk;

Fig. 2.12. The GSP Algorithm for generating sequential patterns

Function candidate-gen-SPM(Fk1) // SPM: Sequential Pattern Mining
1. Join step. Candidate sequences are generated by joining Fk1 with Fk1. A se-

quence s1 joins with s2 if the subsequence obtained by dropping the first item
of s1 is the same as the subsequence obtained by dropping the last item of s2.
The candidate sequence generated by joining s1 with s2 is the sequence s1 ex-
tended with the last item in s2. There are two cases:
 the added item forms a separate element if it was a separate element in s2,

and is appended at the end of s1 in the merged sequence, and
 the added item is part of the last element of s1 in the merged sequence oth-

erwise.
When joining F1 with F1, we need to add the item in s2 both as part of an
itemset and as a separate element. That is, joining {x} with {y} gives us
both {x, y} and {x}{y}. Note that x and y in {x, y} are ordered.

2. Prune step. A candidate sequence is pruned if any one of its (k1)-
subsequences is infrequent (without minimum support).

Fig. 2.13. The candidate-gen-SPM function

2.7 Mining Sequential Patterns Based on GSP 45

Table 2.4. Candidate generation: an example

Candidate 4-sequences Frequent
3-sequences after joining after pruning
{1, 2} {4} {1, 2} {4, 5} {1, 2} {4, 5}
{1, 2} {5} {1, 2} {4} {6}
{1} {4, 5}
{1, 4} {6}
{2} {4, 5}
{2} {4} {6}

2.7.2 Mining with Multiple Minimum Supports

As in association rule mining, using a single minimum support in sequen-
tial pattern mining is also a limitation for many applications because some
items appear very frequently in the data, while some others appear rarely.

Example 22: One of the Web mining tasks is to mine comparative sen-
tences such as “the picture quality of camera X is better than that of cam-
era Y.” from product reviews, forum postings and blogs (see Chap. 11).
Such a sentence usually contains a comparative indicator word, e.g., better
in the above sentence. We want to discover linguistic patterns involving a
set of given comparative indicators, e.g., better, more, less, ahead, win,
superior, etc. Some of these indicators (e.g., more and better) appear very
frequently in natural language sentences, while some others (e.g., win and
ahead) appear rarely. In order to find patterns that contain such rare indi-
cators, we have to use a very low minsup. However, this causes patterns
involving frequent indicators to generate a huge number of spurious pat-
terns. Moreover, we need a way to tell the algorithm that we want only
patterns that contain at least one comparative indicator. Using GSP with a
single minsup is no longer appropriate. The multiple minimum supports
model solves both problems nicely. ▀

We again use the concept of minimum item supports (MIS). The user
is allowed to assign each item a MIS value. By providing different MIS
values for different items, the user essentially expresses different support
requirements for different sequential patterns. To ease the task of specify-
ing many MIS values by the user, the same strategies as those for mining
association rules can also be applied here (see Sect. 2.4.2).

Let MIS(i) be the MIS value of item i. The minimum support of a se-
quential pattern P is the lowest MIS value among the items in the pattern.
Let the set of items in P be: i1, i2, …, ir. The minimum support for P is:

46 2 Association Rules and Sequential Patterns

 minsup(P) = min(MIS(i1), MIS(i2), …, MIS(ir)).

The new algorithm, called MS-GSP, is given in Fig. 2.14. It generalizes
the GSP algorithm in Fig. 2.12. Like GSP, MS-GSP is also based on level-
wise search. Line 1 sorts the items in ascending order according to their
MIS values stored in MS. Line 2 makes the first pass over the sequence da-
ta using the function init-pass(), which performs the same function as that
in MS-Apriori to produce the seeds set L for generating the set of candi-
date sequences of length 2, i.e., C2. Frequent 1-sequences (F1) are obtained
from L (line 3).

For each subsequent pass, the algorithm works similarly to MS-Apriori.
The function level2-candidate-gen-SPM() can be designed based on lev-
el2-candidate-gen in MS-Apriori and the join step in Fig. 2.13. MScandi-
date-gen-SPM() is, however, complex, which we will discuss shortly.

In line 13, c.minMISItem gives the item that has the lowest MIS value in
the candidate sequence c. Unlike that in MS-Apriori, where the first item
in each itemset has the lowest MIS value, in sequential pattern mining the
item with the lowest MIS value may appear anywhere in a sequence. Simi-
lar to those in MS-Apriori, lines 13 and 14 are used to ensure that all se-
quential rules can be generated after MS-GSP without scanning the origi-
nal data. Note that in traditional sequential pattern mining, sequential rules
are not defined. We will define several types in Sect. 2.9.

Algorithm MS-GSP(S, MS) // MS stores all MIS values
1 M  sort(I, MS); // according to MIS(i)’s stored in MS
2 L  init-pass(M, S); // make the first pass over S
3 F1  {{l} | l  L, l.count/n  MIS(l)}; // n is the size of S
4 for (k = 2; Fk1  ; k++) do
5 if k = 2 then
6 Ck  level2-candidate-gen-SPM(L)
7 else Ck  MScandidate-gen-SPM(Fk1)
8 endif
9 for each data sequence s  S do
10 for each candidate c  Ck do
11 if c is contained in s then
12 c.count++
13 if c’ is contained in s, where c’ is c after an occurrence of

c.minMISItem is removed from c then
14 c.rest.count++ // c.rest: c without c.minMISItem
15 endfor
16 endfor
17 Fk  {c  Ck | c.count/n  MIS(c.minMISItem)}
18 endfor
19 return F  ∪k Fk;

Fig. 2.14. The MS-GSP algorithm

2.7 Mining Sequential Patterns Based on GSP 47

Let us now discuss MScandidate-gen-SPM(). In MS-Apriori, the order-
ing of items is not important and thus we put the item with the lowest MIS
value in each itemset as the first item of the itemset, which simplifies the
join step. However, for sequential pattern mining, we cannot artificially
put the item with the lowest MIS value as the first item in a sequence be-
cause the ordering of items is significant. This causes problems for joining.

Example 23: Assume we have a sequence s1 = {1, 2}{4} in F3, from
which we want to generate candidate sequences for the next level. Suppose
that item 1 has the lowest MIS value in s1. We use the candidate generation
function in Fig. 2.13. Assume also that the sequence s2 = {2}{4, 5} is not
in F3 because its minimum support is not satisfied. Then we will not gen-
erate the candidate {1, 2}{4, 5}. However, {1, 2}{4, 5} can be frequent be-
cause items 2, 4, and 5 may have higher MIS values than item 1. ▀

To deal with this problem, let us make an observation. The problem on-
ly occurs when the first item in the sequence s1 or the last item in the se-
quence s2 is the only item with the lowest MIS value, i.e., no other item in
s1 (or s2) has the same lowest MIS value. If the item (say x) with the lowest
MIS value is not the first item in s1, then s2 must contain x, and the candi-
date generation function in Fig. 2.13 will still be applicable. The same rea-
soning goes for the last item of s2. Thus, we only need special treatment for
these two cases.

Let us see how to deal with the first case, i.e., the first item is the only
item with the lowest MIS value. We use an example to develop the idea.
Assume we have the frequent 3-sequence of s1 = {1, 2}{4}. Based on the
algorithm in Fig. 2.13, s1 may be extended to generate two possible candi-
dates using {2}{4}{x} and {2}{4, x}

c1 = {1, 2}{4}{x} and c2 = {1, 2}{4, x},

where x is an item. However, {2}{4}{x} and {2}{4, x} may not be frequent
because items 2, 4, and x may have higher MIS values than item 1, but we
still need to generate c1 and c2 because they can be frequent. A different
join strategy is thus needed.

We observe that for c1 to be frequent, the subsequence s2 = {1}{4}{x}
must be frequent. Then, we can use s1 and s2 to generate c1. c2 can be gen-
erated in a similar manner with s2 = {1}{4, x}. s2 is basically the subse-
quence of c1 (or c2) without the second item. Here we assume that the MIS
value of x is higher than item 1. Otherwise, it falls into the second case.

Let us see the same problem for the case where the last item has the on-
ly lowest MIS value. Again, we use an example to illustrate. Assume we
have the frequent 3-sequence s2 = {3, 5}{1}. It can be extended to produce
two possible candidates based on the algorithm in Fig. 2.13,

48 2 Association Rules and Sequential Patterns

c1 = {x}{3, 5}{1}, and c2 = {x, 3, 5}{1}.

For c1 to be frequent, the subsequence s1 = {x}{3}{1} has to be frequent
(we assume that the MIS value of x is higher than that of item 1). Thus, we
can use s1 and s2 to generate c1. c2 can be generated with s1 = {x, 3}{1}. s1
is basically the subsequence of c1 (or c2) without the second last item.

The MScandidate-gen-SPM() function is given in Fig. 2.15, which is
self-explanatory. Some special treatments are needed for 2-sequences be-
cause the same s1 (or s2) may generate two candidate sequences. We use
two examples to show the working of the function.

Example 24: Consider the items 1, 2, 3, 4, 5, and 6 with their MIS values,
MIS(1) = 0.03 MIS(2) = 0.05 MIS(3) = 0.03
MIS(4) = 0.07 MIS(5) = 0.08 MIS(6) = 0.09.

Function MScandidate-gen-SPM(Fk1)
1 Join Step. Candidate sequences are generated by joining Fk1 with Fk1.
2 if the MIS value of the first item in a sequence (denoted by s1) is less than (<)

the MIS value of every other item in s1 then // s1 and s2 can be equal
 Sequence s1 joins with s2 if (1) the subsequences obtained by dropping the

second item of s1 and the last item of s2 are the same, and (2) the MIS val-
ue of the last item of s2 is greater than that of the first item of s1. Candidate
sequences are generated by extending s1 with the last item of s2:
 if the last item l in s2 is a separate element then
 {l} is appended at the end of s1 as a separate element to form a candi-

date sequence c1.
if (the length and the size of s1 are both 2) AND (the last item of s2 is

greater than the last item of s1) then // maintain lexicographic order
l is added at the end of the last element of s1 to form another candi-

date sequence c2.
 else if ((the length of s1 is 2 and the size of s1 is 1) AND (the last item

of s2 is greater than the last item of s1)) OR (the length of s1
is greater than 2) then

 the last item in s2 is added at the end of the last element of s1 to
form the candidate sequence c2.

3 elseif the MIS value of the last item in a sequence (denoted by s2) is less than
(<) the MIS value of every other item in s2 then

 A similar method to the one above can be used in the reverse order.
4 else use the Join Step in Fig. 2.13
5 Prune step: A candidate sequence is pruned if any one of its (k1)-

subsequences is infrequent (without minimum support) except the subse-
quence that does not contain the item with strictly the lowest MIS value.

Fig. 2.15. The MScandidate-gen-SPM function

2.8 Mining Sequential Patterns Based on PrefixSpan 49

The data set has 100 sequences. The following frequent 3-sequences are in
F3 with their actual support counts attached after “:”:

(a). {1}{4}{5}:4 (b). {1}{4}{6}:5 (c). {1}{5}{6}:6
(d). {1}{5, 6}:5 (e). {1}{6}{3}:4 (f). {6}{3}{6}:9
(g). {5, 6}{3}:5 (h). {5}{4}{3}:4 (i). {4}{5}{3}:7.

For sequence (a) (= s1), item 1 has the lowest MIS value. It cannot join
with sequence (b) because condition (1) in Fig. 2.15 is not satisfied. How-
ever, (a) can join with (c) to produce the candidate sequence, {1}{4}{5}{6}.
(a) can also join with (d) to produce {1}{4}{5, 6}. (b) can join with (e) to
produce {1}{4}{6}{3}, which is pruned subsequently because {1}{4}{3} is
infrequent. (d) and (e) can be joined to give {1}{5, 6}{3}, but it is pruned
because {1}{5}{3} does not exist. (e) can join with (f) to produce
{1}{6}{3}{6} which is done in line 4 because both item 1 and item 3 in (e)
have the same MIS value. However, it is pruned because {1}{3}{6} is in-
frequent. We do not join (d) and (g), although they can be joined based on
the algorithm in Fig. 2.13, because the first item of (d) has the lowest MIS
value and we use a different join method for such sequences.

Now we look at 3-sequences whose last item has strictly the lowest MIS
value. (i) (= s1) can join with (h) (= s2) to produce {4}{5}{4}{3}. However,
it is pruned because {4}{4}{3} is not in F3. ▀

Example 25: Now we consider generating candidates from frequent 2-
sequences, which is special as we noted earlier. We use the same items and
MIS values in Example 24. The following frequent 2-sequences are in F2
with their actual support counts attached after “:”:

(a). {1}{5}:6 (b). {1}{6}:7 (c) {5}{4}:8
(d). {1, 5}:6 (e). {1, 6}:6.

(a) can join with (b) to produce both {1}{5}{6} and {1}{5, 6}. (b) can join
with (d) to produce {1, 5}{6}. (e) can join with (a) to produce {1, 6}{5}.
Clearly, there are other joins. Again, (a) will not join with (c). ▀

Note that the support difference constraint in Sect. 2.4.1 can also be
included. We omitted it to simplify the algorithm as it is already complex.
Also, the user can instruct the algorithm to generate only certain sequential
patterns or not to generate others by setting the MIS values suitably.

2.8 Mining Sequential Patterns Based on PrefixSpan

We now introduce another sequential pattern mining algorithm, called Pre-
fixSpan [33], which does not generate candidates. Different from the GSP

50 2 Association Rules and Sequential Patterns

algorithm [41], which can be regarded as performing breadth-first search
to find all sequential patterns, PrefixSpan performs depth-first search.

2.8.1 PrefixSpan Algorithm

It is easy to introduce the original PrefixSpan algorithm using an example.

Example 26: Consider again mining sequential patterns from Table 2.2
with minsup = 25%. PrefixSpan first sorts all items in each element (or
itemset) as shown in the table. Then, by one scan of the sequence database,
it finds all frequent items, i.e., 30, 40, 70, 80 and 90. The corresponding
length one sequential patterns are {30}, {40}, {70}, {80} and {90}.

We notice that the complete set of sequential patterns can actually be
divided into five mutually exclusive subsets: the subset with prefix {30},
the subset with prefix {40}, the subset with prefix {70}, the subset with
prefix {80}, and the subset with prefix {90}. We only need to find the
five subsets one by one.

To find sequential patterns having prefix {30}, the algorithm extends
the prefix by adding items to it one at a time. To add the next item x, there
are two possibilities, i.e., x joining the last itemset of the prefix (i.e., {30,
x}) and x forming a separate itemset (i.e., {30}{x}). PrefixSpan performs
the task by first forming the {30}-projected database and then finding all
the cases of the two types in the projected database. The projected database
is produced as follows: If a sequence contains item 30, then the suffix fol-
lowing the first 30 is extracted as a sequence in the projected database.
Furthermore, since infrequent items cannot appear in a sequential pattern,
all infrequent items are removed from the projection. The first sequence in
our example, {30}{90}, is projected to {90}. The second sequence, {10,
20}{30}{10, 40, 60, 70}, is projected to {40, 70}, where the infrequent
items 10 and 60 are removed. The third sequence {30, 50, 70, 80} is pro-
jected to {_, 70, 80}, where the infrequent item 50 is removed. Note that
the underline symbol “_” in this projection denotes that the items (only 30
in this case) in the last itemset of the prefix are in the same itemset as
items 50, 70 and 80 in the sequence. The fourth sequence is projected to
{30, 40, 70, 80}{90}. The projection of the last sequence is empty since it
does not contain item 30. The final projected database for prefix {30}
contains the following sequences:

{90}, {40, 70}, {_, 70, 80}, and {30, 40, 70, 80}{90}

By scanning the projected database once, PrefixSpan finds all possible
one item extensions to the prefix, i.e., all x’s for {30, x} and all x’s for
{30}{x}. Let us discuss the details.

2.8 Mining Sequential Patterns Based on PrefixSpan 51

Find All Frequent Patterns of the Form {30, x}: Two templates {_, x}
and {30, x} are used to match each projected sequence to accumulate the
support count for each possible x (here x matches any item). If in the same
sequence multiple matches are found with the same x, they are only
counted once. Note that in general, the second template should use the last
itemset in the prefix rather than only its last item. In our example, they are
the same because there is only one item in the last itemset of the prefix.

Find All Frequent Patterns of the Form {30}{x}: In this case, x’s are
frequent items in the projected database that are not in the same itemset as
the last item of the prefix.

Let us continue with our example. It is easy to check that both items 70
and 80 are in the same itemset as 30. That is, we have two frequent se-
quences {30, 70} and {30, 80}. The support count of {30, 70} is 2 based
on the projected database; one from the projected sequence {_, 70, 80} (a
{_, x} match) and one from the projected sequence {30, 40, 70, 80}{90} (a
{30, x} match). In both cases, the x’s are the same, i.e., 70. Similarly, the
support count of {30, 80} is 2 as well and thus frequent.

It is also easy to check that items 40, 70, and 90 are also frequent but
not in the same itemset as 30. Thus, {30}{40}, {30}{70}, and {30}{90}
are three sequential patterns. The set of sequential patterns having prefix
{30} can be further divided into five mutually exclusive subsets: the ones
with prefixes {30, 70}, {30, 80}, {30}{40}, {30}{70}, and {30}{90}.

We can recursively find the five subsets by forming their corresponding
projected databases. For example, to find sequential patterns having prefix
{30}{40}, we can form the {30}{40}-projected database containing pro-
jections {_, 70} and {_, 70, 80}{90}. Template {_, x} has two matches
and in both cases x is 70. Thus, {30}{40, 70} is output as a sequential pat-
tern. Since there is no other frequent item in this projected database, the
prefix cannot grow longer. The depth-first search returns from this branch.

After completing the mining of the {30}-projected database, we find all
sequential patterns with prefix {30}, i.e., {30}, {30}{40}, {30}{40, 70},
{30}{70}, {30}{90}, {30, 70}, {30, 80} and {30, 70, 80}

By forming and mining the {40}-, {70}-, {80}- and {90}-projected
databases, the remaining sequential patterns can be found. ▀

The pseudo code of PrefixSpan can be found in [33]. Comparing to the
breadth-first search of GSP, the key advantage of PrefixSpan is that it does
not generate any candidates. It only counts the frequency of local items.
With a low minimum support, a huge number of candidates can be gener-
ated by GSP, which can cause memory and computational problems.

52 2 Association Rules and Sequential Patterns

2.8.2 Mining with Multiple Minimum Supports

The PrefixSpan algorithm can be adapted to mine with multiple minimum
supports. Again, let MIS(i) be the user-specified minimum item support
of item i. Let  be the user-specified support difference threshold in the
support difference constraint (Sect. 2.4.1), i.e., |sup(i) – sup(j)|  ,
where i and j are items in the same sequential pattern, and sup(x) is the ac-
tual support of item x in the sequence database S. PrefixSpan can be modi-
fied as follows. We call the modified algorithm MS-PS.
1. Find every item i whose actual support in the sequence database S is at

least MIS(i). i is called a frequent item.
2. Sort all the discovered frequent items in ascending order according to

their MIS values. Let i1, …, iu be the frequent items in the sorted order.
3. For each item ik in the above sorted order,

(i) identify all the data sequences in S that contain ik and at the same
time remove every item j in each sequence that does not satisfy
|sup(j) – sup(ik)| ≤ . The resulting set of sequences is denoted by Sk.
Note that we are not using ik as the prefix to project the database S.

(ii) call the function r-PrefixSpan(ik, Sk, count(MIS(ik))) (restricted Pre-
fixSpan), which finds all sequential patterns that contain ik, i.e., no
pattern that does not contain ik should be generated. r-PrefixSpan()
uses count(MIS(ik)) (the minimum support count in terms of the
number of sequences) as the only minimum support for mining in Sk.
The sequence count is easier to use than the MIS value in percent-
age, but they are equivalent. Once the complete set of such patterns
is found from Sk, All occurrences of ik are removed from S.

r-PrefixSpan() is almost the same as PrefixSpan with one important differ-
ence. During each recursive call, either the prefix or every sequence in the
projected database must contain ik because, as we stated above, this func-
tion finds only those frequent sequences that contain ik. Another minor dif-
ference is that the support difference constraint needs to be checked during
each projection as sup(ik) may not be the lowest in the pattern.

Example 27: Consider mining sequential patterns from Table 2.5. Let
MIS(20) = 30% (3 sequences in minimum support count), MIS(30) = 20%
(2 sequences), MIS(40) = 30% (3 sequences), and the MIS values for the
rest of the items be 15% (2 sequences). We ignore the support difference
constraint as it is simple. In step 1, we find three frequent items, 20, 30
and 40. After sorting in step 2, we have (30, 20, 40). We then go to step 3.

In the first iteration of step 3, we work on i1 = 30. Step 3(i) gives us the
second, fourth and sixth sequences in Table 2.5, i.e.,

2.9 Generating Rules from Sequential Patterns 53

S1 = {{40}{30}{40, 60}, {30}{20, 40}{40, 100}, {40}{30}{110}}.

We then run r-PrefixSpan(30, S1, 2) in step 3(ii). The frequent items in
S1 are 30, and 40. They both have the support of 3 sequences. The length
one frequent sequence is only {30}. {40} is not included because we re-
quire that every frequent sequence must contain 30. We next find frequent
sequences having prefix {30}. The database S1 is projected to give {40}
and {40}{40}. 20, 60 and 100 have been removed because their supports in
S1 are less than the required support for item 30 (i.e., 2 sequences). For the
same reason, the projection of {40}{30}{110} is empty. Thus, we find a
length two frequent sequence {30}{40}. In this case, there is no item in the
same itemset as 30 to form a frequent sequence of the form {30, x}.

Next, we find frequent sequences with prefix {40}. We again project
S1, which gives us only {30}{40} and {30}. {40, 100} is not included be-
cause it does not contain 30. This projection gives us another length two
frequent sequence {40}{30}. The first iteration of step 3 ends.

In the second iteration of step 3, we work on i2 = 20. Step 3(i) gives us
the first, fourth, fifth and seventh sequences in Table 2.5 with item 30 re-
moved, S2 = {{20, 50}, {20, 40}{40, 100}, {20, 40}{10}, {20}{80}{70}}.
It is easy to see that only item 20 is frequent, and thus only a length one
frequent sequence is generated, {20}.

In the third iteration of step 3, we work on i3 = 40. We can verify that
again only one frequent sequence, i.e., {40}, is found.

The final set of sequential patterns generated from the sequence data-
base in Table 2.5 is {{30}, {20}, {40}, {40}{30}, {30}{40}}. ▀

2.9 Generating Rules from Sequential Patterns

In classic sequential pattern mining, no rules are generated. It is, however,
possible to define and generate many types of rules. This section intro-

Table 2.5. An example of a sequence database

Sequence ID Data Sequence
1 {20, 50}
2 {40}{30}{40, 60}
3 {40, 90, 120}
4 {30}{20, 40}{40, 100}
5 {20, 40}{10}
6 {40}{30}{110}
7 {20}{80}{70}

54 2 Association Rules and Sequential Patterns

duces only three types, sequential rules, label sequential rules and class
sequential rules, which have been used in Web usage mining and Web
content mining (see Chaps. 11 and 12).

2.9.1 Sequential Rules

A sequential rule (SR) is an implication of the form, X  Y, where Y is a
sequence and X is a proper subsequence of Y, i.e., X is a subsequence of Y
and the length Y is greater than the length of X. The support of a sequen-
tial rule, X  Y, in a sequence database S is the fraction of sequences in S
that contain Y. The confidence of a sequential rule, X  Y, in S is the pro-
portion of sequences in S that contain X also contain Y.

Given a minimum support and a minimum confidence, according to the
downward closure property, all the rules can be generated from frequent
sequences without going to the original sequence data. Let us see an ex-
ample of a sequential rule found from the data sequences in Table 2.6.

Table 2.6. An example of a sequence database for mining sequential rules

 Data Sequence
1 {1}{3}{5}{7, 8, 9}
2 {1}{3}{6}{7, 8}
3 {1, 6}{7}
4 {1}{3}{5, 6}
5 {1}{3}{4}

Example 28: Given the sequence database in Table 2.6, the minimum
support of 30% and the minimum confidence of 60%, one of the sequential
rules found is the following,

{1}{7}  {1}{3}{7, 8} [sup = 2/5, conf = 2/3]

Data sequences 1, 2 and 3 contain {1}{7}, and data sequences 1 and 2 con-
tain {1}{3}{7, 8}. ▀

If multiple minimum supports are used, we can employ the results of
multiple minimum support pattern mining to generate all the rules.

2.9.2 Label Sequential Rules

Sequential rules may not be restrictive enough in some applications. We
introduce a special kind of sequential rules called label sequential rules.
A label sequential rule (LSR) is of the form, X  Y, where Y is a sequence

2.9 Generating Rules from Sequential Patterns 55

and X is a sequence produced from Y by replacing some of its items with
wildcards. A wildcard is denoted by an “*” which matches any item. These
replaced items are usually very important and are called labels. The labels
are a small subset of all the items in the data.

Example 29: Given the sequence database in Table 2.6, the minimum
support of 30% and the minimum confidence of 60%, one of the label se-
quential rules found is the following,

{1}{*}{7, *}  {1}{3}{7, 8} [sup = 2/5, conf = 2/2].

Notice the confidence change compared to the rule in Example 28. The
supports of the two rules are the same. In this case, data sequences 1 and 2
contain {1}{*}{7, *}, and they also contain {1}{3}{7, 8}. Items 3 and 8 are
labels. ▀

LSRs are useful because in some applications we need to predict the la-
bels in an input sequence, e.g., items 3 and 8 above. The confidence of the
rule simply gives us the estimated probability that the two “*”s are 3 and 8
given that an input sequence contains {1}{*}{7, *}. We will see an applica-
tion of LSRs in Chap. 11, where we want to predict whether a word in a
comparative sentence is an entity (e.g., a product name), which is a label.

Note that due to the use of wildcards, frequent sequences alone are not
sufficient for computing rule confidences. Scanning the data is needed.
Notice also that the same pattern may appear in a data sequence multiple
times. Rule confidences thus can be defined in different ways according to
application needs. The wildcards may also be restricted to match only cer-
tain types of items to make the label prediction meaningful and unambigu-
ous (see some examples in Chap. 11).

2.9.3 Class Sequential Rules

Class sequential rules (CSR) are analogous to class association rules
(CAR). Let S be a set of data sequences. Each sequence is also labeled
with a class y. Let I be the set of all items in S, and Y be the set of all class
labels, I  Y = . Thus, the input data D for mining is represented with
{(s1, y1), (s2, y2), …, (sn, yn)}, where si is a sequence in S and yi  Y is its
class. A class sequential rule (CSR) is of the form

 X  y, where X is a sequence, and y  Y.

A data instance (si, yi) is said to cover a CSR, X  y, if X is a subsequence
of si. A data instance (si, yi) is said to satisfy a CSR if X is a subsequence
of si and yi = y.

56 2 Association Rules and Sequential Patterns

Example 30: Table 2.7 gives an example of a sequence database with five
data sequences and two classes, c1 and c2. Using the minimum support of
30% and the minimum confidence of 60%, one of the discovered CSRs is:

{1}{3}{7, 8}  c1 [sup = 2/5, conf = 2/3].

Data sequences 1 and 2 satisfy the rule, and data sequences 1, 2 and 5 cov-
er the rule. ▀

Table 2.7. An example of a sequence database for mining CSRs

 Data Sequence Class
1 {1}{3}{5}{7, 8, 9} c1
2 {1}{3}{6}{7, 8} c1
3 {1, 6}{9} c2
4 {3}{5, 6} c2
5 {1}{3}{4}{7, 8} c2

As in class association rule mining, we can modify the GSP and Prefix-
Span algorithms to produce algorithms for mining all CSRs. Similarly, we
can also use multiple minimum class supports and/or multiple minimum
item supports as in class association rule mining.

Bibliographic Notes

Association rule mining was introduced in 1993 by Agrawal et al. [2].
Since then, thousands of research papers have been published on the topic.
This short chapter only introduces some basics, and it, by no means, does
justice to the huge body of literature in the area. The bibliographic notes
here should help you explore further.

Since given a data set, a minimum support and a minimum confidence,
the solution (the set of frequent itemsets or the set of rules) is determined
and unique, most papers improve the mining efficiency. The most well-
known algorithm is the Apriori algorithm proposed by Agrawal and Sri-
kant [3], which has been described in this chapter. Another important algo-
rithm is FP-growth proposed by Han et al. [17]. The algorithm com-
presses the data and stores it in memory using a frequent pattern tree. It
then mines all frequent itemsets without candidate generation. Other nota-
ble general algorithms include those by Agarwal et al. [1], Mannila et al.
[26], Park et al. [31], Zaki et al. [55], etc. An efficiency comparison of var-
ious algorithms was reported by Zheng et al. [56].

Apart from performance improvements, several variations of the origi-
nal model were also proposed. Srikant and Agrawal [39], and Han and Fu

Bibliographic Notes 57

[15] proposed two algorithms to mine generalized association rules or
multi-level association rules. Liu et al. [23] extended the original model
to take multiple minimum supports, which was also studied by Wang et
al. [47], Seno and Karypis [37], Xiong et al. [51], etc. Srikant et al. [42]
proposed to mine association rules with item constraints. The model re-
stricts the rules that should be generated. Ng et al. [28] generalized the
idea, which was followed by many subsequent papers on the topic of con-
strained rule mining.

It is well known that association rule mining often generates a huge
number of frequent itemsets and rules. Bayardo [6] and Lin and Kedem
[21] introduced the problem of mining maximal frequent itemsets, which
are itemsets with no frequent supersets. Improved algorithms are reported
in many papers, e.g., [1, 10]. Since maximal pattern mining only finds
longest patterns, the support information of their subsets, which are obvi-
ously also frequent, is not found. As a result, association rules cannot be
generated. The next significant development was the mining of closed fre-
quent itemsets studied by Pasquier et al. [32], Zaki and Hsiao [54], and
Wang et al. [46]. Closed itemsets are better than maximal frequent itemsets
because closed frequent itemsets provide a lossless concise representation
of all frequent itemsets.

Other developments on association rules include class association rules
by Liu et al. [22] and emerging patterns (similar to class association
rules) by Dong and Li [13], implication rules by Brin et al. [8], cyclic as-
sociation rules by Ozden et al. [29], periodic patterns by Yang et al.
[52], negative association rules by Savasere [36] and Wu et al. [50],
weighted association rules by Wang et al. [48], association rules with
numerical variables by Webb [49], high-performance rule mining by
Buehrer et al. [9], incremental rule mining by Cheung et al. [11], inte-
grating mining with database systems by Sarawagi et al. [35], sampling
for rule mining by Toivonen [44], and many others. Cong et al. [12] in-
troduced association rule mining from bioinformatics data, which typically
have a very large number of attributes (more than ten thousands) but only a
very small number of records or transactions (e.g., less than 100).

Another major research area of association rules is the interestingness
of the discovered rules. Since an association rule miner often generates a
huge number of rules, it is very difficult, if not impossible, for human us-
ers to inspect them in order to find those truly interesting or useful rules.
Researchers have proposed many techniques to help users identify such
rules, e.g., [7, 20, 24, 25, 30, 34, 38, 43]. There are also several data min-
ing query languages [16, 18, 27, 45]. A deployed data mining system that
uses some of these ideas, class association rules, and OLAP is reported in
[25], which has been in production use since 2006.

58 2 Association Rules and Sequential Patterns

Regarding sequential pattern mining, the first algorithm was proposed
by Agrawal and Srikant [4], which was a direct application of the Apriori
algorithm. Improvements were made subsequently by several researchers,
e.g., Ayres et al. [5], Pei et al. [33], Srikant and Agrawal [41], Zaki [53],
etc. The MS-GSP and MS-PS algorithms for mining sequential patterns
with multiple minimum supports and the support difference constraint are
introduced in this book. Label and class sequential rules have been used in
[19] for mining comparative sentences from text documents. The literature
on association rule mining and sequential pattern mining is extensive.

There are several publicly available implementations of algorithms for
mining frequent itemsets, maximal frequent itemsets, closed frequent item-
sets, and sequential patterns from various research groups, most notably
from those of Jiawei Han, Johnanne Gehrke, and Mohammed Zaki. There
were also two workshops dedicated to frequent itemset mining organized
by Roberto Bayardo, Bart Goethals, and Mohammed J. Zaki, which re-
ported many efficient implementations. The workshop Web sites are
http://fimi.cs.helsinki.fi/fimi03/ and http://fimi.cs.helsinki.fi/fimi04/.

Bibliography

1. Agarwal, R., C. Aggarwal, and V. Prasad. A tree projection algorithm for
generation of frequent item sets. Journal of Parallel and Distributed
Computing, 2001, 61(3): p. 350-371.

2. Agrawal, R., T. Imieliski, and A. Swami. Mining association rules between
sets of items in large databases. In Proceedings of ACM SIGMOD
International Conference on Management of Data (SIGMOD-1993), 1993.

3. Agrawal, R. and R. Srikant. Fast algorithms for mining association rules. In
Proceedings of International Conference on Very Large Data Bases (VLDB-
1994), 1994.

4. Agrawal, R. and R. Srikant. Mining sequential patterns. In Proceedings of
IEEE International Conference on Data Engingeering (ICDE-1995), 1995.

5. Ayres, J., J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using
a bitmap representation. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-2002), 2002.

6. Bayardo Jr, R. Efficiently mining long patterns from databases. In
Proceedings of ACM SIGMOD Conference on Management of Data
(SIGMOD-1998), 1998.

7. Bayardo Jr, R. and R. Agrawal. Mining the most interesting rules. In
Proceedings of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-1999), 1999.

8. Brin, S., R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset counting and
implication rules for market basket data. In Proceedings of ACM SIGMOD
Conference on Management of Data (SIGMOD-1997), 1997.

Bibliography 59

9. Buehrer, G., S. Parthasarathy, and A. Ghoting. Out-of-core frequent pattern
mining on a commodity PC. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-2006), 2006.

10. Burdick, D., M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu. Mafia: A
maximal frequent itemset algorithm. Knowledge and Data Engineering, IEEE
Transactions on, 2005, 17(11): p. 1490-1504.

11. Cheung, D., S. Lee, and B. Kao. A general incremental technique for
maintaining discovered association rules. In Proceedings of the Fifth
International Conference on Database Systems for Advanced Applications
(DASFAA-1997), 1997.

12. Cong, G., K. Tan, A. Tung, and X. Xu. Mining top-k covering rule groups for
gene expression data. In Proceedings of ACM SIGMOD Conference on
Management of Data (SIGMOD-2005), 2005.

13. Dong, G. and J. Li. Efficient mining of emerging patterns: Discovering trends
and differences. In Proceedings of ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-1999), 1999.

14. Dougherty, J., R. Kohavi, and M. Sahami. Supervised and unsupervised
discretization of continuous features. In Proceedings of International
Conference on Machine Learning (ICML-1995), 1995.

15. Han, J. and Y. Fu. Discovery of Multi-Level Association Rules from Large
Databases. In Proceedings of International Conference on Very Large Data
Bases (VLDB-1995), 1995.

16. Han, J., Y. Fu, W. Wang, K. Koperski, and O. Zaiane. DMQL: A data mining
query language for relational databases. In Proceedings of 1996 ACM
SIGMOD workshop on Research Issues in Data Mining and Knowledge
Discovery (DMKD-1996), 1996.

17. Han, J., J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In Proceedings of ACM SIGMOD Conference on Management of
Data (SIGMOD-2000), 2000.

18. Imielinski, T. and A. Virmani. MSQL: A query language for database mining.
Data Mining and Knowledge Discovery, 1999, 3(4): p. 373-408.

19. Jindal, N. and B. Liu. Mining comparative sentences and relations. In
Proceedings of National Conf. on Artificial Intelligence (AAAI-2006), 2006.

20. Klemettinen, M., H. Mannila, P. Ronkainen, H. Toivonen, and A. Verkamo.
Finding interesting rules from large sets of discovered association rules. In
Proceedings of ACM International Conference on Information and
Knowledge Management (CIKM-1994), 1994.

21. Lin, D. and Z. Kedem. Pincer-search: A new algorithm for discovering the
maximum frequent set. International Conference on Extended Database
Technology (EDBT-1998), 1998: p. 103-119.

22. Liu, B., W. Hsu, and Y. Ma. Integrating classification and association rule
mining. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-1998), 1998.

23. Liu, B., W. Hsu, and Y. Ma. Mining association rules with multiple minimum
supports. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-1999), 1999.

60 2 Association Rules and Sequential Patterns

24. Liu, B., W. Hsu, and Y. Ma. Pruning and summarizing the discovered
associations. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-1999), 1999.

25. Liu, B., K. Zhao, J. Benkler, and W. Xiao. Rule interestingness analysis using
OLAP operations. In Proceedings of ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-2006), 2006.

26. Mannila, H., H. Toivonen, and A. Verkamo. Efficient algorithms for
discovering association rules. In Proceedings of Knowledge Discovery in
Databases (KDD'94), 1994.

27. Meo, R., G. Psaila, and S. Ceri. A new SQL-like operator for mining
association rules. In Proceedings of International Conference on Very Large
Data Bases (VLDB-1996), 1996.

28. Ng, R., L. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning
optimizations of constrained associations rules. ACM SIGMOD Record, 1998,
27(2): p. 13-24.

29. Ozden, B., S. Ramaswamy, and A. Silberschatz. Cyclic association rules. In
Proceedings of IEEE International Conference on Data Engingeering (ICDE-
2002), 2002.

30. Padmanabhan, B. and A. Tuzhilin. Small is beautiful: discovering the
minimal set of unexpected patterns. In Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD-
2000), 2000.

31. Park, J., M. Chen, and P. Yu. An effective hash-based algorithm for mining
association rules. ACM SIGMOD Record, 1995, 24(2): p. 175-186.

32. Pasquier, N., Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent
closed itemsets for association rules. Database Theory—ICDT’99, 1999: p.
398-416.

33. Pei, J., J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu.
PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern
growth. In Proceedings of IEEE International Conference on Data
Engingeering (ICDE-2001), 2001.

34. Piatetsky-Shapiro, G. Discovery, analysis, and presentation of strong rules.
Knowledge discovery in databases, 1991.

35. Sarawagi, S., S. Thomas, and R. Agrawal. Integrating association rule mining
with relational database systems: Alternatives and implications. Data Mining
and Knowledge Discovery, 2000, 4(2): p. 89-125.

36. Savasere, A., E. Omiecinski, and S. Navathe. Mining for strong negative
associations in a large database of customer transactions. In Proceedings of
IEEE International Conference on Data Engingeering (ICDE-1998), 1998.

37. Seno, M. and G. Karypis. Finding frequent patterns using length-decreasing
support constraints. Data Mining and Knowledge Discovery, 2005, 10(3): p.
197-228.

38. Silberschatz, A. and A. Tuzhilin. What makes patterns interesting in
knowledge discovery systems. IEEE Transactions on Knowledge and Data
Engineering, 1996, 8(6): p. 970-974.

Bibliography 61

39. Srikant, R. and R. Agrawal. Mining generalized association rules. Future
Generation Computer Systems, 1997, 13(2-3): p. 161-180.

40. Srikant, R. and R. Agrawal. Mining quantitative association rules in large
relational tables. ACM SIGMOD Record, 1996, 25(2): p. 1-12.

41. Srikant, R. and R. Agrawal. Mining sequential patterns: Generalizations and
performance improvements. Advances in Database Technology—EDBT'96,
1996: p. 1-17.

42. Srikant, R., Q. Vu, and R. Agrawal. Mining association rules with item
constraints. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-1997), 1997.

43. Tan, P., V. Kumar, and J. Srivastava. Selecting the right interestingness
measure for association patterns. In Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD-
2002), 2002.

44. Toivonen, H. Sampling large databases for association rules. In Proceedings
of International Conference on Very Large Data Bases (VLDB-1996), 1996.

45. Tuzhilin, A. and B. Liu. Querying multiple sets of discovered rules. In
Proceedings of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2002), 2002.

46. Wang, J., J. Han, and J. Pei. Closet+: Searching for the best strategies for
mining frequent closed itemsets. In Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD-
2003), 2003.

47. Wang, K., Y. He, and J. Han. Mining frequent itemsets using support
constraints. In Proceedings of International Conference on Very Large Data
Bases (VLDB-2000), 2000.

48. Wang, W., J. Yang, and P. Yu. WAR: weighted association rules for item
intensities. Knowledge and Information systems, 2004, 6(2): p. 203-229.

49. Webb, G. Discovering associations with numeric variables. In Proceedings of
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-2001), 2001.

50. Wu, X., C. Zhang, and S. Zhang. Efficient mining of both positive and
negative association rules. ACM Transactions on Information Systems (TOIS),
2004, 22(3): p. 381-405.

51. Xiong, H., P. Tan, and V. Kumar. Mining strong affinity association patterns
in data sets with skewed support distribution. In Proceedings of IEEE
International Conference on Data Mining (ICDM-2003), 2003.

52. Yang, J., W. Wang, and P. Yu. Mining surprising periodic patterns. Data
Mining and Knowledge Discovery, 2004, 9(2): p. 189-216.

53. Zaki, M. SPADE: An efficient algorithm for mining frequent sequences.
Machine Learning, 2001, 42(1): p. 31-60.

54. Zaki, M. and C. Hsiao. CHARM: An efficient algorithm for closed
association rule mining. In Proceedings of SIAM International Conference on
Data Mining (SDM-2002), 2002.

62 2 Association Rules and Sequential Patterns

55. Zaki, M., S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast
discovery of association rules. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-1997), 1997.

56. Zheng, Z., R. Kohavi, and L. Mason. Real world performance of association
rule algorithms. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2001), 2001.

3 Supervised Learning

Supervised learning has been a great success in real-world applications. It
is used in almost every domain, including text and Web domains. Super-
vised learning is also called classification or inductive learning in ma-
chine learning. This type of learning is analogous to human learning from
past experiences to gain new knowledge in order to improve our ability to
perform real-world tasks. However, since computers do not have “experi-
ences”, machine learning learns from data, which are collected in the past
and represent past experiences in some real-world applications.

There are several types of supervised learning tasks. In this chapter, we
focus on one particular type, namely, learning a target function that can be
used to predict the values of a discrete class attribute. This type of learning
has been the focus of the machine learning research and is perhaps also the
most widely used learning paradigm in practice. This chapter introduces a
number of such supervised learning techniques. They are used in almost
every Web mining application. We will see their uses from Chaps. 6–12.

3.1 Basic Concepts

A data set used in the learning task consists of a set of data records, which
are described by a set of attributes A = {A1, A2, …, A|A|}, where |A| denotes
the number of attributes or the size of the set A. The data set also has a
special target attribute C, which is called the class attribute. In our subse-
quent discussions, we consider C separately from attributes in A due to its
special status, i.e., we assume that C is not in A. The class attribute C has a
set of discrete values, i.e., C = {c1, c2, …, c|C|}, where |C| is the number of
classes and |C|  2. A class value is also called a class label. A data set for
learning is simply a relational table. Each data record describes a piece of
“past experience”. In the machine learning and data mining literature, a da-
ta record is also called an example, an instance, a case or a vector. A data
set basically consists of a set of examples or instances.

Given a data set D, the objective of learning is to produce a classifica-
tion/prediction function to relate values of attributes in A and classes in
C. The function can be used to predict the class values/labels of the future

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_3,
© Springer-Verlag Berlin Heidelberg 2011

63

64 3 Supervised Learning

data. The function is also called a classification model, a predictive mod-
el or simply a classifier. We will use these terms interchangeably in this
book. It should be noted that the function/model can be in any form, e.g., a
decision tree, a set of rules, a Bayesian model or a hyperplane.

Example 1: Table 3.1 shows a small loan application data set. It has four
attributes. The first attribute is Age, which has three possible values,
young, middle and old. The second attribute is Has_Job, which indicates
whether an applicant has a job. Its possible values are true (has a job) and
false (does not have a job). The third attribute is Own_house, which shows
whether an applicant owns a house. The fourth attribute is Credit_rating,
which has three possible values, fair, good and excellent. The last column
is the Class attribute, which shows whether each loan application was ap-
proved (denoted by Yes) or not (denoted by No) in the past.

Table 3.1. A loan application data set

ID Age Has_job Own_house Credit_rating Class
1 young false false fair No
2 young false false good No
3 young true false good Yes
4 young true true fair Yes
5 young false false fair No
6 middle false false fair No
7 middle false false good No
8 middle true true good Yes
9 middle false true excellent Yes

10 middle false true excellent Yes
11 old false true excellent Yes
12 old false true good Yes
13 old true false good Yes
14 old true false excellent Yes
15 old false false fair No

We want to learn a classification model from this data set that can be
used to classify future loan applications. That is, when a new customer
comes into the bank to apply for a loan, after inputting his/her age, whether
he/she has a job, whether he/she owns a house, and his/her credit rating,
the classification model should predict whether his/her loan application
should be approved. ▀

Our learning task is called supervised learning because the class labels
(e.g., Yes and No values of the class attribute in Table 3.1) are provided in

3.1 Basic Concepts 65

the data. It is as if some teacher tells us the classes. This is in contrast to
the unsupervised learning, where the classes are not known and the learn-
ing algorithm needs to automatically generate classes. Unsupervised learn-
ing is the topic of the next chapter.

The data set used for learning is called the training data (or the train-
ing set). After a model is learned or built from the training data by a
learning algorithm, it is evaluated using a set of test data (or unseen da-
ta) to assess the model accuracy.

It is important to note that the test data is not used in learning the classi-
fication model. The examples in the test data usually also have class labels.
That is why the test data can be used to assess the accuracy of the learned
model because we can check whether the class predicted for each test case
by the model is the same as the actual class of the test case. In order to
learn and also to test, the available data (which has classes) for learning is
usually split into two disjoint subsets, the training set (for learning) and the
test set (for testing). We will discuss this further in Sect. 3.3.

The accuracy of a classification model on a test set is defined as:

,
cases test ofnumber Total

tionsclassificacorrect ofNumber
Accuracy (1)

where a correct classification means that the learned model predicts the
same class as the original class of the test case. There are also other meas-
ures that can be used. We will discuss them in Sect. 3.3.

We pause here to raises two important questions:
1. What do we mean by learning by a computer system?
2. What is the relationship between the training and the test data?
We answer the first question first. Given a data set D representing past
“experiences”, a task T and a performance measure M, a computer system
is said to learn from the data to perform the task T if after learning the sys-
tem’s performance on the task T improves as measured by M. In other
words, the learned model or knowledge helps the system to perform the
task better as compared to no learning. Learning is the process of building
the model or extracting the knowledge.

We use the data set in Example 1 to explain the idea. The task is to pre-
dict whether a loan application should be approved. The performance
measure M is the accuracy in Equation (1). With the data set in Table 3.1,
if there is no learning, all we can do is to guess randomly or to simply take
the majority class (which is the Yes class). Suppose we use the majority
class and announce that every future instance or case belongs to the class
Yes. If the future data are drawn from the same distribution as the existing
training data in Table 3.1, the estimated classification/prediction accuracy

66 3 Supervised Learning

on the future data is 9/15 = 0.6 as there are 9 Yes class examples out of the
total of 15 examples in Table 3.1. The question is: can we do better with
learning? If the learned model can indeed improve the accuracy, then the
learning is said to be effective.

The second question in fact touches the fundamental assumption of
machine learning, especially the theoretical study of machine learning.
The assumption is that the distribution of training examples is identical to
the distribution of test examples (including future unseen examples). In
practical applications, this assumption is often violated to a certain degree.
Strong violations will clearly result in poor classification accuracy, which
is quite intuitive because if the test data behave very differently from the
training data then the learned model will not perform well on the test data.
To achieve good accuracy on the test data, training examples must be suf-
ficiently representative of the test data.

We now illustrate the steps of learning in Fig. 3.1 based on the preced-
ing discussions. In step 1, a learning algorithm uses the training data to
generate a classification model. This step is also called the training step or
training phase. In step 2, the learned model is tested using the test set to
obtain the classification accuracy. This step is called the testing step or
testing phase. If the accuracy of the learned model on the test data is satis-
factory, the model can be used in real-world tasks to predict classes of new
cases (which do not have classes). If the accuracy is not satisfactory, we
need to go back and choose a different learning algorithm and/or do some
further processing of the data (this step is called data pre-processing, not
shown in the figure). A practical learning task typically involves many it-
erations of these steps before a satisfactory model is built. It is also possi-
ble that we are unable to build a satisfactory model due to a high degree of
randomness in the data or limitations of current learning algorithms.

Fig. 3.1. The basic learning process: training and testing

From the next section onward, we study several supervised learning al-
gorithms, except Sect. 3.3, which focuses on model/classifier evaluation.

We note that throughout the chapter we assume that the training and test
data are available for learning. However, in many text and Web page re-
lated learning tasks, this is not true. Usually, we need to collect raw data,

Learning
algorithm model Accuracy Test

data
Training

data

 Step 1: Training Step 2: Testing

3.2 Decision Tree Induction 67

design attributes and compute attribute values from the raw data. The rea-
son is that the raw data in text and Web applications are often not suitable
for learning either because their formats are not right or because there are
no obvious attributes in the raw text documents or Web pages.

3.2 Decision Tree Induction

Decision tree learning is one of the most widely used techniques for classi-
fication. Its classification accuracy is competitive with other learning me-
thods, and it is very efficient. The learned classification model is repre-
sented as a tree, called a decision tree. The techniques presented in this
section are based on the C4.5 system from Quinlan [49].

Example 2: Fig. 3.2 shows a possible decision tree learnt from the data in
Table 3.1. The tree has two types of nodes, decision nodes (which are in-
ternal nodes) and leaf nodes. A decision node specifies some test (i.e.,
asks a question) on a single attribute. A leaf node indicates a class.

Fig. 3.2. A decision tree for the data in Table 3.1

The root node of the decision tree in Fig. 3.2 is Age, which basically
asks the question: what is the age of the applicant? It has three possible an-
swers or outcomes, which are the three possible values of Age. These
three values form three tree branches/edges. The other internal nodes have
the same meaning. Each leaf node gives a class value (Yes or No). (x/y)
below each class means that x out of y training examples that reach this
leaf node have the class of the leaf. For instance, the class of the left most
leaf node is Yes. Two training examples (examples 3 and 4 in Table 3.1)
reach here and both of them are of class Yes. ▀

To use the decision tree in testing, we traverse the tree top-down ac-
cording to the attribute values of the given test instance until we reach a
leaf node. The class of the leaf is the predicted class of the test instance.

Age?

Has_job? Own_house? Credit_rating?

Young middle old

 true false

Yes No
(2/2) (3/3)

 true false

Yes No
(3/3) (2/2)

fair good excellent

No Yes Yes
(1/1) (2/2) (2/2)

68 3 Supervised Learning

Example 3: We use the tree to predict the class of the following new in-
stance, which describes a new loan applicant.

Age Has_job Own_house Credit-rating Class
young false false good ?

Going through the decision tree, we find that the predicted class is No as
we reach the second leaf node from the left. ▀

A decision tree is constructed by partitioning the training data so that the
resulting subsets are as pure as possible. A pure subset is one that con-
tains only training examples of a single class. If we apply all the training
data in Table 3.1 on the tree in Fig. 3.2, we will see that the training exam-
ples reaching each leaf node form a subset of examples that have the same
class as the class of the leaf. In fact, we can see that from the x and y val-
ues in (x/y). We will discuss the decision tree building algorithm in Sect.
3.2.1.

An interesting question is: Is the tree in Fig. 3.2 unique for the data in
Table 3.1? The answer is no. In fact, there are many possible trees that can
be learned from the data. For example, Fig. 3.3 gives another decision tree,
which is much smaller and is also able to partition the training data per-
fectly according to their classes.

Fig. 3.3. A smaller tree for the data set in Table 3.1

In practice, one wants to have a small and accurate tree for many rea-
sons. A smaller tree is more general and also tends to be more accurate (we
will discuss this later). It is also easier to understand by human users. In
many applications, the user understanding of the classifier is important.
For example, in some medical applications, doctors want to understand the
model that classifies whether a person has a particular disease. It is not sat-
isfactory to simply produce a classification because without understanding
why the decision is made the doctor may not trust the system and/or does
not gain useful knowledge.

It is useful to note that in both Fig. 3.2 and Fig. 3.3, the training exam-

Has_job?

Own_house?

 true false

Yes No
(3/3) (6/6)

 true false

Yes
(6/6)

3.2 Decision Tree Induction 69

ples that reach each leaf node all have the same class (see the values of
(x/y) at each leaf node). However, for most real-life data sets, this is usu-
ally not the case. That is, the examples that reach a particular leaf node are
not of the same class, i.e., x  y. The value of x/y is, in fact, the confidence
(conf) value used in association rule mining, and x is the support count.
This suggests that a decision tree can be converted to a set of if-then rules.

Yes, indeed. The conversion is done as follows: Each path from the root
to a leaf forms a rule. All the decision nodes along the path form the condi-
tions of the rule and the leaf node or the class forms the consequent. For
each rule, a support and confidence can be attached. Note that in most
classification systems, these two values are not provided. We add them
here to see the connection of association rules and decision trees.

Example 4: The tree in Fig. 3.3 generates three rules. “,” means “and”.

Own_house = true  Class =Yes [sup=6/15, conf=6/6]
Own_house = false, Has_job = true  Class = Yes [sup=3/15, conf=3/3]
Own_house = false, Has_job = false  Class = No [sup=6/15, conf=6/6].

We can see that these rules are of the same format as association rules.
However, the rules above are only a small subset of the rules that can be
found in the data of Table 3.1. For instance, the decision tree in Fig. 3.3
does not find the following rule:

Age = young, Has_job = false  Class = No [sup=3/15, conf=3/3].

Thus, we say that a decision tree only finds a subset of rules that exist in
data, which is sufficient for classification. The objective of association rule
mining is to find all rules subject to some minimum support and minimum
confidence constraints. Thus, the two methods have different objectives.
We will discuss these issues again in Sect. 3.5 when we show that associa-
tion rules can be used for classification as well, which is obvious.

An interesting and important property of a decision tree and its resulting
set of rules is that the tree paths or the rules are mutually exclusive and
exhaustive. This means that every data instance is covered by a single rule
(a tree path) and a single rule only. By covering a data instance, we mean
that the instance satisfies the conditions of the rule.

We also say that a decision tree generalizes the data as a tree is a small-
er (more compact) description of the data, i.e., it captures the key regulari-
ties in the data. Then, the problem becomes building the best tree that is
small and accurate. It turns out that finding the best tree that models the
data is a NP-complete problem [26]. All existing algorithms use heuristic
methods for tree building. Below, we study one of the most successful
techniques.

70 3 Supervised Learning

3.2.1 Learning Algorithm

As indicated earlier, a decision tree T simply partitions the training data set
D into disjoint subsets so that each subset is as pure as possible (of the
same class). The learning of a tree is typically done using the divide-and-
conquer strategy that recursively partitions the data to produce the tree. At
the beginning, all the examples are at the root. As the tree grows, the ex-
amples are sub-divided recursively. A decision tree learning algorithm is
given in Fig. 3.4. For now, we assume that every attribute in D takes dis-
crete values. This assumption is not necessary as we will see later.

The stopping criteria of the recursion are in lines 1–4 in Fig. 3.4. The
algorithm stops when all the training examples in the current data are of
the same class, or when every attribute has been used along the current tree

 Algorithm decisionTree(D, A, T)
1 if D contains only training examples of the same class cj  C then
2 make T a leaf node labeled with class cj;
3 elseif A =  then
4 make T a leaf node labeled with cj, which is the most frequent class in D
5 else // D contains examples belonging to a mixture of classes. We select a single
6 // attribute to partition D into subsets so that each subset is purer
7 p0 = impurityEval-1(D);
8 for each attribute Ai  A (={A1, A2, …, Ak}) do
9 pi = impurityEval-2(Ai, D)
10 endfor
11 Select Ag  {A1, A2, …, Ak} that gives the biggest impurity reduction,

computed using p0 – pi;
12 if p0 – pg < threshold then // Ag does not significantly reduce impurity p0
13 make T a leaf node labeled with cj, the most frequent class in D.
14 else // Ag is able to reduce impurity p0
15 Make T a decision node on Ag;
16 Let the possible values of Ag be v1, v2, …, vm. Partition D into m

disjoint subsets D1, D2, …, Dm based on the m values of Ag.
17 for each Dj in {D1, D2, …, Dm} do
18 if Dj   then
19 create a branch (edge) node Tj for vj as a child node of T;
20 decisionTree(Dj, A{Ag}, Tj) // Ag is removed
21 endif
22 endfor
23 endif
24 endif

Fig. 3.4. A decision tree learning algorithm

3.2 Decision Tree Induction 71

path. In tree learning, each successive recursion chooses the best attribute
to partition the data at the current node according to the values of the at-
tribute. The best attribute is selected based on a function that aims to mi-
nimize the impurity after the partitioning (lines 7–11). In other words, it
maximizes the purity. The key in decision tree learning is thus the choice
of the impurity function, which is used in lines 7, 9 and 11 in Fig. 3.4.
The recursive recall of the algorithm is in line 20, which takes the subset of
training examples at the node for further partitioning to extend the tree.

This is a greedy algorithm with no backtracking. Once a node is created,
it will not be revised or revisited no matter what happens subsequently.

3.2.2 Impurity Function

Before presenting the impurity function, we use an example to show what
the impurity function aims to do intuitively.

Example 5: Fig. 3.5 shows two possible root nodes for the data in Table
3.1.

Fig. 3.5. Two possible root nodes or two possible attributes for the root node

Fig. 3.5(A) uses Age as the root node, and Fig. 3.5(B) uses Own_house
as the root node. Their possible values (or outcomes) are the branches. At
each branch, we listed the number of training examples of each class (No
or Yes) that land or reach there. Fig. 3.5(B) is obviously a better choice for
the root. From a prediction or classification point of view, Fig. 3.5(B)
makes fewer mistakes than Fig. 3.5(A). In Fig. 3.5(B), when Own_house =
true every example has the class Yes. When Own_house = false, if we take
majority class (the most frequent class), which is No, we make three mis-
takes/errors. If we look at Fig. 3.5(A), the situation is worse. If we take the
majority class for each branch, we make five mistakes (marked in bold).
Thus, we say that the impurity of the tree in Fig. 3.5(A) is higher than the
tree in Fig. 3.5(B). To learn a decision tree, we prefer Own_house to Age
to be the root node. Instead of counting the number of mistakes or errors,
C4.5 uses a more principled approach to perform this evaluation on every
attribute in order to choose the best attribute to build the tree. ▀

No: 0 No: 6
Yes: 6 Yes: 3

(B)

Own_house?

 true false

No: 3 No: 2 No: 1
Yes: 2 Yes: 3 Yes: 4

(A)

Age?

 Young middle old

72 3 Supervised Learning

The most popular impurity functions used for decision tree learning are
information gain and information gain ratio, which are used in C4.5 as
two options. Let us first discuss information gain, which can be extended
slightly to produce information gain ratio.

The information gain measure is based on the entropy function from in-
formation theory [55]:

,1)Pr(

)Pr(log)Pr()(

||

1

||

1
2













C

j
j

j

C

j
j

c

ccDentropy

(2)

where Pr(cj) is the probability of class cj in data set D, which is the number
of examples of class cj in D divided by the total number of examples in D.
In the entropy computation, we define 0log0 = 0. The unit of entropy is
bit. Let us use an example to get a feeling of what this function does.

Example 6: Assume we have a data set D with only two classes, positive
and negative. Let us see the entropy values for three different compositions
of positive and negative examples:

1. The data set D has 50% positive examples (Pr(positive) = 0.5) and 50%
negative examples (Pr(negative) = 0.5).

.15.0log5.05.0log5.0)(22 Dentropy

2. The data set D has 20% positive examples (Pr(positive) = 0.2) and 80%
negative examples (Pr(negative) = 0.8).

.722.08.0log8.02.0log2.0)(22 Dentropy

3. The data set D has 100% positive examples (Pr(positive) = 1) and no
negative examples, (Pr(negative) = 0).

.00log01log1)(22 Dentropy

We can see a trend: When the data becomes purer and purer, the entropy
value becomes smaller and smaller. In fact, it can be shown that for this
binary case (two classes), when Pr(positive) = 0.5 and Pr(negative) = 0.5
the entropy has the maximum value, i.e., 1 bit. When all the data in D be-
long to one class the entropy has the minimum value, 0 bit. ▀

It is clear that the entropy measures the amount of impurity or disorder
in the data. That is exactly what we need in decision tree learning. We now
describe the information gain measure, which uses the entropy function.

3.2 Decision Tree Induction 73

Information Gain

The idea is the following:

1. Given a data set D, we first use the entropy function (Equation 2) to
compute the impurity value of D, which is entropy(D). The impuri-
tyEval-1 function in line 7 of Fig. 3.4 performs this task.

2. Then, we want to know which attribute can reduce the impurity most if
it is used to partition D. To find out, every attribute is evaluated (lines
8–10 in Fig. 3.4). Let the number of possible values of the attribute Ai be
v. If we are going to use Ai to partition the data D, we will divide D into
v disjoint subsets D1, D2, …, Dv. The entropy after the partition is

.)(
||
||

)(
1




v

j
j

j
A Dentropy

D

D
Dentropy

i
 (3)

 The impurityEval-2 function in line 9 of Fig. 3.4 performs this task.
3. The information gain of attribute Ai is computed with:

).()(),(DentropyDentropyADgain
iAi  (4)

Clearly, the gain criterion measures the reduction in impurity or disorder.
The gain measure is used in line 11 of Fig. 3.4, which chooses attribute Ag
resulting in the largest reduction in impurity. If the gain of Ag is too small,
the algorithm stops for the branch (line 12). Normally a threshold is used
here. If choosing Ag is able to reduce impurity significantly, Ag is em-
ployed to partition the data to extend the tree further, and so on (lines 15–
21 in Fig. 3.4). The process goes on recursively by building sub-trees using
D1, D2, …, Dm (line 20). For subsequent tree extensions, we do not need Ag
any more, as all training examples in each branch has the same Ag value.

Example 7: Let us compute the gain values for attributes Age, Own_house
and Credit_Rating using the whole data set D in Table 3.1, i.e., we evaluate
for the root node of a decision tree.

First, we compute the entropy of D. Since D has 6 No class training ex-
amples, and 9 Yes class training examples, we have

.971.0
15
9log

15
9

15
6log

15
6)(22 Dentropy

We then try Age, which partitions the data into 3 subsets (as Age has
three possible values) D1 (with Age=young), D2 (with Age=middle), and D3
(with Age=old). Each subset has five training examples. In Fig. 3.5, we al-
so see the number of No class examples and the number of Yes examples
in each subset (or in each branch).

74 3 Supervised Learning

.888.0722.0
15
5971.0

15
5971.0

15
5

)(
15
5)(

15
5)(

15
5)(321



 DentropyDentropyDentropyDentropy Age

Likewise, we compute for Own_house, which partitions D into two sub-
sets, D1 (with Own_house=true) and D2 (with Own_house=false).

.551.0 918.0
15
90

15
6

)(
15
9)(

15
6)(21_



 DentropyDentropyDentropy houseOwn

Similarly, we obtain entropyHas_job(D) = 0.647, and entropyCredit_rating(D)
= 0.608. The gains for the attributes are:

gain(D, Age) = 0.971  0.888 = 0.083
gain(D, Own_house) = 0.971  0.551 = 0.420
gain(D, Has_job) = 0.971  0.647 = 0.324
gain(D, Credit_rating) = 0.971  0.608 = 0.363.

Own_house is the best attribute for the root node. Fig. 3.5(B) shows the
root node using Own_house. Since the left branch has only one class (Yes)
of data, it results in a leaf node (line 1 in Fig. 3.4). For Own_house = false,
further extension is needed. The process is the same as above, but we only
use the subset of the data with Own_house = false, i.e., D2. ▀

Information Gain Ratio

The gain criterion tends to favor attributes with many possible values. An
extreme situation is that the data contain an ID attribute that is an identifi-
cation of each example. If we consider using this ID attribute to partition
the data, each training example will form a subset and has only one class,
which results in entropyID(D) = 0. So the gain by using this attribute is
maximal. From a prediction point of review, such a partition is useless.

Gain ratio (Equation 5) remedies this bias by normalizing the gain us-
ing the entropy of the data with respect to the values of the attribute. Our
previous entropy computations are done with respect to the class attribute:















s

j

jj

i
i

D

D

D

D
ADgain

ADgainRatio

1 ||
||

log
||
||

),(),(
2

 (5)

where s is the number of possible values of Ai, and Dj is the subset of data

3.2 Decision Tree Induction 75

that has the jth value of Ai. |Dj|/|D| corresponds to the probability of Equa-
tion (2). Using Equation (5), we simply choose the attribute with the high-
est gainRatio value to extend the tree.

This method works because if Ai has too many values the denominator
will be large. For instance, in our above example of the ID attribute, the
denominator will be log2|D|. The denominator is called the split info in
C4.5. One note is that the split info can be 0 or very small. Some heuristic
solutions can be devised to deal with it (see [49]).

3.2.3 Handling of Continuous Attributes

It seems that the decision tree algorithm can only handle discrete attrib-
utes. In fact, continuous attributes can be dealt with easily as well. In a real
life data set, there are often both discrete attributes and continuous attrib-
utes. Handling both types in an algorithm is an important advantage.

To apply the decision tree building method, we can divide the value
range of attribute Ai into intervals at a particular tree node. Each interval
can then be considered a discrete value. Based on the intervals, gain or
gainRatio is evaluated in the same way as in the discrete case. Clearly, we
can divide Ai into any number of intervals at a tree node. However, two in-
tervals are usually sufficient. This binary split is used in C4.5. We need to
find a threshold value for the division.

Clearly, we should choose the threshold that maximizes the gain (or
gainRatio). We need to examine all possible thresholds. This is not a prob-
lem because although for a continuous attribute Ai the number of possible
values that it can take is infinite, the number of actual values that appear in
the data is always finite. Let the set of distinctive values of attribute Ai that
occur in the data be {v1, v2, …, vr}, which are sorted in ascending order.
Clearly, any threshold value lying between vi and vi+1 will have the same
effect of dividing the training examples into those whose value of attribute
Ai lies in {v1, v2, …, vi} and those whose value lies in {vi+1, vi+2, …, vr}.
There are thus only r1 possible splits on Ai, which can all be evaluated.

The threshold value can be the middle point between vi and vi+1, or just
on the “right side” of value vi, which results in two intervals Ai  vi and Ai
> vi. This latter approach is used in C4.5. The advantage of this approach is
that the values appearing in the tree actually occur in the data. The thresh-
old value that maximizes the gain (gainRatio) value is selected. We can
modify the algorithm in Fig. 3.4 (lines 8–11) easily to accommodate this
computation so that both discrete and continuous attributes are considered.

A change to line 20 of the algorithm in Fig. 3.4 is also needed. For a
continuous attribute, we do not remove attribute Ag because an interval can

76 3 Supervised Learning

be further split recursively in subsequent tree extensions. Thus, the same
continuous attribute may appear multiple times in a tree path (see Example
9), which does not happen for a discrete attribute.

From a geometric point of view, a decision tree built with only continu-
ous attributes represents a partitioning of the data space. A series of splits
from the root node to a leaf node represents a hyper-rectangle. Each side of
the hyper-rectangle is an axis-parallel hyperplane.

Example 8: The hyper-rectangular regions in Fig. 3.6(A), which partitions
the space, are produced by the decision tree in Fig. 3.6(B). There are two
classes in the data, represented by empty circles and filled rectangles. ▀

Fig. 3.6. A partitioning of the data space and its corresponding decision tree

Handling of continuous (numeric) attributes has an impact on the effi-
ciency of the decision tree algorithm. With only discrete attributes the al-
gorithm grows linearly with the size of the data set D. However, sorting of
a continuous attribute takes |D|log|D| time, which can dominate the tree
learning process. Sorting is important as it ensures that gain or gainRatio
can be computed in one pass of the data.

3.2.4 Some Other Issues

We now discuss several other issues in decision tree learning.

Tree Pruning and Overfitting: A decision tree algorithm recursively par-
titions the data until there is no impurity or there is no attribute left. This
process may result in trees that are very deep and many tree leaves may
cover very few training examples. If we use such a tree to predict the train-
ing set, the accuracy will be very high. However, when it is used to clas-
sify unseen test set, the accuracy may be very low. The learning is thus not
effective, i.e., the decision tree does not generalize the data well. This

X

Y

2.6
2.5
 2

0 2 3 4

X

Y

 2 > 2

Y
 2 > 2

X
 3 > 3

X

Y

 4 > 4

 2.5 > 2.5

 2.6 > 2.6

(A) A partition of the data space (B). The decision tree

3.2 Decision Tree Induction 77

phenomenon is called overfitting. More specifically, we say that a classi-
fier f1 overfits the data if there is another classifier f2 such that f1 achieves a
higher accuracy on the training data than f2, but a lower accuracy on the
unseen test data than f2 [45].

Overfitting is usually caused by noise in the data, i.e., wrong class val-
ues/labels and/or wrong values of attributes, but it may also be due to the
complexity and randomness of the application domain. These problems
cause the decision tree algorithm to refine the tree by extending it to very
deep using many attributes.

To reduce overfitting in the context of decision tree learning, we per-
form pruning of the tree, i.e., to delete some branches or sub-trees and re-
place them with leaves of majority classes. There are two main methods to
do this, stopping early in tree building (which is also called pre-pruning)
and pruning the tree after it is built (which is called post-pruning). Post-
pruning has been shown more effective. Early-stopping can be dangerous
because it is not clear what will happen if the tree is extended further
(without stopping). Post-pruning is more effective because after we have
extended the tree to the fullest, it becomes clearer which branches/sub-
trees may not be useful (overfit the data). The general idea of post-pruning
is to estimate the error of each tree node. If the estimated error for a node
is less than the estimated error of its extended sub-tree, then the sub-tree is
pruned. Most existing tree learning algorithms take this approach. See [49]
for a technique called the pessimistic error based pruning.

Example 9: In Fig. 3.6(B), the sub-tree representing the rectangular region

 X  2, Y > 2.5, Y  2.6

in Fig. 3.6(A) is very likely to be overfitting. The region is very small and
contains only a single data point, which may be an error (or noise) in the
data collection. If it is pruned, we obtain Fig. 3.7(A) and (B). ▀

Fig. 3.7. The data space partition and the decision tree after pruning

X

Y

2.6
2.5
 2

0 2 3 4

X

Y

 2 > 2

 2 > 2

X
 3 > 3

X
 4 > 4

 (A) A partition of the data space (B). The decision tree

78 3 Supervised Learning

Another common approach to pruning is to use a separate set of data
called the validation set, which is not used in training and neither in test-
ing. After a tree is built, it is used to classify the validation set. Then, we
can find the errors at each node on the validation set. This enables us to
know what to prune based on the errors at each node.

Rule Pruning: We noted earlier that a decision tree can be converted to a
set of rules. In fact, C4.5 also prunes the rules to simplify them and to re-
duce overfitting. First, the tree (C4.5 uses the unpruned tree) is converted
to a set of rules in the way discussed in Example 4. Rule pruning is then
performed by removing some conditions to make the rules shorter and
fewer (after pruning some rules may become redundant). In most cases,
pruning results in a more accurate rule set as shorter rules are less likely to
overfit the training data. Pruning is also called generalization as it makes
rules more general (with fewer conditions). A rule with more conditions is
more specific than a rule with fewer conditions.

Example 10: The sub-tree below X  2 in Fig. 3.6(B) produces these rules:

Rule 1: X  2, Y > 2.5, Y > 2.6 
Rule 2: X  2, Y > 2.5, Y  2.6  O
Rule 3: X  2, Y  2.5 

Note that Y > 2.5 in Rule 1 is not useful because of Y > 2.6, and thus Rule
1 should be

Rule 1: X  2, Y > 2.6 

In pruning, we may be able to delete the conditions Y > 2.6 from Rule 1 to
produce:

X  2 

Then Rule 2 and Rule 3 become redundant and can be removed. ▀

A useful point to note is that after pruning the resulting set of rules may
no longer be mutually exclusive and exhaustive. There may be data
points that satisfy the conditions of more than one rule, and if inaccurate
rules are discarded, of no rules. An ordering of the rules is thus needed to
ensure that when classifying a test case only one rule will be applied to de-
termine the class of the test case. To deal with the situation that a test case
does not satisfy the conditions of any rule, a default class is used, which is
usually the majority class.

Handling Missing Attribute Values: In many practical data sets, some at-
tribute values are missing or not available due to various reasons. There
are many ways to deal with the problem. For example, we can fill each

3.3 Classifier Evaluation 79

missing value with the special value “unknown” or the most frequent value
of the attribute if the attribute is discrete. If the attribute is continuous, use
the mean of the attribute for each missing value.

The decision tree algorithm in C4.5 takes another approach. At a tree
node, it distributes the training example with missing value for the attrib-
ute to each branch of the tree proportionally according to the distribution
of the training examples that have values for the attribute.

Handling Skewed Class Distribution: In many applications, the propor-
tions of data for different classes can be very different. For instance, in a
data set of intrusion detection in computer networks, the proportion of in-
trusion cases is extremely small (< 1%) compared with normal cases. Di-
rectly applying the decision tree algorithm for classification or prediction
of intrusions is usually not effective. The resulting decision tree often con-
sists of a single leaf node “normal”, which is useless for intrusion detec-
tion. One way to deal with the problem is to over sample the intrusion ex-
amples to increase its proportion. Another solution is to rank the new cases
according to how likely they may be intrusions. The human users can then
investigate the top ranked cases.

3.3 Classifier Evaluation

After a classifier is constructed, it needs to be evaluated for accuracy. Ef-
fective evaluation is crucial because without knowing the approximate ac-
curacy of a classifier, it cannot be used in real-world tasks.

There are many ways to evaluate a classifier, and there are also many
measures. The main measure is the classification accuracy (Equation 1),
which is the number of correctly classified instances in the test set divided
by the total number of instances in the test set. Some researchers also use
the error rate, which is 1 – accuracy. Clearly, if we have several classifi-
ers, the one with the highest accuracy is preferred. Statistical significance
tests may be used to check whether one classifier’s accuracy is signifi-
cantly better than that of another given the same training and test data sets.
Below, we first present several common methods for classifier evaluation,
and then introduce some other evaluation measures.

3.3.1 Evaluation Methods

Holdout Set: The available data D is divided into two disjoint subsets, the
training set Dtrain and the test set Dtest, D = Dtrain  Dtest and Dtrain  Dtest =
. The test set is also called the holdout set. This method is mainly used

80 3 Supervised Learning

when the data set D is large. Note that the examples in the original data set
D are all labeled with classes.

As we discussed earlier, the training set is used for learning a classifier
and the test set is used for evaluating the classifier. The training set should
not be used in the evaluation as the classifier is biased toward the training
set. That is, the classifier may overfit the training data, which results in
very high accuracy on the training set but low accuracy on the test set. Us-
ing the unseen test set gives an unbiased estimate of the classification ac-
curacy. As for what percentage of the data should be used for training and
what percentage for testing, it depends on the data set size. 50–50 and two
thirds for training and one third for testing are commonly used.

To partition D into training and test sets, we can use a few approaches:

1. We randomly sample a set of training examples from D for learning and
use the rest for testing.

2. If the data is collected over time, then we can use the earlier part of the
data for training/learning and the later part of the data for testing. In
many applications, this is a more suitable approach because when the
classifier is used in the real-world the data are from the future. This ap-
proach thus better reflects the dynamic aspects of applications.

Multiple Random Sampling: When the available data set is small, using
the above methods can be unreliable because the test set would be too
small to be representative. One approach to deal with the problem is to
perform the above random sampling n times. Each time a different training
set and a different test set are produced. This produces n accuracies. The
final estimated accuracy on the data is the average of the n accuracies.

Cross-Validation: When the data set is small, the n-fold cross-validation
method is very commonly used. In this method, the available data is parti-
tioned into n equal-size disjoint subsets. Each subset is then used as the
test set and the remaining n1 subsets are combined as the training set to
learn a classifier. This procedure is then run n times, which gives n accura-
cies. The final estimated accuracy of learning from this data set is the aver-
age of the n accuracies. 10-fold and 5-fold cross-validations are often used.

A special case of cross-validation is the leave-one-out cross-validation.
In this method, each fold of the cross validation has only a single test ex-
ample and all the rest of the data is used in training. That is, if the original
data has m examples, then this is m-fold cross-validation. This method is
normally used when the available data is very small. It is not efficient for a
large data set as m classifiers need to be built.

In Sect. 3.2.4, we mentioned that a validation set can be used to prune a
decision tree or a set of rules. If a validation set is employed for that pur-

3.3 Classifier Evaluation 81

pose, it should not be used in testing. In that case, the available data is di-
vided into three subsets, a training set, a validation set and a test set. Apart
from using a validation set to help tree or rule pruning, a validation set is
also used frequently to estimate parameters in learning algorithms. In such
cases, the values that give the best accuracy on the validation set are used
as the final values of the parameters. Cross-validation can be used for pa-
rameter estimating as well. Then a separate validation set is not needed.
Instead, the whole training set is used in cross-validation.

3.3.2 Precision, Recall, F-score and Breakeven Point

In some applications, we are only interested in one class. This is particu-
larly true for text and Web applications. For example, we may be inter-
ested in only the documents or web pages of a particular topic. Also, in
classification involving skewed or highly imbalanced data, e.g., network
intrusion and financial fraud detection, we are typically interested in only
the minority class. The class that the user is interested in is commonly
called the positive class, and the rest negative classes (the negative classes
may be combined into one negative class). Accuracy is not a suitable
measure in such cases because we may achieve a very high accuracy, but
may not identify a single intrusion. For instance, 99% of the cases are
normal in an intrusion detection data set. Then a classifier can achieve
99% accuracy (without doing anything) by simply classifying every test
case as “not intrusion”. This is, however, useless.

Precision and recall are more suitable in such applications because they
measure how precise and how complete the classification is on the positive
class. It is convenient to introduce these measures using a confusion ma-
trix (Table 3.2). A confusion matrix contains information about actual and
predicted results given by a classifier.

Table 3.2. Confusion matrix of a classifier

 Classified positive Classified negative
Actual positive TP FN
Actual negative FP TN

where
TP: the number of correct classifications of the positive examples (true positive)
FN: the number of incorrect classifications of positive examples (false negative)
FP: the number of incorrect classifications of negative examples (false positive)
TN: the number of correct classifications of negative examples (true negative)

Based on the confusion matrix, the precision (p) and recall (r) of the posi-
tive class are defined as follows:

82 3 Supervised Learning

. .
FNTP

TP
 r

FPTP

TP
p





 (6)

In words, precision p is the number of correctly classified positive ex-
amples divided by the total number of examples that are classified as posi-
tive. Recall r is the number of correctly classified positive examples di-
vided by the total number of actual positive examples in the test set. The
intuitive meanings of these two measures are quite obvious.

However, it is hard to compare classifiers based on two measures, which
are not functionally related. For a test set, the precision may be very high
but the recall can be very low, and vice versa.

Example 11: A test data set has 100 positive examples and 1000 negative
examples. After classification using a classifier, we have the following
confusion matrix (Table 3.3),

Table 3.3. Confusion matrix of a classifier

 Classified positive Classified negative
Actual positive 1 99
Actual negative 0 1000

This confusion matrix gives the precision p = 100% and the recall r = 1%
because we only classified one positive example correctly and classified
no negative examples wrongly. ▀

Although in theory precision and recall are not related, in practice high
precision is achieved almost always at the expense of recall and high recall
is achieved at the expense of precision. In an application, which measure is
more important depends on the nature of the application. If we need a sin-
gle measure to compare different classifiers, the F-score is often used:

.2
rp

pr
F


 (7)

The F-score (also called the F1-score) is the harmonic mean of precision
and recall.

.11
2

rp

F


 (8)

The harmonic mean of two numbers tends to be closer to the smaller of
the two. Thus, for the F-score to be high, both p and r must be high.

There is also another measure, called precision and recall breakeven
point, which is used in the information retrieval community. The break-

3.3 Classifier Evaluation 83

even point is when the precision and the recall are equal. This measure as-
sumes that the test cases can be ranked by the classifier based on their like-
lihoods of being positive. For instance, in decision tree classification, we
can use the confidence of each leaf node as the value to rank test cases.

Example 12: We have the following ranking of 20 test documents. 1
represents the highest rank and 20 represents the lowest rank. “+” (“”)
represents an actual positive (negative) document.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
+ + +  +  +  + +   +    +   +

Assume that the test set has 10 positive examples.
At rank 1: p = 1/1 = 100% r = 1/10 = 10%
At rank 2: p = 2/2 = 100% r = 2/10 = 20%
… … …
At rank 9: p = 6/9 = 66.7% r = 6/10 = 60%
At rank 10: p = 7/10 = 70% r = 7/10 = 70%

The breakeven point is p = r = 70%. Note that interpolation is needed if
such a point cannot be found. ▀

3.3.3 Receiver Operating Characteristic Curve

A receiver operating characteristic (ROC) curve is a plot of the true posi-
tive rate against the false positive rate. It is also commonly used to evalu-
ate classification results on the positive class in two-class classification
problems. The classifier needs to rank the test cases according to their like-
lihoods of belonging to the positive class with the most likely positive case
ranked at the top. The true positive rate (TPR) is defined as the fraction of
actual positive cases that are correctly classified,

.
FNTP

TP
TPR


 (9)

The false positive rate (FPR) is defined as the fraction of actual negative
cases that are classified to the positive class,

.
FPTN

FP
FPR


 (10)

TPR is basically the recall of the positive class and is also called sensitiv-
ity in statistics. There is also another measure in statistics called specific-
ity, which is the true negative rate (TNR), or the recall of the negative
class. TNR is defined as follows:

84 3 Supervised Learning

.
FPTN

TN
TNR


 (11)

From Equations (10) and (11), we can see the following relationship,

.1 yspecificitFPR  (12)

Fig. 3.8 shows the ROC curves of two example classifiers (C1 and C2) on
the same test data. Each curve starts from (0, 0) and ends at (1, 1). (0, 0)
represents the situation where every test case is classified as negative, and
(1, 1) represents the situation where every test case is classified as positive.
This is the case because we can treat the classification result as a ranking
of the test cases in the positive class, and we can partition the ranked list at
any point into two parts with the upper part assigned to the positive class
and the lower part assigned to the negative class. We will see shortly that
an ROC curve is drawn based on such partitions. In Fig. 3.8, we also see
the main diagonal line, which represents random guessing, i.e., predicting
each case to be positive with a fixed probability. In this case, it is clear that
for every FPR value, TPR has the same value, i.e., TPR = FPT.

For classifier evaluation using the ROC curves in Fig. 3.8, we want to
know which classifier is better. The answer is that when FPR is less than
0.43, C1 is better, and when FPR is greater than 0.43, C2 is better.

However, sometimes this is not a satisfactory answer because we cannot
say any one of the classifiers is strictly better than the other. For an overall
comparison, researchers often use the area under the ROC curve (AUC).
If the AUC value for a classifier Ci is greater than that of another classifier
Cj, it is said that Ci is better than Cj. If a classifier is perfect, its AUC value
is 1. If a classifier makes all random guesses, its AUC value is 0.5.

C2

C1

Fig. 3.8. ROC curves for two classifiers (C1 and C2) on the same data

3.3 Classifier Evaluation 85

Let us now describe how to draw an ROC curve given the classification
result as a ranking of test cases. The ranking is obtained by sorting the test
cases in decreasing order of the classifier’s output values (e.g., posterior
probabilities). We then partition the rank list into two subsets (or parts) at
every test case and regard every test case in the upper part (with higher
classifier output value) as a positive case and every test case in the lower
part as a negative case. For each such partition, we compute a pair of TPR
and FPR values. When the upper part is empty, we obtain the point (0, 0)
on the ROC and when the lower part is empty, we obtain the point (1, 1).
Finally, we simply connect the adjacent points.

Example 13: We have 10 test cases. A classifier has been built, and it has
ranked the 10 test cases as shown in the second row of Table 3.4 (the num-
bers in row 1 are the rank positions, with 1 being the highest rank and 10
the lowest). The second row shows the actual class of each test case. “+”
means that the test case is from the positive class, and “–” means that it is
from the negative class. All the results needed for drawing the ROC curve
are shown in rows 3–8 in Table 3.4. The ROC curve is given in Fig. 3.9.

Table 3.4. Computations for drawing an ROC curve

Rank 1 2 3 4 5 6 7 8 9 10
Actual class + + – – + – – + – –

TP 0 1 2 2 2 3 3 3 4 4 4
FP 0 0 0 1 2 2 3 4 4 5 6
TN 6 6 6 5 4 4 3 2 2 1 0
FN 4 3 2 2 2 1 1 1 0 0 0

TPR 0 0.25 0.5 0.5 0.5 0.75 0.75 0.75 1 1 1
FPR 0 0 0 0.17 0.33 0.33 0.50 0.67 0.67 0.83 1

Fig. 3.9. ROC curve for the data shown in Table 3.4 ▀

86 3 Supervised Learning

3.3.4 Lift Curve

The lift curve (also called the lift chart) is similar to the ROC curve. It is
also for evaluation of two-class classification tasks, where the positive
class is the target of interest and usually the rare class. It is often used in
direct marketing applications to link classification results to costs and prof-
its. For example, a mail order company wants to send promotional materi-
als to potential customers to sell an expensive watch. Since printing and
postage cost money, the company needs to build a classifier to identify
likely buyers, and only sends the promotional materials to them. The ques-
tion is how many should be sent. To make the decision, the company needs
to balance the cost and profit (if a watch is sold, the company makes a cer-
tain profit, but to send each letter there is a fixed cost). The lift curve pro-
vides a nice tool to enable the marketer to make the decision.

Like an ROC curve, to draw a lift curve, the classifier needs to produce
a ranking of the test cases according to their likelihoods of belonging to the
positive class with the most likely positive case ranked at the top. After the
ranking, the test cases are divided into N equal-sized bins (N is usually 10
– 20). The actual positive cases in each bin are then counted. A lift curve is
drawn with the x-axis being the percentages of test data (or bins) and the y-
axis being the percentages of cumulative positive cases from the first bin
to the current bin. A lift curve usually also includes a line (called the base-
line) along the main diagonal [from (0, 0) to (100, 100)] which represents
the situation where the positive cases in the test set are uniformly (or ran-
domly) distributed in the N bins (no learning), i.e., each bin contains 100/N
percent of the positive cases. If the lift curve is above this baseline, learn-
ing is said to be effective. The greater the area between the lift curve and
the baseline, the better the classifier.

Example 14: A company wants to send promotional materials to potential
buyers to sell an expensive brand of watches. It builds a classification
model and tests it on a test data of 10,000 people (test cases) that they col-
lected in the past. After classification and ranking, it decides to divide the
test data into 10 bins with each bin containing 10% of the test cases or
1,000 cases. Out of the 1,000 cases in each bin, there are a certain number
of positive cases (e.g., past buyers). The detailed results are listed in Table
3.5, which includes the number (#) of positive cases and the percentage
(%) of positive cases in each bin, and the cumulative percentage for that
bin. The cumulative percentages are used in drawing the lift curve which is
given in Fig. 3.10. We can see that the lift curve is way above the baseline,
which means that the learning is highly effective.

Suppose printing and postage cost $1.00 for each letter, and the sale of
each watch makes $100 (assuming that each buyer only buys one watch).

3.4 Rule Induction 87

If the company wants to send promotional letters to 3000 people, it will
make $36,000, i.e.,

 $100 × (210 + 120 + 60)  $3,000 = $36,000

Table 3.5. Classification results for the 10 bins

Bin 1 2 3 4 5 6 7 8 9 10
of test cases 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

of positive cases 210 120 60 40 22 18 12 7 6 5
% of positive cases 42.0% 24.0% 12% 8% 4.4% 3.6% 2.4% 1.4% 1.2% 1.0%

% cumulative 42.0% 66.0% 78.0% 86.0% 90.4% 94.0% 96.4% 97.8% 99.0% 100.0%

Fig. 3.10. Lift curve for the data shown in Table 3.5 ▀

3.4 Rule Induction

In Sect. 3.2, we showed that a decision tree can be converted to a set of
rules. Clearly, the set of rules can be used for classification as the tree. A
natural question is whether it is possible to learn classification rules di-
rectly. The answer is yes. The process of learning such rules is called rule
induction or rule learning. We study two approaches in the section.

3.4.1 Sequential Covering

Most rule induction systems use a learning strategy called sequential cov-
ering. A rule-based classifier built with this strategy typically consists of a
list of rules, which is also called a decision list [51]. In the list, the order-
ing of the rules is significant.

88 3 Supervised Learning

The basic idea of sequential covering is to learn a list of rules sequen-
tially, one at a time, to cover the training data. After each rule is learned,
the training examples covered by the rule are removed. Only the remaining
data are used to find subsequent rules. Recall that a rule covers an example
if the example satisfies the conditions of the rule. We study two specific
algorithms based on this general strategy. The first algorithm is based on
the CN2 system [9], and the second algorithm is based on the ideas in
FOIL [50], I-REP [21], REP [7], and RIPPER [106] systems. Many ideas
are also taken from [45].

Algorithm 1 (Ordered Rules)

This algorithm learns each rule without pre-fixing a class. That is, in each
iteration, a rule of any class may be found. Thus rules of different classes
may intermix in the final rule list. The ordering of rules is important.

This algorithm is given in Fig. 3.11. D is the training data. RuleList is
the list of rules, which is initialized to empty set (line 1). Rule is the best
rule found in each iteration. The function learn-one-rule-1() learns the Rule
(lines 2 and 6). The stopping criteria for the while-loop can be of various
kinds. Here we use D =  or Rule is NULL (a rule is not learned). Once a
rule is learned from the data, it is inserted into RuleList at the end (line 4).
All the training examples that are covered by the rule are removed from
the data (line 5). The remaining data is used to find the next rule and so on.
After rule learning ends, a default class is inserted at the end of RuleList.
This is because there may still be some training examples that are not cov-
ered by any rule as no good rule can be found from them, or because some
test cases may not be covered by any rule and thus cannot be classified.
The final list of rules is as follows:

<r1, r2, …, rk, default-class> (13)

where ri is a rule.

Algorithm 2 (Ordered Classes)

This algorithm learns all rules for each class together. After rule learning
for one class is completed, it moves to the next class. Thus all rules for
each class appear together in the rule list. The sequence of rules for each
class is unimportant, but the rule subsets for different classes are ordered.
Typically, the algorithm finds rules for the least frequent class first, then
the second least frequent class and so on. This ensures that some rules are
learned for rare classes. Otherwise, they may be dominated by frequent
classes and end up with no rules if considered after frequent classes.

3.4 Rule Induction 89

The algorithm is given in Fig. 3.12. The data set D is split into two sub-
sets, Pos and Neg, where Pos contains all the examples of class c from D,
and Neg the rest of the examples in D (line 3). c is the class that the algo-
rithm is working on now. Two stopping conditions for rule learning of
each class are in line 4 and line 6. The other parts of the algorithm are
quite similar to those of the first algorithm in Fig. 3.11. Both learn-one-
rule-1() and learn-one-rule-2() functions are described in Sect. 3.4.2.

Use of Rules for Classification

To use a list of rules for classification is straightforward. For a test case,
we simply try each rule in the list sequentially. The class of the first rule

Algorithm sequential-covering-1(D)
1 RuleList  ;
2 Rule  learn-one-rule-1(D);
3 while Rule is not NULL AND D   do
4 RuleList  insert Rule at the end of RuleList;
5 Remove from D the examples covered by Rule;
6 Rule  learn-one-rule-1(D)
7 endwhile
8 insert a default class c at the end of RuleList, where c is the majority class

in D;
9 return RuleList

Fig. 3.11. The first rule learning algorithm based on sequential covering

Algorithm sequential-covering-2(D, C)
1 RuleList  ; // empty rule set at the beginning
2 for each class c  C do
3 prepare data (Pos, Neg), where Pos contains all the examples of class

c from D, and Neg contains the rest of the examples in D;
4 while Pos   do
5 Rule  learn-one-rule-2(Pos, Neg, c);
6 if Rule is NULL then
7 exit-while-loop
8 else RuleList  insert Rule at the end of RuleList;
9 Remove examples covered by Rule from (Pos, Neg)
10 endif
11 endwhile
12 endfor
13 return RuleList

Fig. 3.12. The second rule learning algorithm based on sequential covering

90 3 Supervised Learning

that covers this test case is assigned as the class of the test case. Clearly, if
no rule applies to the test case, the default class is used.

3.4.2 Rule Learning: Learn-One-Rule Function

We now present the function learn-one-rule(), which works as follows: It
starts with an empty set of conditions. In the first iteration, one condition is
added. In order to find the best condition to add, all possible conditions are
tried, which form candidate rules. A condition is of the form Ai op v,
where Ai is an attribute and v is a value of Ai. We also called it an attrib-
ute-value pair. For a discrete attribute, op is “=”. For a continuous attrib-
ute, op  {>, }. The algorithm evaluates all the candidates to find the best
one (the rest are discarded). After the first best condition is added, it tries
to add the second condition and so on in the same fashion until some stop-
ping condition is satisfied. Note that we omit the rule class here because it
is implied, i.e., the majority class of the data covered by the conditions.

This is a heuristic and greedy algorithm in that after a condition is add-
ed, it will not be changed or removed through backtracking. Ideally, we
would want to try all possible combinations of attributes and values. How-
ever, this is not practical as the number of possibilities grows exponen-
tially. Hence, in practice, the above greedy algorithm is used. However, in-
stead of keeping only the best set of conditions, we can improve the
function a little by keeping k best sets of conditions (k > 1) in each itera-
tion. This is called the beam search (k beams), which ensures that a larger
space is explored. Below, we present two specific implementations of the
algorithm, namely learn-one-rule-1() and learn-one-rule-2(). learn-one-
rule-1() is used in the sequential-covering-1 algorithm, and learn-one-rule-
2() is used in the sequential-covering-2 algorithm.

Learn-One-Rule-1
This function uses beam search (Fig. 3.13). The number of beams is k.
BestCond stores the conditions of the rule to be returned. The class is omit-
ted as it is the majority class of the data covered by BestCond. candidate-
CondSet stores the current best condition sets (which are the frontier
beams) and its size is less than or equal to k. Each condition set contains a
set of conditions connected by “and” (conjunction). newCandidateCondSet
stores all the new candidate condition sets after adding each attribute-value
pair (a possible condition) to every candidate in candidateCondSet (lines
5–11). Lines 13–17 update the BestCond. Specifically, an evaluation func-
tion is used to assess whether each new candidate condition set is better
than the existing best condition set BestCond (line 14). If so, it replaces the

3.4 Rule Induction 91

current BestCond (line 15). Line 18 updates candidateCondSet, which se-
lects k new best condition sets (new beams).

Once the final BestCond is found, it is evaluated to see if it is signifi-
cantly better than without any condition () using a threshold (line 20). If
yes, a rule will be formed using BestCond and the most frequent (or the
majority) class of the data covered by BestCond (line 21). If not, NULL is
returned to indicate that no significant rule is found.

Function learn-one-rule-1(D)
1 BestCond  ; // rule with no condition.
2 candidateCondSet  {BestCond};
3 attributeValuePairs  the set of all attribute-value pairs in D of the form

(Ai op v), where Ai is an attribute and v is a value or an interval;
4 while candidateCondSet   do
5 newCandidateCondSet  ;
6 for each candidate cond in candidateCondSet do
7 for each attribute-value pair a in attributeValuePairs do
8 newCond  cond  {a};
9 newCandidateCondSet  newCandidateCondSet  {newCond}
10 endfor
11 endfor
12 remove duplicates and inconsistencies, e.g., {Ai = v1, Ai = v2};
13 for each candidate newCond in newCandidateCondSet do
14 if evaluation(newCond, D) > evaluation(BestCond, D) then
15 BestCond  newCond
16 endif
17 endfor
18 candidateCondSet  the k best members of newCandidateCondSet

according to the results of the evaluation function;
19 endwhile
20 if evaluation(BestCond, D) – evaluation(, D) > threshold then
21 return the rule: “BestCond  c” where is c the majority class of the data

covered by BestCond
22 else return NULL
23 endif

Fig. 3.13. The learn-one-rule-1 function

Function evaluation(BestCond, D)
1 D  the subset of training examples in D covered by BestCond;
2  


||

1 2)Pr(log)Pr()'(C

j
jj ccDentropy ;

3 return – entropy(D’) // since entropy measures impurity.

Fig. 3.14. The entropy based evaluation function

92 3 Supervised Learning

The evaluation() function (Fig. 3.14) uses the entropy function as in the
decision tree learning. Other evaluation functions are possible too. Note
that when BestCond = , it covers every example in D, i.e., D = D.

Learn-One-Rule-2

In the learn-one-rule-2() function (Fig. 3.14), a rule is first generated and
then it is pruned. This method starts by splitting the positive and negative
training data Pos and Neg, into growing and pruning sets. The growing
sets, GrowPos and GrowNeg, are used to generate a rule, called BestRule.
The pruning sets, PrunePos and PruneNeg are used to prune the rule be-
cause BestRule may overfit the data. Note that PrunePos and PruneNeg
are actually validation sets discussed in Sects. 3.2.4 and 3.3.1.

growRule() function: growRule() generates a rule (called BestRule) by
repeatedly adding a condition to its condition set that maximizes an
evaluation function until the rule covers only some positive examples in
GrowPos but no negative examples in GrowNeg. This is basically the
same as lines 4–17 in Fig. 3.13, but without beam search (i.e., only the best
rule is kept in each iteration). Let the current partially developed rule be R:

R: av1, .., avk  class

where each avj is a condition (an attribute-value pair). By adding a new
condition avk+1, we obtain the rule R+: av1, .., avk, avk+1 class. The evalu-
ation function for R+ is the following information gain criterion (which is
different from the gain function used in decision tree learning):
















00

0

11

1
1 22 loglog),(

np

p

np

p
pRRgain (14)

where p0 (respectively, n0) is the number of positive (negative) examples
covered by R in Pos (Neg), and p1 (n1) is the number of positive (negative)
examples covered by R+ in Pos (Neg). The GrowRule() function simply re-

Function learn-one-rule-2(Pos, Neg, class)
1 split (Pos, Neg) into (GrowPos, GrowNeg) and (PrunePos, PruneNeg)
2 BestRule  GrowRule(GrowPos, GrowNeg, class) // grow a new rule
3 BestRule  PruneRule(BestRule, PrunePos, PruneNeg) // prune the rule
4 if the error rate of BestRule on (PrunePos, PruneNeg) exceeds 50% then
5 return NULL
6 endif
7 return BestRule

Fig. 3.15. The learn-one-rule-2() function

3.5 Classification Based on Associations 93

turns the rule R+ that maximizes the gain.

PruneRule() function: To prune a rule, we consider deleting every subset
of conditions from the BestRule, and choose the deletion that maximizes:

,),,(
np

np
PruneNegPrunePosBestRulev




 (15)

where p (respectively n) is the number of examples in PrunePos (Prune-
Neg) covered by the current rule (after a deletion).

3.4.3 Discussion

Separate-and-Conquer vs. Divide-and-Conquer: Decision tree learning
is said to use the divide-and-conquer strategy. At each step, all attributes
are evaluated and one is selected to partition/divide the data into m disjoint
subsets, where m is the number of values of the attribute. Rule induction
discussed in this section is said to use the separate-and-conquer strategy,
which evaluates all attribute-value pairs (conditions) (which are much lar-
ger in number than the number of attributes) and selects only one. Thus,
each step of divide-and-conquer expands m rules, while each step of sepa-
rate-and-conquer expands only one rule. Due to both effects, the separate-
and-conquer strategy is much slower than the divide-and-conquer strategy.
Rule Understandability: If-then rules are easy to understand by human
users. However, a word of caution about rules generated by sequential
covering is in order. Such rules can be misleading because the covered da-
ta are removed after each rule is generated. Thus the rules in the rule list
are not independent of each other. A rule r may be of high quality in the
context of the data D from which r was generated. However, it may be a
weak rule with a very low accuracy (confidence) in the context of the
whole data set D (D  D) because many training examples that can be
covered by r have already been removed by rules generated before r. If
you want to understand the rules and possibly use them in some real-world
tasks, you should be aware of this fact.

3.5 Classification Based on Associations

In Sect. 3.2, we showed that a decision tree can be converted to a set of
rules, and in Sect. 3.4, we saw that a set of rules may also be found directly
for classification. It is thus only natural to expect that association rules, in
particular class association rules (CAR), may be used for classification

94 3 Supervised Learning

too. Yes, indeed! In fact, normal association rules can be employed for
classification as well as we will see in Sect. 3.5.3. CBA, which stands for
Classification Based on Associations, is the first reported system that uses
association rules for classification [39]. Classifiers built using association
rules are often called associative classifiers. In this section, we describe
three approaches to employing association rules for classification:

1. Using class association rules for classification directly.
2. Using class association rules as features or attributes.
3. Using normal (or classic) association rules for classification.

The first two approaches can be applied to tabular data or transactional
data. The last approach is usually employed for transactional data only. All
these methods are useful in the Web environment as many types of Web
data are in the form of transactions, e.g., search queries issued by users,
and Web pages clicked by visitors. Transactional data sets are difficult to
handle by traditional classification techniques, but are very natural for as-
sociation rules. Below, we describe the three approaches in turn. We
should note that various sequential rules can be used for classification in
similar ways as well if sequential data sets are involved.

3.5.1 Classification Using Class Association Rules

Recall that a class association rule (CAR) is an association rule with only a
class label on the right-hand side of the rule as its consequent (Sect. 2.5).
For instance, from the data in Table 3.1, the following rule can be found:

Own_house = false, Has_job = true  Class = Yes [sup=3/15, conf=3/3],

which was also a rule from the decision tree in Fig. 3.3. In fact, there is no
difference between rules from a decision tree (or a rule induction system)
and CARs if we consider only categorical (or discrete) attributes (more on
this later). The differences are in the mining processes and the final rule
sets. CAR mining finds all rules in data that satisfy the user-specified min-
imum support (minsup) and minimum confidence (minconf) constraints. A
decision tree or a rule induction system finds only a subset of the rules
(expressed as a tree or a list of rules) for classification.

Example 15: Recall that the decision tree in Fig. 3.3 gives the following
three rules:

Own_house = true  Class =Yes [sup=6/15, conf=6/6]
Own_house = false, Has_job = true  Class=Yes [sup=3/15, conf=3/3]
Own_house = false, Has_job = false  Class=No [sup=6/15, conf=6/6].

3.5 Classification Based on Associations 95

However, there are many other rules that exist in data, e.g.,

Age = young, Has_job = true  Class=Yes [sup=2/15, conf=2/2]
Age = young, Has_job = false  Class=No [sup=3/15, conf=3/3]
Credit_rating = fair  Class=No [sup=4/15, conf=4/5]

and many more, if we use minsup = 2/15 = 13.3% and minconf = 70%. ▀

In many cases, rules that are not in the decision tree (or a rule list) may
be able to perform classification more accurately. Empirical comparisons
reported by several researchers show that classification using CARs can
perform more accurately on many data sets than decision trees and rule in-
duction systems (see Bibliographic Notes for references).
 The complete set of rules from CAR mining is also beneficial from a
rule usage point of view. In some applications, the user wants to act on
some interesting rules. For example, in an application for finding causes of
product problems, more rules are preferred to fewer rules because with
more rules, the user is more likely to find rules that indicate causes of the
problems. Such rules may not be generated by a decision tree or a rule in-
duction system. A deployed data mining system based on CARs is re-
ported in [41]. We should, however, also bear in mind of the following:

1. Decision tree learning and rule induction do not use the minsup or min-
conf constraint. Thus, some rules that they find can have very low sup-
ports, which, of course, are likely to be pruned because the chance that
they overfit the training data is high. Although we can set a low minsup
for CAR mining, it may cause combinatorial explosion. In practice, in
addition to minsup and minconf, a limit on the total number of rules to
be generated may be used to further control the CAR generation proc-
ess. When the number of generated rules reaches the limit, the algorithm
stops. However, with this limit, we may not be able to generate long
rules (with many conditions). Recall that the Apriori algorithm works in
a level-wise fashion, i.e., short rules are generated before long rules. In
some applications, this might not be an issue as short rules are often pre-
ferred and are sufficient for classification or for action. Long rules nor-
mally have very low supports and tend to overfit the data. However, in
some other applications, long rules can be useful.

2. CAR mining does not use continuous (numeric) attributes, while deci-
sion trees deal with continuous attributes naturally. Rule induction can
use continuous attributes as well. There is still no satisfactory method to
deal with such attributes directly in association rule mining. Fortunately,
many attribute discretization algorithms exist that can automatically dis-
cretize the value range of a continuous attribute into suitable intervals
[16, 19], which are then considered as discrete values.

96 3 Supervised Learning

Mining Class Association Rules for Classification
There are many techniques that use CARs to build classifiers. Before de-
scribing them, let us first discuss some issues related to CAR mining for
classification. Since a CAR mining algorithm has been discussed in Sect.
2.5, we will not repeat it here.

Rule Pruning: CAR rules are highly redundant, and many of them are not
statistically significant (which can cause overfitting). Rule pruning is thus
needed. The idea of pruning CARs is basically the same as that in decision
tree building or rule induction. Thus, we will not discuss it further (see [36,
39] for some of the pruning methods).

Multiple Minimum Class Supports: As discussed in Sect. 2.5.3, a single
minsup is inadequate for mining CARs because many practical classifica-
tion data sets have uneven class distributions, i.e., some classes cover a
large proportion of the data, while others cover only a very small propor-
tion (which are called rare or infrequent classes).

Example 16: Suppose we have a dataset with two classes, Y and N. 99% of
the data belong to the Y class, and only 1% of the data belong to the N
class. If we set minsup = 1.5%, we will not find any rule for class N. To
solve the problem, we need to lower down the minsup. Suppose we set
minsup = 0.2%. Then, we may find a huge number of overfitting rules for
class Y because minsup = 0.2% is too low for class Y. ▀

Multiple minimum class supports can be applied to deal with the prob-
lem. We can assign a different minimum class support minsupi for each
class ci, i.e., all the rules of class ci must satisfy minsupi. Alternatively, we
can provide one single total minsup, denoted by t_minsup, which is then
distributed to each class according to the class distribution:

minsupi = t_minsup  sup(ci) (16)

where sup(ci) is the support of class ci in training data. The formula gives
frequent classes higher minsups and infrequent classes lower minsups.
Parameter Selection: The parameters used in CAR mining are the mini-
mum supports and the minimum confidences. Note that a different mini-
mum confidence may also be used for each class. However, minimum con-
fidences do not affect the classification much because classifiers tend to
use high confidence rules. One minimum confidence is sufficient as long
as it is not set too high. To determine the best minsupi for each class ci, we
can try a range of values to build classifiers and then use a validation set to
select the final value. Cross-validation may be used as well.

3.5 Classification Based on Associations 97

Data Formats: The algorithm for CAR mining given in Sect. 2.5.2 is for
mining transaction data sets. However, many classification data sets are in
the table format. As we discussed in Sect. 2.3, a tabular data set can be eas-
ily converted to a transaction data set.

Classifier Building

After all CAR rules are found, a classifier is built using the rules. There are
many existing approaches, which can be grouped into three categories.

Use the Strongest Rule: This is perhaps the simplest strategy. It simply
uses CARs directly for classification. For each test instance, it finds the
strongest rule that covers the instance. Recall that a rule covers an instance
if the instance satisfies the conditions of the rule. The class of the strongest
rule is then assigned as the class of the test instance. The strength of a rule
can be measured in various ways, e.g., based on confidence, 2 test, or a
combination of both support and confidence values.

Select a Subset of the Rules to Build a Classifier: The representative me-
thod of this category is the one used in the CBA system. The method is
similar to the sequential covering method, but applied to class association
rules with additional enhancements as discussed above.

Let the set of all discovered CARs be S. Let the training data set be D.
The basic idea is to select a subset L ( S) of high confidence rules to cov-
er the training data D. The set of selected rules, including a default class, is
then used as the classifier. The selection of rules is based on a total order
defined on the rules in S.

Definition: Given two rules, ri and rj, ri rj (also called ri precedes rj or ri

has a higher precedence than rj) if
1. the confidence of ri is greater than that of rj, or
2. their confidences are the same, but the support of ri is greater than

that of rj, or
3. both the confidences and supports of ri and rj are the same, but ri is

generated earlier than rj.

A CBA classifier L is of the form:
 L = <r1, r2, …, rk, default-class>

where ri  S, ra rb if b > a. In classifying a test case, the first rule that
satisfies the case classifies it. If no rule applies to the case, it takes the de-
fault class (default-class). A simplified version of the algorithm for build-
ing such a classifier is given in Fig. 3.16. The classifier is the RuleList.

98 3 Supervised Learning

This algorithm can be easily implemented by making one pass through
the training data for every rule. However, this is extremely inefficient for
large data sets. An efficient algorithm that makes at most two passes over
the data is given in [39].

Combine Multiple Rules: Like the first approach, this approach does not
take any additional step to build a classifier. At the classification time, for
each test instance, the system first finds the subset of rules that covers the
instance. If all the rules in the subset have the same class, the class is as-
signed to the test instance. If the rules have different classes, the system
divides the rules into groups according to their classes, i.e., all rules of the
same class are in the same group. The system then compares the aggre-
gated effects of the rule groups and finds the strongest group. The class la-
bel of the strongest group is assigned to the test instance. To measure the
strength of each rule group, there again can be many possible techniques.
For example, the CMAR system uses a weighted 2 measure [36].

3.5.2 Class Association Rules as Features

In the above two methods, rules are directly used for classification. In this
method, rules are used as features to augment the original data or simply
form a new data set, which is then fed to a classification algorithm, e.g.,
decision trees or the naïve Bayesian method. Such features were found to
be particularly effective for text-based classification applications.

To use CARs as features, only the conditional part of each CAR rule is
needed, and it is often treated as a Boolean feature/attribute. If a data in-
stance in the original data contains the conditional part, the value of the
feature/attribute is set to 1, otherwise it is set to 0. Several applications of
this method have been reported [2, 13, 27, 31]. The reason that such CAR-
based features are helpful is that they capture multi-attribute or multi-item

Algorithm CBA(S, D)
1 S = sort(S); // sorting is done according to the precedence
2 RuleList = ; // the rule list classifier
3 for each rule r  S in sequence do
4 if D   AND r classifies at least one example in D correctly then
5 delete from D all training examples covered by r;
6 add r at the end of RuleList
7 endif
8 endfor
9 add the majority class as the default class at the end of RuleList

Fig. 3.16. A simple classifier building algorithm

3.5 Classification Based on Associations 99

correlations with class labels, which are useful for classification but are not
considered by many classification algorithms (e.g., naïve Bayesian).

3.5.3 Classification Using Normal Association Rules

Not only can class association rules be used for classification, but also
normal association rules. For example, association rules are commonly
used in e-commerce Web sites for product recommendations, which work
as follows: When a customer purchases some products, the system will
recommend him/her some other related products based on what he/she has
already purchased (see Chap. 12).

Recommendation is essentially a classification or prediction problem. It
predicts what a customer is likely to buy. Association rules are naturally
applicable to such applications. The classification process is as follows:

1. The system first uses previous purchase transactions (the same as mar-
ket basket transactions) to mine association rules. In this case, there are
no fixed classes. Any item can appear on the left-hand side or the right-
hand side of a rule. For recommendation purposes, usually only one
item appears on the right-hand side of a rule.

2. At the prediction (e.g., recommendation) time, given a transaction (e.g.,
a set of items already purchased by a customer), all the rules that cover
the transaction are selected. The strongest rule is chosen and the item on
the right-hand side of the rule (i.e., the consequent) is then the predicted
item and is recommended to the user. If multiple rules are very strong,
multiple items can be recommended.

This method is basically the same as the “use the strongest rule” method
described in Sect. 3.5.1. Again, the rule strength can be measured in vari-
ous ways, e.g., confidence, 2 test, or a combination of both support and
confidence. For example, in [38], the product of support and confidence is
used as the rule strength. Clearly, the other two methods discussed in Sect.
3.5.1 can be applied as well.

The key advantage of using association rules for recommendation is that
they can predict any item since any item can be the class item on the right-
hand side. Traditional classification algorithms only work with a single
fixed class attribute, and are not easily applicable to recommendations.

Finally, we note that multiple minimum supports (Sect. 2.4) can be of
significant help. Otherwise, rare items will never be recommended, which
causes the coverage problem (see Sect. 12.3.3). It is shown in [46] that us-
ing multiple minimum supports can dramatically increase the coverage.

100 3 Supervised Learning

3.6 Naïve Bayesian Classification

Supervised learning can be naturally studied from a probabilistic point of
view. The task of classification can be regarded as estimating the class
posterior probabilities given a test example d, i.e.,

Pr(C= cj | d). (17)

We then see which class cj is more probable. The class with the highest
probability is assigned to the example d.

Formally, let A1, A2, …, A|A| be the set of attributes with discrete values
in the data set D. Let C be the class attribute with |C| values, c1, c2, …, c|C|.
Given a test example d with observed attribute values a1 through a|A|,
where ai is a possible value of Ai (or a member of the domain of Ai), i.e.,

 d = <A1=a1, , A|A|=a|A|>.

The prediction is the class cj such that Pr(C=cj | A1=a1, , A|A|=a|A|) is
maximal. cj is called a maximum a posteriori (MAP) hypothesis.

By Bayes’ rule, the above quantity (17) can be expressed as

.
)Pr()|,...,Pr(

)Pr()|,...,Pr(
),...,Pr(

)Pr()|,...,Pr(
),...,|Pr(

||

1
||||11

||||11

||||11

||||11

||||11
















C

k
kkAA

jjAA

AA

jjAA

AAj

cCcCaAaA

cCcCaAaA

aAaA

cCcCaAaA

aAaAcC

 (18)

Pr(C=cj) is the class prior probability of cj, which can be estimated from
the training data. It is simply the fraction of the data in D with class cj.

If we are only interested in making a classification, Pr(A1=a1, ...,
A|A|=a|A|) is irrelevant for decision making because it is the same for every
class. Thus, only Pr(A1=a1, ..., A|A|=a|A| | C=cj) needs to be computed,
which can be written as

Pr(A1=a1, ..., A|A|=a|A| | C=cj)
= Pr(A1=a1 | A2=a2, ..., A|A|=a|A|, C=cj)Pr(A2=a2, ..., A|A|=a|A| | C=cj).

(19)

Recursively, the second term above (i.e., Pr(A2=a2, ..., A|A|=a|A||C=cj))
can be written in the same way (i.e., Pr(A2=a2|A3=a3 ..., A|A|=a|A|, C=cj)
Pr(A3=a3, ..., A|A|=a|A||C=cj)), and so on. However, to further our derivation,
we need to make an important assumption.
Conditional independence assumption: We assume that all attributes are
conditionally independent given the class C = cj. Formally, we assume,

3.6 Naïve Bayesian Classification 101

Pr(A1=a1 | A2=a2, ..., A|A|=a|A|, C=cj) = Pr(A1=a1 | C=cj) (20)

and similarly for A2 through A|A|. We then obtain





||

1
||||11)|Pr()|,...,Pr(

A

i
jiijAA cCaAcCaAaA (21)

.
)|Pr()Pr(

)|Pr()Pr(

),...,|Pr(

||

1

||

1

||

1

||||11

 



 










C

k

A

i
kiik

A

i
jiij

AAj

cCaAcC

cCaAcC

aAaAcC

(22)

Next, we need to estimate the prior probabilities Pr(C=cj) and the conditional
probabilities Pr(Ai=ai | C=cj) from the training data, which are straightforward.

set data in the examples ofnumber total
 class of examples ofnumber

)Pr(j
j

c
cC  (23)

.
 class of examples ofnumber

 class and with examples ofnumber
)|Pr(

j

jii
jii c

caA
cCaA


 (24)

If we only need a decision on the most probable class for each test in-
stance, we only need the numerator of Equation (22) since the denominator
is the same for every class. Thus, given a test case, we compute the follow-
ing to decide the most probable class for the test case:





||

1

)|Pr()Pr(maxarg
A

i
jiij

c
cCaAcCc

j

 (25)

Example 17: Suppose that we have the training data set in Fig. 3.17,
which has two attributes A and B, and the class C. We can compute all the
probability values required to learn a naïve Bayesian classifier.

A B C
m b t
m s t
g q t
h s t
g q t
g q f
g s f
h b f
h q f
m b f

Fig. 3.17. An example of a training data set

102 3 Supervised Learning

Pr(C = t) = 1/2, Pr(C= f) = 1/2

Pr(A=m | C=t) = 2/5 Pr(A=g | C=t) = 2/5 Pr(A=h | C=t) = 1/5
Pr(A=m | C=f) = 1/5 Pr(A=g | C=f) = 2/5 Pr(A=h | C=f) =2/5
Pr(B=b | C=t) = 1/5 Pr(B=s | C=t) = 2/5 Pr(B=q | C=t) = 2/5
Pr(B=b | C=f) = 2/5 Pr(B=s | C=f) = 1/5 Pr(B=q | C=f) = 2/5

Now we have a test example:
 A = m B = q C = ?

We want to know its class. Equation (25) is applied. For C = t, we have

.
25
2

5
2

5
2

2
1)|Pr()Pr(

2

1

 
j

jj tCaAtC

For class C = f, we have

.
25
1

5
2

5
1

2
1)|Pr()Pr(

2

1

 
j

jj fCaAfC

Since C = t is more probable, t is the predicted class of the test case. ▀

It is easy to see that the probabilities (i.e., Pr(C=cj) and Pr(Ai=ai | C=cj))
required to build a naïve Bayesian classifier can be found in one scan of
the data. Thus, the algorithm is linear in the number of training examples,
which is one of the great strengths of the naïve Bayes, i.e., it is extremely
efficient. In terms of classification accuracy, although the algorithm makes
the strong assumption of conditional independence, several researchers
have shown that its classification accuracies are surprisingly strong. See
experimental comparisons of various techniques in [15, 29, 40].

To learn practical naïve Bayesian classifiers, we still need to address
some additional issues: how to handle numeric attributes, zero counts, and
missing values. Below, we deal with each of them in turn.

Numeric Attributes: The above formulation of the naïve Bayesian learn-
ing assumes that all attributes are categorical. However, most real-life data
sets have numeric attributes. Therefore, in order to use the naïve Bayeisan
algorithm, each numeric attribute needs to be discretized into intervals.
This is the same as for class association rule mining. Existing discretiza-
tion algorithms in [16, 19] can be used.

Zero Counts: It is possible that a particular attribute value in the test set
never occurs together with a class in the training set. This is problematic
because it will result in a 0 probability, which wipes out all the other prob-
abilities Pr(Ai=ai | C=cj) when they are multiplied according to Equation

3.7 Naïve Bayesian Text Classification 103

(25) or Equation (22). A principled solution to this problem is to incorpo-
rate a small-sample correction into all probabilities.

Let nij be the number of examples that have both Ai = ai and C = cj. Let nj
be the total number of examples with C=cj in the training data set. The un-
corrected estimate of Pr(Ai=ai | C=cj) is nij/nj, and the corrected estimate is

ij

ij
jii mn

n
cCaA







)|Pr((26)

where mi is the number of values of attribute Ai (e.g., 2 for a Boolean at-
tribute), and  is a multiplicative factor, which is commonly set to  = 1/n,
where n is the total number of examples in the training set D [15, 29].
When  = 1, we get the well known Laplace’s law of succession [23]. The
general form of correction (also called smoothing) in Equation (26) is
called the Lidstone’s law of succession [37]. Applying the correction  =
1/n, the probabilities of Example 17 are revised. For example,

Pr(A=m | C=t) = (2+1/10) / (5 + 3*1/10) = 2.1/5.3 = 0.396
Pr(B=b | C=t) = (1+1/10) / (5 + 3*1/10) = 1.1/5.3 = 0.208.

Missing Values: Missing values are ignored, both in computing the prob-
ability estimates in training and in classifying test instances.

3.7 Naïve Bayesian Text Classification

Text classification or categorization is the problem of learning classifica-
tion models from training documents labeled with pre-defined classes.
That learned models are then used to classify future documents. For exam-
ple, we have a set of news articles of three classes or topics, Sport, Politics,
and Science. We want to learn a classifier that is able to classify future
news articles into these classes.

Due to the rapid growth of online documents in organizations and on the
Web, automated document classification is an important problem. Al-
though the techniques discussed in the previous sections can be applied to
text classification, it has been shown that they are not as effective as the
methods presented in this section and in the next two sections. In this sec-
tion, we study a naïve Bayesian learning method that is specifically formu-
lated for texts, which makes use of text specific characteristics. However,
the ideas are similar to those in Sect. 3.6. Below, we first present a prob-
abilistic framework for texts, and then study the naïve Bayesian equations
for their classification. There are several slight variations of this model.
This section is mainly based on the formulation given in [42].

104 3 Supervised Learning

3.7.1 Probabilistic Framework

The naïve Bayesian learning method for text classification is derived based
on a probabilistic generative model. It assumes that each document is
generated by a parametric distribution governed by a set of hidden pa-
rameters. Training data is used to estimate these parameters. The parame-
ters are then applied to classify each test document using Bayes rule by
calculating the posterior probability that the distribution associated with
a class (represented by the unobserved class variable) would have gener-
ated the given document. Classification then becomes a simple matter of
selecting the most probable class.

The generative model is based on two assumptions:

1. The data (or the text documents) are generated by a mixture model.
2. There is a one-to-one correspondence between mixture components and

document classes.

A mixture model models the data with a number of statistical distribu-
tions. Intuitively, each distribution corresponds to a data cluster and the pa-
rameters of the distribution provide a description of the corresponding
cluster. Each distribution in a mixture model is also called a mixture
component (the distribution can be of any kind). Fig. 3.15 plots two
probability density functions of a mixture of two Gaussian distributions
that generate a 1-dimensional data set of two classes, one distribution per
class, whose parameters (denoted by i) are the mean (i) and the standard
deviation (i), i.e., i = (i, i).

Fig. 3.18. Probability density functions of two distributions in a mixture model

Let the number of mixture components (or distributions) in a mixture
model be K, and the jth distribution has the parameters j. Let  be the set
of parameters of all components,  = {1, 2, …, K, 1, 2, …, K}, where
j is the mixture weight (or mixture probability) of the mixture compo-
nent j and j is the set of parameters of component j. The mixture weights

class 1 class 2

3.7 Naïve Bayesian Text Classification 105

are subject to the constraint .11  
K

j j The meaning of mixture weights (or
probabilities) will be clear below.

Let us see how the mixture model generates a collection of documents.
Recall the classes C in our classification problem are c1, c2, …, c|C|. Since
we assume that there is a one-to-one correspondence between mixture
components and classes, each class corresponds to a mixture component.
Thus |C| = K, and the jth mixture component can be represented by its cor-
responding class cj and is parameterized by j. The mixture weights are
class prior probabilities, i.e., j = Pr(cj|). The mixture model generates
each document di by:

1. first selecting a mixture component (or class) according to class prior
probabilities (i.e., mixture weights), j = Pr(cj|);

2. then having this selected mixture component (cj) generate a document di
according to its parameters, with distribution Pr(di|cj; ) or more pre-
cisely Pr(di|cj; j).

The probability that a document di is generated by the mixture model can
be written as the sum of total probability over all mixture components.
Note that to simplify the notation, we use cj instead of C = cj as in the pre-
vious section:

). ;|Pr()Θ|Pr()|Pr(
||

1

 


C

j
jiji cdcd (27)

Since each document is attached with its class label, we can now derive the
naïve Bayesian model for text classification. Note that in the above prob-
ability expressions, we include  to represent their dependency on  as we
employ a generative model. In an actual implementation, we need not be
concerned with , i.e., it can be ignored.

3.7.2 Naïve Bayesian Model

A text document consists of a sequence of sentences, and each sentence
consists of a sequence of words. However, due to the complexity of mod-
eling words sequence and their relationships, several assumptions are
made in the derivation of the Bayesian classifier. That is also why we call
the final classification model, the naïve Bayesian classification model.

Specifically, the naïve Bayesian classification treats each document as a
“bag” of words. Apart from the mixture model assumptions described
above, the generative model also makes the following words and document
length based assumptions:

106 3 Supervised Learning

1. Words of a document are generated independently of their context, that
is, independently of the other words in the same document given the
class label. This is the familiar naïve Bayesian assumption used before.

2. The probability of a word is independent of its position in the document.
For example, the probability of seeing the word “student” in the first po-
sition of the document is the same as seeing it in any other position.

3. Document length is independent of the document class.

With these assumptions, each document can be regarded as generated by a
multinomial distribution. In other words, each document is drawn from a
multinomial distribution of words with as many independent trials as the
length of the document. The words are from a given vocabulary V = {w1,
w2, …, w|V|}, |V| being the number of words in the vocabulary. To see why
this is a multinomial distribution, we give a short introduction to the multi-
nomial distribution.

A multinomial trial is a process that can result in any of k outcomes,
where k  2. Each outcome of a multinomial trial has a probability of oc-
currence. The probabilities of the k outcomes are denoted by p1, p2, …, pk.
For example, the rolling of a die is a multinomial trial, with six possible
outcomes 1, 2, 3, 4, 5, 6. For a fair die, p1 = p2 = … = pk = 1/6.

Now assume n independent trials are conducted, each with the k possi-
ble outcomes and the k probabilities, p1, p2, …, pk. Let us number the out-
comes 1, 2, 3, …, k. For each outcome, let Xt denote the number of trials
that result in that outcome. Then, X1, X2, …, Xk are discrete random vari-
ables. The collection of X1, X2, …, Xk is said to have the multinomial dis-
tribution with parameters, n, p1, p2, …, pk.

In our context, n corresponds to the length of a document, and the out-
comes correspond to all the words in the vocabulary V (k = |V|). p1, p2, …,
pk correspond to the probabilities of occurrence of the words in V in a doc-
ument, which are Pr(wt|cj; ). Xt is a random variable representing the
number of times that word wt appears in a document. We can thus directly
apply the probability function of the multinomial distribution to find the
probability of a document given its class (including the probability of doc-
ument length, Pr(|di|), which is assumed to be independent of the class):







||

1 !
);|Pr(

|!||)Pr(|);|Pr(
V

t ti

N
jt

iiji N

cw
ddcd

ti

, (28)

where Nti is the number of times that word wt occurs in document di,

||
||

1
i

V

t
ti dN 



, and 



||

1

1);|Pr(
V

t
jt cw . (29)

3.7 Naïve Bayesian Text Classification 107

The parameters j of the generative component for each class cj are the
probabilities of all words wt in V, written as Pr(wt|cj; ), and the probabili-
ties of document lengths, which are the same for all classes (or mixture
components) due to our assumption.

Parameter Estimation: The parameters can be estimated from the train-
ing data D = {D1, D2, …, D|C|}, where Dj is the subset of documents for
class cj (recall |C| is the number of classes). The vocabulary V is the set of
all distinctive words in D. Note that we do not need to estimate the prob-
ability of each document length as it is not used in our final classifier. The
estimate of  is written as ̂ . The parameters are estimated based on em-
pirical counts.

The estimated probability of word wt given class cj is simply the number
of times that wt occurs in the training data Dj (of class cj) divided by the to-
tal number of word occurrences in the training data for that class:

.
)|Pr(

)|Pr(
)ˆ;|Pr(||

1

||

1

||

1

 

 


V

s

D

i ijsi

D

i ijti

jt
dcN

dcN
cw (30)

In Equation (30), we do not use Dj explicitly. Instead, we include Pr(cj|di)
to achieve the same effect because Pr(cj|di) = 1 for each document in Dj
and Pr(cj|di) = 0 for documents of other classes. Again, Nti is the number of
times that word wt occurs in document di.

In order to handle 0 counts for infrequently occurring words that do not
appear in the training set, but may appear in the test set, we need to smooth
the probability to avoid probabilities of 0 or 1. This is the same problem as
in Sect. 3.6. The standard way of doing this is to augment the count of
each distinctive word with a small quantity  (0    1) or a fraction of a
word in both the numerator and the denominator. Thus, any word will have
at least a very small probability of occurrence.

.
)|Pr(||

)|Pr(
)ˆ;|Pr(||

1

||

1

||

1

 


 








V

s

D

i ijsi

D

i ijti

jt
dcNV

dcN
cw




 (31)

This is called the Lidstone smoothing (Lidstone’s law of succession).
When  = 1, the smoothing is known as the Laplace smoothing. Many
experiments have shown that  < 1 works better for text classification [1].
The best  value for a data set can be found through experiments using a
validation set or through cross-validation.

Finally, class prior probabilities, which are mixture weights j, can be
easily estimated using the training data as well,

108 3 Supervised Learning

.
||

)|Pr(
)ˆ|Pr(

||

1

D

dc
c

D

i ij

j

  (32)

Classification: Given the estimated parameters, at the classification time,
we need to compute the probability of each class cj for the test document
di. That is, we compute the probability that a particular mixture component
cj generated the given document di. Using the Bayes rule and Equations
(27), (28), (31), and (32), we have

,
)ˆ;|Pr()ˆ|Pr(

)ˆ;|Pr()ˆ|Pr(

)ˆ|Pr(
)ˆ;|Pr()ˆ|Pr(

)ˆ;|Pr(

||

1

||

1 ,

||

1 ,

 


 













C

r

d

k rkdr

d

k jkdj

i

jij
ij

i

i

i

i

cwc

cwc

d

cdc
dc

(33)

where wdi,k is the word in position k of document di (which is the same as
using wt and Nti). If the final classifier is to classify each document into a
single class, the class with the highest posterior probability is selected:

).ˆ;|Pr(maxarg  ijCc dc
j

 (34)

3.7.3 Discussion

Most assumptions made by naïve Bayesian learning are violated in prac-
tice. For example, words in a document are clearly not independent of each
other. The mixture model assumption of one-to-one correspondence be-
tween classes and mixture components may not be true either because a
class may contain documents from multiple topics. Despite such viola-
tions, researchers have shown that naïve Bayesian learning produces very
accurate models.

Naïve Bayesian learning is also very efficient. It scans the training data
only once to estimate all the probabilities required for classification. It can
be used as an incremental algorithm as well. The model can be updated
easily as new data comes in because the probabilities can be conveniently
revised. Naïve Bayesian learning is thus widely used for text classification.

The naïve Bayesian formulation presented here is based on a mixture of
multinomial distributions. There is also a formulation based on multi-
variate Bernoulli distributions in which each word in the vocabulary is a
binary feature, i.e., it either appears or does not appear in a document.

3.8 Support Vector Machines 109

Thus, it does not consider the number of times that a word occurs in a doc-
ument. Experimental comparisons show that multinomial formulation con-
sistently produces more accurate classifiers [42].

3.8 Support Vector Machines

Support vector machines (SVM) is another type of learning system [57],
which has many desirable qualities that make it one of most popular algo-
rithms. It not only has a solid theoretical foundation, but also performs
classification more accurately than most other algorithms in many applica-
tions, especially those applications involving very high dimensional data.
For instance, it has been shown by several researchers that SVM is perhaps
the most accurate algorithm for text classification. It is also widely used in
Web page classification and bioinformatics applications.

In general, SVM is a linear learning system that builds two-class clas-
sifiers. Let the set of training examples D be

{(x1, y1), (x2, y2), …, (xn, yn)},

where xi = (xi1, xi2, …, xir) is a r-dimensional input vector in a real-valued
space X  

r, yi is its class label (output value) and yi  {1, -1}. 1 denotes

the positive class and -1 denotes the negative class. Note that we use
slightly different notations in this section. We use y instead of c to repre-
sent a class because y is commonly used to represent a class in the SVM
literature. Similarly, each data instance is called an input vector and de-
noted by a bold face letter. In the following, we use bold face letters for all
vectors.

To build a classifier, SVM finds a linear function of the form

f(x) = w  x + b (35)

so that an input vector xi is assigned to the positive class if f(xi)  0, and to
the negative class otherwise, i.e.,









0if1
0if1

b

b
y

i

i
i xw

xw
 (36)

Hence, f(x) is a real-valued function f: X   r . w = (w1, w2, …, wr) 
 r is called the weight vector. b   is called the bias. w  x is the dot
product of w and x (or Euclidean inner product). Without using vector
notation, Equation (35) can be written as:

110 3 Supervised Learning

f(x1, x2, …, xr) = w1x1+w2x2 + … + wrxr + b,

where xi is the variable representing the ith coordinate of the vector x. For
convenience, we will use the vector notation from now on.

In essence, SVM finds a hyperplane

w  x + b = 0 (37)

that separates positive and negative training examples. This hyperplane is
called the decision boundary or decision surface.

Geometrically, the hyperplane w  x + b = 0 divides the input space in-
to two half spaces: one half for positive examples and the other half for
negative examples. Recall that a hyperplane is commonly called a line in a
2-dimensional space and a plane in a 3-dimensional space.

Fig. 3.19(A) shows an example in a 2-dimensional space. Positive in-
stances (also called positive data points or simply positive points) are rep-
resented with small filled rectangles, and negative examples are repre-
sented with small empty circles. The thick line in the middle is the
decision boundary hyperplane (a line in this case), which separates positive
(above the line) and negative (below the line) data points. Equation (35),
which is also called the decision rule of the SVM classifier, is used to
make classification decisions on test instances.

 (A) (B)

Fig. 3.19. (A) A linearly separable data set and (B) possible decision boundaries

Fig. 3.19(A) raises two interesting questions:

1. There are an infinite number of lines that can separate the positive and
negative data points as illustrated by Fig. 3.19(B). Which line should we
choose?

2. A hyperplane classifier is only applicable if the positive and negative
data can be linearly separated. How can we deal with nonlinear separa-
tions or data sets that require nonlinear decision boundaries?

w  x + b = 0

y = 1

y = -1

3.8 Support Vector Machines 111

The SVM framework provides good answers to both questions. Briefly, for
question 1, SVM chooses the hyperplane that maximizes the margin (the
gap) between positive and negative data points, which will be defined for-
mally shortly. For question 2, SVM uses kernel functions. Before we dive
into the details, we want to stress that SVM requires numeric data and only
builds two-class classifiers. At the end of the section, we will discuss how
these limitations may be addressed.

3.8.1 Linear SVM: Separable Case

This sub-section studies the simplest case of linear SVM. It is assumed that
the positive and negative data points are linearly separable.

From linear algebra, we know that in w  x + b = 0, w defines a direc-
tion perpendicular to the hyperplane (see Fig. 3.20). w is also called the
normal vector (or simply normal) of the hyperplane. Without changing
the normal vector w, varying b moves the hyperplane parallel to itself.
Note also that w  x + b = 0 has an inherent degree of freedom. We can
rescale the hyperplane to w  x + b = 0 for    + (positive real num-
bers) without changing the function/hyperplane.

Fig. 3.20. Separating hyperplanes and margin of SVM: Support vectors are circled

Since SVM maximizes the margin between positive and negative data
points, let us find the margin. Let d+ (respectively d) be the shortest dis-
tance from the separating hyperplane (w  x + b = 0) to the closest posi-
tive (negative) data point. The margin of the separating hyperplane is
d++d. SVM looks for the separating hyperplane with the largest margin,
which is also called the maximal margin hyperplane, as the final deci-
sion boundary. The reason for choosing this hyperplane to be the decision

w  x + b = 0
y = 1

y = -1

w

||||
||

w

b
H+: w  x + b = 1

H----: w  x + b = -1

x----

x+
d d+

margin

112 3 Supervised Learning

boundary is because theoretical results from structural risk minimization in
computational learning theory show that maximizing the margin mini-
mizes the upper bound of classification errors.

Let us consider a positive data point (x+, 1) and a negative data point (x----,

-1) that are closest to the hyperplane <w  x> + b = 0. We define two paral-

lel hyperplanes, H+ and H----, that pass through x+ and x---- respectively. H+ and

H---- are also parallel to <w  x> + b = 0. We can rescale w and b to obtain

H+: w  x+ + b = 1 (38)

H----: w  x---- + b = -1 (39)

such that w  xi + b  1 if yi = 1
 w  xi + b  -1 if yi = -1,

which indicate that no training data fall between hyperplanes H+ and H----.
Now let us compute the distance between the two margin hyperplanes

H+ and H----. Their distance is the margin (d+ + d). Recall from vector space
in linear algebra that the (perpendicular) Euclidean distance from a point xi
to a hyperplane w  x + b = 0 is:

||||
||

w

xw bi  , (40)

where ||w|| is the Euclidean norm of w,

22
2

2
1 ...|||| rwww  www . (41)

To compute d+, instead of computing the distance from x+ to the separat-
ing hyperplane w  x + b = 0, we pick up any point xs on w  x + b = 0
and compute the distance from xs to w  x+ + b = 1 by applying Equation
(40) and noticing that w  xs + b = 0,

||||
1

||||
|1|

ww

xw s 



b

d . (42)

Likewise, we can compute the distance from xs to w  x+ + b = -1 to ob-
tain d = 1/||w||. Thus, the decision boundary w  x + b = 0 lies half way
between H+ and H----. The margin is thus

3.8 Support Vector Machines 113

||||
2
w

  ddmargin (43)

In fact, we can compute the margin in many ways. For example, it can
be computed by finding the distances from the origin to the three hyper-
planes, or by projecting the vector (x2---- x1

+) to the normal vector w.
Since SVM looks for the separating hyperplane that maximizes the mar-

gin, this gives us an optimization problem. Since maximizing the margin is
the same as minimizing ||w||2/2 = w  w/2. We have the following linear
separable SVM formulation.

Definition (Linear SVM: Separable Case): Given a set of linearly sepa-
rable training examples,

D = {(x1, y1), (x2, y2), …, (xn, yn)},

learning is to solve the following constrained minimization problem,

niby ii ..., 2, 1, ,1)(:Subject to
2

 :Minimize





xw

ww
 (44)

Note that the constraint niby ii ..., 2, 1, ,1)( xw summarizes:

 w  xi + b  1 for yi = 1
 w  xi + b  -1 for yi = -1.

Solving the problem (44) will produce the solutions for w and b, which in turn
give us the maximal margin hyperplane w  x + b = 0 with the margin 2/||w||.

A full description of the solution method requires a significant amount
of optimization theory, which is beyond the scope of this book. We will
only use those relevant results from optimization without giving formal de-
finitions, theorems, or proofs.

Since the objective function is quadratic and convex and the constraints
are linear in the parameters w and b, we can use the standard Lagrange
multiplier method to solve it.

Instead of optimizing only the objective function (which is called un-
constrained optimization), we need to optimize the Lagrangian of the prob-
lem, which considers the constraints at the same time. The need to con-
sider constraints is obvious because they restrict the feasible solutions.
Since our inequality constraints are expressed using “”, the Lagrangian
is formed by the constraints multiplied by positive Lagrange multipliers
and subtracted from the objective function, i.e.,

114 3 Supervised Learning

]1)([
2
1

1

 


byL i

n

i
iiP xwww  , (45)

where i  0 are the Lagrange multipliers.
The optimization theory says that an optimal solution to (45) must sat-

isfy certain conditions, called Kuhn–Tucker conditions, which play a
central role in constrained optimization. Here, we give a brief introduction
to these conditions. Let the general optimization problem be

nibg

f

ii ..., 2, 1, ,)(:Subject to
)(:Minimize

x

x (46)

where f is the objective function and gi is a constraint function (which is
different from yi in (44) as yi is not a function but a class label of 1 or -1).
The Lagrangian of (46) is,

)])([)(
1

i

n

i
iiP bgfL  



xx  (47)

An optimal solution to the problem in (46) must satisfy the following
necessary (but not sufficient) conditions:

rj
x

L

j

P ..., ,2 ,1 ,0 

 (48)

nibg ii ..., 2, 1, ,0)(x (49)
nii ..., 2, 1, ,0  (50)

nigb iiii ..., 2, 1, ,0))(( x (51)

These conditions are called the Kuhn–Tucker conditions. Note that
(49) is simply the original set of constraints in (46). The condition (51) is
called the complementarity condition, which implies that at the solution
point,

If i > 0 then gi(x) = bi.
If gi(x) > bi then i = 0.

These mean that for active constraints, i > 0, whereas for inactive con-
straints, i = 0. As we will see later, they give some very desirable proper-
ties to SVM.

Let us come back to our problem. For the minimization problem (44),
the Kuhn–Tucker conditions are (52)–(56):

3.8 Support Vector Machines 115

rjxyw
w

L n

i
ijiij

j

P ..., ,2 ,1 ,0
1



 



 (52)

0
1



 



n

i
ii

P y
b

L  (53)

niby ii ..., 2, 1, ,01)( xw (54)
nii ..., 2, 1, ,0  (55)

niby iii ..., 2, 1, ,0)1)(( xw (56)

Inequality (54) is the original set of constraints. We also note that although
there is a Lagrange multiplier i for each training data point, the comple-
mentarity condition (56) shows that only those data points on the margin
hyperplanes (i.e., H+ and H----) can have i > 0 since for them yi(w  xi + b)
– 1 = 0. These data points are called support vectors, which give the name
to the algorithm, support vector machines. All the other data points have
i = 0.

In general, Kuhn–Tucker conditions are necessary for an optimal solu-
tion, but not sufficient. However, for our minimization problem with a
convex objective function and a set of linear constraints, the Kuhn–Tucker
conditions are both necessary and sufficient for an optimal solution.

Solving the optimization problem is still a difficult task due to the ine-
quality constraints. However, the Lagrangian treatment of the convex op-
timization problem leads to an alternative dual formulation of the problem,
which is easier to solve than the original problem, which is called the pri-
mal problem (LP is called the primal Lagrangian).

The concept of duality is widely used in the optimization literature. The
aim is to provide an alternative formulation of the problem which is more
convenient to solve computationally and/or has some theoretical signifi-
cance. In the context of SVM, the dual problem is not only easy to solve
computationally, but also crucial for using kernel functions to deal with
nonlinear decision boundaries as we do not need to compute w explicitly
(which will be clear later).

Transforming from the primal to its corresponding dual can be done by
setting to zero the partial derivatives of the Lagrangian (45) with respect to
the primal variables (i.e., w and b), and substituting the resulting relations
back into the Lagrangian. This is to simply substitute (52), which is

116 3 Supervised Learning

rjxyw
n

i
ijiij ..., ,2 ,1 ,

1




 (57)

and (53), which is

,0
1




n

i
iiy (58)

into the original Lagrangian (45) to eliminate the primal variables, which
gives us the dual objective function (denoted by LD),

.
2
1

1,1
 


ji

n

ji
jiji

n

i
iD yyL xx (59)

LD contains only dual variables and must be maximized under the simpler
constraints, (52) and (53), and i  0. Note that (52) is not needed as it has
already been substituted into the objective function LD. Hence, the dual of
the primal Equation (44) is

Maximize: .
2
1

1,1

 


ji

n

ji
jiji

n

i
iD yyL xx

Subject to:
. ..., ,2 ,1 ,0

0
1

ni

y

i

n

i
ii










(60)

This dual formulation is called the Wolfe dual. For our convex objec-
tive function and linear constraints of the primal, it has the property that
the i’s at the maximum of LD gives w and b occurring at the minimum of
LP (the primal).

Solving (60) requires numerical techniques and clever strategies beyond
the scope of this book. After solving (60), we obtain the values for i,
which are used to compute the weight vector w and the bias b using Equa-
tions (52) and (56) respectively. Instead of depending on one support vec-
tor (i > 0) to compute b, in practice all support vectors are used to com-
pute b, and then take their average as the final value for b. This is because
the values of i are computed numerically and can have numerical errors.
Our final decision boundary (maximal margin hyperplane) is

0 


byb
svi

iii xxxw  , (61)

where sv is the set of indices of the support vectors in the training data.

3.8 Support Vector Machines 117

Testing: We apply (61) for classification. Given a test instance z, we clas-
sify it using the following:

.)(







 

svi
iii bysignbsign zxzw  (62)

If (62) returns 1, then the test instance z is classified as positive; otherwise,
it is classified as negative.

3.8.2 Linear SVM: Non-separable Case

The linear separable case is the ideal situation. In practice, however, the
training data is almost always noisy, i.e., containing errors due to various
reasons. For example, some examples may be labeled incorrectly. Fur-
thermore, practical problems may have some degree of randomness. Even
for two identical input vectors, their labels may be different.

For SVM to be useful, it must allow noise in the training data. However,
with noisy data the linear separable SVM will not find a solution because
the constraints cannot be satisfied. For example, in Fig. 3.21, there is a
negative point (circled) in the positive region, and a positive point in the
negative region. Clearly, no solution can be found for the problem.

Recall that the primal for the linear separable case was:

. ..., 2, 1, ,1)(:Subject to
2

 :Minimize

niby ii 



xw

ww
 (63)

To allow errors in data, we can relax the margin constraints by introduc-
ing slack variables, i ( 0) as follows:

 w  xi + b  1  i for yi = 1
 w  xi + b  1 + i for yi = -1.

Thus we have the new constraints:

Subject to: yi(w  xi + b)  1  i, i =1, 2, …, n,
 i  0, i =1, 2, …, n.

The geometric interpretation is shown in Fig. 3.21, which has two error da-
ta points xa and xb (circled) in wrong regions.

118 3 Supervised Learning

Fig. 3.21. The non-separable case: xa and xb are error data points

We also need to penalize the errors in the objective function. A natural
way is to assign an extra cost for errors to change the objective function to

kn

i
iC 









 
12

 :Minimize ww , (64)

where C  0 is a user specified parameter. The resulting optimization prob-
lem is still a convex programming problem. k = 1 is commonly used,
which has the advantage that neither i nor its Lagrangian multipliers ap-
pear in the dual formulation. We only discuss the k = 1 case below.

The new optimization problem becomes:

. ..., 2, 1, ,0
 ..., 2, 1, ,1)(:Subject to

2
 :Minimize

1

ni

niby

C

i

iii

n

i
i





 








xw

ww

(65)

This formulation is called the soft-margin SVM. The primal Lagrangian
(denoted by LP) of this formulation is as follows





n

i
iiii

n

i
ii

n

i
iP byCL

111
]1)([

2
1  xwww , (66)

where i, i  0 are the Lagrange multipliers. The Kuhn–Tucker condi-
tions for optimality are the following:

rjxyw
w

L n

i
ijiij

j

P ..., ,2 ,1 ,0
1



 



 (67)

w  x + b = 0

||||
||

w

b

w

||||w
b

xb

||||w
a

xa

3.8 Support Vector Machines 119

0
1



 



n

i
ii

P y
b

L  (68)

niC
L

ii
i

P ..., ,2 ,1 ,0 






 (69)

niby iii ..., 2, 1, ,01)( xw (70)
nii ..., 2, 1, ,0  (71)
nii ..., 2, 1, ,0  (72)
nii ..., 2, 1, ,0  (73)

niby iiii ..., 2, 1, ,0)1)((  xw (74)
niii ..., 2, 1, ,0  (75)

As the linear separable case, we then transform the primal to its dual by
setting to zero the partial derivatives of the Lagrangian (66) with respect to
the primal variables (i.e., w, b and i), and substituting the resulting rela-
tions back into the Lagrangian. That is, we substitute Equations (67), (68)
and (69) into the primal Lagrangian (66). From Equation (69), C  i  i
= 0, we can deduce that i  C because i  0. Thus, the dual of (65) is

Maximize:  


ji

n

ji
jiji

n

i
iD yyL xxα

1,1 2
1)(

Subject to:
. ..., ,2 ,1 ,0

0
1

niC

y

i

n

i
ii










(76)

Interestingly, i and its Lagrange multipliers i are not in the dual and the
objective function is identical to that for the separable case. The only dif-
ference is the constraint i  C (inferred from Cii = 0 and i  0).

The dual problem (76) can also be solved numerically, and the resulting
i values are then used to compute w and b. w is computed using Equation
(67) and b is computed using the Kuhn–Tucker complementarity condi-
tions (74) and (75). Since we do not have values for i, we need to get around
it. From Equations (69), (74) and (75), we observe that if 0 < i < C then both
i = 0 and .0)1)( iii by xw Thus, we can use any training data
point for which 0 < i < C and Equation (74) (with i = 0) to compute b:

.1
1

 


j

n

i
iii

i

y
y

b xx (77)

120 3 Supervised Learning

Again, due to numerical errors, we can compute all possible b’s and
then take their average as the final b value.

Note that Equations (69), (74) and (75) in fact tell us more:

i = 0  yi(w  xi + b)  1 and i = 0
0 < i < C  yi(w  xi + b) = 1 and i = 0
i = C  yi(w  xi + b)  1 and i  0

(78)

Similar to support vectors for the separable case, (78) shows one of the
most important properties of SVM: the solution is sparse in i. Most train-
ing data points are outside the margin area and their i’s in the solution are
0. Only those data points that are on the margin (i.e., yi(w  xi + b) = 1,
which are support vectors in the separable case), inside the margin (i.e., i
= C and yi(w  xi + b) < 1), or errors are non-zero. Without this sparsity
property, SVM would not be practical for large data sets.

The final decision boundary is (we note that many i’s are 0)

.0
1

 


byb
n

i
iii xxxw  (79)

The decision rule for classification (testing) is the same as the separable
case, i.e., sign(w  x + b). We notice that for both Equations (79) and
(77), w does not need to be explicitly computed. This is crucial for using
kernel functions to handle nonlinear decision boundaries.

Finally, we still have the problem of determining the parameter C. The
value of C is usually chosen by trying a range of values on the training set
to build multiple classifiers and then to test them on a validation set before
selecting the one that gives the best classification result on the validation
set. Cross-validation is commonly used as well.

3.8.3 Nonlinear SVM: Kernel Functions

The SVM formulations discussed so far require that positive and negative
examples can be linearly separated, i.e., the decision boundary must be a
hyperplane. However, for many real-life data sets, the decision boundaries
are nonlinear. To deal with nonlinearly separable data, the same formula-
tion and solution techniques as for the linear case are still used. We only
transform the input data from its original space into another space (usually
a much higher dimensional space) so that a linear decision boundary can
separate positive and negative examples in the transformed space, which is
called the feature space. The original data space is called the input space.

Thus, the basic idea is to map the data in the input space X to a feature
space F via a nonlinear mapping ,

3.8 Support Vector Machines 121

).(
:

xx 
 FX 

 (80)

After the mapping, the original training data set {(x1, y1), (x2, y2), …,
(xn, yn)} becomes:

{((x1), y1), ((x2), y2), …, ((xn), yn)}. (81)

The same linear SVM solution method is then applied to F. Fig. 3.19 illus-
trates the process. In the input space (figure on the left), the training exam-
ples cannot be linearly separated. In the transformed feature space (figure
on the right), they can be separated linearly.

Fig. 3.22. Transformation from the input space to the feature space

With the transformation, the optimization problem in (65) becomes

. ..., 2, 1, ,0
 ..., 2, 1, ,1))((:Subject to

2
 :Minimize

1

ni

niby

C

i

iii

n

i
i





 








xw

ww

(82)

Its corresponding dual is

Maximize: .)()(
2
1

1,1

 


ji

n

ji
jiji

n

i
iD yyL xx 

Subject to:
. ..., ,2 ,1 ,0

0
1

niC

y

i

n

i
ii










(83)

The final decision rule for classification (testing) is

by
n

i
iii 

1
)()(xx  (84)



x
Input space X

x

x

x
x

o

Feature space F

o

o
o

(x)
(x)
(x) (x)

(x)
(o)

(o) (o) (o)

122 3 Supervised Learning

Example 18: Suppose our input space is 2-dimensional, and we choose the
following transformation (mapping):

)2 , ,() ,(21
2

2
2

121 xxxxxx (85)

The training example ((2, 3), -1) in the input space is transformed to the
following training example in the feature space:

 ((4, 9, 8.5), -1). ▀

The potential problem with this approach of transforming the input data
explicitly to a feature space and then applying the linear SVM is that it
may suffer from the curse of dimensionality. The number of dimensions in
the feature space can be huge with some useful transformations (see be-
low) even with reasonable numbers of attributes in the input space. This
makes it computationally infeasible to handle.

Fortunately, explicit transformations can be avoided if we notice that in
the dual representation both the construction of the optimal hyperplane
(83) in F and the evaluation of the corresponding decision/classification
function (84) only require the evaluation of dot products (x)  (z) and
never the mapped vector (x) in its explicit form. This is a crucial point.

Thus, if we have a way to compute the dot product (x)  (z) in the
feature space F using the input vectors x and z directly, then we would not
need to know the feature vector (x) or even the mapping function  itself.
In SVM, this is done through the use of kernel functions, denoted by K,

K(x, z) = (x)  (z), (86)

which are exactly the functions for computing dot products in the trans-
formed feature space using input vectors x and z. An example of a kernel
function is the polynomial kernel,

K(x, z) = x  zd. (87)

Example 19: Let us compute this kernel with degree d = 2 in a 2-
dimensional space. Let x = (x1, x2) and z = (z1, z2).

,)()(
)2()2(

2

)(

21
2

2
2

121
2

2
2

1

2
2

2
22211

2
1

2
1

2
2211

2








zx

zx


zz,z,zxx,x,x

zxzxzxzx

zxzx

(88)

3.8 Support Vector Machines 123

where),2()(21
2

2
2

1 xx,x,x x  which shows that the kernel x  z2 is a
dot product in the transformed feature space. The number of dimensions in
the feature space is 3. Note that (x) is actually the mapping function used
in Example 18. Incidentally, in general the number of dimensions in the
feature space for the polynomial kernel function x  zd is 







 
d

dr 1 , which

is a huge number even with a reasonable number (r) of attributes in the in-
put space. Fortunately, by using the kernel function in (87), the huge num-
ber of dimensions in the feature space does not matter. ▀

The derivation in (88) is only for illustration purposes. In fact, we do not
need to find the mapping function. We can simply apply the kernel func-
tion directly. That is, we replace all the dot products (x)  (z) in (83)
and (84) with the kernel function K(x, z) (e.g., the polynomial kernel in
(87)). This strategy of directly using a kernel function to replace dot prod-
ucts in the feature space is called the kernel trick. We never need to ex-
plicitly know what  is.

However, the question is, how do we know whether a function is a ker-
nel without performing the derivation such as that in (88)? That is, how do
we know that a kernel function is indeed a dot product in some feature
space? This question is answered by a theorem called the Mercer’s theo-
rem, which we will not discuss here. See [12] for details.

It is clear that the idea of kernel generalizes the dot product in the input
space. The dot product is also a kernel with the feature map being the identity

K(x, z) = x  z. (89)

Commonly used kernels include

Polynomial: dK)(),( zxzx (90)

Gaussian RBF: 2|||| 2
),(zxzx  eK (91)

where   , d  N, and  > 0.

Summary

SVM is a linear learning system that finds the maximal margin decision
boundary to separate positive and negative examples. Learning is formu-
lated as a quadratic optimization problem. Nonlinear decision boundaries
are found via a transformation of the original data to a much higher dimen-
sional feature space. However, this transformation is never explicitly done.

124 3 Supervised Learning

Instead, kernel functions are used to compute dot products required in
learning without the need to even know the transformation function.

Due to the separation of the learning algorithm and kernel functions,
kernels can be studied independently from the learning algorithm. One can
design and experiment with different kernel functions without touching the
underlying learning algorithm.

SVM also has some limitations:

1. It works only in real-valued space. For a categorical attribute, we need
to convert its categorical values to numeric values. One way to do this is
to create an extra binary attribute for each categorical value, and set the
attribute value to 1 if the categorical value appears, and 0 otherwise.

2. It allows only two classes, i.e., binary classification. For multiple class
classification problems, several strategies can be applied, e.g., one-
against-rest, and error-correcting output coding [14].

3. The hyperplane produced by SVM is hard to understand by users. It is
difficult to picture where the hyperplane is in a high-dimensional space.
The matter is made worse by kernels. Thus, SVM is commonly used in
applications that do not required human understanding.

3.9 K-Nearest Neighbor Learning

All the previous learning methods learn some kinds of models from the
training data, e.g., decision trees, sets of rules, posterior probabilities, and
hyperplanes. These learning methods are often called eager learning me-
thods as they learn models of the data before testing. In contrast, k-nearest
neighbor (kNN) is a lazy learning method in the sense that no model is
learned from the training data. Learning only occurs when a test example
needs to be classified. The idea of kNN is extremely simple and yet quite
effective in many applications, e.g., text classification.

It works as follows: Again let D be the training data set. Nothing will be
done on the training examples. When a test instance d is presented, the al-
gorithm compares d with every training example in D to compute the simi-
larity or distance between them. The k most similar (closest) examples in
D are then selected. This set of examples is called the k nearest neighbors
of d. d then takes the most frequent class among the k nearest neighbors.
Note that k = 1 is usually not sufficient for determining the class of d due
to noise and outliers in the data. A set of nearest neighbors is needed to ac-
curately decide the class. The general kNN algorithm is given in Fig. 3.23.

3.9 K-Nearest Neighbor Learning 125

2 Choose the k examples in D that are nearest to d, denote the set by P ( D);
3 Assign d the class that is the most frequent class in P (or the majority class).

Fig. 3.23. The k-nearest neighbor algorithm

The key component of a kNN algorithm is the distance/similarity func-
tion, which is chosen based on applications and the nature of the data. For
relational data, the Euclidean distance is commonly used. For text docu-
ments, cosine similarity is a popular choice. We will introduce these dis-
tance functions and many others in the next chapter.

The number of nearest neighbors k is usually determined by using a va-
lidation set, or through cross validation on the training data. That is, a
range of k values are tried, and the k value that gives the best accuracy on
the validation set (or cross validation) is selected. Fig. 3.21 illustrates the
importance of choosing the right k.

Example 20: In Fig. 3.24, we have two classes of data, positive (filled
squares) and negative (empty circles). If 1-nearest neighbor is used, the
test data point  will be classified as negative, and if 2-nearest neighbors
are used, the class cannot be decided. If 3-nearest neighbors are used, the
class is positive as two positive examples are in the 3-nearest neighbors.

Fig. 3.24. An illustration of k-nearest neighbor classification

Despite its simplicity, researchers have showed that the classification
accuracy of kNN can be quite strong and in many cases as accurate as
those elaborated methods. For instance, it is showed in [62] that kNN per-
forms equally well as SVM for some text classification tasks. kNN is also
very flexible. It can work with any arbitrarily shaped decision boundaries.

kNN is, however, slow at the classification time. Due to the fact that
there is no model building, each test instance is compared with every train-
ing example at the classification time, which can be quite time consuming
especially when the training set D and the test set are large. Another disad-
vantage is that kNN does not produce an understandable model. It is thus
not applicable if an understandable model is required in the application.

1-nearst neighbor
2-nearst neighbor
3-nearst neighbor

Algorithm kNN(D, d, k)
1 Compute the distance between d and every example in D;

126 3 Supervised Learning

3.10 Ensemble of Classifiers

So far, we have studied many individual classifier building techniques. A
natural question to ask is: can we build many classifiers and then combine
them to produce a better classifier? Yes, in many cases. This section de-
scribes two well known ensemble techniques, bagging and boosting. In
both these methods, many classifiers are built and the final classification
decision for each test instance is made based on some forms of voting of
the committee of classifiers.

3.10.1 Bagging

Given a training set D with n examples and a base learning algorithm, bag-
ging (for Bootstrap Aggregating) works as follows [4]:

Training:

1. Create k bootstrap samples S1, S2, and Sk. Each sample is produced by
drawing n examples at random from D with replacement. Such a sample
is called a bootstrap replicate of the original training set D. On aver-
age, each sample Si contains 63.2% of the original examples in D, with
some examples appearing multiple times.

2. Build a classifier based on each sample Si. This gives us k classifiers.
All the classifiers are built using the same base learning algorithm.

Testing: Classify each test (or new) instance by voting of the k classifiers
(equal weights). The majority class is assigned as the class of the instance.

Bagging can improve the accuracy significantly for unstable learning
algorithms, i.e., a slight change in the training data resulting in a major
change in the output classifier. Decision tree and rule induction methods
are examples of unstable learning methods. k-nearest neighbor and naïve
Bayesian methods are examples of stable techniques. For stable classifiers,
Bagging may sometime degrade the accuracy.

3.10.2 Boosting

Boosting is a family of ensemble techniques, which, like bagging, also
manipulates the training examples and produces multiple classifiers to im-
prove the classification accuracy [53]. Here we only describe the popular
AdaBoost algorithm given in [20]. Unlike bagging, AdaBoost assigns a
weight to each training example.

3.10 Ensemble of Classifiers 127

Training: AdaBoost produces a sequence of classifiers (also using the
same base learner). Each classifier is dependent on the previous one, and
focuses on the previous one’s errors. Training examples that are incor-
rectly classified by the previous classifiers are given higher weights.

Let the original training set D be {(x1, y1), (x2, y2), …, (xn, yn)}, where xi
is an input vector, yi is its class label and yi  Y (the set of class labels).
With a weight attached to each example, we have, {(x1, y1, w1), (x2, y2, w2),
…, (xn, yn, wn)}, and i wi = 1. The AdaBoost algorithm is given in Fig. 3.25.

The algorithm builds a sequence of k classifiers (k is specified by the
user) using a base learner, called BaseLeaner in line 3. Initially, the weight
for each training example is 1/n (line 1). In each iteration, the training data
set becomes Dt, which is the same as D but with different weights. Each it-
eration builds a new classifier ft (line 3). The error of ft is calculated in line
4. If it is too large, delete the iteration and exit (lines 5–7). Lines 9–11 up-
date and normalize the weights for building the next classifier.

AdaBoost(D, Y, BaseLeaner, k)
1. Initialize D1(wi)  1/n for all i; // initialize the weights
2. for t = 1 to k do
3. ft  BaseLearner(Dt); // build a new classifier ft
4. 




iitt yDfi

itt wDe
))((:

)(
x

; // compute the error of ft

5. if et > ½ then // if the error is too large,
6. k  k – 1; // remove the iteration and
7. exit-loop // exit
8. else
9. t  et / (1 et);

10 Dt+1(wi)  Dt(wi)  ;
 otherwise1

))((if



  iittt yDf x // update the weights

11. Dt+1(wi) 
  


n

i it

it

wD

wD

1 1

1

)(
)(// normalize the weights

12. endif
13. endfor

14. 



yft tYy

final

t

f
)(:

1logmaxarg)(
x

x


 // the final output classifier

Fig. 3.25. The AdaBoost algorithm

128 3 Supervised Learning

Testing: For each test case, the results of the series of classifiers are com-
bined to determine the final class of the test case, which is shown in line
14 of Fig. 3.25 (a weighted voting).

Boosting works better than bagging in most cases as shown in [48]. It
also tends to improve performance more when the base learner is unstable.

Bibliographic Notes

Supervised learning has been studied extensively by the machine learning
community. The book by Mitchell [45] covers most learning techniques
and is easy to read. Duda et al.’s pattern classification book is also a great
reference [17]. Most data mining books have one or two chapters on su-
pervised learning, e.g., those by Han and Kamber [24], Hand et al. [25],
Tan et al. [56], and Witten and Frank [59].

For decision tree induction, Quinlan’s book [49] has all the details and
the code of his popular decision tree system C4.5. Other well-known sys-
tems include CART by Breiman et al. [6] and CHAD by Kass [28]. Scal-
ing up of decision tree algorithms was also studied in several papers. These
algorithms can have the data on disk, and are thus able to run with huge
data sets. See [22] for an algorithm and also additional references.

Rule induction algorithms generate rules directly from the data. Well-
known systems include AQ by Michalski et al. [44], CN2 by Clark and
Niblett [9], FOIL by Quinlan [50], FOCL by Pazzani et al. [47], I-REP by
Furnkranz and Widmer [21], and RIPPER by Cohen [10].

Using association rules to build classifiers was proposed by Liu et al. in
[39], which also reported the CBA system. CBA selects a small subset of
class association rules as the classifier. Other classifier building techniques
include combining multiple rules by Li et al. [36], using rules as features
by Meretakis and Wüthrich [43], Antonie and Zaiane [2], Deshpande and
Karypis [13], and Lesh et al. [31], generating a subset of rules by Cong et
al. [11], Wang et al. [58], Yin and Han [63], and Zaki and Aggarwal [64].
Additional systems include those by Li et al. [35], Yang et al. [61], etc.

The naïve Bayesian classification model described in Sect. 3.6 is based
on the papers by Domingos and Pazzani [15], Kohavi et al. [29] and Lang-
ley et al [30]. The naïve Bayesian classification for text discussed in Sect.
3.7 is based on the multinomial formulation given by McCallum and Ni-
gam [42]. This model was also used earlier by Lewis and Gale [33], and Li
and Yamanishi [34]. Another formulation of naïve Bayesian classification
is based on the multivariate Bernoulli model, which was used by Lewis
[32], and Robertson and Sparck-Jones [52].

Bibliography 129

Support vector machines (SVM) was first introduced by Vapnik and his
colleagues in 1992 [3]. Further details are given in his 1995 book [57].
Two other books on SVM and kernel methods are those by Cristianini and
Shawe-Taylor [12] and Scholkopf and Smola [54]. The discussion on
SVM in this chapter is heavily influenced by Cristianini and Shawe-
Taylor’s book and the tutorial paper by Burges [8]. Two popular SVM sys-
tems are SVMLight (available at http://svmlight.joachims.org/) and LIBSVM
(available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/).

Existing classifier ensemble methods include bagging by Breiman [4],
boosting by Schapire [53] and Freund and Schapire [20], random forest al-
so by Breiman [5], stacking by Wolpert [60], random trees by Fan [18],
and many others.

Bibliography

1. Agrawal, R., R. Bayardo, and R. Srikant. Athena: Mining-based interactive
management of text databases. Advances in Database Technology—EDBT
2000, 2000: p. 365-379.

2. Antonie, M. and O. Zaïane. Text document categorization by term
association. In Proceedings of IEEE International Conference on Data Minig
(ICDM-2002), 2002.

3. Boser, B., I. Guyon, and V. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of Fifth Annual Workshop on Computational
Learning Theory, 1992.

4. Breiman, L. Bagging predictors. Machine learning, 1996, 24(2): p. 123-140.
5. Breiman, L. Random forests. Machine learning, 2001, 45(1): p. 5-32.
6. Breiman, L., J.H. Friedman, R. Olshen, and C.L. Stone. Classification and

Regression Trees. 1984: Chapman and Hall.
7. Brunk, C. and M. Pazzani. An investigation of noise-tolerant relational

concept learning algorithms. In Proceedings of International Workshop on
Macine Learning, 1991.

8. Burges, C. A tutorial on support vector machines for pattern recognition. Data
mining and knowledge discovery, 1998, 2(2): p. 121-167.

9. Clark, P. and T. Niblett. The CN2 induction algorithm. Machine learning,
1989, 3(4): p. 261-283.

10. Cohen, W. Fast effective rule induction. In Proceedings of International
Conference on Machine Learning (ICML-1995), 1995.

11. Cong, G., A. Tung, X. Xu, F. Pan, and J. Yang. Farmer: Finding interesting
rule groups in microarray datasets. In Proceedings of ACM SIGMOD
Conference on Management of Data (SIGMOD-2004), 2004.

12. Cristianini, N. and J. Shawe-Taylor. An introduction to support Vector
Machines: and other kernel-based learning methods. 2000: Cambridge Univ
Press.

130 3 Supervised Learning

13. Deshpande, M. and G. Karypis. Using conjunction of attribute values for
classification. In Proceedings of ACM Intl. Conf. on Information and
Knowledge Management (CIKM-2002), 2002.

14. Dietterich, T. and G. Bakiri. Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research, 1995, 2.

15. Domingos, P. and M. Pazzani. On the optimality of the simple Bayesian
classifier under zero-one loss. Machine learning, 1997, 29(2): p. 103-130.

16. Dougherty, J., R. Kohavi, and M. Sahami. Supervised and unsupervised
discretization of continuous features. In Proceedings of International
Conference on Machine Learning (ICML-1995), 1995.

17. Duda, R., P. Hart, and D. Stork. Pattern classification. 2001: John Wiley &
Sons Inc.

18. Fan, W. On the optimality of probability estimation by random decision trees.
In Proceedings of National Conf. on Artificial Intelligence (AAAI-2004),
2004.

19. Fayyad, U. and K. Irani. Multi-interval discretization of continuous-valued
attributes for classification learning. In Proceedings of the Intl. Joint Conf. on
Artificial Intelligence (IJCAI-1993), 1993.

20. Freund, Y. and R. Schapire. Experiments with a new boosting algorithm. In
Proceedings of International Conference on Machine Learning (ICML-1996),
1996.

21. Fürnkranz, J. and G. Widmer. Incremental reduced error pruning. In
Proceedings of International Conference on Machine Learning (ICML-1994),
1994.

22. Gehrke, J., R. Ramakrishnan, and V. Ganti. RainForest—a framework for fast
decision tree construction of large datasets. Data mining and knowledge
discovery, 2000, 4(2): p. 127-162.

23. Good, I. The estimation of probabilities: an essay on modern Bayesian
methods. 1965: MIT Press.

24. Han, J. and M. Kamber. Data mining: concepts and techniques. 2006:
Morgan Kaufmann Publishers.

25. Hand, D., H. Mannila, and P. Smyth. Principles of data mining. 2001: MIT
Press.

26. Hyafil, L. and R. Rivest. Constructing optimal binary decision trees is NP-
complete. Information Processing Letters, 1976, 5(1): p. 15-17.

27. Jindal, N. and B. Liu. Identifying comparative sentences in text documents. In
Proceedings of ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR-2006), 2006.

28. Kass, G. An exploratory technique for investigating large quantities of
categorical data. Applied statistics, 1980, 29(2): p. 119-127.

29. Kohavi, R., B. Becker, and D. Sommerfield. Improving simple bayes. In
Proceedings of European Conference on Machine Learning (ECML-1997),
1997.

30. Langley, P., W. Iba, and K. Thompson. An analysis of Bayesian classifiers. In
Proceedings of National Conf. on Artificial Intelligence (AAAI-1992), 1992.

Bibliography 131

31. Lesh, N., M. Zaki, and M. Ogihara. Mining features for sequence
classification. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-1999), 1999.

32. Lewis, D. An evaluation of phrasal and clustered representations on a text
categorization task. In Proceedings of ACM SIGIR Conf. on Research and
Development in Information Retrieval (SIGIR-1992), 1992.

33. Lewis, D. and W. Gale. A sequential algorithm for training text classifiers. In
Proceedings of ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR-1994), 1994.

34. Li, H. and K. Yamanishi. Document classification using a finite mixture
model. In Proceedings of Annual Meeting of the Association for
Computational Linguistics (ACL-1997), 1997.

35. Li, J., G. Dong, K. Ramamohanarao, and L. Wong. DeEPs: A new instance-
based lazy discovery and classification system. Machine learning, 2004,
54(2): p. 99-124.

36. Li, W., J. Han, and J. Pei. CMAR: Accurate and efficient classification based
on multiple class-association rules. In Proceedings of IEEE International
Conference on Data Mining (ICDM-2001), 2001.

37. Lidstone, G. Note on the General Case of the Bayes-Laplace formula for
Inductive or a Posteriori Probabilities. Transaction of the Faculty of
Actuuaries, 1920, 8: p. 182-192.

38. Lin, W., S. Alvarez, and C. Ruiz. Efficient adaptive-support association rule
mining for recommender systems. Data mining and knowledge discovery,
2002, 6(1): p. 83-105.

39. Liu, B., W. Hsu, and Y. Ma. Integrating classification and association rule
mining. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-1998), 1998.

40. Liu, B., Y. Ma, and C. Wong. Classification using association rules:
weaknesses and enhancements. Data mining for scientific applications, 2001.

41. Liu, B., K. Zhao, J. Benkler, and W. Xiao. Rule interestingness analysis using
OLAP operations. In Proceedings of ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-2006), 2006.

42. McCallum, A. and K. Nigam. A comparison of event models for naive bayes
text classification. In Proceedings of AAAI–98 Workshop on Learning for
Text Categorization, 1998.

43. Meretakis, D. and B. Wuthrich. Extending na ve Bayes classifiers using long
itemsets. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-1999), 1999.

44. Michalski, R., I. Mozetic, J. Hong, and N. Lavrac. The multi-purpose
incremental learning system AQ15 and its testing application to three medical
domains. In Proceedings of National Conf. on Artificial Intelligence (AAAI-
86), 1986.

45. Mitchell, T. Machine Learning. 1997: McGraw Hill.
46. Mobasher, B., H. Dai, T. Luo, and M. Nakagawa. Effective personalization

based on association rule discovery from web usage data. In Proceedings of
ACM Workshop on Web Information and Data Management, 2001.

132 3 Supervised Learning

47. Pazzani, M., C. Brunk, and G. Silverstein. A knowledge-intensive approach to
learning relational concepts. In Proceedings of Intl. Workshop on Machine
Learning (ML-1991), 1991.

48. Quinlan, J. Bagging, boosting, and C4. 5. In Proceedings of National Conf. on
Artificial Intelligence (AAAI-1996), 1996.

49. Quinlan, J. C4. 5: programs for machine learning. 1993: Morgan Kaufmann
Publishers.

50. Quinlan, J. Learning logical definitions from relations. Machine learning,
1990, 5(3): p. 239-266.

51. Rivest, R. Learning decision lists. Machine learning, 1987, 2(3): p. 229-246.
52. Robertson, S. and K. Jones. Relevance weighting of search terms. Journal of

the American Society for Information Science, 1976, 27(3): p. 129-146.
53. Schapire, R. The strength of weak learnability. Machine learning, 1990, 5(2):

p. 197-227.
54. Scholkopf, B. and A. Smola. Learning with kernels. 2002: MIT Press.
55. Shannon, E. A mathematical theory of communication. Bell System

Technical Journal, 1948, 27: p. 379–423.
56. Tan, P., M. Steinbach, and V. Kumar. Introduction to data mining. 2006:

Pearson Addison Wesley Boston.
57. Vapnik, V. The nature of statistical learning theory. 1995: Springer Verlag.
58. Wang, K., S. Zhou, and Y. He. Growing decision trees on support-less

association rules. In Proceedings of ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-2000), 2000: ACM.

59. Witten, I. and E. Frank. Data Mining: Practical machine learning tools and
techniques. 2005: Morgan Kaufmann Publishers.

60. Wolpert, D. Stacked Generalization. Neural Networks, 1992, 5: p. 241–259.
61. Yang, Q., T. Li, and K. Wang. Building association-rule based sequential

classifiers for web-document prediction. Data mining and knowledge
discovery, 2004, 8(3): p. 253-273.

62. Yang, Y. and X. Liu. A re-examination of text categorization methods. In
Proceedings of ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR-1999), 1999.

63. Yin, X. and J. Han. CPAR: Classification based on predictive association
rules. In Proceedings of SIAM International Conference on Data Mining
(SDM-2003), 2003.

64. Zaki, M. and C. Aggarwal. XRules: an effective structural classifier for XML
data. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2003), 2003.

4 Unsupervised Learning

Supervised learning discovers patterns in the data that relate data attributes
to a class attribute. These patterns are then utilized to predict the values of
the class attribute of future data instances. These classes indicate some
real-world predictive or classification tasks such as determining whether a
news article belongs to the category of sports or politics, or whether a pa-
tient has a particular disease. However, in some other applications, the data
have no class attributes. The user wants to explore the data to find some in-
trinsic structures in them. Clustering is one technology for finding such
structures. It organizes data instances into similarity groups, called clus-
ters such that the data instances in the same cluster are similar to each oth-
er and data instances in different clusters are very different from each oth-
er. Clustering is often called unsupervised learning, because unlike
supervised learning, class values denoting an a priori partition or grouping
of the data are not given. Note that according to this definition, we can also
say that association rule mining is an unsupervised learning task. However,
due to historical reasons, clustering is closely associated and even syn-
onymous with unsupervised learning while association rule mining is not.
We follow this convention, and describe some main clustering techniques
in this chapter.

Clustering has been shown to be one of the most commonly used data
analysis techniques. It also has a long history, and has been used in almost
every field, e.g., medicine, psychology, botany, sociology, biology, arche-
ology, marketing, insurance, library science, etc. In recent years, due to the
rapid increase of online documents and the expansion of the Web, text
document clustering too has become a very important task. In Chap. 12,
we will also see that clustering is very useful in Web usage mining.

4.1 Basic Concepts

Clustering is the process of organizing data instances into groups whose
members are similar in some way. A cluster is therefore a collection of da-
ta instances which are “similar” to each other and are “dissimilar” to data

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_4,
© Springer-Verlag Berlin Heidelberg 2011

133

134 4 Unsupervised Learning

instances in other clusters. In the clustering literature, a data instance is al-
so called an object as the instance may represent an object in the real-
world. It is also called a data point as it can be seen as a point in an r-
dimension space, where r is the number of attributes in the data.

Fig. 4.1 shows a 2-dimensional data set. We can clearly see three groups
of data points. Each group is a cluster. The task of clustering is to find the
three clusters hidden in the data. Although it is easy for a human to visu-
ally detect clusters in a 2-dimensional or even 3-demensional space, it be-
comes very hard, if not impossible, to detect clusters visually as the num-
ber of dimensions increases. Additionally, in many applications, clusters
are not as clear-cut or well separated as the three clusters in Fig. 4.1. Au-
tomatic techniques are thus needed for clustering.

Fig. 4.1. Three natural groups or clusters of data points

After seeing the example in Fig. 4.1, you may ask the question: What is
clustering for? To answer it, let us see some application examples from
different domains.

Example 1: A company wants to conduct a marketing campaign to pro-
mote its products. The most effective strategy is to design a set of person-
alized marketing materials for each individual customer according to
his/her profile and financial situation. However, this is too expensive for a
large number of customers. At the other extreme, the company designs
only one set of marketing materials to be used for all customers. This one-
size-fits-all approach, however, may not be effective. The most cost-
effective approach is to segment the customers into a small number of
groups according to their similarities and design some targeted marketing
materials for each group. This segmentation task is commonly done using
clustering algorithms, which partition customers into similarity groups. In
marketing research, clustering is often called segmentation. ▀

Example 2: A company wants to produce and sell T-shirts. Similar to the
case above, on one extreme, for each customer it can measure his/her size
and have a T-shirt tailor-made for him/her. Obviously, this T-shirt is going
to be expensive. On the other extreme, only one size of T-shirts is made.

4.1 Basic Concepts 135

Since this size may not fit most people, the company might not be able to
sell as many T-shirts. Again, the most cost effective way is to group people
based on their sizes and make a different generalized size of T-shirts for
each group. This is why we see small, medium and large size T-shirts in
shopping malls, and seldom see T-shirts with only a single size. The me-
thod used to group people according to their sizes is clustering. The proc-
ess is usually as follows: The T-shirt manufacturer first samples a large
number of people and measure their sizes to produce a measurement data-
base. It then clusters the data, which partitions the data into some similar-
ity subsets, i.e., clusters. For each cluster, it computes the average of the
sizes and then uses the average to mass-produce T-shirts for all people of
similar size. ▀

Example 3: Everyday, news agencies around the world generate a large
number of news articles. If a Web site wants to collect these news articles
to provide an integrated news service, it has to organize the collected arti-
cles according to some topic hierarchy. The question is: What should the
topics be, and how should they be organized? One possibility is to employ
a group of human editors to do the job. However, the manual organization
is costly and very time consuming, which makes it unsuitable for news and
other time sensitive information. Throwing all the news articles to the
readers with no organization is clearly not an option. Although classifica-
tion is able to classify news articles according to predefined topics, it is not
applicable here because classification needs training data, which have to be
manually labeled with topic classes. Since news topics change constantly
and rapidly, the training data would need to change constantly as well,
which is infeasible via manual labeling. Clustering is clearly a solution for
this problem because it automatically groups a stream of news articles
based on their content similarities. Hierarchical clustering algorithms
can also organize documents hierarchically, i.e., each topic may contain
sub-topics and so on. Topic hierarchies are particularly useful for texts. ▀

The above three examples indicate two types of clustering, partitional
and hierarchical. Indeed, these are the two most important types of clus-
tering approaches. We will study some specific algorithms of these two
types of clustering.

Our discussion and examples above also indicate that clustering needs a
similarity function to measure how similar two data points (or objects) are,
or alternatively a distance function to measure the distance between two
data points. We will use distance functions in this chapter. The goal of
clustering is thus to discover the intrinsic grouping of the input data
through the use of a clustering algorithm and a distance function.

136 4 Unsupervised Learning

4.2 K-means Clustering

The k-means algorithm is the best known partitional clustering algo-
rithm. It is perhaps also the most widely used among all clustering algo-
rithms due to its simplicity and efficiency. Given a set of data points and
the required number of k clusters (k is specified by the user), this algorithm
iteratively partitions the data into k clusters based on a distance function.

4.2.1 K-means Algorithm

Let the set of data points (or instances) D be

{x1, x2, …, xn},

where xi = (xi1, xi2, …, xir) is a vector in a real-valued space X  
r, and r

is the number of attributes in the data (or the number of dimensions of the
data space). The k-means algorithm partitions the given data into k clus-
ters. Each cluster has a cluster center, which is also called the cluster cen-
troid. The centroid, usually used to represent the cluster, is simply the
mean of all the data points in the cluster, which gives the name to the algo-
rithm, i.e., since there are k clusters, thus k means. Fig. 4.2 gives the k-
means clustering algorithm.

At the beginning, the algorithm randomly selects k data points as the
seed centroids. It then computes the distance between each seed centroid
and every data point. Each data point is assigned to the centroid that is
closest to it. A centroid and its data points therefore represent a cluster.
Once all the data points in the data are assigned, the centroid for each clus-
ter is re-computed using the data points in the current cluster. This process
repeats until a stopping criterion is met. The stopping (or convergence) cri-
terion can be any one of the following:

Algorithm k-means(k, D)
1 choose k data points as the initial centroids (cluster centers)
2 repeat
3 for each data point x  D do
4 compute the distance from x to each centroid;
5 assign x to the closest centroid // a centroid represents a cluster
6 endfor
7 re-compute the centroid using the current cluster memberships
8 until the stopping criterion is met

Fig. 4.2. The k-means algorithm

4.2 K-means Clustering 137

1. no (or minimum) re-assignments of data points to different clusters.
2. no (or minimum) change of centroids.
3. minimum decrease in the sum of squared error (SSE),

,),(
1

2
 


k

j C
j

j

distSSE
x

mx (1)

where k is the number of required clusters, Cj is the jth cluster, mj is the
centroid of cluster Cj (the mean vector of all the data points in Cj), and
dist(x, mj) is the distance between data point x and centroid mj.

The k-means algorithm can be used for any application data set where the
mean can be defined and computed. In Euclidean space, the mean of a
cluster is computed with:

,
||

1 



ji C

i
j

j C x

xm (2)

where |Cj| is the number of data points in cluster Cj. The distance from a
data point xi to a cluster mean (centroid) mj is computed with

.)(...)()(

||||),(
22

22
2

11 jrirjiji

jiji

mxmxmx

dist



 mxmx

(3)

Example 4: Fig. 4.3(A) shows a set of data points in a 2-dimensional
space. We want to find 2 clusters from the data, i.e., k = 2. First, two data
points (each marked with a cross) are randomly selected to be the initial
centroids (or seeds) shown in Fig. 4.3(A). The algorithm then goes to the
first iteration (the repeat-loop).

Iteration 1: Each data point is assigned to its closest centroid to form 2
clusters. The resulting clusters are given in Fig. 4.3(B). Then the cen-
troids are re-computed based on the data points in the current clusters
(Fig. 4.3(C)). This leads to iteration 2.

Iteration 2: Again, each data point is assigned to its closest new centroid to
form two new clusters shown in Fig. 4.3(D). The centroids are then re-
computed. The new centroids are shown in Fig. 4.3(E).

Iteration 3: The same operations are performed as in the first two itera-
tions. Since there is no re-assignment of data points to different clusters
in this iteration, the algorithm ends.

The final clusters are those given in Fig. 4.3(G). The set of data points in
each cluster and its centroid are output to the user.

138 4 Unsupervised Learning

Fig. 4.3. The working of the k-means algorithm through an example ▀

One problem with the k-means algorithm is that some clusters may be-
come empty during the clustering process since no data point is assigned to
them. Such clusters are called empty clusters. To deal with an empty clus-
ter, we can choose a data point as the replacement centroid, e.g., a data
point that is furthest from the centroid of a large cluster. If the sum of the
squared error (SSE) is used as the stopping criterion, the cluster with the
largest squared error may be used to find another centroid.

+
+

+ +

+ +

(A). Random selection of k seeds (or centroids)

+
+

+ +

+ +

Iteration 2: (D). Cluster assignment (E). Re-compute centroids

+ +

Iteration 3: (F). Cluster assignment (G). Re-compute centroids

Iteration 1: (B). Cluster assignment (C). Re-compute centroids

4.2 K-means Clustering 139

4.2.2 Disk Version of the K-means Algorithm

The k-means algorithm may be implemented in such a way that it does not
need to load the entire data set into the main memory, which is useful for
large data sets. Notice that the centroids for the k clusters can be computed
incrementally in each iteration because the summation in Equation (2) can
be calculated separately first. During the clustering process, the number of
data points in each cluster can be counted incrementally as well. This gives
us a disk based implementation of the algorithm (Fig. 4.4), which produces
exactly the same clusters as that in Fig. 4.2, but with the data on disk. In
each for-loop, the algorithm simply scans the data once.

The whole clustering process thus scans the data t times, where t is the
number of iterations before convergence, which is usually not very large
(< 50). In applications, it is quite common to set a limit on the number of
iterations because later iterations typically result in only minor changes to
the clusters. Thus, this algorithm may be used to cluster large data sets
which cannot be loaded into the main memory. Although there are several
special algorithms that scale-up clustering algorithms to large data sets,
they all require sophisticated techniques.

Algorithm disk-k-means(k, D)
1 Choose k data points as the initial centriods mj, j = 1, …, k;
2 repeat
3 initialize sj  0, j = 1, …, k; // 0 is a vector with all 0’s
4 initialize nj  0, j = 1, …, k; // nj is the number of points in cluster j
5 for each data point x  D do
6);,(minarg

},...2,1{
i

ki
distj mx




7 assign x to the cluster j;
8 sj  sj + x;
9 nj  nj + 1;
10 endfor
11 mj  sj/nj, j = 1, …, k;
12 until the stopping criterion is met

Fig. 4.4. A simple disk version of the k-means algorithm

Let us give some explanations of this algorithm. Line 1 does exactly the
same thing as the algorithm in Fig. 4.2. Line 3 initializes vector sj which is
used to incrementally compute the sum in Equation (2) (line 8). Line 4 ini-
tializes nj which records the number of data points assigned to cluster j
(line 9). Lines 6 and 7 perform exactly the same tasks as lines 4 and 5 in
the original algorithm in Fig. 4.2. Line 11 re-computes the centroids,

140 4 Unsupervised Learning

which are used in the next iteration. Any of the three stopping criteria may
be used here. If the sum of squared error is applied, we can modify the al-
gorithm slightly to compute the sum of square error incrementally.

4.2.3 Strengths and Weaknesses

The main strengths of the k-means algorithm are its simplicity and effi-
ciency. It is easy to understand and easy to implement. Its time complexity
is O(tkn), where n is the number of data points, k is the number of clusters,
and t is the number of iterations. Since both k and t are normally much
smaller than n, the k-means algorithm is considered a linear algorithm in
the number of data points.

The weaknesses and ways to address them are as follows:

1. The algorithm is only applicable to data sets where the notion of the
mean is defined. Thus, it is difficult to apply to categorical data sets.
There is, however, a variation of the k-means algorithm called k-modes,
which clusters categorical data. The algorithm uses the mode instead of
the mean as the centroid. Assuming that the data instances are described
by r categorical attributes, the mode of a cluster Cj is a tuple mj = (mj1,
mj2, …, mjr) where mji is the most frequent value of the ith attribute of
the data instances in cluster Cj. The similarity (or distance) between a
data instance and a mode is the number of values that they match (or do
not match).

2. The user needs to specify the number of clusters k in advance. In prac-
tice, several k values are tried and the one that gives the most desirable
result is selected. We will discuss the evaluation of clusters later.

3. The algorithm is sensitive to outliers. Outliers are data points that are
very far away from other data points. Outliers could be errors in the data
recording or some special data points with very different values. For ex-
ample, in an employee data set, the salary of the Chief-Executive-
Officer (CEO) of the company may be considered as an outlier because
its value could be many times larger than everyone else. Since the k-
means algorithm uses the mean as the centroid of each cluster, outliers
may result in undesirable clusters as the following example shows.

Example 5: In Fig. 4.5(A), due to an outlier data point, the two result-
ing clusters do not reflect the natural groupings in the data. The ideal
clusters are shown in Fig. 4.5(B). The outlier should be identified and
reported to the user. ▀

There are several methods for dealing with outliers. One simple me-
thod is to remove some data points in the clustering process that are

4.2 K-means Clustering 141

much further away from the centroids than other data points. To be safe,
we may want to monitor these possible outliers over a few iterations and
then decide whether to remove them. It is possible that a very small
cluster of data points may be outliers. Usually, a threshold value is used
to make the decision.

Fig. 4.5. Clustering with and without the effect of outliers ▀

Another method is to perform random sampling. Since in sampling
we only choose a small subset of the data points, the chance of selecting
an outlier is very small. We can use the sample to do a pre-clustering
and then assign the rest of the data points to these clusters, which may
be done in any of the three ways below:
 Assign each remaining data point to the centroid closest to it. This is

the simplest method.
 Use the clusters produced from the sample to perform supervised

learning (classification). Each cluster is regarded as a class. The clus-
tered sample is thus treated as the training data for learning. The re-
sulting classifier is then applied to classify the remaining data points
into appropriate classes or clusters.

 Use the clusters produced from the sample as seeds to perform semi-
supervised learning. Semi-supervised learning is a new learning
model that learns from a small set of labeled examples (with classes)
and a large set of unlabeled examples (without classes). In our case,
the clustered sample data are used as the labeled set and the remain-
ing data points are used as the unlabeled set. The results of the learn-

++
outlier

++

outlier

(A): Undesirable clusters

(B): Ideal clusters

142 4 Unsupervised Learning

ing naturally cluster all the remaining data points. We will study this
technique in the next chapter.

4. The algorithm is sensitive to initial seeds, which are the initially se-
lected centroids. Different initial seeds may result in different clusters.
Thus, if the sum of squared error is used as the stopping criterion, the
algorithm only achieves local optimal. The global optimal is computa-
tionally infeasible for large data sets.

Example 6: Fig. 4.6 shows the clustering process of a 2-dimensional da-
ta set. The goal is to find two clusters. The randomly selected initial
seeds are marked with crosses in Fig. 4.6(A). Fig. 4.6(B) gives the clus-
tering result of the first iteration. Fig. 4.6(C) gives the result of the sec-
ond iteration. Since there is no re-assignment of data points, the algo-
rithm stops.

Fig. 4.6. Poor initial seeds (centroids)

If the initial seeds are different, we may obtain entirely different clus-
ters as Fig. 4.7 shows. Fig. 4.7 uses the same data as Fig. 4.6, but differ-
ent initial seeds (Fig. 4.7(A)). After two iterations, the algorithm ends,
and the final clusters are given in Fig. 4.7(C). These two clusters are
more reasonable than the two clusters in Fig. 4.6(C), which indicates
that the choice of the initial seeds in Fig. 4.6(A) is poor.

To select good initial seeds, researchers have proposed several meth-
ods. One simple method is to first compute the mean m (the centroid) of
the entire data set (any random data point rather than the mean can be

+

+

(A). Random selection of seeds (centroids)

 (B). Iteration 1 (C). Iteration 2

+

+

+

+

4.2 K-means Clustering 143

used as well). Then the first seed data point x1 is selected to be the fur-
thest from the mean m. The second data point x2 is selected to be the
furthest from x1. Each subsequent data point xi is selected such that the
sum of distances from xi to those already selected data points is the larg-
est. However, if the data has outliers, the method will not work well. To
deal with outliers, again, we can randomly select a small sample of the
data and perform the same operation on the sample. As we discussed
above, since the number of outliers is small, the chance that they show
up in the sample is very small.

Fig. 4.7. Good initial seeds (centroids) ▀

Another method is to sample the data and use the sample to perform
hierarchical clustering, which we will discuss in Sect. 4.4. The centroids
of the resulting k clusters are used as the initial seeds.

Yet another approach is to manually select seeds. This may not be a
difficult task for text clustering applications because it is easy for human
users to read some documents and pick some good seeds. These seeds
may help improve the clustering result significantly and also enable the
system to produce clusters that meet the user’s needs.

5. The k-means algorithm is not suitable for discovering clusters that are
not hyper-ellipsoids (or hyper-spheres).

Example 7: Fig. 4.8(A) shows a 2-dimensional data set. There are two
irregular shaped clusters. However, the two clusters are not hyper-

(A). Random selection of k seeds (centroids)

 (B). Iteration 1 (C). Iteration 2

+
+

+
+

++

144 4 Unsupervised Learning

ellipsoids, which means that the k-means algorithm will not be able to
find them. Instead, it may find the two clusters shown in Fig. 4.8(B).

The question is: are the two clusters in Fig. 4.8(B) necessarily bad?
The answer is no. It depends on the application. It is not true that a clus-
tering algorithm that is able to find arbitrarily shaped clusters is always
better. We will discuss this issue in Sect. 4.3.2.

Fig. 4.8. Natural (but irregular) clusters and k-means clusters ▀

Despite these weaknesses, k-means is still the most popular algorithm in
practice due to its simplicity, efficiency and the fact that other clustering
algorithms have their own lists of weaknesses. There is no clear evidence
showing that any other clustering algorithm performs better than the k-
means algorithm in general, although it may be more suitable for some
specific types of data or applications than k-means. Note also that compar-
ing different clustering algorithms is a very difficult task because unlike
supervised learning, nobody knows what the correct clusters are, especially
in high dimensional spaces. Although there are several cluster evaluation
methods, they all have drawbacks. We will discuss the evaluation issue in
Sect. 4.9.

4.3 Representation of Clusters

Once a set of clusters is found, the next task is to find a way to represent
the clusters. In some applications, outputting the set of data points that
makes up the cluster to the user is sufficient. However, in other applica-
tions that involve decision making, the resulting clusters need to be repre-
sented in a compact and understandable way, which also facilitates the
evaluation of the resulting clusters.

 (A): Two natural clusters (B): k-means clusters

+

+

4.3 Representation of Clusters 145

4.3.1 Common Ways of Representing Clusters

There are three main ways to represent clusters:

1. Use the centroid of each cluster to represent the cluster. This is the most
popular way. The centroid tells where the center of the cluster is. One
may also compute the radius and standard deviation of the cluster to de-
termine the spread in each dimension. The centroid representation alone
works well if the clusters are of the hyper-spherical shape. If clusters are
elongated or are of other shapes, centroids may not be suitable.

2. Use classification models to represent clusters. In this method, we treat
each cluster as a class. That is, all the data points in a cluster are re-
garded as having the same class label, e.g., the cluster ID. We then run a
supervised learning algorithm on the data to find a classification model.
For example, we may use the decision tree learning to distinguish the
clusters. The resulting tree or set of rules provide an understandable rep-
resentation of the clusters.

Fig. 4.9 shows a partitioning produced by a decision tree algorithm.
The original clustering gave three clusters. Data points in cluster 1 are
represented by 1’s, data points in cluster 2 are represented by 2’s, and
data points in cluster 3 are represented by 3’s. We can see that the three
clusters are separated and each can be represented with a rule.

x ≤ 2  cluster 1
x > 2, y > 1.5  cluster 2
x > 2, y ≤ 1.5  cluster 3

Fig. 4.9. Description of clusters using rules

We make two remarks about this representation method:

 The partitioning in Fig. 4.9 is an ideal case as each cluster is repre-
sented by a single rectangle (or rule). However, in most applications,
the situation may not be so ideal. A cluster may be split into a few

1

1 1

1
1

2 1 1

1
1

1 1
1 2

1
2

2
2
2

2

2 2 2

2

3

3 3
3 3 3

3

3

3

2 x

 y

1.5

2

2

146 4 Unsupervised Learning

hyper-rectangles or rules. However, there is usually a dominant or
large rule which covers most of the data points in the cluster.

 One can use the set of rules to evaluate the clusters to see whether
they conform to some existing domain knowledge or intuition.

3. Use frequent values in each cluster to represent it. This method is main-
ly for clustering of categorical data (e.g., in the k-modes clustering). It is
also the key method used in text clustering, where a small set of fre-
quent words in each cluster is selected to represent the cluster.

4.3.2 Clusters of Arbitrary Shapes

Hyper-elliptical and hyper-spherical clusters are usually easy to represent,
using their centroids together with spreads (e.g., standard deviations),
rules, or a combination of both. However, other arbitrary shaped clusters,
like the natural clusters shown in Fig. 4.8(A), are hard to represent espe-
cially in high dimensional spaces.

A common criticism about an algorithm like k-means is that it is not
able to find arbitrarily shaped clusters. However, this criticism may not be
as bad as it sounds because whether one type of clustering is desirable or
not depends on the application. Let us use the natural clusters in Fig.
4.8(A) to discuss this issue together with an artificial application.

Example 8: Assume that the data shown in Fig. 4.8(A) is the measurement
data of people’s physical sizes. We want to group people based on their
sizes into only two groups in order to mass-produce T-shirts of only 2 sizes
(say large and small). Even if the measurement data indicate two natural
clusters as in Fig. 4.8(A), it is difficult to use the clusters because we need
centroids of the clusters to design T-shirts. The clusters in Fig. 4.8(B) are
in fact better because they provide us the centroids that are representative
of the surrounding data points. If we use the centroids of the two natural
clusters as shown in Fig. 4.10 to make T-shirts, it is clearly inappropriate
because they are too near to each other in this case. In general, it does not
make sense to define the concept of center or centroid for an irregularly
shaped cluster. ▀

Note that clusters of arbitrary shapes can be found by neighborhood
search algorithms such as some hierarchical clustering methods (see the
next section), and density-based clustering methods [17]. Due to the diffi-
culty of representing an arbitrarily shaped cluster, an algorithm that finds
such clusters may only output a list of data points in each cluster, which
are not as easy to use. These kinds of clusters are more useful in spatial
and image processing applications, but less useful in others.

4.4 Hierarchical Clustering 147

Fig. 4.10. Two natural clusters and their centroids

4.4 Hierarchical Clustering

Hierarchical clustering is another major clustering approach. It has a num-
ber of desirable properties which make it popular. It clusters by producing
a nested sequence of clusters like a tree (also called a dendrogram). Sin-
gleton clusters (individual data points) are at the bottom of the tree and one
root cluster is at the top, which covers all data points. Each internal cluster
node contains child cluster nodes. Sibling clusters partition the data points
covered by their common parent. Fig. 4.11 shows an example.

Fig. 4.11. An illustration of hierarchical clustering

At the bottom of the tree, there are 5 clusters (5 data points). At the next
level, cluster 6 contains data points 1 and 2, and cluster 7 contains data
points 4 and 5. As we move up the tree, we have fewer and fewer clusters.
Since the whole clustering tree is stored, the user can choose to view clus-
ters at any level of the tree.

+
+

9

8

6

1 32

7

4 5

148 4 Unsupervised Learning

There are two main types of hierarchical clustering methods:

Agglomerative (bottom up) clustering: It builds the dendrogram (tree)
from the bottom level, and merges the most similar (or nearest) pair of
clusters at each level to go one level up. The process continues until all
the data points are merged into a single cluster (i.e., the root cluster).

Divisive (top down) clustering: It starts with all data points in one cluster,
the root. It then splits the root into a set of child clusters. Each child
cluster is recursively divided further until only singleton clusters of in-
dividual data points remain, i.e., each cluster with only a single point.

Agglomerative methods are much more popular than divisive methods. We
will focus on agglomerative hierarchical clustering. The general agglom-
erative algorithm is given in Fig. 4.12.

Algorithm Agglomerative(D)
1 Make each data point in the data set D a cluster,
2 Compute all pair-wise distances of x1, x2, …, xn  D;
2 repeat
3 find two clusters that are nearest to each other;
4 merge the two clusters form a new cluster c;
5 compute the distance from c to all other clusters;
12 until there is only one cluster left

Fig. 4.12. The agglomerative hierarchical clustering algorithm

Example 9: Fig. 4.13 illustrates the working of the algorithm. The data
points are in a 2-dimensional space. Fig. 4.13(A) shows the sequence of
nested clusters, and Fig. 4.13(B) gives the dendrogram. ▀

Fig. 4.13. The working of an agglomerative hierarchical clustering algorithm

4

3

1

p1 p3p2

p1
p2

p3
p4

p5
2

p4 p5

4

1 2

3

(A). Nested clusters (B) Dendrogram

4.4 Hierarchical Clustering 149

Unlike the k-means algorithm, which uses only the centroids in distance
computation, hierarchical clustering may use anyone of several methods to
determine the distance between two clusters. We introduce them next.

4.4.1 Single-Link Method

In single-link (or single linkage) hierarchical clustering, the distance be-
tween two clusters is the distance between two closest data points in the
two clusters (one data point from each cluster). In other words, the single-
link clustering merges the two clusters in each step whose two nearest data
points (or members) have the smallest distance, i.e., the two clusters with
the smallest minimum pair-wise distance. The single-link method is suit-
able for finding non-elliptical shape clusters. However, it can be sensitive
to noise in the data, which may cause the chain effect and produce strag-
gly clusters. Fig. 4.14 illustrates this situation. The noisy data points (rep-
resented with filled circles) in the middle connect two natural clusters and
split one of them.

Fig. 4.14. The chain effect of the single-link method

With suitable data structures, single-link hierarchical clustering can be
done in O(n2) time, where n is the number of data points. This is much
slower than the k-means method, which performs clustering in linear time.

4.4.2 Complete-Link Method

In complete-link (or complete linkage) clustering, the distance between
two clusters is the maximum of all pair-wise distances between the data
points in the two clusters. In other words, the complete-link clustering
merges the two clusters in each step whose two furthest data points have
the smallest distance, i.e., the two clusters with the smallest maximum
pair-wise distance. Fig. 4.15 shows the clusters produced by complete-link
clustering using the same data as in Fig. 4.14.

150 4 Unsupervised Learning

Fig. 4.15. Clustering using the complete-link method

Although the complete-link method does not have the problem of chain
effects, it can be sensitive to outliers. Despite this limitation, it has been
observed that the complete-link method usually produces better clusters
than the single-link method. The worse case time complexity of the com-
plete-link clustering is O(n2log n), where n is the number of data points.

4.4.3 Average-Link Method

This is a compromise between the sensitivity of complete-link clustering to
outliers and the tendency of single-link clustering to form long chains that
do not correspond to the intuitive notion of clusters as compact, spherical
objects. In this method, the distance between two clusters is the average
distance of all pair-wise distances between the data points in two clusters.
The time complexity of this method is also O(n2log n).

Apart from the above three popular methods, there are several others.
The following two methods are also commonly used:

Centroid method: In this method, the distance between two clusters is the
distance between their centroids.

Ward's method: In this method, the distance between two clusters is de-
fined as the increase in the sum of squared error (distances) from that of
two clusters to that of one merged cluster. Thus, the clusters to be merged
in the next step are the ones that will increase the sum the least. Recall that
the sum of squared error (SSE) is one of the measures used in the k-means
clustering (Equation (1)).

4.4.4. Strengths and Weaknesses

Hierarchical clustering has several advantages compared to the k-means
and other partitioning clustering methods. It is able to take any form of dis-
tance or similarity function. Moreover, unlike the k-means algorithm
which only gives k clusters at the end, the hierarchy of clusters from hier-

4.5 Distance Functions 151

archical clustering enables the user to explore clusters at any level of detail
(or granularity). In many applications, this resulting hierarchy can be very
useful in its own right. For example, in text document clustering, the clus-
ter hierarchy may represent a topic hierarchy in the documents.

Some studies have shown that agglomerative hierarchical clustering of-
ten produces better clusters than the k-means method. It can also find clus-
ters of arbitrary shapes, e.g., using the single-link method.

Hierarchical clustering also has several weaknesses. As we discussed
with the individual methods, the single-link method may suffer from the
chain effect, and the complete-link method is sensitive to outliers. The
main shortcomings of all hierarchical clustering methods are their compu-
tation complexities and space requirements, which are at least quadratic.
Compared to the k-means algorithm, this is very inefficient and not practi-
cal for large data sets. One can use sampling to deal with the problems. A
small sample is taken to do clustering and then the rest of the data points
are assigned to each cluster either by distance comparison or by supervised
learning (see Sect. 4.3.1). Some scale-up methods may also be applied to
large data sets. The main idea of the scale-up methods is to find many
small clusters first using an efficient algorithm, and then to use the cen-
troids of these small clusters to represent the clusters to perform the final
hierarchical clustering (see the BIRCH method in [54]).

4.5 Distance Functions

Distance or similarity functions play a central role in all clustering algo-
rithms. Numerous distance functions have been reported in the literature
and used in applications. Different distance functions are also used for dif-
ferent types of attributes (also called variables).

4.5.1 Numeric Attributes

The most commonly used distance functions for numeric attributes are the
Euclidean distance and Manhattan (city block) distance. Both distance
measures are special cases of a more general distance function called the
Minkowski distance. We use dist(xi, xj) to denote the distance between
two data points of r dimensions. The Minkowski distance is:

,)||...|||(|),(
1

2211
hh

jrir
h

ji
h

jiji xxxxxxdist xx (4)

where h is a positive integer.

152 4 Unsupervised Learning

If h = 2, it is the Euclidean distance,

.)(...)()(),(22
22

2
11 jrirjijiji xxxxxxdist xx (5)

If h = 1, it is the Manhattan distance,

.||...||||),(2211 jrirjijiji xxxxxxdist xx (6)

Other common distance functions include:

Weighted Euclidean distance: A weight is associated with each attribute
to express its importance in relation to other attributes.

.)(...)()(),(22
222

2
111 jrirrjijiji xxwxxwxxwdist xx (7)

Squared Euclidean distance: the standard Euclidean distance is squared
in order to place progressively greater weights on data points that are fur-
ther apart. The distance is

.)(...)()(),(22
22

2
11 jrirjijiji xxxxxxdist xx (8)

Chebychev distance: This distance measure is appropriate in cases where
one wants to define two data points as “different” if they are different on
any one of the attributes. The Chebychev distance is

|).| ..., |,| |,max(|),(2211 jrirjijiji xxxxxxdist xx (9)

4.5.2 Binary and Nominal Attributes

The above distance measures are only appropriate for numeric attributes.
For binary and nominal attributes (also called unordered categorical at-
tributes), we need different functions. We discuss binary attributes first.

A binary attribute has two states or values, usually represented by 1
and 0. The two states have no numerical ordering. For example, Gender
has two values, male and female, which have no ordering relations but are
just different. Existing distance functions for binary attributes are based on
the proportion of value matches in two data points. A match means that,
for a particular attribute, both data points have the same value. It is easy to
use a confusion matrix to introduce these measures. Given the ith and jth
data points, xi and xj, we can construct the confusion matrix in Fig. 4.16.

To give the distance functions, we further divide binary attributes into
symmetric and asymmetric attributes. For different types of attributes,
different distance functions need to be used [31]:

4.5 Distance Functions 153

a: the number of attributes with the value of 1 for both data points.
b: the number of attributes for which xif = 1 and xjf = 0, where xif (xjf) is

the value of the fth attribute of the data point xi (xj).
c: the number of attributes for which xif = 0 and xjf = 1.
d: the number of attributes with the value of 0 for both data points.

Fig. 4.16. Confusion matrix of two data points with only binary attributes

Symmetric attributes: A binary attribute is symmetric if both of its states
(0 and 1) have equal importance, and carry the same weight, e.g., male and
female of the attribute Gender. The most commonly used distance function
for symmetric attributes is the simple matching distance, which is the
proportion of mismatches (Equation (10)) of their values. We assume that
every attribute in the data set is a symmetric attribute.

dcba

cb
dist ji 


),(xx (10)

We can also weight some components in Equation (10) according to ap-
plication needs. For example, we may want mismatches to carry twice the
weight of matches, or vice versa:

)(2
)(2),(

cbda

cb
dist ji 


xx (11)

cbda

cb
dist ji 




)(2
),(xx (12)

Example 10: Given the following two data points, where each attribute is
a symmetric binary attribute,

x1 1 1 1 0 1 0 0
x2 0 1 1 0 0 1 0

the distance computed based on the simple matching distance is

 Data point xj
 1 0

1 a b a+b

0 c d c+d

 a+c b+d a+b+c+d

Data point xi

154 4 Unsupervised Learning

.429.0
7
3

2122
12),(



jidist xx (13)

▀
Asymmetric attributes: A binary attribute is asymmetric if one of the
states is more important or valuable than the other. By convention, we use
state 1 to represent the more important state, which is typically the rare or
infrequent state. The most commonly used distance measure for asymmet-
ric attributes is the Jaccard distance:

.),(
cba

cb
dist ji 


xx (14)

Similarly, we can vary the Jaccard distance by giving more weight to

(b+c) or more weight to a to express different emphases.

.
)(2

)(2),(
cba

cb
dist ji 


xx (15)

.
2

),(
cba

cb
dist ji 


xx (16)

Note that there is also a Jaccard coefficient, which measures similarity
(rather than distance) and is defined as a / (a+b+c).

For general nominal attributes with more than two states or values, the
commonly used distance measure is also based on the simple matching dis-
tance. Given two data points xi and xj, let the number of attributes be r, and
the number of values that match in xi and xj be q:

.),(
r

qr
dist ji


xx (17)

As that for binary attributes, we can give higher weights to different com-
ponents in Equation (17) according to different application characteristics.

4.5.3 Text Documents

Although a text document consists of a sequence of sentences and each
sentence consists of a sequence of words, a document is usually considered
as a “bag” of words in document clustering. The sequence and the position
information of words are ignored. Thus a document can be represented as a
vector just like a normal data point. However, we use similarity to com-
pare two documents rather than distance. The most commonly used simi-

4.6 Data Standardization 155

larity function is the cosine similarity. We will study this similarity meas-
ure in Sect. 6.2.2 when we discuss information retrieval and Web search.

4.6 Data Standardization

One of the most important steps in data pre-processing for clustering is to
standardize the data. For example, using the Euclidean distance, standardi-
zation of attributes is highly recommended so that all attributes can have
equal impact on the distance computation. This is to avoid obtaining clus-
ters that are dominated by attributes with the largest amounts of variation.

Example 11: In a 2-dimensional data set, the value range of one attribute
is from 0 to 1, while the value range of the other attribute is from 0 to
1000. Consider the following pair of data points xi: (0.1, 20) and xj: (0.9,
720). The Euclidean distance between the two points is

,700.000457)20720()1.09.0(),(22 jidist xx (18)

which is almost completely dominated by (72020) = 700. To deal with
the problem, we standardize the attributes, e.g., to force the attributes to
have a common value range. If both attributes are forced to have a scale
within the range 01, the values 20 and 720 become 0.02 and 0.72. The
distance on the first dimension becomes 0.8 and the distance on the second
dimension 0.7, which are more equitable. Then, dist(xi, xj) = 1.063. ▀

This example shows that standardizing attributes is important. In fact,
different types of attributes require different treatments. We list these
treatments below.

Interval-scaled attributes: These are numeric/continuous attributes. Their
values are real numbers following a linear scale. Examples of such attrib-
utes are age, height, weight, cost, etc. The idea is that intervals keep the
same importance through out the scale. For example, the difference in age
between 10 and 20 is the same as that between 40 and 50.

There are two main approaches to standardize interval scaled attributes,
range and z-score. The range method divides each value by the range of
valid values of the attribute so that the transformed value ranges between 0
and 1. Given the value xif of the fth attribute of the ith data point, the new
value rg(xif) is,

,
)min()max(

)min(
)(

ff

fx
xrg if

if 


 (19)

156 4 Unsupervised Learning

where min(f) and max(f) are the minimum value and maximum value of at-
tribute f respectively. max(f)  min(f) is the value range of the valid values
of attribute f.

The z-score method transforms an attribute value based on the mean and
the standard deviation of the attribute. That is, the z-score of the value in-
dicates how far and in what direction the value deviates from the mean of
the attribute, expressed in units of the standard deviation of the attribute.
The standard deviation of attribute f, denoted by f, is computed with:

,
1

)(2
1




  

n

x f

n

i if
f




(20)

where n is the number of data points in the data set, xif is the same as
above, and f is the mean of attribute f, which is computed with:

.1
1 


n

i iff x
n

 (21)

Given the value xif, its z-score (the new value after transformation) is z(xif),

.)(
f

fif
if

x
xz




 (22)

Ratio-Scaled Attributes: These are also numeric attributes taking real
values. However, unlike interval-scaled attributes, their scales are not lin-
ear. For example, the total amount of microorganisms that evolve in a time
t is approximately given by

 AeBt,

where A and B are some positive constants. This formula is referred to as
exponential growth. If we have such attributes in a data set for clustering,
we have one of the following two options:

1. Treat it as an interval-scaled attribute. This is often not recommended
due to scale distortion.

2. Perform logarithmic transformation to each value, xif, i.e.,

).log(ifx (23)

After the transformation, the attribute can be treated as an interval-
scaled attribute.

Nominal (Unordered Categorical) Attributes: As we discussed in Sect.
4.5.2, the value of such an attribute can take anyone of a set of states (also

4.7 Handling of Mixed Attributes 157

called categories). The states have no logical or numerical ordering. For
example, the attribute fruit may have the possible values, Apple, Orange,
and Pear, which have no ordering. A binary attribute is a special case of
a nominal attribute with only two states or values.

Although nominal attributes are not standardized as numeric attributes,
it is sometime useful to convert a nominal attribute to a set of binary at-
tributes. Let the number of values of a nominal attribute be v. We can then
create v binary attributes to represent them, i.e., one binary attribute for
each value. If a data instance for the nominal attribute takes a particular
value, the value of its corresponding binary attribute is set to 1, otherwise
it is set to 0. The resulting binary attributes can be used as numeric attrib-
utes. We will discuss this again in Sect. 4.7.
Example 12: For the nominal attribute fruit, we create three binary attrib-
utes called, Apple, Orange, and Pear in the new data. If a particular data
instance in the original data has Apple as the value for fruit, then in the
transformed data, we set the value of the attribute Apple to 1, and the val-
ues of attributes Orange and Pear to 0. ▀

Ordinal (Ordered Categorical) Attributes: An ordinal attribute is like a
nominal attribute, but its values have a numerical ordering. For example,
the age attribute may have the values, Young, Middle-Age and Old. The
common approach to distance computation is to treat ordinal attributes as
interval-scaled attributes and use the same methods as for interval-scaled
attributes to standardize the values of ordinal attributes.

4.7 Handling of Mixed Attributes

So far, we have assumed that a data set contains only one type of attrib-
utes. However, in practice, a data set may contain mixed attributes. That is,
it may contain any subset of the six types of attributes, interval-scaled,
symmetric binary, asymmetric binary, ratio-scaled, ordinal and nomi-
nal attributes. Clustering a data set involving mixed attributes is a chal-
lenging problem.

One way to deal with such a data set is to choose a dominant attribute
type and then convert the attributes of other types to this type. For exam-
ple, if most attributes in a data set are interval-scaled, we can convert ordi-
nal attributes and ratio-scaled attributes to interval-scaled attributes as dis-
cussed above. It is also appropriate to treat symmetric binary attributes as
interval-scaled attributes. However, it does not make much sense to con-
vert a nominal attribute with more than two values or an asymmetric bi-
nary attribute to an interval-scaled attribute, but it is still frequently done in

158 4 Unsupervised Learning

practice by assigning some numbers to them according to some hidden or-
dering. For instance, in the example of Apple, Orange, and Pear, one may
order them according to their prices, and thus make the attribute fruit an
ordinal attribute or even an interval-scaled attribute. In the previous sec-
tion, we also saw that a nominal attribute can be converted to a set of
(symmetric) binary attributes, which in turn can be regarded as interval-
scaled attributes.

Another method of handling mixed attributes is to compute the distance
of each attribute of the two data points separately and then combine all the
individual distances to produce an overall distance. We describe one such
method, which is due to Gower [22] and is also described in [25, 31]. We
describe the combination formula first (Equation (24)) and then present the
methods to compute individual distances.

.),(
1

1






 r

f

f
ij

f
ij

r

f

f
ij

ji

d
dist




xx (24)

This distance value is between 0 and 1. r is the number of attributes in the
data set. The indicator f

ij is 1 if both values xif and xjf for attribute f are
non-missing, and it is set to 0 otherwise. It is also set to 0 if attribute f is
asymmetric and the match is 0–0. Equation (24) cannot be computed if all

f
ij ’s are 0. In such a case, some default value may be used or one of the

data points is removed. f
ijd is the distance contributed by attribute f, and it

is in the range 0–1. If f is a binary or nominal attribute,



 


otherwise

xxif
d jfiff

ij 0
 1

 (25)

If all the attributes are nominal, Equation (24) reduces to Equation (17).
The same is true for symmetric binary attributes, in which we recover the
simple matching distance (Equation (10)). When the attributes are all
asymmetric, we obtain the Jaccard distance (Equation (14)).

If attribute f is interval-scaled, we use

f

jfiff
ij R

xx
d

|| 
 (26)

where Rf is the value range of attribute f, which is

)min()max(ffRf  (27)

4.9 Cluster Evaluation 159

Ordinal attributes and ratio-scaled attributes are handled in the same way
after conversion.

If all the attributes are interval-scaled, Equation (24) becomes the Man-
hattan distance assuming that all attribute values are standardized by divid-
ing their values with the ranges of their corresponding attributes.

4.8 Which Clustering Algorithm to Use?

Clustering research and application has a long history. Over the years, a
vast collection of clustering algorithms has been designed. This chapter
only introduced several of the main algorithms.

Given an application data set, choosing the “best” clustering algorithm
to cluster the data is a challenge. Every clustering algorithm has limitations
and works well with only certain data distributions. However, it is very
hard, if not impossible, to know what distribution the application data fol-
lows. Worse still, the application data set may not fully follow any “ideal”
structure or distribution required by the algorithms. Apart from choosing a
suitable clustering algorithm from a large collection of available algo-
rithms, deciding how to standardize the data, to choose a suitable distance
function and to select other parameter values (e.g., k in the k-means algo-
rithm) are complex as well. Due to these complexities, the common prac-
tice is to run several algorithms using different distance functions and pa-
rameter settings, and then to carefully analyze and compare the results.

The interpretation of the results should be based on insight into the
meaning of the original data together with knowledge of the algorithms
used. That is, it is crucial that the user of a clustering algorithm fully un-
derstands the algorithm and its limitations. He/she should also have the
domain expertise to examine the clustering results. In many cases, generat-
ing cluster descriptions using a supervised learning method (e.g., decision
tree induction) can be particularly helpful to the analysis and comparison.

4.9 Cluster Evaluation

After a set of clusters is found, we need to assess the goodness of the clus-
ters. Unlike classification, where it is easy to measure accuracy using la-
beled test data, for clustering nobody knows what the correct clusters are
given a data set. Thus, the quality of a clustering is much harder to evalu-
ate. We introduce a few commonly used evaluation methods below.

160 4 Unsupervised Learning

User Inspection: A panel of experts is asked to inspect the resulting clus-
ters and to score them. Since this process is subjective, we take the average
of the scores from all the experts as the final score of the clustering. This
manual inspection is obviously a labor intensive and time consuming task.
It is subjective as well. However, in most applications, some level of man-
ual inspection is necessary because no other existing evaluation methods
are able to guarantee the quality of the final clusters. It should be noted
that direct user inspection may be easy for certain types of data, but not for
others. For example, user inspection is not hard for text documents because
one can read them easily. However, for a relational table with only num-
bers, staring at the data instances in each cluster makes no sense. The user
can only meaningfully study the centroids of the clusters, or rules that cha-
racterize the clusters generated by a decision tree algorithm or some other
supervised learning methods (see Sect. 4.3.1).

Ground Truth: In this method, classification data sets are used to evalu-
ate clustering algorithms. Recall that a classification data set has several
classes, and each data instance/point is labeled with one class. Using such
a data set for cluster evaluation, we make the assumption that each class
corresponds to a cluster. For example, if a data set has three classes, we as-
sume that it has three clusters, and we request the clustering algorithm to
also produce three clusters. After clustering, we compare the cluster mem-
berships with the class memberships to determine how good the clustering
is. A variety of measures can be used to assess the clustering quality, e.g.,
entropy, purity, precision, recall, and F-score.

To facilitate evaluation, a confusion matrix can be constructed from the
resulting clusters. From the matrix, various measurements can be com-
puted. Let the set of classes in the data set D be C = (c1, c2, …, ck). The
clustering method also produces k clusters, which partition D into k dis-
joint subsets, D1, D2, …, Dk.

Entropy: For each cluster, we can measure its entropy as follows:

),(Prlog)(Pr)(
1

2 ji

k

j
jii ccDentropy 



 (28)

where Pri(cj) is the proportion of class cj data points in cluster i or Di. The
total entropy of the whole clustering (which considers all clusters) is

.)(
||
||)(

1




k

i
i

i
total Dentropy

D

D
Dentropy (29)

Purity: This measures the extent that a cluster contains only one class of
data. The purity of each cluster is computed with

4.9 Cluster Evaluation 161

)).((Prmax)(ji
j

i cDpurity  (30)

The total purity of the whole clustering (considering all clusters) is

.)(
||
||)(

1




k

i
i

i
total Dpurity

D

D
Dpurity (31)

Precision, recall, and F-score can be computed as well for each cluster
based on the class that is the most frequent in the cluster. Note that these
measures are based on a single class (see Sect. 3.3.2).

Example 13: Assume we have a text collection D of 900 documents from
three topics (or three classes), Science, Sports, and Politics. Each class has
300 documents, and each document is labeled with one of the topics
(classes). We use this collection to perform clustering to find three clus-
ters. Class/topic labels are not used in clustering. After clustering, we want
to measure the effectiveness of the clustering algorithm.

First, a confusion matrix (Fig. 4.17) is constructed based on the cluster-
ing results. From Fig. 4.17, we see that cluster 1 has 250 Science docu-
ments, 20 Sports documents, and 10 Politics documents. The entries of the
other rows have similar meanings. The last two columns list the entropy
and purity values of each cluster and also the total entropy and purity of
the whole clustering (last row). We observe that cluster 1, which contains
mainly Science documents, is a much better (or purer) cluster than the oth-
er two. This fact is also reflected by both their entropy and purity values.

Cluster Science Sports Politics Entropy Purity

1 250 20 10 0.589 0.893
2 20 180 80 1.198 0.643
3 30 100 210 1.257 0.617

Total 300 300 300 1.031 0.711

Fig. 4.17. Confusion matrix with entropy and purity values

Obviously, we can use the total entropy or the total purity to compare
different clustering results from the same algorithm with different parame-
ter settings or from different algorithms.

Precision and recall may be computed similarly for each cluster. For ex-
ample, the precision of Science documents in cluster 1 is 0.89. The recall
of Science documents in cluster 1 is 0.83. The F-score for Science docu-
ments is thus 0.86. ▀

162 4 Unsupervised Learning

A final remark about this evaluation method is that although an algo-
rithm may perform well on some labeled data sets, there is no guarantee
that it will perform well on the actual application data at hand, which has
no class labels. However, the fact that it performs well on some labeled da-
ta sets does give us some confidence on the quality of the algorithm. This
evaluation method is said to be based on external data or information.

There are also methods that evaluate clusters based on the internal in-
formation in the clusters (without using external data with class labels).
These methods measure intra-cluster cohesion (compactness) and inter-
cluster separation (isolation). Cohesion measures how near the data points in
a cluster are to the cluster centroid. Sum of squared error (SSE) is a com-
monly used measure. Separation measures how far apart different cluster
centroids are from one another. Any distance functions can be used for the
purpose. We should note, however, that good values for these measurements
do not always mean good clusters. In most applications, expert judgments
are still the key. Clustering evaluation remains to be a very difficult problem.
Indirect Evaluation: In some applications, clustering is not the primary
task. Instead, it is used to help perform another more important task. Then,
we can use the performance on the primary task to determine which clus-
tering method is the best for the task. For instance, in a Web usage mining
application, the primary task is to recommend books to online shoppers. If
the shoppers can be clustered according to their profiles and their past pur-
chasing history, we may be able to provide better recommendations. A few
clustering methods can be tried, and their results are then evaluated based
on how well they help with the recommendation task. Of course, here we
assume that the recommendation results can be reliably evaluated.

4.10 Discovering Holes and Data Regions

In this section, we wander a little to discuss something related but quite
different from the preceding algorithms. We show that unsupervised learn-
ing tasks may be performed by using supervised learning techniques [35].

In clustering, data points are grouped into clusters according to their dis-
tances (or similarities). However, clusters only represent one aspect of the
hidden knowledge in data. Another aspect that we have not studied is the
holes. If we treat data instances as points in an r-dimensional space, a hole
is simply a region in the space that contains no or few data points. The ex-
istence of holes is due to the following two reasons:

1. insufficient data in certain areas, and/or
2. certain attribute-value combinations are not possible or seldom occur.

4.10 Discovering Holes and Data Regions 163

Although clusters are important, holes in the space can be quite useful
too. For example, in a disease database we may find that certain symptoms
and/or test values do not occur together, or when a certain medicine is
used, some test values never go beyond certain ranges. Discovery of such
information can be of great importance in medical domains because it
could mean the discovery of a cure to a disease or some biological laws.

The technique discussed in this section aims to divide the data space in-
to two types of regions, data regions (also called dense regions) and
empty regions (also called sparse regions). A data region is an area in the
space that contains a concentration of data points and can be regarded as a
cluster. An empty region is a hole. A supervised learning technique similar
to decision tree induction is used to separate the two types of regions. The
algorithm (called CLTree for CLuster Tree) works for numeric attributes,
but can be extended to discrete or categorical attributes.

Decision tree learning is a popular technique for classifying data of var-
ious classes. For a decision tree algorithm to work, we need at least two
classes of data. A clustering data set, however, has no class label for each
data point. Thus, the technique is not directly applicable. However, the
problem can be dealt with by a simple idea.

We can regard each data instance/point in the data set as having a class
label Y. We assume that the data space is uniformly distributed with an-
other type of points, called non-existing points, which we will label N.
With the N points added to the original data space, our problem of parti-
tioning the data space into data regions and empty regions becomes a su-
pervised classification problem. The decision tree algorithm can be
adapted to solve the problem. Let us use an example to illustrate the idea.

Example 14: Fig. 4.18(A) gives a 2-dimensional space with 24 data (Y)
points. Two data regions (clusters) exist in the space. We then add some
uniformly distributed N points (represented by “o”) to the data space (Fig.
4.18(B)). With the augmented data set, we can run a decision tree algo-
rithm to obtain the partitioning of the space in Fig. 4.18(B). Data regions
and empty regions are separated. Each region is a rectangle, which can be
expressed as a rule. ▀

The reason that this technique works is that if there are clusters (or
dense data regions) in the data space, the data points cannot be uniformly
distributed in the entire space. By adding some uniformly distributed N
points, we can isolate data regions because within each data region there
are significantly more Y points than N points. The decision tree technique
is well known for this partitioning task.

164 4 Unsupervised Learning

Fig. 4.18. Separating data and empty regions using a decision tree

An interesting question is: can the task be performed without physically
adding the N points to the original data? The answer is yes. Physically add-
ing N points increases the size of the data and thus the running time. A
more important issue is that it is unlikely that we can have points truly uni-
formly distributed in a high-dimensional space as we would need an expo-
nential number of them. Fortunately, we do not need to physically add any
N points. We can compute them when needed. The CLTree method is able
to produce the partitioning in Fig. 4.18(C) with no N points added. The de-
tails are quite involved. Interested readers can refer to [35]. This method
has some interesting characteristics:

 It provides descriptions or representations of the resulting data regions
and empty regions in terms of hyper-rectangles, which can be expressed
as rules as we have seen in Sect. 3.2 of Chap. 3 and in Sect. 4.3.1. Many
applications require such descriptions, which can be easily interpreted
by users.

 It automatically detects outliers, which are data points in empty regions.
 It may not use all attributes in the data just as in decision tree building

for supervised learning. That is, it can automatically determine what at-
tributes are important and what are not. This means that it can perform
subspace clustering, i.e., finding clusters that exist in some subspaces
(represented by some subsets of the attributes) of the original space.

(A): The original data space

 (B). Partitioning with added (C). Partitioning without adding
N points N points.

Bibliographic Notes 165

This method also has limitations. The main limitation is that data re-
gions of irregular shapes are hard to handle since decision tree learning on-
ly generates hyper-rectangles (formed by axis-parallel hyper-planes),
which are rules. Hence, an irregularly shaped data or empty region may be
split into several hyper-rectangles. Post-processing is needed to join them
if desired (see [35] for additional details).

Bibliographic Notes

Clustering or unsupervised learning has a long history and a very large
body of work. This chapter described only some widely used core algo-
rithms. Most other algorithms are variations or extensions of these meth-
ods. For a comprehensive coverage of clustering, please refer to several
books dedicated to clustering, e.g., those by Everitt [18], Hartigan [26],
Jain and Dubes [30], and Kaufman and Rousseeuw [31]. Most data mining
texts also have excellent coverage of clustering techniques, e.g., Han and
Kamber [25] and Tan et al. [43], which have influenced the writing of this
chapter. Below, we review some more recent developments on clustering
and give some further readings.

A density-based clustering algorithm based on local data densities was
proposed by Ester et al. [17] and Xu et al. [48] for finding clusters of arbi-
trary shapes. Hinneburg and Keim [29], Sheikholeslami et al. [40] and
Wang et al. [46] proposed several grid-based clustering methods which
first partition the space into small grids. A popular neural network cluster-
ing algorithm is the Self-Organizing Map (SOM) by Kohonen [32]. Fuzzy
clustering (e.g., fuzzy c-means) was studied by Bezdek [7] and Dunn [16].
Cheeseman et al. [9] and Moore [36] studied clustering using mixture
models. The method assumes that clusters are a mixture of Gaussians and
uses the EM algorithm [12] to learn a mixture density. We will see in
Chap. 5 that EM based partially supervised learning algorithms are basi-
cally clustering methods with some given initial seeds.

Most clustering algorithms work on numeric data. Categorical data
and/or transaction data clustering were investigated by Barbará et al. [5],
Ganti et al. [20], Gibson et al. [21], Guha et al. [24], Wang et al. [45], etc.
A related area in artificial intelligence is the conceptual clustering, which
was studied by Fisher [19], and others.

Many clustering algorithms, e.g., hierarchical clustering algorithms,
have high time complexities and are thus not suitable for large data sets.
Scaling up such algorithms becomes an important issue for large applica-
tions. Several researchers have designed techniques to scale up clustering

166 4 Unsupervised Learning

algorithms, e.g., Bradley et al. [8], Guha et al. [23], Ng and Han [38], and
Zhang et al. [54].

In recent years, there were quite a few new developments in clustering.
The first one is subspace clustering. Traditional clustering algorithms use
the whole space to find clusters, but natural clusters may exist in only
some sub-spaces. That is, some clusters may only use certain subsets of the
attributes. This problem was investigated by Agrawal et al. [3], Aggarwal
et al. [1], Aggarwal and Yu [2], Cheng et al. [10], Liu et al. [35], Zaki et al.
[49], and many others.

The second new research is semi-supervised clustering, which means
that the user can provide some initial information to guide the clustering
process. For example, the user can select some initial seeds [6] and/or spe-
cify some constraints, e.g., must-link (two points must be in the same
cluster) and cannot-link (two points cannot be in the same cluster) [44].

The third is the spectral clustering, which emerged from several fields,
e.g., VLSI [4] and computer vision [39, 41, 47]. It clusters data points by
computing eigenvectors of the similarity matrix. Recently, it was also stud-
ied in machine learning and data mining [15, 37, 53].

Yet another new research is co-clustering, which simultaneously clus-
ters both rows and columns. This approach was studied by Cheng and
Church [11], Dhillon [13], Dhillon et al. [14], and Hartigan [27].

Regarding document and Web page clustering, most implementations
are still based on k-means and hierarchical clustering methods or their var-
iations but using text specific similarity or distance functions. Steinbach et
al. [42], and Zhao and Karypis [55, 56] experimented with k-means and
agglomerative hierarchical clustering methods and also proposed some
improvements. Many researchers also worked on clustering of search en-
gine results (or snippets) to organize search results into different topics,
e.g., Hearst and Pedersen [28], Kummamuru et al. [33], Leouski and Croft
[34], Zamir and Etzioni [50, 51], and Zeng et al. [52].

Bibliography

1. Agarwal, R., C. Aggarwal, and V. Prasad. A tree projection algorithm for
generation of frequent item sets. Journal of Parallel and Distributed
Computing, 2001, 61(3): p. 350-371.

2. Aggarwal, C. and P. Yu. Finding generalized projected clusters in high
dimensional spaces. In Proceedings of ACM SIGMOD International
Conference on Management of Data (SIGMOD-2000), 2000.

3. Agrawal, R., J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. In

Bibliography 167

Proceedings of ACM SIGMOD International Conference on Management of
Data (SIGMOD-1998), 1998.

4. Alpert, C., A. Kahng, and S. Yao. Spectral partitioning: the more eigenvectors,
the better. Discrete Applied Mathematics, 1999, 90(1-3): p. 3-26.

5. Barbará, D., Y. Li, and J. Couto. COOLCAT: an entropy-based algorithm for
categorical clustering. In Proceedings of ACM International Conference on
Information and knowledge management (CIKM-2002), 2002.

6. Basu, S., A. Banerjee, and R. Mooney. Semi-supervised clustering by
seeding. In Proceedings of International Conference on Machine Learning
(ICML-2002), 2002.

7. Bezdek, J.C. Cluster Validity with Fuzzy Sets. Journal of Cybernetics, 1974,
3: p. 58–72.

8. Bradley, P., U. Fayyad, and C. Reina. Scaling clustering algorithms to large
databases. Knowledge Discovery and Data Mining, 1998: p. 9–15.

9. Cheeseman, P. and J. Stutz. Bayesian classification (AutoClass): Theory and
results. Advances in Knowledge Discovery and Data Mining, 1996.

10. Cheng, C., A. Fu, and Y. Zhang. Entropy-based subspace clustering for
mining numerical data. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-1999), 1999.

11. Cheng, Y. and G. Church. Biclustering of expression data. In Proceedings of
ISMB-2000, 2000.

12. Dempster, A., N. Laird, and D. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 1977, 39(1): p. 1-38.

13. Dhillon, I. Co-clustering documents and words using bipartite spectral graph
partitioning. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2001), 2001.

14. Dhillon, I., S. Mallela, and D. Modha. Information-theoretic co-clustering. In
Proceedings of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2003), 2003.

15. Ding, C. and X. He. Linearized cluster assignment via spectral ordering. In
Proceedings of International Conference on Machine Learning (ICML-2004),
2004.

16. Dunn, J. A fuzzy relative of the ISODATA process and its use in detecting
compact well-separated clusters. Cybernetics and Systems, 1973, 3(3): p. 32-57.

17. Ester, M., H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-1996), 1996.

18. Everitt, B. Cluster analysis. 1974: Heinemann, London.
19. Fisher, D. Knowledge acquisition via incremental conceptual clustering.

Machine Learning, 1987, 2(2): p. 139-172.
20. Ganti, V., J. Gehrke, and R. Ramakrishnan. CACTUS—clustering categorical

data using summaries. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-1999), 1999.

168 4 Unsupervised Learning

21. Gibson, D., J. Kleinberg, and P. Raghavan. Clustering categorical data: An
approach based on dynamical systems. The VLDB Journal, 2000, 8(3-4): p. 236.

22. Gower, J. A general coefficient of similarity and some of its properties.
Biometrics, 1971: p. 857-871.

23. Guha, S., R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm for
large databases. Information Systems, 2001, 26(1): p. 35-58.

24. Guha, S., R. Rastogi, and K. Shim. Rock: A robust clustering algorithm for
categorical attributes* 1. Information Systems, 2000, 25(5): p. 345-366.

25. Han, J. and M. Kamber. Data mining: concepts and techniques. 2006:
Morgan Kaufmann Publishers.

26. Hartigan, J. Clustering algorithms. 1975: John Wiley & Sons, Inc.
27. Hartigan, J. Direct clustering of a data matrix. Journal of the American

Statistical Association, 1972: p. 123-129.
28. Hearst, M. and J. Pedersen. Reexamining the cluster hypothesis: scatter/gather

on retrieval results. In Proceedings of ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR-1996), 1996.

29. Hinneburg, A. and D. Keim. Optimal grid-clustering: Towards breaking the
curse of dimensionality in high-dimensional clustering. In Proceedings of
International Conference on Very Large Data Bases (VLDB-1999), 1999.

30. Jain, A. and R. Dubes. Algorithms for clustering data. 1988: Prentice Hall.
31. Kaufman, L. and P. Rousseeuw. Finding groups in data: an introduction to

cluster analysis. 2005: John Wiley & Sons, Inc.
32. Kohonen, T. Self-Organizing Maps. 1995: Springer.
33. Kummamuru, K., R. Lotlikar, S. Roy, K. Singal, and R. Krishnapuram. A

hierarchical monothetic document clustering algorithm for summarization and
browsing search results. In Proceedings of International Conference on
World Wide Web (WWW-2004), 2004.

34. Leouski, A. and W. Croft. An evaluation of techniques for clustering search
results. In Technical Report IR–76. 1996, Department of Computer Science,
University of Massachusetts.

35. Liu, B., Y. Xia, and P. Yu. Clustering through decision tree construction. In
Proceedings of ACM International Conference on Information and knowledge
management (CIKM-2000), 2000.

36. Moore, A. Very fast EM-based mixture model clustering using
multiresolution kd-trees. In Proceedings of Neural Info. Processing Systems
(NIPS-1998), 1999.

37. Ng, A., M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an
algorithm. In Proceedings of 14th Advances in Neural Information
Processing Systems, 2001.

38. Ng, R. and J. Han. Efficient and effective clustering methods for spatial data
mining. In Proceedings of International Conference on Very Large Data
Bases (VLDB-1994), 1994.

39. Scott, G. and H. Longuet-Higgins. Feature grouping by relocalisation of
eigenvectors of the proximity matrix. In Proceedings of British Machine
Vision Conference, 1990.

Bibliography 169

40. Sheikholeslami, G., S. Chatterjee, and A. Zhang. Wavecluster: A multi-
resolution clustering approach for very large spatial databases. In Proceedings
of International Conference on Very Large Data Bases (VLDB-1998), 1998.

41. Shi, J. and J. Malik. Normalized cuts and image segmentation. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 2002, 22(8): p. 888-905.

42. Steinbach, M., G. Karypis, and V. Kumar. A comparison of document clustering
techniques. In Proceedings of KDD Workshop on Text Mining, 2000.

43. Tan, P., M. Steinbach, and V. Kumar. Introduction to data mining. 2006:
Pearson Addison Wesley Boston.

44. Wagstaff, K. and C. Cardie. Clustering with instance-level constraints. In
Proceedings of International Conference on Machine Learning (ICML-2000),
2000.

45. Wang, K., Y. He, and J. Han. Mining frequent itemsets using support
constraints. In Proceedings of International Conference on Very Large Data
Bases (VLDB-2000), 2000.

46. Wang, W., J. Yang, and R. Muntz. STING: A statistical information grid
approach to spatial data mining. In Proceedings of International Conference
on Very Large Data Bases (VLDB-1997), 1997.

47. Weiss, Y. Segmentation using eigenvectors: a unifying view. In Proceedings
of IEEE Intl. Conf. on Computer Vision, 1999.

48. Xu, X., M. Ester, H. Kriegel, and J. Sander. A nonparametric clustering
algorithm for knowledge discovery in large spatial databases. In Proceedings
of IEEE International Conference on Data Engingeering (ICDE-2003), 1998.

49. Zaki, M., M. Peters, I. Assent, and T. Seidl. Clicks: An effective algorithm for
mining subspace clusters in categorical datasets. Data & Knowledge
Engineering, 2007, 60(1): p. 51-70.

50. Zamir, O. and O. Etzioni. Grouper: a dynamic clustering interface to Web
search results. Computer Networks, 1999, 31(11-16): p. 1361-1374.

51. Zamir, O. and O. Etzioni. Web document clustering: A feasibility
demonstration. In Proceedings of International Conference on World Wide
Web (WWW-1998), 1998.

52. Zeng, H., Q. He, Z. Chen, W. Ma, and J. Ma. Learning to cluster web search
results. In Proceedings of ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR-2004), 2004.

53. Zha, H., X. He, C. Ding, M. Gu, and H. Simon. Spectral relaxation for k-
means clustering. Advances in Neural Information Processing Systems, 2002,
2: p. 1057-1064.

54. Zhang, T., R. Ramakrishnan, and M. Livny. BIRCH: an efficient data
clustering method for very large databases. ACM SIGMOD Record, 1996,
25(2): p. 103-114.

55. Zhao, Y. and G. Karypis. Empirical and theoretical comparisons of selected
criterion functions for document clustering. Machine Learning, 2004, 55(3):
p. 311-331.

56. Zhao, Y., G. Karypis, and U. Fayyad. Hierarchical clustering algorithms for
document datasets. Data Mining and Knowledge Discovery, 2005, 10(2): p.
141-168.

5 Partially Supervised Learning

In supervised learning, the learning algorithm uses labeled training exam-
ples from every class to generate a classification function. One of the
drawbacks of this classic paradigm is that a large number of labeled exam-
ples are needed in order to learn accurately. Since labeling is often done
manually, it can be very labor intensive and time consuming. In this chap-
ter, we study two partially supervised learning problems. As their names
suggest, these two learning problems do not need full supervision, and thus are
able to reduce the labeling effort. The first is the problem of learning from la-
beled and unlabeled examples, which is commonly known as semi-
supervised learning. In this chapter, we also call it LU learning (L and U
stand for “labeled” and “unlabeled” respectively). In this learning setting,
there is a small set of labeled examples of every class, and a large set of
unlabeled examples. The objective is to make use of the unlabeled exam-
ples to improve learning.

The second is the problem of learning from positive and unlabeled exam-
ples. This problem assumes two-class classification. However, the training
data only has a set of labeled positive examples and a set of unlabeled ex-
amples, but no labeled negative examples. In this chapter, we also call this
problem PU learning (P and U stand for “positive” and “unlabeled” re-
spectively). The objective is to build an accurate classifier without labeling
any negative examples. We study these two problems in the context of text
classification and Web page classification in this chapter. However, the
general ideas and the algorithms are also applicable to other kinds of clas-
sification tasks.

5.1 Learning from Labeled and Unlabeled Examples

As we described in Chap. 3, the common approach to learning a classifica-
tion function is to label a set of examples with some pre-defined categories
or classes, and then use a learning algorithm to produce a classifier. This
classifier is applied to assign classes to future instances (or test data). In
the context of text classification and Web page classification, the examples
are text documents and Web pages. This approach to building a classifier

With Wee Sun Lee

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_5,
© Springer-Verlag Berlin Heidelberg 2011

171

172 5 Partially Supervised Learning

is called supervised learning because the training documents/pages have
been labeled with pre-defined classes.

The main bottleneck of building such a classifier is that a large, often
prohibitive, number of labeled training documents are needed to build ac-
curate classifiers. In text classification, the labeling is typically done ma-
nually by reading the documents, which is a time consuming task. How-
ever, we cannot eliminate labeling completely because without it a
machine learning algorithm will not know what the user is interested in.
Although unsupervised learning or clustering may help to some extent,
clustering does not guarantee to produce the categorization results required
by the user. This raises an important question: Can the manual labeling ef-
fort be reduced, and can other sources of information be used so that the
number of labeled examples required for learning would not be too large?

This section addresses the problem of learning from a small set of la-
beled examples and a large set of unlabeled examples, i.e., LU learning.
Thus, in this setting only a small set of examples needs to be labeled for
each class. However, since a small set of labeled examples is not sufficient
for building an accurate classifier, a large number of unlabeled examples
are utilized to help. One key point to note is that although the number may
be small, every class must have some labeled examples.

In many applications, unlabeled examples are easy to come by. This is
especially true for online documents. For example, if we want to build a
classifier to classify news articles into different categories or classes, it is
fairly easy to collect a huge number of unlabeled news articles from the
Web. In fact, in many cases, the new data that need to be classified (which
have no class labels) can be used as the unlabeled examples.

The question is: why do the unlabeled data help? In the context of text
classification, one reason is that the unlabeled data provide information on
the joint probability distribution over words. For example, using only the
labeled data we find that documents containing the word “homework” tend
to belong to a particular class. If we use this fact to classify the unlabeled
documents, we may find that “lecture” co-occurs with “homework” fre-
quently in the unlabeled set. Then, “lecture” may also be an indicative
word for the class. Such correlations provide a helpful source of informa-
tion to increase classification accuracy, especially when the labeled data
are scarce.

Several researchers have shown that unlabeled data help learning. That
is, under certain conditions using both labeled and unlabeled data in learn-
ing is better than using a small set of labeled data alone. Their techniques
can thus alleviate the labor-intensive labeling effort. We now study some
of these learning techniques, and also discuss their limitations.

5.1 Learning from Labeled and Unlabeled Examples 173

5.1.1 EM Algorithm with Naïve Bayesian Classification

One of the LU learning techniques uses the Expectation–Maximization
(EM) algorithm [11]. EM is a popular iterative algorithm for maximum li-
kelihood estimation in problems with missing data. The EM algorithm
consists of two steps, the Expectation step (or E-step), and the Maximi-
zation step (or M-step). The E-step basically fills in the missing data
based on the current estimation of the parameters. The M-step, which max-
imizes the likelihood, re-estimates the parameters. This leads to the next it-
eration of the algorithm, and so on. EM converges to a local minimum
when the model parameters stabilize.

The ability of EM to work with missing data is exactly what is needed
for learning from labeled and unlabeled examples. The documents in the
labeled set (denoted by L) all have class labels (or values). The documents
in the unlabeled set (denoted by U) can be regarded as having missing
class labels. We can use EM to estimate them based on the current model,
i.e., to assign probabilistic class labels to each document di in U, i.e.,
Pr(cj|di). After a number of iterations, all probabilities will converge.

Note that the EM algorithm is not really a specific “algorithm”, but is a
framework or strategy. It simply runs a base algorithm iteratively. We will
use the naïve Bayesian (NB) algorithm discussed in Sect. 3.7 as the base
algorithm, and run it iteratively. The parameters that EM estimates in this
case are the probability of each word given a class and the class prior
probabilities (see Equations (31) and (

Although it is quite involved to derive the EM algorithm with the NB
classifier, it is fairly straightforward to implement and to apply the algo-
rithm. That is, we use a NB classifier in each iteration of EM, Equation
(33) in Chap. 3 for the E-step, and Equations (31) and (32) in Chap. 3 for
the M-step. Specifically, we first build a NB classifier f using the labeled
examples in L. We then use f to classify the unlabeled examples in U, more
accurately to assign a probability to each class for every unlabeled exam-
ple, i.e., Pr(cj|di), which takes the value in [0, 1] instead of {0, 1}. Some
explanations are in order here.

Let the set of classes be C = {c1, c2, …, c|C|}. Each iteration of EM will
assign every example di in U a probability distribution on the classes that it
may belong to. That is, it assigns di the class probabilities of Pr(c1|di),
Pr(c2|di), …, Pr(c|C||di). This is different from the example in the labeled set
L, where each document belongs to only a single class ck, i.e., Pr(ck|di) = 1
and Pr(cj|di) = 0 for j  k.

Based on the assignments of Pr(cj|di) to each document in U, a new NB
classifier can be constructed. This new classifier can use both the labeled
set L and the unlabeled set U as the examples in U now have probabilistic

32) in Sect. 3.7 of Chap. 3).

174 5 Partially Supervised Learning

labels, Pr(cj|di). This leads to the next iteration. The process continues until
the classifier parameters (Pr(wt|cj) and Pr(cj)) no longer change (or have
minimum changes).

The EM algorithm with the NB classification was proposed for LU
learning by Nigam et al. [34]. The algorithm is shown in Fig. 5.1. EM here
can also be seen as a clustering method with some initial seeds (labeled da-
ta) in each cluster. The class labels of the seeds indicate the class labels of
the resulting clusters.

The derivation of the EM algorithm in Fig. 5.1 is quite involved and is
given as an appendix at the end of this chapter. Two assumptions are made
in the derivation. They are in fact the two mixture model assumptions in
Sect. 3.7 of Chap. 3 for deriving the naïve Bayesian classifier for text clas-
sification, i.e.,

1. the data is generated by a mixture model, and
2. there is a one-to-one correspondence between mixture components and

classes.

It has been shown that the EM algorithm in Fig. 5.1 works well if the
two mixture model assumptions for a particular data set are true. Note that
although naïve Bayesian classification makes additional assumptions as we
discussed in Sect. 3.7 of Chap. 3, it performs surprisingly well despite the
obvious violation of the assumptions. The two mixture model assumptions,
however, can cause major problems when they do not hold. In many real-
life situations, they may be violated. It is often the case that a class (or top-
ic) contains a number of sub-classes (or sub-topics). For example, the class
Sports may contain documents about different sub-classes of sports, e.g.,

Algorithm EM(L, U)
1 Learn an initial naïve Bayesian classifier f from only the labeled set L (us-

ing Equations (31) and (32) in Chap. 3);
2 repeat

 // E-Step
3 for each example di in U do
4 Using the current classifier f to compute Pr(cj|di) (using Equation

(33) in Chap. 3).
5 end

 // M-Step
6 learn a new naïve Bayesian classifier f from L  U by computing Pr(cj)

and Pr(wt|cj) (using Equations (31) and (32) in Chap. 3).
7 until the classifier parameters stabilize
Return the classifier f from the last iteration.

Fig. 5.1. The EM algorithm with naïve Bayesian classification

5.1 Learning from Labeled and Unlabeled Examples 175

Baseball, Basketball, Tennis, and Softball. Worse still, a class cj may even
contain documents from completely different topics, e.g., Science, Politics,
and Sports. The first assumption above is usually not a problem. The sec-
ond assumption is critical. If the condition holds, EM works very well and
is particularly useful when the labeled set is very small, e.g., fewer than
five labeled documents per class. In such cases, every iteration of EM is
able to improve the classifier dramatically. However, if the second condi-
tion does not hold, the classifier from each iteration can become worse and
worse. That is, the unlabeled set hurts learning instead of helping it.

Two methods are proposed to remedy the situation.

Weighting the Unlabeled Data: In LU learning, the labeled set is small,
but the unlabeled set is very large. So the EM’s parameter estimation is
almost completely determined by the unlabeled set after the first iteration.
This means that EM essentially performs unsupervised clustering. When
the two mixture model assumptions are true, the natural clusters of the data
are in correspondence with the class labels. The resulting clusters can be
used as the classifier. However, when the assumptions are not true, the
clustering can go very wrong, i.e., the clustering may not converge to mix-
ture components corresponding to the given classes, and are therefore det-
rimental to classification accuracy. In order to reduce the effect of the
problem, we can weight down the unlabeled data during parameter estima-
tion (EM iterations). Specifically, we change the computation of Pr(wt|cj)
(Equation (31) in Chap. 3) to the following, where the counts of the unla-
beled documents are decreased by a factor of , 0    1:

,
)|Pr()(||

)|Pr()(
)|Pr(||

1

||

1

||

1

 


 








V

s

D

i ijti

D

i ijti

jt
dcNiV

dcNi
cw




 (1)

where









. if1

 if
)(

Ld

Ud
i

i

i (2)

When  = 1, each unlabeled document is weighted the same as a labeled
document. When  = 0, the unlabeled data are not considered. The value of
 can be chosen based on leave-one-out cross-validation accuracy on the
labeled training data. The  value that gives the best result is used.

Finding Mixture Components: Instead of weighting unlabeled data low,
we can attack the problem head on, i.e., by finding the mixture compo-
nents (sub-classes) of the class. For example, the original class Sports may
consist of documents from Baseball, Tennis, and Basketball, which are

176 5 Partially Supervised Learning

three mixture components (sub-classes or sub-topics) of Sports. Instead of
using the original class, we try to find these components and treat each of
them as a class. That is, if we can find the three mixture components, we
can use them to replace the class Sports. There are several automatic ap-
proaches for identifying mixture components. For example, a hierarchical
clustering technique was proposed in [8] to find the mixture components,
which showed good performances. A simple approach based on leave-one-
out cross-validation on the labeled training set was also given in [34].

Manually identifying different components may not be a bad option for
text documents because one only needs to read the documents in the la-
beled set (or some sampled unlabeled documents), which is very small.

5.1.2 Co-Training

Co-training is another approach to learning from labeled and unlabeled ex-
amples. This approach assumes that the set of attributes (or features) in the
data can be partitioned into two subsets. Each of them is sufficient for
learning the target classification function. For example, in Web page clas-
sification, one can build a classifier using either the text appearing on the
page itself, or the anchor text attached to hyperlinks pointing to the page
from other pages on the Web. This means that we can use the same train-
ing data to build two classifiers using two subsets of features.

Traditional learning algorithms do not consider this division of features,
or feature redundancy. All the features are pooled together in learning. In
some cases, feature selection algorithms are applied to remove redundant
features. Co-training exploits this feature division to learn separate classi-
fiers over each of the feature sets, and utilizes the fact that the two classifi-
ers must agree on their labeling of the unlabeled data to do LU learning.

Blum and Mitchell [3] formalize the co-training setting and provide a
theoretical guarantee for accurate learning subject to certain assumptions.
In the formalization, we have an example (data) space X = X1  X2, where
X1 and X2 provide two different “views” of the example. That is, each ex-
ample x (represented as a vector) is given as a pair (x1, x2). This simply
means that the set of features (or attributes) is partitioned into two subsets.
Each “view” or feature subset is sufficient for correct classification. Under
some further assumptions, it was proven that co-training algorithms can
learn from unlabeled data starting from only a weak classifier built using
the small set of labeled training documents.

The first assumption is that the example distribution is compatible with
the target functions; that is, for most examples, the target classification
functions over the feature sets predict the same label. In other words, if f
denotes the combined classifier, f1 denotes the classifier learned from X1, f2

5.1 Learning from Labeled and Unlabeled Examples 177

denotes the classifier learned from X2 and c is the actual class label of ex-
ample x, then f(x) = f1(x1) = f2(x2) = c for most examples.

The second assumption is that the features in one set of an example are
conditionally independent of the features in the other set, given the class
of the example. In the case of Web page classification, this assumes that
the words on a Web page are not related to the words on its incoming hy-
perlinks, except through the class of the Web page. This is a somewhat un-
realistic assumption in practice.

The co-training algorithm explicitly uses the feature split to learn from
labeled and unlabeled data. The algorithm is iterative. The main idea is
that in each iteration, it learns a classifier from the labeled set L with each
subset of the features, and then applies the classifier to classify (or label)
the unlabeled examples in U. A number (ni) of most confidently classified
examples in U from each class ci are added to L. This process ends when U
becomes empty (or a fixed number of iterations is reached). In practice, we
can set a different ni for a different class ci depending on class distribu-
tions. For example, if a data set has one third of class 1 examples and two
thirds of class 2 examples, we can set n1 = 1 and n2 = 2.

The whole co-training algorithm is shown in Fig. 5.2. Lines 2 and 3
build two classifiers f1 and f2 from the two “views” of the data respectively.
f1 and f2 are then applied to classify the unlabeled examples in U (lines 4
and 5). Some most confidently classified examples are removed from U
and added to L. The algorithm then goes to the next iteration.

Algorithm co-training(L, U)
1 repeat
2 Learn a classifier f1 using L based on only x1 portion of the examples x.
3 Learn a classifier f2 using L based on only x2 portion of the examples x.
4 Apply f1 to classify the examples in U, for each class ci, pick ni examples

that f1 most confidently classifies as class ci, and add them to L.
5 Apply f2 to classify the examples in U, for each class ci, pick ni examples

that f2 most confidently classifies as class ci, and add them to L.
6 until U becomes empty or a fixed number of iterations are reached

Fig. 5.2. A co-training algorithm

When the co-training algorithm ends, it returns two classifiers. At classi-
fication time, for each test example the two classifiers are applied sepa-
rately and their scores are combined to decide the class. For naïve Bayes-
ian classifiers, we multiply the two probability scores, i.e.,

Pr(cj|x) = Pr(cj|x1)Pr(cj|x2) (3)

The key idea of co-training is that classifier f1 adds examples to the la-
beled set that are used for learning f2 based on the X2 view, and vice versa.

178 5 Partially Supervised Learning

Due to the conditional independence assumption, the examples added by f1
can be considered as new and random examples for learning f2 based on the
X2 view. Then the learning will progress. The situation is illustrated in Fig.
5.3. This example has classes, positive and negative, and assumes linear
separation of the two classes. In the X1 view (Fig. 5.3(A)), the circled ex-
amples are most confident positive and negative examples classified (or
labeled) by f1 in the unlabeled set U. In the X2 view (Fig. 5.3(B)), these cir-
cled examples appear randomly. With these random examples from U add-
ed to L, a better f2 will be learned in the next iteration.

Fig. 5.3. Two views of co-training.

However, if the added examples to L are not random examples in the X2
space but very similar to the situation in Fig. 5.3(A), then these examples
are not informative to learning. That is, if the two subsets of features are
correlated given the class or the conditional independence assumption is
violated, the added examples will not be random but isolated in a specific
region similar to those in Fig. 5.3(A). Then they will not be as useful or in-
formative to learning. Consequently, co-training will not be effective.

In [33], it is shown that co-training produces more accurate classifiers
than the EM algorithm presented in the previous section, even for data sets
whose feature division does not completely satisfy the strict requirements
of compatibility and conditional independence.

5.1.3 Self-Training

Self-training, which is similar to both EM and co-training, is another me-
thod for LU learning. It is an incremental algorithm that does not use the
split of features. Initially, a classifier (e.g., naïve Bayesian classifier) is
trained with the small labeled set considering all features. The classifier is
then applied to classify the unlabeled set. Those most confidently classi-
fied (or unlabeled) documents of each class, together with their predicted
class labels, are added to the labeled set. The classifier is then re-trained

+

+

+

+

+ +
+

+ +

+
+

+

+

+

+ +
+

+

+


 




 


 



+

+







 







+

+

+
+ +
+

+
+

+ +
+ +

+

+


























+
+

+

+ ++




 





(A) X1 view: data in U labeled by h1 (B) X2 view: the same data

5.1 Learning from Labeled and Unlabeled Examples 179

and the procedure is repeated. This process iterates until all the unlabeled
documents are given class labels. The basic idea of this method is that the
classifier uses its own predictions to teach itself.

5.1.4 Transductive Support Vector Machines

Support vector machines (SVM) is one of the most effective methods for
text classification. One way to use unlabeled data in training SVM is by
selecting the labels of the unlabeled data in such a way that the resulting
margin of the classifier is maximized. Training for the purpose of labeling
known (unlabeled) test instances is referred to as transduction, giving rise
to the name transductive SVM [41]. An example of how transduction can
change the decision boundary is shown in Fig. 5.4. In this example, the old
decision boundary, constructed using only labeled data, would have a very
small margin on the unlabeled data. By utilizing the unlabeled data in the
training process, a classifier that has the largest margin on both the labeled
and unlabeled data can be obtained.

y = 1

y = - 1
x----

x+

Old decision boundary

New decision
boundary

Fig. 5.4. The old decision boundary (before the addition of unlabeled data) and the
new decision boundary created by transductive SVM. The unlabeled data are indi-
cated by circles around them

The main difficulty with applying transductive SVM is the computa-
tional complexity. When all the labels are observed, training SVM is a
convex optimization problem that can be solved efficiently. The problem
of assigning labels to unlabeled examples in such a way that the resulting
margin of the classifier is maximized can no longer be solved efficiently.

To solve the problem, Joachims [20] used a sub-optimal iterative me-
thod that starts by learning a classifier using only the labeled data. The me-
thod then treats a subset of unlabeled instances that are most confidently
labeled positive by the learned classifier as initial positive examples while

180 5 Partially Supervised Learning

the rest of the unlabeled examples are treated as initial negative examples.
The number of instances to label as positive can be specified by the user to
change the precision–recall trade-off and is maintained throughout the it-
erations. The method then tries to improve the soft margin cost function by
iteratively changing the labels of some of the instances and retraining the
SVM. The ratio of positive to negative instances is maintained by selecting
one positively labeled instance p and one negatively labeled instance q to
change in each iteration. It was shown in [20] that if the two instances are
selected such that the slack variables p > 0, q > 0 and p + q > 2, the soft
margin cost function will decrease at each iteration. Further improvements
described in [20] include allowing the soft margin error of unlabeled ex-
amples to be penalized differently from the soft margin error of the labeled
examples and penalizing the soft margin error on the positive unlabeled
examples differently from the soft margin error on the negative unlabeled
examples. The penalty on the unlabeled examples is also iteratively in-
creased from a small value to the desired value. This may improve the
chances of finding a good local optimum as it may be easier to improve the
cost function when the penalty is small. The method was applied success-
fully to text classification problems.

Like other methods of learning from labeled and unlabeled examples,
transductive SVM can be sensitive to its assumptions. When the large
margin assumption is correct on the dataset, it may improve performance
but when the assumption is incorrect, it can decrease performance com-
pared to supervised learning. As an example, the transductive SVM per-
formed poorly using small labeled data sets when separating Project Web
pages from other types of university Web pages in [20]. It was conjectured
that, with a small number of labeled data, separating the Web pages ac-
cording to some of the underlying topics of the Web pages may give a lar-
ger margin than separating them according to whether the Web pages are
Project pages or not.

5.1.5 Graph-Based Methods

Graph-based LU learning methods can be viewed as extensions of nearest
neighbor supervised learning algorithms that work with both labeled and
unlabeled instances. The basic idea in these methods is to treat labeled and
unlabeled instances as vertices in a graph where a similarity function is
used to define the edge weights between instances. The graph, with similar
instances connected by larger weights, is then used to help label the unla-
beled instances in such a way that labels of vertices connected by edges
with large weights tend to agree with each other. Methods used for con-
structing the graphs include connecting each instance to its k-nearest

5.1 Learning from Labeled and Unlabeled Examples 181

neighbors, connecting each instance to other instances within a certain dis-
tance  and using a fully connected graph with an exponentially decreasing
similarity function such as the Gaussian function to assign the weights.
The assumptions used in these methods are similar to those of the nearest
neighbor classifier, that is, near neighbors should have the same labels and
we have a good measure of similarity between instances. We discuss three
types of graph-based LU learning methods below: mincut, Gaussian
fields and spectral graph transducer. All three methods work on binary
classification problems but, like the support vector machines, can be used
with strategies such as one-against-rest for solving multiple class classifi-
cation problems.

Mincut: This method was proposed by Blum and Chalwa [2]. A weighted
graph G = (V, E, W) is constructed first, where V consists of the labeled
and unlabeled instances, E consists of edges between the instances and W
is a function on the edges with W(i, j) = wij denoting the similarity of in-
stances i and j. The vertices associated with labeled instances are then giv-
en values from {0, 1} consistent with their binary labels. The idea in the
mincut algorithm is to find an assignment of values vi from the set {0, 1}
to the unlabeled instances in V such that the cost function  


Eji jiij vvw

),(
||

is minimized. The advantage of this formulation is that the problem can be
solved in polynomial time even though it is a combinatorial optimization
problem. One way to do this is to transform the problem into a max-flow
problem (see [9] for a description of the max-flow problem). To do that,
we convert the graph into a flow network by introducing a source vertex v+
and a sink vertex v, where the source vertex is connected by edges with
infinite capacities to the positive labeled instances while the sink vertex is
connected by edges with infinite capacities to the negative labeled in-
stances. The other edge weights in the graph are also treated as edge ca-
pacities in the flow network. A cut of the network is a partition of the ver-
tices into two subsets V+ and V such that v+  V+ and v  V. A minimum
cut is a partition that has the smallest sum of capacities in the edges con-
necting V+ and V. Finding a minimum cut is equivalent to minimizing the
function  


Eji jiij vvw

),(
|| since all the vertices are assigned values from {0,

1}. Max-flow algorithms can be used to efficiently find a mincut of the
network in time O(|V|3).

Gaussian Fields: Instead of minimizing  


Eji jiij vvw
),(

|| , Zhu et al. [46]

proposed minimizing  


Eji jiij vvw
),(

2)(with the value of the vertices being

selected from [0, 1] instead of {0, 1}. The advantage of using this formulation

182 5 Partially Supervised Learning

is that it allows the solution to be obtained using linear algebra. Let W be
the weight matrix corresponding to the graph,











UUUL

LULL

WW
WW

W , (4)

where WLL , WLU , WUL and WUU are sub-matrices with the subscript L de-
noting labeled instances and the subscript U denoting the unlabeled in-
stances. Let D be a diagonal matrix where  j ijii wD is the sum of the en-

tries in row (or column) i. We also form a vector v, consisting of values
assigned to the labeled and unlabeled instances. The labeled instances are
assigned fixed values in {0, 1} consistent with their labels while the values
vi assigned to the unlabeled instances are chosen to minimize
 


Eji jiij vvw

),(
2.)(The solution can be written as

,)(1
LULUUUUU vv WWD  (5)

where vU is the part of the vector v that contains values assigned to the un-
labeled instances, vL is the part of the vector that contains values assigned
to labeled instances and DUU is the sub-matrix of D consisting of sum of
entries of rows in W associated with unlabeled instances.

The optimization problem  


Eji jiij vvw
),(

2)(can also be written in ma-

trix form as vTv where  = D  W is known as the combinatorial Lapla-
cian of the graph. The matrix  is known to be positive semidefinite, so it
can be viewed as an inverse covariance matrix of a multivariate Gaussian
random variable, giving rise to the name Gaussian field.

Spectral Graph Transducer: One potential problem with the mincut
formulation is that the mincut cost function tends to prefer unbalanced cuts
where the number of instances in either the positive or negative class vast-
ly outnumbers the number of instances in the other class. Unbalanced cuts
tend to have a lower cost in the mincut formulation because the number of
edges between V+ and V is maximized when the sizes of V+ and V are
equal and is small when either one of them is small. For example, if we
have n vertices and V+ contains a single element, then there are potentially
n1 edges between V+ and V . In contrast, if V+ and V are the same size,
then there are potentially n2/4 edges between the two sets of vertices.

Let cut(V+, V) be the sum of the edge weights connecting V+ and V. To
mitigate the effect of preferring unbalanced cut, Joachims [21] proposed to
minimize a cost function of normalized cut

||||
),(





VV

VVcut , where the cut value

5.1 Learning from Labeled and Unlabeled Examples 183

is normalized by the number of edges between the two sets. Minimizing
this cost function is computationally difficult, so Joachims [21] proposed
minimizing a relaxed version of the problem.

Let  be the combinatorial Laplacian of the graph. It can be shown that
minimizing the normalized cut (with no labeled data) using  and  num-
ber of instances ( and  are specified by the user) in the two partitions is
equivalent to minimizing vTv for vi  {+, }, where


  and


  . (6)

Instead of using vi  {+, }, Joachims [21] proposed to allow vi to take
real values under the constraint vT1=0 and vTv=n, where 1 is the all one
vector. To make sure that the labeled instances are properly classified, a
term (v)TC(v) is added to the cost function, where C is a diagonal ma-
trix with non-zero entries only for labeled instances and  is the target vec-
tor for approximation by v. The components of  that correspond to posi-
tive and negative instances are set to + and  respectively, while the
components of  that correspond to unlabeled instances do not affect the
cost function because their corresponding diagonal entries of C are set to
zero. The values of the non-zero entries of C can be set by the user to give
different misclassification costs to each instance. This gives the combined
optimization problem of

nandts

c
TT

TT
v





vv1v

vvvv

0..

)()(min  C
 (7)

where c gives a trade-off between the cost for the labeled and unlabeled
parts. The solution of Equation (7) is obtained using spectral methods.

The Gaussian field method and spectral graph transduction have been
applied to the natural language processing problem of word sense disam-
biguation in [35, 37]. Word sense disambiguation is the problem of assign-
ing appropriate meanings to words (which may have multiple meanings)
according to the context that they appear in. Although some improvements
are observed, the success of these methods is still limited.

5.1.6 Discussion

We discuss two issues: (1) whether the unlabeled set U is always helpful
and (2) the evaluation of LU learning.

Does the Unlabeled Set Always Help? The answer is no. As we have
seen, all approaches make strong assumptions. For example, EM makes

184 5 Partially Supervised Learning

two mixture model assumptions, and co-training makes the feature split as-
sumption. When the assumptions are true for an application data set, unla-
beled data can help learning (even dramatically). When the assumptions
are not true, the unlabeled data may harm learning. Automatically detect-
ing bad match of the problem structure with the model assumptions in ad-
vance is, however, very hard and remains an open problem.

A related issue is that researchers have not shown that when the labeled
set is sufficiently large, the unlabeled data still help. Manual labeling more
documents may not be as difficult as it seems in some applications, espe-
cially when the number of classes is small. In most cases, to label a docu-
ment one does not even need to read the entire document (if it is long).
Typically, the first few sentences can already tell its class. Compounded
with the problem of inability to decide whether the unlabeled data indeed
help classification, practical applications of LU learning are still limited.

Evaluation: The evaluation of LU learning is commonly done in the same
way as traditional classification. However, there is a problem with the
availability of sufficient test data. In practice, users always want to have a
reasonable guarantee on the predictive accuracy of a classification system
before they use the system. This means that test data sets have to be used
to evaluate the system. Existing algorithms for LU learning assume that
there is a large set of labeled test data for this purpose. However, this con-
tradicts the LU learning problem statement, which says that the labeled set
is very small. If we can ask the user to label more data, then we do not
need LU learning because some examples of the test set can be used in
training. Evaluation without more labeled data is also an open problem.

One may look at this problem in another way. We first use the classifier
generated by LU learning to classify the unlabeled set or a new test set and
then sample some classified documents to be checked manually in order to
estimate the classification accuracy. If classification is sufficiently accu-
rate, the results of the classifier will be used. Otherwise, improvements
need to be made. In this case, additional labeled data obtained during man-
ual inspection can be added to the original labeled set. You see we end up
doing more labeling! Hopefully, we do not have to do too much labeling.

5.2 Learning from Positive and Unlabeled Examples

In some applications, the problem is to identify a particular class P of doc-
uments from a set of mixed documents, which contains documents of class
P and also other kinds of documents. We call the class of documents that
one is interested in the positive class documents, or simply positive docu-

5.2 Learning from Positive and Unlabeled Examples 185

ments. We call the rest of the documents the negative class documents or
simply negative documents.

This problem can be seen as a classification problem with two classes,
positive and negative. However, there are no labeled negative documents
for training. The problem is stated more formally as follows,

Problem Statement: Given a set P of positive documents that we are in-
terested in, and a set U of unlabeled documents (the mixed set), which
contains both positive documents and negative documents, we want to
build a classifier using P and U that can identify positive documents in U
or in a separate test set  in other words, we want to accurately classify
positive and negative documents in U or in the test (or future) data set.

This problem is called PU learning. Note that the set U can be used in
both training and testing because U is unlabeled.

The key feature of this problem is that there is no labeled negative doc-
ument for learning. Traditional supervised learning algorithms are thus not
directly applicable because they all require both labeled positive and la-
beled negative documents to build a classifier. This is also the case for LU
learning, although the labeled set for each class may be very small.

5.2.1 Applications of PU Learning

The PU learning problem occurs frequently in Web and text retrieval ap-
plications, because most of the time the user is only interested in Web pag-
es or text documents of a particular topic. For example, one may be inter-
ested in only travel-related pages (positive pages). Then all the other types
of pages are negative pages. Let us use a concrete example to show the ac-
tual setting of a PU learning application.

Example 1: We want to build a repository of data mining research papers.
We can start with an initial set of papers from a data mining conference or
journal, which are positive examples. We then want to find data mining
papers from online journals and conference series in the fields of databases
and artificial intelligence. Journals and conferences in these fields all con-
tain some data mining papers. They also contain many other types of pa-
pers. The problem is how to extract data mining papers from such confer-
ences and journals, or in other words, how to classify the papers from these
sources into data mining papers and non-data mining papers without label-
ing any negative papers in any source. ▀

In practical applications, positive documents are usually available be-
cause if one has worked on a particular task for some time one should have
accumulated many related documents. Even if no positive document is

186 5 Partially Supervised Learning

available initially, collecting some from the Web or any other source is
relatively easy. One can then use this set to find the same class of docu-
ments from other sources without manually labeling any negative docu-
ments. PU learning is particularly useful in the following situations:

1. Learning with multiple unlabeled sets: In some applications, one
needs to find positive documents from a large number of document col-
lections. For example, we want to identify Web pages that sell printers.
We can easily obtain a set of positive pages from an online merchant,
e.g., amazon.com. Then we want to find printer pages from other mer-
chants. We can crawl each site one by one and extract printer pages
from each site using PU learning. We do not need to manually label
negative pages (non-printer pages) from any site.

Although it may not be hard to label some negative pages from a sin-
gle site, it is difficult to label for every site. Note that in general the
classifier built based on the negative pages from one site s1 may not be
used to classify pages from another site s2 because the negative pages in
s2 can be very different from the negative pages in s1. The reason is that
although both sites sell printers, the other products that they sell can be
quite different. Thus using the classifier built for s1 to classify pages in
s2 may violate the fundamental assumption of machine learning: the dis-
tribution of training examples is identical to the distribution of test ex-
amples. As a consequence, we may obtain poor accuracy results.

2. Learning with unreliable negative examples: This situation often oc-
curs in experimental sciences. For example, in biology, biologists per-
form experiments to determine some biological functions. They are of-
ten quite confident about positive cases that they have discovered.
However, they may not be confident about negative cases because labo-
ratory results can be affected by all kinds of conditions. The negative
cases are thus unreliable. It is perhaps more appropriate to treat such
negative cases as unlabeled examples than negative examples.

PU learning is also useful for modeling and solving the following prob-
lems, which have been dealt with traditionally using other techniques:

Set expansion: Given a set S of seeds or examples of a particular class,
and a set D of candidate instances, we wish to determine which of the can-
didates in D belong to S. In other words, we “expand” the set S based on
the given seeds. This is clearly a classification problem which requires ar-
riving at a binary decision for each candidate in D (belonging to S or not).
However, in practice, the problem is often solved as a ranking problem,
i.e., ranking the instances in D based on their likelihoods of belonging to S.

It is shown in [28] that the set expansion problem can be modeled by PU
learning exactly, with S and D as P and U respectively. The paper uses a

5.2 Learning from Positive and Unlabeled Examples 187

PU learning method called S-EM [30] to solve an entity set expansion
problem in text mining, i.e., to expand a set of given named entities (seeds)
based on a text corpus. The classic methods for solving this problem in
text mining and natural language processing were based on distributional
similarity [23, 36]. The approach works by comparing the similarity of the
surrounding word distributions of each candidate with those of the seeds,
and then ranking the candidates using their similarity scores. However, it is
shown in [28] that S-EM outperforms distributional similarity significantly
for the problem. In machine learning, there is also a technique called
Bayesian Sets [16] which was specifically designed for solving the set ex-
pansion problem. However, it does not perform as well as S-EM. The rea-
son given in the paper is as follows: Distributional similarity does not use
any information in the candidate set (or the unlabeled set U) to separate
positive and negative instances. It ranks the candidates solely through
similarity comparisons with the given seeds (or positive cases). Bayesian
Sets is better because it considers U. Its learning method produces a weight
vector for features based on their occurrence differences in the positive set
P and the unlabeled set U. This weight vector is then used in computing
the final scores for ranking. S-EM also considers these differences and in
addition, it uses automatically identified reliable negative instances to help
distinguish negative and positive cases, which both Bayesian Sets and dis-
tributional similarity do not do. This balanced approach by S-EM to sepa-
rate the positive and negative cases is the reason for its higher accuracy.

Covariate shift or sample selection bias: Most machine learning methods
assume that the training and the test data have identical distributions.
However, this assumption may not hold in practice, i.e., the training and
the test distributions can be different. The problem is called covariate
shift or sample selection bias [18, 19, 40, 44]. In general, this problem is
not solvable because the two distributions can be arbitrarily far apart from
each other. Various assumptions were made to solve some special cases.

A special case of the problem is studied in [27], where the positive train-
ing and test samples have identical distributions, but the negative training
and test samples may have different distributions. This scenario occurs in
many binary text classification problems. It is shown that PU learning pro-
vides a good solution, which does not need the negative training data.

5.2.2 Theoretical Foundation

Before discussing the theoretical foundation of PU learning, let us first de-
velop some intuition on why PU learning is possible and why unlabeled
data are helpful. Fig. 5.5 shows the idea.

188 5 Partially Supervised Learning

Fig. 5.5. Unlabeled data are helpful

In Fig. 5.5(A), we see only positive documents (data points) represented
with +’s. We assume that a linear classifier is sufficient for the classifica-
tion task. In this case, it is hard to know where to draw the line to separate
positive and negative examples because we do not know where the nega-
tive examples might be. There are infinite possibilities. However, if the un-
labeled data (represented by small circles) are added to the space (Fig.
5.5(B)), it is very clear where the separation line should be. Let us now
discuss a theoretical result of PU learning.

Let (xi, yi) be random variables drawn independently from probability
distribution D(x,y) where y  {1, 1} is the conditional random variable that
we wish to estimate given x. xi represents a document, and yi is its class,
which can be 1 (positive) or –1 (negative). Let Dx|y=1 be the conditional
distribution from which the positive examples are independently drawn
and let Dx be the marginal distribution from which unlabeled examples are
independently drawn. Our objective is to learn a classification function f
that can separate positive and negative documents. Since learning is to
produce a classifier that has the minimum probability of error, Pr(f(x)y),
let us rewrite it into a more useful form,

Pr(f(x)y) = Pr(f(x)=1 and y=1) + Pr(f(x)= 1 and y=1). (8)

The first term can be rewritten as

Pr(f(x)=1 and y=1)
= Pr(f(x)=1) – Pr(f(x)=1 and y=1)
= Pr(f(x)=1) – (Pr(y=1) – Pr(f(x)= 1 and y=1)).

(9)

Substituting (9) into Equation (8), we obtain

Pr(f(x)y)
= Pr(f(x)=1) – Pr(y=1) + 2Pr(f(x)= 1|y=1)Pr(y=1).

(10)

Since Pr(y = 1) is constant (although it is unknown), we can minimize the
probability of error by minimizing

(A) With only positive data (B) With both positive and unlabeled data

+

+

+

+ +
+

+

+

+

+
+

+

+

+

+

+

+

+

+ +
+

+

+

+

+
+

+

+

+

+

5.2 Learning from Positive and Unlabeled Examples 189

Pr(f(x)=1) + 2Pr(f(x)= 1|y =1)Pr(y=1). (11)

If we can hold Pr(f(x)= 1|y=1) small, then learning is approximately
the same as minimizing Pr(f(x)=1). Holding Pr(f(x)= 1|y=1) small while
minimizing Pr(f(x)=1) is approximately the same as minimizing Pru(f(x)=1)
(on the unlabeled set U) while holding PrP(f(x)=1) ≥ r (on the positive set
P), where r is the recall, i.e., Pr(f(x)=1|y=1). Note that (PrP(f(x)=1) ≥ r) is
the same as (PrP(f(x)= 1) ≤ 1–r).

Two theorems given by Liu et al. [30] state these formally and show that
in both the noiseless case (P has no error) and the noisy case (P contains
errors, i.e., some negative documents) reasonably good learning results can
be achieved if

 the problem is posed as a constrained optimization problem where the
algorithm tries to minimize the number of unlabeled examples labeled
positive subject to the constraint that the fraction of errors on the posi-
tive examples is no more than 1 r.

Example 2: Fig. 5.6 illustrates the constrained optimization problem. As-
sume that positive and negative documents can be linearly separated. Posi-
tive documents are represented with +’s, and unlabeled documents with
small circles. Assume also that the positive set has no error and we want
the recall r on the positive set to be 100%. Each line in the figure is a pos-
sible linear classifier. Every document on the left of each line will be la-
beled (classified) by the line as positive, and every document on the right
will be labeled as negative. Lines 1 and 2 are clearly not solutions because
the constraint “the fraction of errors on the positive examples must be no
more than 1 r (= 0)” is violated, although the number of unlabeled exam-
ples labeled (classified) as positive is minimized by line 1. Lines 4, 5, and
6 are poor solutions too because the number of unlabeled examples labeled
as positive is not minimized by any of them. Line 3 is the optimal solution.
Under the constraint that no positive example is labeled negative, line 3
minimizes the number of unlabeled examples labeled as positive. ▀

Fig. 5.6. An illustration of the constrained optimization problem

+ +
+ +

+
+

+
+

+ +

o
o

o

o
o
o

o o
o

o

o
o

o

o

o o o
o

o
o

o
o

o
o

o

o o

o
o

o
1 2 3 4 5 6

190 5 Partially Supervised Learning

Based on the constrained optimization idea, two kinds of approaches
have been proposed to build PU classifiers: the two-step approach and the
direct approach. In the actual learning algorithms, the user may not need
to specify a desired recall level r on the positive set because some of these
algorithms have their evaluation methods that can automatically determine
whether a good solution has been found.

5.2.3 Building Classifiers: Two-Step Approach

As its name suggests the two-step approach works in two steps:

1. Identifying a set of reliable negative documents (denoted by RN) from
the unlabeled set U.

2. Building a classifier using P, RN and U  RN. This step may apply an
existing learning algorithm once or iteratively depending on the quality
and the size of the RN set.

Fig. 5.7. An illustration of the two-step approach

This two-step approach is illustrated in Fig. 5.7. Here, we assume that
step 2 uses an iterative algorithm. In step 1, a set of reliable negative doc-
uments (RN) is found from the unlabeled set U, which divides U into two
subsets, RN and Q (= U  RN). Q is called the likely positive set. In step 2,
the algorithm iteratively improves the results by adding more documents to
RN until a convergence criterion is met. We can see that the process is try-
ing to minimize the number of unlabeled examples labeled positive since

U

P

……

Reliable
negative
(RN)

Q=URN

P

Step 1 Step 2

positive negative

PP

5.2 Learning from Positive and Unlabeled Examples 191

Q becomes smaller and smaller while RN becomes larger and larger. In
other words, it tries to iteratively increase the number of unlabeled exam-
ples that are labeled negative while maintaining the positive examples in P
correctly classified. We present several techniques for each step below.

Techniques for Step 1

We introduce four methods to extract reliable negative documents from the
unlabeled set U.

Spy Technique: This technique works by sending some “spy” documents
from the positive set P to the unlabeled set U. Fig. 5.8 gives the algorithm
of the technique, which is used in the S-EM system [30]. The algorithm
has three sub-steps:

1. It randomly samples a set S of positive documents from P and put them
in U (lines 2 and 3). The default sampling ratio of s% is 15% in S-EM.
The documents in S act as “spy” documents from the positive set to the
unlabeled set U. Since the spies behave similarly to the unknown posi-
tive documents in U, they allow the algorithm to infer the behavior of
the unknown positive documents in U.

2. It runs the naïve Bayesian (NB) algorithm using the set P  S as positive
and the set U  S as negative (lines 3–7). The NB classifier is then ap-
plied to classify each document d in U  S (or Us), i.e., to assign it a
probabilistic class label Pr(1|d), where 1 represents the positive class.

3. It uses the probabilistic labels of the spies to decide which documents
are most likely to be negative. A threshold t is employed to make the

Algorithm Spy(P, U)
1. RN  ;
2. S  Sample(P, s%);
3. Us  U  S;
4. Ps  P – S;
5. Assign each document in Ps the class label 1;
6. Assign each document in Us the class label 1;
7. NB(Us, Ps); // This produces a NB classifier.
8. Classify each document in Us using the NB classifier;
9. Determine a probability threshold t using S;
10. for each document d  Us do
11. if its probability Pr(1|d) < t then
12. RN  RN  {d};
13. endif
14. endfor

Fig. 5.8. The spy technique for step 1.

192 5 Partially Supervised Learning

decision. Those documents in U with lower probabilities (Pr(1|d)) than t
are the most likely negative documents, denoted by RN (lines 10–14).

We now discuss how to determine t using spies (line 9). Let the set of
spies be S = {s1, s2, …, sk}, and the probabilistic labels assigned to each
si be Pr(1|si). Intuitively, we can use the minimum probability in S as the
threshold value t, i.e., t = min{Pr(1|s1), Pr(1|s2), …, Pr(1|sk)}, which
means that we want to retrieve all spy documents. In a noiseless case,
using the minimum probability is acceptable. However, most real-life
document collections have outliers and noise. Using the minimum prob-
ability is unreliable. The reason is that the posterior probability Pr(1|si)
of an outlier document si in S could be 0 or smaller than most (or even
all) actual negative documents. However, we do not know the noise lev-
el of the data. To be safe, the S-EM system uses a large noise level l =
15% as the default. The final classification result is not very sensitive to
l as long it is not too small. To determine t, we first sort the documents
in S according to their Pr(1|si) values. We then use the selected noise
level l to decide t: we select t such that l percent of documents in S have
probability less than t. Hence, t is not a fixed value. The actual parame-
ter is in fact l.

Note that the reliable negative set RN can also be found through multiple
iterations. That is, we run the spy algorithm multiple times. Each time a
new random set of spies S is selected from P and a different set of reliable
negative documents is obtained, denoted by RNi. The final set of reliable
negative documents is the intersection of all RNi. This may be a better
technique because we do not need to worry that one set of random spies S
may not be chosen well, especially when the set P is not large.

Cosine-Rocchio (CR) Technique: This method (Fig. 5.9) is used in [27].
It consists of two sub-steps:

Sub-step 1 (lines 1–9, Fig. 5.9): This sub-step extracts a set of potential
negatives PN from U by computing similarities of the unlabeled docu-
ments in U with the positive documents in P. Those documents in U that
are very dissimilar to the documents in P are likely to be negative (lines
7–9). To make the decisions, a similarity measure and a similarity thre-
shold are needed. The similarity measure is the well-known cosine simi-
larity (see Sect. 6.2.2). To compute the similarity, each document in P
and U is first converted to a vector d using the TF-IDF scheme (see Sect.
6.2.2). Note that we use a lower case bold letter to represent a vector
here. The positive documents in P are used to compute the threshold
value. First, a positive representative vector (vP) is constructed by sum-
ming up the documents in P (line 3). The similarity of each document d
in P with vP is calculated using the cosine measure, cos(vP, d), in line 4.

5.2 Learning from Positive and Unlabeled Examples 193

Line 5 sorts the documents in P according to their cos(vP, d) values,
which helps to determine the similarity threshold. The threshold is used
to filter out as many as possible hidden positive documents from U so
that a very pure negative set PN can be obtained. Since the hidden posi-
tives in U should have the same behaviors as the positives in P in terms
of their similarities to vP, ideally we should set the minimum similarity
value of all documents d  P and vP as the threshold value ω. However,
as in the spy technique, we need to consider possible noise in P. It would
therefore be prudent to ignore a small percentage l of documents in P
that are most dissimilar to vP and assume them to be noise or outliers.
The default noise level of l = 5% is used in [27]. In line 6, l is used to
decide the similarity threshold ω. Then, for each document d in U, if its
cosine similarity cos(vP, d) is less then ω, it is regarded as a potential
negative and stored in PN (lines 8–9). PN, however, is still not sufficient
for accurate learning. Using PN, sub-step 2 produces the final RN.

Sub-step 2 (line 10–14, Fig. 5.9): To extract the final reliable negatives, the
algorithm employs the Rocchio classification method to build a classifier
f using P and PN. Those documents in U that are classified as negatives
by f are regarded as the final reliable negatives and stored in set RN. Fol-
lowing the Rocchio formula in Sect. 6.3, the classifier f actually consists
of a positive and a negative prototype vectors cP and cPN (lines 11 and

Algorithm CR(P, U)
1. PN = ; RN = ;
2. Represent each document d  P and U as a vector using the TF-IDF scheme;

3. 



P

P P d d

d

||
v

||||
1 ;

4. Compute cos(vp, d) for each d  P;
5. Sort all the documents dP according to cos(vp, d) in a decreasing order;
6. ω = cos(vp, d) where d is ranked in the position of (1- l)*|P|;
7. for each d  U do
8. if cos(vp, d) < ω then
9. PN = PN ∪ {d}

10. 



PNP

P PNP dd d

d

||d

d

||
c

||||||||
 ;

11. 



PPN

PN PPN dd d

d

||d

d

||
c

||||||||
 ;

12. for each d  U do
13. if cos(cPN, d) > cos(cP, d) then
14. RN = RN ∪ {d}

Fig. 5.9. The CR technique for step 1

194 5 Partially Supervised Learning

12). α and β are parameters for adjusting the relative impact of the ex-
amples in P and PN. As suggested in [4], α = 16 and β = 4 are used in
[27]. The classification is done in lines 12–14. Details about Rocchio
classification can be found in Sect. 6.3.

1DNF Technique: The 1DNF method (Fig. 5.10) is used in [43]. It first
builds a positive feature set PF containing words that occur in the positive
set P more frequently than in the unlabeled set U (lines 1–7). Line 1 col-
lects all the words in U  P to obtain a vocabulary V. Lines 8–13 try to
identify reliable negative documents from U. A document in U that does
not contain any feature in PF is regarded as a reliable negative document.

NB Technique: This method is employed in [29]. It simply uses a naïve
Bayesian classifier to identify a set of reliable negative documents RN
from the unlabeled set U. The algorithm is given in Fig. 5.11.

This method may also be run multiple times. Each time we randomly
remove a few documents from P to obtain a different set of reliable nega-
tive documents, denoted by RNi. The final set of reliable negative docu-
ments RN is the intersection of all RNi.

Rocchio technique: This method is employed in [26]. The algorithm is the
same as that in Fig. 5.11 except that NB is replaced with Rocchio. The
Rocchio classification method is described in Sect. 6.3.

Techniques for Step 2

There are two approaches for this step.

1. Run a learning algorithm (e.g., NB or SVM) using P and RN. The set of
documents in URN is discarded. This method works well if the reliable
negative set RN is sufficiently large and contains mostly negative docu-
ments. The spy technique, NB and Rocchio in step 1 are often able to
produce a sufficiently large set of negative documents. The 1DNF tech-
nique may only identify a very small set of negative documents. Then
running a learning algorithm will not be able to build a good classifier.

2. Run a learning algorithm iteratively till it converges or some stopping
criterion is met. This method is used when the set RN is small.

We will not discuss the first approach as it is straightforward. SVM usually
does very well. Below, we introduce two techniques for the second ap-
proach, which are based on EM and SVM respectively.

EM Algorithm with Naïve Bayesian Classification: The EM algorithm
can be used naturally here [30]. As in LU learning, the Expectation step
basically fills in the missing data. In our case, it produces and revises the

5.2 Learning from Positive and Unlabeled Examples 195

probabilistic labels of the documents in URN (see below). The parameters
are estimated in the Maximization step after the missing data are filled.
This leads to the next iteration of the algorithm. EM converges when its
parameters stabilize. Using NB in each iteration, EM employs the same
equations as those used in building a NB classifier (Equation (33) for the
Expectation step, and Equations (31) and (32) for the Maximization step).
The class probability given to each document in URN takes the value in
[0, 1] instead of {0, 1}. The algorithm is given in Fig. 5.12.

The EM algorithm here makes the same mixture model assumptions as
in LU learning. Thus, it has the same problem of model mismatch. See the
discussions in Sect. 5.1.1.

Iterative SVM: In this method, SVM is run iteratively using P, RN and Q
(= URN). The algorithm, called I-SVM, is given in Fig. 5.13. The basic
idea is as follows: In each iteration, a new SVM classifier f is constructed
from P and RN (line 4). Here RN is regarded as the set of negative exam-
ples (line 2). The classifier f is then applied to classify the documents in Q
(line 5). The set W of documents in Q that are classified as negative (line
6) is removed from Q (line 8) and added to RN (line 9). The iteration stops

Algorithm 1DNF(P, U)
1. Assume the word feature set be V = {w1,…, wn}, wi U  P;
2. Let positive feature set PF  ;
3. for each wi  V do // freq(wi, P): number of times
4. if (freq(wi, P) / |P| > freq(wi, U) / |U|) then // that wi appears in P
5. PF  PF  {wi};
6. endif
7. endfor;
8. RN  U;
9. for each document d  U do
10. if wj freq(wj, d) > 0 and wj  PF then
11. RN  RN – {d}
12. endif
13. endfor

Fig. 5.10. The 1DNF technique for step 1

1. Assign each document in P the class label 1;
2. Assign each document in U the class label 1;
3. Build a NB classifier using P and U;
4. Use the classifier to classify U. Those documents in U that are classified as

negative form the reliable negative set RN.

Fig. 5.11. The NB method for Step 1

196 5 Partially Supervised Learning

when no document in Q is classified as negative, i.e., W =  (line 7). The
final classifier is the result. This method is used in [26] [42, 43].

Finally, we note again that if the first step is able to identify a large
number of reliable negative documents from U, running SVM once in step
2 is sufficient. Iterative approaches may not be necessary, which are also
less efficient. The Spy, NB and Rocchio methods for step 1 are often able
to identify a large number of reliable negative documents. See [29] for an
evaluation of various methods based on two benchmark text collections.

Classifier Selection

The iterative methods discussed above produce a new classifier at each it-
eration. However, the classifier at the convergence may not be the best

Algorithm EM(P, U, RN)
1. Each document in P is assigned the class label 1;
2. Each document in RN is assigned the class label 1;
3. Learn an initial NB classifier f from P and RN (using Equations (31) and

(32) in Chap. 3);
4 repeat
 // E-Step
5 for each example di in URN do
6 Using the current classifier f to compute Pr(cj|di) using Equation (33)

in Chap. 3.
7 end
 // M-Step
8 learn a new NB classifier f from P, RN and URN by computing Pr(cj)

and Pr(wt|cj) (using Equations (31) and (32) in Chap. 3).
9 until the classifier parameters stabilize
10. Return the classifier f from the last iteration.

Fig. 5.12. EM algorithm with the NB classifier

Algorithm I-SVM(P, RN, Q)
1. Every document in P is assigned the class label 1;
2. Every document in RN is assigned the class label –1;
3. loop
4. Use P and RN to train a SVM classifier f;
5. Classify Q using f;
6. Let W be the set of documents in Q that is classified as negative;
7. if W =  then exit-loop // convergence
8. else Q  Q – W;
9. RN  RN  W;
10. endif;

Fig. 5.13. Running SVM iteratively

5.2 Learning from Positive and Unlabeled Examples 197

classifier. In general, each iteration of the algorithm gives a classifier that
may potentially be a better classifier than the classifier produced at con-
vergence. This is true for both EM and SVM.

The main problem with EM is that classes and topics may not have one-
to-one correspondence. This is the same problem as in LU learning. SVM
may also produce poor classifiers at the convergence because SVM is sen-
sitive to noise. If the RN set is not chosen well or in an iteration some posi-
tive documents are classified as negative, then the subsequent iterations
may produce very poor results. In such cases, it is often better to stop at an
earlier iteration. One simple method is to apply the theory directly. That is,
each classifier is applied to classify a positive validation set, Pv. If many
documents from Pv (e.g., > 5%) are classified as negative, the algorithm
should stop (that is a recall of 95%). If the set P is small, the method can
also be applied to P directly. A principled method is given in the next sub-
section, i.e., Equation (14).

5.2.4 Building Classifiers: Biased-SVM

We now present a direct approach, called biased-SVM. This approach modi-
fies the SVM formulation slightly so that it is suitable for PU learning. Let the
set of training examples be {(x1, y1), (x2, y2), …, (xn, yn)}, where xi is an input
vector and yi is its class label, yi  {1, 1}. Assume that the first k1 examples
are positive examples P (labeled 1), while the rest are unlabeled examples U,
which are treated as negative and labeled 1. Thus, the negative set has errors,
i.e., containing positive documents. We consider two cases.

1. Noiseless case: There is no error in the positive examples but only in
unlabeled examples. The theoretical result in Sect. 5.2.2 states that if the
sample size is large enough, minimizing the number of unlabeled exam-
ples classified as positive while constraining the positive examples to be
correctly classified will give a good classifier. Following the theory, in
this noiseless case, we have this following SVM formulation

nkki

nkkib

kib

C

i

ii

i

n

ki
i

 ..., 1, , ,0
 ..., 1, , ,1)(1

1,...,2,1 ,1 :Subject to
2

 :Minimize







 








xw

xw

ww

(12)

In this formulation, we do not allow any error in the positive set P,
which is the first constraint, but allow errors for the negative set (the
original unlabeled set), which is the second constraint. Clearly, the for-

198 5 Partially Supervised Learning

mulation follows the theory exactly due to the second term in the objec-
tive function. The subscript in the second term starts from k, which is
the index of the first unlabeled example. To distinguish this formulation
from the classic SVM, we call it the biased-SVM [29].

2. Noisy case: In practice, the positive set may also contain some errors.
Thus, if we allow noise (or error) in positive examples, we have the fol-
lowing soft margin version of the biased-SVM which uses two parame-
ters C+ and C to weight positive errors and negative errors differently.

ni

niby

CC

i

iii

n

ki
i

k

i
i

 ..., ,2 ,1 ,0
,...,2,1 ,1)(:Subject to

2
 :Minimize

1

1





 














xw

ww

(13)

We can vary C+ and C to achieve our objective. Intuitively, we give a
bigger value for C+ and a smaller value for C because the unlabeled set,
which is assumed to be negative, contains positive data.

We now focus on Equation (13) as it is more realistic in practice. We need
to choose values for C+ and C. The common practice is to try a range of
values for both C+ and C and use a separate validation set to verify the
performance of the resulting classifier. The C+ and C values that give the
best classification results on the validation set are selected as the final pa-
rameter values for them. Cross-validation is another possible technique for
the purpose. Since the need to learn from positive and unlabeled examples
often arises in retrieval situations (retrieving positive documents from the
unlabeled set), we employ the commonly used F-score as the performance
measure, F = 2pr/(p+r), where p is the precision and r is the recall.

Unfortunately it is not clear how to estimate the F-score without labeled
negative examples. In [24], Lee and Liu proposed an alternative perform-
ance measure to compare different classifiers. It behaves similarly to the F-
score but can be estimated directly from the validation set without the need
of labeled negative examples. The measure is

,
)1)(Pr(

2

xf

r (14)

where f is the classifier and Pr(f(x)=1) is the probability that a document is
classified as positive. It is not easy to see why Equation (14) behaves simi-
larly to the F-score, but we can show that r2/Pr(f(x)=1) = pr/Pr(y=1), where
Pr(y=1) is the probability of positive documents. pr/Pr(y=1) behaves simi-
larly to the F-score in the sense that it is large when both p and r are large
and is small when either p or r is small.

5.2 Learning from Positive and Unlabeled Examples 199

We first write recall (r) and precision (p) in terms of probability:

r = Pr(f(x)=1| y=1), (15)

p = Pr(y=1| f(x)=1). (16)

According to probability theory, we have

Pr(f(x)=1|y=1)Pr(y=1) = Pr(y=1| f(x)=1)Pr(f(x)=1), (17)

which can be written as

)1Pr()1)(Pr(


 y

p

f

r

x
. (18)

Multiplying both sides by r, we obtain the result:

)1Pr()1)(Pr(

2




 y

pr

f

r

x
. (19)

The quantity r2/Pr(f(x)=1) can be estimated based on the validation set,
which contains both positive and unlabeled documents. r can be estimated
using the positive examples in the validation set and Pr(f(x) = 1) can be es-
timated from the whole validation set.

This criterion in fact reflects the theory in Sect. 5.2.2 very well. The
quantity is large when r is large and Pr(f(x) = 1) is small, which means that
the number of unlabeled examples labeled as positive should be small. In
[29], it is shown that biased-SVM works better than two-step techniques.

5.2.5 Building Classifiers: Probability Estimation

We now present another direct approach, which is proposed in [14] and is
based on a probabilistic formulation. We use similar notations as in Sect.
5.2.4. Let x be an example and y  {1, 1} be a binary class label. Let s =
1 if the example x is labeled, and let s = 0 if x is unlabeled. Only positive
examples are labeled, so y = 1 is certain when s = 1 (i.e., every labeled ex-
ample must be positive), but when s = 0, then either y = 1 or y = -1 may be
true (i.e., an unlabelled example can be positive or negative). The fact that
only positive examples are labeled can be stated formally as follows,

Pr(s = 1|x, y = 1) = 0. (20)

In words, the probability that x appears in the labeled set is zero if y = 1.
Our goal is to learn a classification function f(x) such that f(x) = Pr(y =

1|x) as closely as possible. To achieve this goal, an assumption called se-
lected completely at random is made which states that the labeled posi-

200 5 Partially Supervised Learning

tive examples are chosen randomly from all positive examples. What this
means is that if y = 1, the probability that a positive example is labeled is
the same constant regardless of x. Stated formally, the assumption is that

Pr(s = 1|x, y = 1) = Pr(s = 1|y = 1). (21)
Here, c = Pr(s = 1|y = 1) is the constant probability that a positive exam-

ple is labeled.
For learning, a training sample, which consists of two subsets, the “la-

beled” (s = 1) set P and the “unlabeled” (s = 0) set U, is randomly drawn
from a distribution Pr(x, y, s) that satisfies Equations (20) and (21). If these
two sets are given to a standard learning algorithm, the algorithm will yield
a function g(x) such that g(x) = Pr(s = 1|x) approximately. The main result
of [14] is the following lemma which shows how to obtain f(x) from g(x).

Lemma 1: Suppose the “selected completely at random” assumption
holds. Then,

c

g
f

)()(x
x  , (22)

where c = Pr(s = 1|y = 1).

Proof: We consider g(x), which is Pr(s = 1|x). Due to the assumption Pr(s
= 1|y =1, x) = Pr(s = 1|y = 1), we have

 g(x) = Pr(s = 1|x)
 = Pr(y = 1  s = 1|x)
 = Pr(y = 1|x)Pr(s = 1|y = 1, x)
 = Pr(y = 1|x)Pr(s = 1|y = 1)
 = f(x)Pr(s = 1|y = 1)

The result follows by dividing each side by Pr(s = 1|y = 1), which is c. ▀

The value of the constant c = Pr(s = 1|y = 1) can be estimated using a
trained classifier g and a validation set of examples. Let V be such a vali-
dation set that is drawn from the overall distribution Pr(x, y, s) in the same
manner as the training set. Let VP be the subset of examples in V that is la-
beled (and hence positive). The estimator of c (= Pr(s = 1|y = 1)) is the av-
erage value of g(x) for all x in P. Formally, the estimator is





PVxP

xg
V

c)(
||

1ˆ . (23)

This is a reasonable estimator of c because theoretically g(x) = c for all
x  VP,

5.2 Learning from Positive and Unlabeled Examples 201

 g(x) = Pr(s = 1|x)
 = Pr(s = 1|x, y = 1)Pr(y = 1|x) + Pr(s = 1|x, y = 1)Pr(y = 1|x)
 = Pr(s = 1|x, y = 1) × 1 + 0 × 0 since x  VP
 = Pr(s = 1|y = 1).

With this estimator, Equation (22) can be used to build a PU classifier f.
In [14], the classifier g was built using SVM, and the scaling method in
[38] was used to get probability estimates from the SVM output.

It is also worth noting that an interesting consequence of Lemma 1 is
that f is an increasing function of g. This means that if the classifier f is on-
ly used to rank examples x according to the chance that they belong to
class y = 1, then the classifier g can be used directly instead of f.

5.2.6 Discussion

Does PU Learning Always Work? Theoretical results show that it should
if the positive set and the unlabeled set are sufficiently large [30]. This has
been confirmed by many experimental studies. Interested readers can find
the detailed results in [29, 30], which we summarize below:
1. PU learning can achieve about the same classification results as fully

supervised learning when the positive set and the unlabeled set are suf-
ficiently large. This implies that labeled negative examples do not pro-
vide much information for learning. When the positive set is very small,
PU learning is poorer than fully supervised learning.

2. For the two-step approaches, using SVM for the second step performs
better than EM. SVM needs to be run only once if step 1 can extract a
large number of reliable negative documents. Both Spy and Rocchio are
able to do that. Thus, the iterative method in step 2 is not necessary.
 The generative model of naïve Bayes with EM in the second step can
perform very well if the mixture model assumption holds [30]. How-
ever, if the mixture model assumption does not hold, the classification
results can be very poor [29]. Note that SVM is called a discriminative
model (or classifier) because it does not make any model assumptions.
It simply finds a surface to separate positive and negative examples.

3. Biased-SVM performs slightly better than the 2-step approaches. How-
ever, it is slow in training because SVM needs to be run a large number
of times in order to select the best values for C+ and C.

Evaluation: Unlike LU learning, here we do not even have labeled nega-
tive examples, which makes the evaluation difficult. Although Equation
(14) and other heuristics allow a system to choose a “better” classifier
among a set of classifiers, it is unable to give the actual accuracy, precision

202 5 Partially Supervised Learning

or recall of each classifier. Evaluation is an open problem. The results re-
ported in the literature assume that a set of labeled positive and negative
test examples is available, which, of source, is unrealistic because the PU
learning model states that no labeled negative example is available.

In some cases, the evaluation can be done with some confidence. For
example, if the user needs to extract positive documents from many unla-
beled sets (document sources) as in the example of identifying printer pag-
es from multiple Web sites, a PU learning algorithm can be applied to one
site and then the user manually checks the classification result to see
whether it is satisfactory. If the result is satisfactory, the algorithm can be
applied to the rest of the sites without further manual evaluation.

Appendix: Derivation of EM for Naïve Bayesian Classification

EM is a method for performing a classical statistical estimation technique
called maximum likelihood estimation. In maximum likelihood estima-
tion, the aim is to find the model parameter ̂ that maximizes the likeli-
hood function Pr(Do; ) for observed data Do. In other words, maximum
likelihood estimation aims to select the model that is most likely to have
generated the observed data. In many cases, such as in the naïve Bayesian
classification model, the maximum likelihood estimator is easy to find and
has a closed form solution when all components of the data D are ob-
served. However, the problem becomes difficult when the data D actually
consists of an observed component Do and an unobserved component Du.
In such cases, iterative methods that converge only to a local maximum,
such as the EM method, are usually used.

Maximizing the log likelihood function logPr(Do; ) produces the same
solution as maximizing the likelihood function and is easier to handle mathe-
matically. In the presence of unobserved data Du, the log likelihood function
becomes).;,Pr(log);Pr(log   uoDo DDD

u

 Instead of maximizing the

log likelihood  
uD uo DD);,Pr(log directly, at each iteration T, the EM al-

gorithm finds the value  that maximizes the expected complete log likelihood

),;,Pr(log);|(1  
uoD

T
ou DDDDE

u

 (24)

where T1 is the parameter that was produced in iteration T1. In many
cases, such as in the naïve Bayesian model, the expected log likelihood is
easy to maximize and has a closed form solution. It can be shown (see
[11]) that the log likelihood increases monotonically with each iteration of
the EM algorithm.

Appendix: Derivation of EM for Naïve Bayesian Classification 203

We now derive the EM update for the naïve Bayesian model. We first
consider the complete log likelihood, that is, the log likelihood when all
variables are observed. The conditional probability of a document given its
class is (see Sect. 3.7.2 in Chap. 3)







||

1 !
);|Pr(|!||)Pr(|);|Pr(

V

t

N

ti

ti
jt

iiji

N

cw
ddcd (25)

Each document and its class label are assumed to have been sampled
independently. Let c(i) be the class label of document i. The likelihood
function can hence be written as

.);Pr(
!

);|Pr(|!||)Pr(|);Pr();|Pr(
||

1

||

1

||

1

)(
)(

)()(  
  





D

i

D

i

V

t

N

i

ti

ti
it

iiiii c
N

cw
ddccd (26)

Taking logs, we have the complete log likelihood function

,);Pr(log);|Pr(log
||

1

||

1

||

1
)()( 

 

D

i

D

i

V

t
ti iit ccwN (27)

where  is a constant containing the terms unaffected by . To facilitate
the process of taking expectation when some of the class labels are not ob-
served, we introduce indicator variables, hik, that take the value 1 when
document i takes the label k and the value 0 otherwise. The complete log
likelihood can be written in the following equivalent form

.);Pr(log);|Pr(log
||

1

||

1

||

1

||

1

||

1
 

   

D

i
k

C

k
ikk

D

i

V

t
ti

C

k
ik chcwNh t (28)

When some of the labels are not observed, we take the conditional expec-
tation for the unobserved variables hik with respect to T1 to get the ex-
pected complete log likelihood

,);Pr(log);|Pr(

);|Pr(log);|Pr(

||

1

||

1

1

||

1

||

1

||

1

1









 



  



D

i
k

C

k

T
ik

k

D

i

V

t
ti

C

k

T
ik

cdc

cwNdc t

 (29)

where, for the observed labels c(i), we use the convention that Pr(ck|di;T1)
takes the value one for ck = c(i) and zero otherwise. We maximize the ex-
pected complete log likelihood subject to the coefficients summing to one
using the Lagrange multiplier method. The Lagrangian is

204 5 Partially Supervised Learning

.);|Pr(1);Pr(1

);Pr(log);|Pr(

);|Pr(log);|Pr(

||

1

||

1

||

1

||

1

||

1

||

1

1

||

1

||

1

||

1

1

 






















 





  

 



  



V

t

C

k

V

t
kttk

C

k
k

D

i
k

C

k

T
ik

k

D

i

V

t
ti

C

k

T
ik

cwc

cdc

cwNdc t

 (30)

Differentiating the Lagrangian with respect to , we get .1);Pr(
||

1
 

C

k kc

Differentiating with respect to Pr(ck; ), we get

.||,...,1);Pr();|Pr(
||

1

1 Ckforcdc k

D

i

T
ik 



  (31)

Summing the left and right-hand side over k and using ,1);Pr(
||

1
 

C

k kc

we get .||);|Pr(
||

1

||

1

1
 

 
D

i

C

k

T
ik Ddc Substituting back, we obtain the up-

date equation

.
||

);|Pr(
);Pr(

||

1
1

D

dc
c

D

i

T
T

ij

j

 


 (32)

Working similarly, we can get the update equation for Pr(wt|cj; T),

.
);|Pr(

);|Pr(
);|Pr(||

1

||

1
1

||

1
1

 

 











V

s

D

i

T
ijsi

D

i

T
ijtiT

jt
dcN

dcN
cw (33)

To handle the 0 count problem (see Sect. 3.7.2 in Chap. 3), we can use
Lidstone smoothing (Equation (31) in Chap. 3).

Bibliographic Notes

Learning with labeled and unlabeled examples (LU learning) using naïve
Bayes and EM was proposed by Nigam et al. [34]. They also noted the
problem of having mixtures of subclasses in the classes and proposed to
identify and use such subclasses as a possible solution. A hierarchical clus-
tering technique was also proposed by Cong et al. [8] for handling the mix-
ture of subclasses problem. Castelli and Cover [5] presented a theoretical
study of LU learning using mixture models.

Bibliographic Notes 205

Co-training was introduced by Blum and Mitchell [3]. Follow-on works
include those by Collins and Singer [7], Goldman and Zhou [17], etc. Gen-
eralization error bounds within the Probably Approximately Correct (PAC)
framework was given in [10] by Dasgupta et al. Nigam and Ghani [33] ex-
amined the importance of feature division in co-training and compared it to
the EM algorithm and self-training.

Transduction was proposed by Vapnik [41] as learning when the test in-
stances are known. Joachims described a heuristic algorithm and built a
system for performing transduction using SVM [20]. The transductive
SVM given in [20] can also be used for induction, i.e. classifying future
unseen instances. In contrast, most graph-based methods are more suited
for transduction. The graph-based mincut algorithm was introduced by
Blum and Chalwa [2]. The graph-based Gaussian field method was pro-
posed by Zhu et al. [46] while the spectral graph transducer was proposed
by Joachims [21]. The edited book by Chapelle et al. [6] gives a compre-
hensive coverage of various LU learning algorithms.

On learning from positive and unlabeled examples (or PU learning),
Denis [13] reported a theoretical study of PAC learning in this setting un-
der the statistical query model [22], which assumes that the proportion of
positive instances in the unlabeled set is known. Letouzey et al. [25] pre-
sented a learning algorithm based on a modified decision tree method in
this model. Liu et al. [30] gives another theoretical study. It was concluded
that learning can be achieved if the problem is posed as a constrained op-
timization problem (see Sect. 5.2.2). Most existing algorithms for solving
the problem are based on this constrained optimization model.

Over the years, several practical algorithms were proposed. The first
class of algorithms deals with the problem in two steps. These algorithms
include S-EM [30], PEBL [42, 43], and Roc-SVM [26], which have been
studied in this chapter. The second class of algorithm follows the theoreti-
cal result directly. Lee and Liu [24] described a weighted logistic regres-
sion technique. Liu et al. [29] described a biased-SVM technique. A com-
prehensive comparison of various techniques was also reported in [29]. It
was shown that biased-SVM performed better than other techniques. Re-
cently, Elkan and Noto proposed a new probabilistic model [14], which
has also been applied to a real-life bioinformatics problem [31] with prom-
ising results. Some other works on PU learning include those of Barbara et
al. [1], Deng et al. [12], Fung, et al. [15], Zhang and Lee [45], etc.

A closely related work to PU learning is one-class SVM, which uses on-
ly positive examples to build a classifier. This method was proposed by
Scholkopf et al. [39]. Manevitz and Yousef [32] studied text classification
using one-class SVM. Li and Liu [26] showed that its accuracy results
were poorer than PU learning for text classification.

206 5 Partially Supervised Learning

Bibliography

1. Barbará, D., C. Domeniconi, and N. Kang. Classifying documents without
labels. In Proceedings of SIAM International Conference on Data Mining
(SDM-2004), 2004.

2. Blum, A. and S. Chawla. Learning from Labeled and Unlabeled Data Using
Graph Mincuts. In Proceedings of International Conference on Machine
Learning (ICML-2001), 2001.

3. Blum, A. and T. Mitchell. Combining labeled and unlabeled data with co-
training. In Proceedings of Conference on Computational Learning Theory,
1998.

4. Buckley, C., G. Salton, and J. Allan. The effect of adding relevance information
in a relevance feedback environment. In Proceedings of ACM SIGIR Conf. on
Research and Development in Information Retrieval (SIGIR-1994), 1994.

5. Castelli, V. and T. Cover. Classification rules in the unknown mixture parameter
case: relative value of labeled and unlabeled samples. In Proceedings of IEEE
International Symp. Information Theory, 1994.

6. Chapelle, O., B. Schölkopf, and A. Zien. Semi-supervised learning. Vol. 2.
2006: MIT Press.

7. Collins, M. and Y. Singer. Unsupervised models for named entity
classification. In Proceedings of Conference on Empirical Methods in Natural
Language Processing (EMNLP-1999), 1999.

8. Cong, G., W. Lee, H. Wu, and B. Liu. Semi-supervised text classification
using partitioned EM. In Proceedings of Conference of Database Systems for
Advanced Applications (DASFAA 2004), 2004.

9. Cormen, T., C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.
2001: MIT Press.

10. Dasgupta, S., M. Littman, and D. McAllester. PAC generalization bounds for
co-training. In Proceedings of Advances in Neural Information Processing
Systems (NIPS-2001), 2001.

11. Dempster, A., N. Laird, and D. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 1977, 39(1): p. 1-38.

12. Deng, L., X. Chai, Q. Tan, W. Ng, and D. Lee. Spying out real user
preferences for metasearch engine personalization. In Proceedings of
Workshop on WebKDD, 2004.

13. Denis, F. PAC learning from positive statistical queries. In Proceedings of
Intl. Conf. on Algorithmic Learning Theory (ALT-1998), 1998.

14. Elkan, C. and K. Noto. Learning classifiers from only positive and unlabeled
data. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2008), 2008.

15. Fung, G., J. Yu, H. Lu, and P. Yu. Text classification without labeled
negative documents. In Proceedings of IEEE International Conference on
Data Engingeering (ICDE-2005), 2005.

16. Ghahramani, Z. and K. Heller. Bayesian sets. Advances in Neural Information
Processing Systems, 2006, 18: p. 435.

Bibliography 207

17. Goldman, S. and Y. Zhou. Enhanced Supervised Learning with Unlabeled
Data. In Proceedings of International Conference on Machine Learning
(ICML-2000), 2000.

18. Heckman, J. Sample selection bias as a specification error. Econometrica:
Journal of the econometric society, 1979: p. 153-161.

19. Huang, J., A. Smola, A. Gretton, K. Borgwardt, and B. Scholkopf. Correcting
sample selection bias by unlabeled data. Advances in Neural Information
Processing Systems, 2007, 19: p. 601.

20. Joachims, T. Transductive inference for text classification using support
vector machines. In Proceedings of International Conference on Machine
Learning (ICML-1999), 1999.

21. Joachims, T. Transductive learning via spectral graph partitioning. In
Proceedings of International Conference on Machine Learning (ICML-2003),
2003.

22. Kearns, M. Efficient noise-tolerant learning from statistical queries. Journal
of the ACM (JACM), 1998, 45(6): p. 983-1006.

23. Lee, L. Measures of distributional similarity. In Proceedings of Annual
Meeting of the Association for Computational Linguistics (ACL-1999), 1999.

24. Lee, W. and B. Liu. Learning with positive and unlabeled examples using
weighted logistic regression. In Proceedings of International Conference on
Machine Learning (ICML-2003), 2003.

25. Letouzey, F., F. Denis, and R. Gilleron. Learning from positive and unlabeled
examples. In Proceedings of Intl. Conf. on Algorithmic Learning Theory
(ALT-200), 2000.

26. Li, X. and B. Liu. Learning to classify texts using positive and unlabeled data.
In Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI-2003), 2003.

27. Li, X., B. Liu, and S. Ng. Negative Training Data can be Harmful to Text
Classification. In Proceedings of Conference on Empirical Methods in
Natural Language Processing (EMNLP-2010), 2010.

28. Li, X., L. Zhang, B. Liu, and S. Ng. Distributional similarity vs. PU learning
for entity set expansion. In Proceedings of Annual Meeting of the Association
for Computational Linguistics (ACL-2010), 2010.

29. Liu, B., Y. Dai, X. Li, W. Lee, and P. Yu. Building text classifiers using
positive and unlabeled examples. In Proceedings of IEEE International
Conference on Data Mining (ICDM-2003), 2003.

30. Liu, B., W. Lee, P. Yu, and X. Li. Partially supervised classification of text
documents. In Proceedings of International Conference on Machine Learning
(ICML-2002), 2002.

31. Luigi, C., E. Charles, and C. Michele. Learning gene regulatory networks
from only positive and unlabeled data. BMC Bioinformatics, 2010, 11.

32. Manevitz, L. and M. Yousef. One-class svms for document classification. The
Journal of Machine Learning Research, 2002, 2.

33. Nigam, K. and R. Ghani. Analyzing the effectiveness and applicability of co-
training. In Proceedings of ACM International Conference on Information
and Knowledge Management (CIKM-2000), 2000.

208 5 Partially Supervised Learning

34. Nigam, K., A. McCallum, S. Thrun, and T. Mitchell. Text classification from
labeled and unlabeled documents using EM. Machine Learning, 2000, 39(2):
p. 103-134.

35. Niu, Z., D. Ji, and C. Tan. Word sense disambiguation using label
propagation based semi-supervised learning. In Proceedings of Meeting of the
Association for Computational Linguistics (ACL-2005), 2005.

36. Pantel, P., E. Crestan, A. Borkovsky, A. Popescu, and V. Vyas. Web-scale
distributional similarity and entity set expansion. In Proceedings of
Conference on Empirical Methods in Natural Language Processing (EMNLP-
2009), 2009.

37. Pham, T., H. Ng, and W. Lee. Word sense disambiguation with semi-
supervised learning. In Proceedings of National Conference on Artificial
Intelligence (AAAI-2005), 2005.

38. Platt, J.C. Probabilities for SV machines. In Advances in Large Margin
Classifiers, A. J. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans,
Editors. 1999, MIT Press. p. 61–73.

39. Schölkopf, B., J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson.
Estimating the support of a high-dimensional distribution. Neural
computation, 2001, 13(7): p. 1443-1471.

40. Shimodaira, H. Improving predictive inference under covariate shift by
weighting the log-likelihood function. Journal of Statistical Planning and
Inference, 2000, 90(2): p. 227-244.

41. Vapnik, V. and V. Vapnik. Statistical learning theory. Vol. 2. 1998: Wiley
New York.

42. Yu, H. General MC: Estimating boundary of positive class from small
positive data. In Proceedings of IEEE International Conference on Data
Mining (ICDM-2003), 2003: IEEE.

43. Yu, H., J. Han, and K. Chang. PEBL: positive example based learning for
Web page classification using SVM. In Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD-
2002), 2002.

44. Zadrozny, B. Learning and evaluating classifiers under sample selection bias.
In Proceedings of International Conference on Machine Learning (ICML-
2004), 2004.

45. Zhang, D. and W. Lee. A simple probabilistic approach to learning from
positive and unlabeled examples. In Proceedings of 5th Annual UK Workshop
on Computational Intelligence, 2005.

46. Zhu, X., Z. Ghahramani, and J. Lafferty. Semi-supervised learning using
gaussian fields and harmonic functions. In Proceedings of International
Conference on Machine Learning (ICML-2003), 2003.

 Part II

Web Mining

6 Information Retrieval and Web Search

Web search needs no introduction. Due to its convenience and the richness
of information on the Web, searching the Web is increasingly becoming
the dominant information seeking method. People make fewer and fewer
trips to libraries, but more and more searches on the Web. In fact, without
effective search engines and rich Web contents, writing this book would
have been much harder.

Web search has its root in information retrieval (or IR for short), a
field of study that helps the user find needed information from a large
collection of text documents. Traditional IR assumes that the basic
information unit is a document, and a large collection of documents is
available to form the text database. On the Web, the documents are Web
pages.

Retrieving information simply means finding a set of documents that is
relevant to the user query. A ranking of the set of documents is usually
also performed according to their relevance scores to the query. The most
commonly used query format is a list of keywords, which are also called
terms. IR is different from data retrieval in databases using SQL queries
because the data in databases are highly structured and stored in relational
tables, while information in text is unstructured. There is no structured
query language like SQL for text retrieval.

It is safe to say that Web search is the single most important application
of IR. To a great extent, Web search also helped IR. Indeed, the
tremendous success of search engines has pushed IR to the center stage.
Search is, however, not simply a straightforward application of traditional
IR models. It uses some IR results, but it also has its unique techniques and
presents many new problems for IR research.

First of all, efficiency is a paramount issue for Web search, but is only
secondary in traditional IR systems mainly due to the fact that document
collections in most IR systems are not very large. However, the number of
pages on the Web is huge. For example, Google indexed more than 8
billion pages when this book was written. Web users also demand very fast
responses. No matter how effective an algorithm is, if the retrieval cannot
be done efficiently, few people will use it.

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_6,
© Springer-Verlag Berlin Heidelberg 2011

211

212 6 Information Retrieval and Web Search

Web pages are also quite different from conventional text documents
used in traditional IR systems. First, Web pages have hyperlinks and
anchor texts, which do not exist in traditional documents (except citations
in research publications). Hyperlinks are extremely important for search
and play a central role in search ranking algorithms as we will see in the
next chapter. Anchor texts associated with hyperlinks too are crucial
because a piece of anchor text is often a more accurate description of the
page that its hyperlink points to. Second, Web pages are semi-structured.
A Web page is not simply a few paragraphs of text like in a traditional
document. A Web page has different fields, e.g., title, metadata, body, etc.
The information contained in certain fields (e.g., the title field) is more
important than in others. Furthermore, the content in a page is typically
organized and presented in several structured blocks (of rectangular
shapes). Some blocks are important and some are not (e.g., advertisements,
privacy policy, copyright notices, etc). Effectively detecting the main
content block(s) of a Web page is useful to Web search because terms
appearing in such blocks are more important.

Finally, spamming is a major issue on the Web, but not a concern for
traditional IR. This is so because the rank position of a page returned by a
search engine is extremely important. If a page is relevant to a query but is
ranked very low (e.g., below top 30), then the user is unlikely to look at the
page. If the page sells a product, then this is bad for the business. In order
to improve the ranking of some target pages, “illegitimate” means, called
spamming, are often used to boost their rank positions. Detecting and
fighting Web spam is a critical issue as it can push low quality (even
irrelevant) pages to the top of the search rank, which harms the quality of
the search results and the user’s search experience.

In this chapter, we first study some information retrieval models and
methods that are closely related to Web search. We then dive into some
Web search specific issues.

6.1 Basic Concepts of Information Retrieval

Information retrieval (IR) is the study of helping users to find information
that matches their information needs. Technically, IR studies the acquisition,
organization, storage, retrieval, and distribution of information. Historically,
IR is about document retrieval, emphasizing document as the basic unit.
Fig. 6.1 gives a general architecture of an IR system.

In Fig. 6.1, the user with information need issues a query (user query)
to the retrieval system through the query operations module. The
retrieval module uses the document index to retrieve those documents that

6.1 Basic Concepts of Information Retrieval 213

contain some query terms (such documents are likely to be relevant to the
query), compute relevance scores for them, and then rank the retrieved
documents according to the scores. The ranked documents are then
presented to the user. The document collection is also called the text
database, which is indexed by the indexer for efficient retrieval.

Fig. 6.1. A general IR system architecture

A user query represents the user’s information needs, which is in one of
the following forms:

1. Keyword queries: The user expresses his/her information needs with a
list of (at least one) keywords (or terms) aiming to find documents that
contain some (at least one) or all the query terms. The terms in the list
are assumed to be connected with a “soft” version of the logical AND.
For example, if one is interested in finding information about Web
mining, one may issue the query ‘Web mining’ to an IR or search engine
system. ‘Web mining’ is retreated as ‘Web AND mining’. The retrieval
system then finds those likely relevant documents and ranks them
suitably to present to the user. Note that a retrieved document does not
have to contain all the terms in the query. In some IR systems, the
ordering of the words is also significant and will affect the retrieval
results.

2. Boolean queries: The user can use Boolean operators, AND, OR, and
NOT to construct complex queries. Thus, such queries consist of terms
and Boolean operators. For example, ‘data OR Web’ is a Boolean
query, which requests documents that contain the word ‘data’ or ‘Web.
A page is returned for a Boolean query if the query is logically true in
the page (i.e., exact match). Although one can write complex Boolean
queries using the three operators, users seldom write such queries.

User
query

Document
collection

The user

Query
operations

Retrieval
system Ranked

documents

Executable
query

user
feedback indexer

Document
index

214 6 Information Retrieval and Web Search

Search engines usually support a restricted version of Boolean queries.
3. Phrase queries: Such a query consists of a sequence of words that

makes up a phrase. Each returned document must contain at least one
instance of the phrase. In a search engine, a phrase query is normally
enclosed with double quotes. For example, one can issue the following
phrase query (including the double quotes), “Web mining techniques
and applications” to find documents that contain the exact phrase.

4. Proximity queries: The proximity query is a relaxed version of the
phrase query and can be a combination of terms and phrases. Proximity
queries seek the query terms within close proximity to each other. The
closeness is used as a factor in ranking the returned documents or pages.
For example, a document that contains all query terms close together is
considered more relevant than a page in which the query terms are far
apart. Some systems allow the user to specify the maximum allowed
distance between the query terms. Most search engines consider both
term proximity and term ordering in retrieval.

5. Full document queries: When the query is a full document, the user
wants to find other documents that are similar to the query document.
Some search engines (e.g., Google) allow the user to issue such a query
by providing the URL of a query page. Additionally, in the returned
results of a search engine, each snippet may have a link called “more
like this” or “similar pages.” When the user clicks on the link, a set of
pages similar to the page in the snippet is returned.

6. Natural language questions: This is the most complex case, and also
the ideal case. The user expresses his/her information need as a natural
language question. The system then finds the answer. However, such
queries are still hard to handle due to the difficulty of natural language
understanding. Nevertheless, this is an active research area, called
question answering. Some search systems are starting to provide
question answering services on some specific types of questions, e.g.,
definition questions, which ask for definitions of technical terms.
Definition questions are usually easier to answer because there are
strong linguistic patterns indicating definition sentences, e.g., “defined
as”, “refers to”, etc. Definitions can usually be extracted offline [34, 39].

The query operations module can range from very simple to very
complex. In the simplest case, it does nothing but just pass the query to the
retrieval engine after some simple pre-processing, e.g., removal of
stopwords (words that occur very frequently in text but have little
meaning, e.g., “the”, “a”, “in”, etc). We will discuss text pre-processing in
Sect. 6.5. In more complex cases, it needs to transform natural language
queries into executable queries. It may also accept user feedback and use it

6.2 Information Retrieval Models 215

to expand and refine the original queries. This is usually called relevance
feedback, which will be discussed in Sect. 6.3.

The indexer is the module that indexes the original raw documents in
some data structures to enable efficient retrieval. The result is the document
index. In Sect. 6.6, we study a particular type of indexing scheme, called
the inverted index, which is used in search engines and most IR systems.
An inverted index is easy to build and very efficient to search.

The retrieval system computes a relevance score for each indexed
document to the query. According to their relevance scores, the documents
are ranked and presented to the user. Note that it usually does not compare
the user query with every document in the collection, which is too
inefficient. Instead, only a small subset of the documents that contains at
least one query term is first found from the index and relevance scores
with the user query are then computed only for this subset of documents.

6.2 Information Retrieval Models

An IR model governs how a document and a query are represented and
how the relevance of a document to a user query is defined. There are four
main IR models: Boolean model, vector space model, language model and
probabilistic model. The most commonly used models in IR systems and
on the Web are the first three models, which we study in this section.

Although these three models represent documents and queries differently,
they use the same framework. They all treat each document or query as a
“bag” of words or terms. Term sequence and position in a sentence or a
document are ignored. That is, a document is described by a set of
distinctive terms. A term is simply a word whose semantics helps remember
the document’s main themes. We should note that the term here may not
be a natural language word in a dictionary. Each term is associated with a
weight. Given a collection of documents D, let V = {t1, t2, ..., t|V|} be the set
of distinctive terms in the collection, where ti is a term. The set V is usually
called the vocabulary of the collection, and |V| is its size, i.e., the number
of terms in V. A weight wij > 0 is associated with each term ti of a
document dj  D. For a term that does not appear in document dj, wij = 0.
Each document dj is thus represented with a term vector,

dj = (w1j, w2j, ..., w|V|j),

where each weight wij corresponds to the term ti  V, and quantifies the
level of importance of ti in document dj. The sequence of the components
(or terms) in the vector is not significant. Note that following the convention
of this book, a bold lower case letter is used to represent a vector.

216 6 Information Retrieval and Web Search

With this vector representation, a collection of documents is simply
represented as a relational table (or a matrix). Each term is an attribute, and
each weight is an attribute value. In different retrieval models, wij is
computed differently.

6.2.1 Boolean Model

The Boolean model is one of the earliest and simplest information retrieval
models. It uses the notion of exact matching to match documents to the
user query. Both the query and the retrieval are based on Boolean algebra.

Document Representation: In the Boolean model, documents and queries
are represented as sets of terms. That is, each term is only considered
present or absent in a document. Using the vector representation of the
document above, the weight wij ( {0, 1}) of term ti in document dj is 1 if
ti appears in document dj, and 0 otherwise, i.e.,






.otherwise0

in appears if1 ji
ij

t
w

d (1)

Boolean Queries: As we mentioned in Sect. 6.1, query terms are
combined logically using the Boolean operators AND, OR, and NOT,
which have their usual semantics in logic. Thus, a Boolean query has a
precise semantics. For instance, the query, ((x AND y) AND (NOT z)) says
that a retrieved document must contain both the terms x and y but not z. As
another example, the query expression (x OR y) means that at least one of
these terms must be in each retrieved document. Here, we assume that x, y
and z are terms. In general, they can be Boolean expressions themselves.

Document Retrieval: Given a Boolean query, the system retrieves every
document that makes the query logically true. Thus, the retrieval is based
on the binary decision criterion, i.e., a document is either relevant or
irrelevant. Intuitively, this is called exact match. There is no notion of
partial match or ranking of the retrieved documents. This is one of the
major disadvantages of the Boolean model, which often leads to poor
retrieval results. It is quite clear that the frequency of terms and their
proximity contribute significantly to the relevance of a document.

Due to this problem, the Boolean model is seldom used alone in practice.
Most search engines support some limited forms of Boolean retrieval using
explicit inclusion and exclusion operators. For example, the following
query can be issued to Google, ‘mining –data +“equipment price”’, where +
(inclusion) and – (exclusion) are similar to Boolean operators AND and
NOT respectively. The operator OR may be supported as well.

6.2 Information Retrieval Models 217

6.2.2 Vector Space Model

This model is perhaps the best known and most widely used IR model.

Document Representation

A document in the vector space model is represented as a weight vector, in
which each component weight is computed based on some variation of TF
or TF-IDF scheme. The weight wij of term ti in document dj is no longer in
{0, 1} as in the Boolean model, but can be any number.

Term Frequency (TF) Scheme: In this method, the weight of a term ti in
document dj is the number of times that ti appears in document dj, denoted
by fij. Normalization may also be applied (see Equation (2)).

The shortcoming of the TF scheme is that it does not consider the
situation where a term appears in many documents of the collection. Such
a term may not be discriminative.

TF-IDF Scheme: This is the most well known weighting scheme, where
TF still stands for the term frequency and IDF the inverse document
frequency. There are several variations of this scheme. Here we only give
the most basic one.

Let N be the total number of documents in the system or the collection
and dfi be the number of documents in which term ti appears at least once.
Let fij be the raw frequency count of term ti in document dj. Then, the
normalized term frequency (denoted by tfij) of ti in dj is given by

,
},...,,max{ ||21 jVjj

ij
ij fff

f
tf  (2)

where the maximum is computed over all terms that appear in document
dj. If term ti does not appear in dj then tfij = 0. Recall that |V| is the
vocabulary size of the collection.

The inverse document frequency (denoted by idfi) of term ti is given by:

.log
i

i df

N
idf  (3)

The intuition here is that if a term appears in a large number of documents
in the collection, it is probably not important or not discriminative. The
final TF-IDF term weight is given by:

.iijij idftfw  (4)

218 6 Information Retrieval and Web Search

Queries

A query q is represented in exactly the same way as a document in the
document collection. The term weight wiq of each term ti in q can also be
computed in the same way as in a normal document, or slightly differently.
For example, Salton and Buckley [52] suggested the following:

.log
},...,,max{

5.0
5.0

||21 iqVqq

iq

qi df

N

fff

f
w 










 (5)

Document Retrieval and Relevance Ranking

It is often difficult to make a binary decision on whether a document is
relevant to a given query. Unlike the Boolean model, the vector space
model does not make such a decision. Instead, the documents are ranked
according to their degrees of relevance to the query. One way to compute
the degree of relevance is to calculate the similarity of the query q to each
document dj in the document collection D. There are many similarity
measures. The most well known one is the cosine similarity, which is the
cosine of the angle between the query vector q and the document vector dj,

.
||||||||

),(
||

1
2||

1
2

||

1


















V

i iq

V

i ij

V

i iqij

j

j
j

ww

ww
cosine

qd

qd
qd (6)

Cosine similarity is also widely used in text/document clustering.
The dot product of the two vectors is another similarity measure,

.),( qdqd jjsim (7)

Ranking of the documents is done using their similarity values. The top
ranked documents are regarded as more relevant to the query.

Another way to assess the degree of relevance is to directly compute a
relevance score for each document to the query. The Okapi method and its
variations are popular techniques in this setting. The Okapi retrieval
formula given here is based on that in [51, 55]. It has been shown that
Okapi variations are more effective than cosine for short query retrieval.

Since it is easier to present the formula directly using the “bag” of
words notation of documents than vectors, document dj will be denoted by
dj and query q will be denoted by q. Additional notations are as follows:

ti is a term
fij is the raw frequency count of term ti in document dj
fiq is the raw frequency count of term ti in query q
N is the total number of documents in the collection

6.2 Information Retrieval Models 219

dfi is the number of documents that contain the term ti
dlj is the document length (in bytes) of dj
avdl is the average document length of the collection
The Okapi relevance score of a document dj for a query q is:

,
)1(

)1(

)1(
5.0

5.0ln),(
2

2

1

1

, iq

iq

ij
j

ij

dqt i

i
j fk

fk

f
avdl

dl
bbk

fk

df

dfN
qdokapi

ji













 


(8)

where k1 (between 1.0-2.0), b (usually 0.75) and k2 (between 1-1000) are
parameters.

Yet another score function is the pivoted normalization weighting
score function, denoted by pnw [55]:

i
iq

dqt j

ij
j df

N
f

avdl

dl
ss

f
qdpnw

ji

1ln
)1(

))ln(1ln(1
),(

,







 



,
(9)

where s is a parameter (usually set to 0.2). Note that these are empirical
functions based on intuitions and experimental evaluations. There are
many variations of these functions used in practice.

6.2.3 Statistical Language Model

Statistical language models (or simply language models) are based on
probability and have foundations in statistical theory. The basic idea of this
approach to retrieval is simple. It first estimates a language model for each
document, and then ranks documents by the likelihood of the query given
the language model. Similar ideas have previously been used in natural
language processing and speech recognition. The formulation and discussion
in this section is based on those in [68, 69]. Information retrieval using
language models was first proposed by Ponte and Croft [46].

Let the query q be a sequence of terms, q = q1q2…qm and the document
collection D be a set of documents, D = {d1, d2, …, dN}. In the language
modeling approach, we consider the probability of a query q as being
“generated” by a probabilistic model based on a document dj, i.e., Pr(q|dj).
To rank documents in retrieval, we are interested in estimating the
posterior probability Pr(dj|q). Using the Bayes rule, we have

)Pr(
)Pr()|Pr(

)|Pr(
q

ddq
qd jj

j  (10)

For ranking, Pr(q) is not needed as it is the same for every document.
Pr(dj) is usually considered uniform and thus will not affect ranking. We
only need to compute Pr(q|dj).

220 6 Information Retrieval and Web Search

The language model used in most existing work is based on unigram,
i.e., only individual terms (words) are considered. That is, the model assumes
that each term (word) is generated independently, which is essentially a
multinomial distribution over words. The general case is the n-gram
model, where the nth term is conditioned on the previous n-1 terms.

Based on the multinomial distribution and the unigram model, we have





||

11
21 ,)|Pr()|Pr()|...Pr(

V

i

f
ji

m

i
jijm

iqdtdqdqqqq (11)

where fiq is the number of times that term ti occurs in q, and
 


||

1
1)|Pr(V

i ji dt . The retrieval problem is reduced to estimating Pr(ti|dj),

which can be the relative frequency,

.
||

)|Pr(
j

ij
ji d

f
dt  (12)

Recall that fij is the number of times that term ti occurs in document dj. |dj|
denotes the total number of words in dj.

However, one problem with this estimation is that a term that does not
appear in dj has the probability of 0, which underestimates the probability
of the unseen term in the document. This situation is similar to text
classification using the naïve Bayesian model (see Sect. 3.7). A non-zero
probability is typically assigned to each unseen term in the document,
which is called smoothing. Smoothing adjusts the estimates of
probabilities to produce more accurate probabilities. The name smoothing
comes from the fact that these techniques tend to make distributions more
uniform, by adjusting low probabilities such as zero probabilities upward,
and high probabilities downward. Not only do smoothing methods aim to
prevent zero probabilities, but they also attempt to improve the accuracy of
the model as a whole. Traditional additive smoothing is

.
||||

)|(Pr
j

ij
jiadd dV

f
dt







 (13)

When  = 1, it is the Laplace smoothing and when 0 <  < 1, it is the
Lidstone smoothing. Many other more sophisticated smoothing methods
can be found in [16, 69].

6.3 Relevance Feedback

To improve the retrieval effectiveness, researchers have proposed many
techniques. Relevance feedback is one of the effective ones. It is a process

6.3 Relevance Feedback 221

where the user identifies some relevant and irrelevant documents in the
initial list of retrieved documents, and the system then creates an expanded
query by extracting some additional terms from the sample relevant and
irrelevant documents for a second round of retrieval. The system may also
produce a classification model using the user-identified relevant and
irrelevant documents to classify the documents in the document collection
into relevant and irrelevant documents. The relevance feedback process
may be repeated until the user is satisfied with the retrieved result.

The Rocchio Method

This is one of the early and effective relevance feedback algorithms. It is
based on the first approach above. That is, it uses the user-identified
relevant and irrelevant documents to expand the original query. The new
(or expanded) query is then used to perform retrieval again.

Let the original query vector be q, the set of relevant documents
selected by the user be Dr, and the set of irrelevant documents be Dir. The
expanded query qe is computed as follows,





irirrr D

ir
irD

r
r

e DD dd

d
||

d
||

qq , (14)

where ,  and  are parameters. Equation (14) simply augments the
original query vector q with additional terms from relevant documents.
The original query q is still needed because it directly reflects the user’s
information need. Relevant documents are considered more important than
irrelevant documents. The subtraction is used to reduce the influence of
those terms that are not discriminative (i.e., they appear in both relevant
and irrelevant documents), and those terms that appear in irrelevant
documents only. The three parameters are set empirically. Note that a
slight variation of the algorithm is one without the normalization of |Dr|
and |Dir|. Both these methods are simple and efficient to compute, and
usually produce good results.

Machine Learning Methods

Since we have a set of relevant and irrelevant documents, we can construct
a classification model from them. Then the relevance feedback problem
becomes a learning problem. Any supervised learning method may be
used, e.g., naïve Bayesian classification and SVM. Similarity comparison
with the original query is no longer needed.

In fact, a variation of the Rocchio method above, called the Rocchio
classification method, can be used for this purpose too. Building a

222 6 Information Retrieval and Web Search

Rocchio classifier is done by constructing a prototype vector ci for each
class i, which is either relevant or irrelevant in this case (negative elements
or components of the vector ci are usually set to 0):


 


ii DDiDi

i DDD dd d

d

||d

d

||
c

||||||||
 , (15)

where Di is the set of documents of class i, and  and  are parameters. Using
the TF-IDF term weighting scheme,  = 16 and  = 4 usually work quite well.

In classification, cosine similarity is applied. That is, each test document
dt is compared with every prototype ci based on cosine similarity. dt is
assigned to the class with the highest similarity value (Fig. 6.2).

Algorithm
1 for each class i do
2 construct its prototype vector ci using Equation (15)
3 endfor
4 for each test document dt do
5 the class of dt is),(maxarg iti cosine cd
6 endfor
Fig. 6.2. Training and testing of a Rocchio classifier

Apart from the above classic methods, the following learning techniques
are also applicable:
Learning from Labeled and Unlabeled Examples (LU Learning):
Since the number of user-selected relevant and irrelevant documents may
be small, it can be difficult to build an accurate classifier. However,
unlabeled examples, i.e., those documents that are not selected by the user,
can be utilized to improve learning to produce a more accurate classifier.
This fits the LU learning model exactly (see Sect. 5.1). The user-selected
relevant and irrelevant documents form the small labeled training set.
Learning from Positive and Unlabeled Examples (PU Learning): The
two learning models mentioned above assume that the user can confidently
identify both relevant and irrelevant documents. However, in some cases,
the user only selects (or clicks) documents that he/she feels relevant based
on the title or summary information (e.g., snippets in Web search), which
are most likely to be true relevant documents, but does not indicate
irrelevant documents. Those documents that are not selected by the user
may not be treated as irrelevant because he/she has not seen them. Thus,
they can only be regarded as unlabeled documents. This is called implicit
feedback. In order to learn in this case, we can use PU learning, i.e.,
learning from positive and unlabeled examples (see Sect. 5.2). We regard
the user-selected documents as positive examples, and unselected documents

6.4 Evaluation Measures 223

as unlabeled examples. Researchers have experimented with this approach
in the Web search context and obtained good results [19].
Using Ranking SVM and Language Models: In the implicit feedback
setting, a technique called ranking SVM is proposed in [31] to rank the
unselected documents based on the selected documents. A language model
based approach is also proposed in [54].

Pseudo-Relevance Feedback

Pseudo-relevance feedback is another technique used to improve retrieval
effectiveness. Its basic idea is to extract some terms (usually frequent terms)
from the top-ranked documents and add them to the original query to form
a new query for a second round of retrieval. Again, the process can be
repeated until the user is satisfied with the final results. The main difference
between this method and the relevance feedback method is that in this
method, the user is not involved in the process. The approach simply
assumes that the top-ranked documents are likely to be relevant. Through
query expansion, some relevant documents missed in the initial round can
be retrieved to improve the overall performance. Clearly, the effectiveness
of this method relies on the quality of the selected expansion terms.

6.4 Evaluation Measures

Precision and recall measures have been described in Chap. 3 on
supervised learning, where each document is classified to a specific class.
In IR and Web search, usually no decision is made on whether a document
is relevant or irrelevant to a query. Instead, a ranking of the documents is
produced for the user. This section studies how to evaluate such rankings.

Again, let the collection of documents in the database be D, and the total
number of documents in D be N. Given a user query q, the retrieval
algorithm first computes relevance scores for all documents in D and then
produce a ranking Rq of the documents based on the relevance scores, i.e.,

,,...,, : 21  q
N

qq
qR ddd (16)

where d1
q  D is the most relevant document to query q and dq

N  D is the
most irrelevant document to query q.

Let Dq ( D) be the set of actual relevant documents of query q in D.
We can compute the precision and recall values at each di

q in the ranking.
Recall at rank position i or document di

q (denoted by r(i)) is the fraction of
relevant documents from d1

q to di
q in Rq. Let the number of relevant

documents from d1
q to di

q in Rq be si (≤ |Dq|) (|Dq| is the size of Dq). Then,

224 6 Information Retrieval and Web Search

.
||

)(
q

i

D

s
ir  (17)

Precision at rank position i or document di
q (denoted by p(i)) is the

fraction of documents from d1
q to di

q in Rq that are relevant:

i

s
ip i)((18)

Example 1: We have a document collection D with 20 documents. Given
a query q, we know that eight documents are relevant to q. A retrieval
algorithm produces the ranking (of all documents in D) shown in Fig. 6.3.

Rank i +/ p(i) r(i)
1 + 1/1 = 100% 1/8 = 13%
2 + 2/2 = 100% 2/8 = 25%
3 + 3/3 = 100% 3/8 = 38%
4  3/4 = 75% 3/8 = 38%
5 + 4/5 = 80% 4/8 = 50%
6  4/6 = 67% 4/8 = 50%
7 + 5/7 = 71% 5/8 = 63%
8  5/8 = 63% 5/8 = 63%
9 + 6/9 = 67% 6/8 = 75%
10 + 7/10 = 70% 7/8 = 88%
11  7/11 = 63% 7/8 = 88%
12  7/12 = 58% 7/8 = 88%
13 + 8/13 = 62% 8/8 = 100%
14  8/14 = 57% 8/8 = 100%
15  8/15 = 53% 8/8 = 100%
16  8/16 = 50% 8/8 = 100%
17  8/17 = 53% 8/8 = 100%
18  8/18 = 44% 8/8 = 100%
19  8/19 = 42% 8/8 = 100%
20  8/20 = 40% 8/8 = 100%

Fig. 6.3. Precision and recall values at each rank position

In column 1 of Fig. 6.3, 1 represents the highest rank and 20 represents
the lowest rank. “+” and “” in column 2 indicate a relevant document and
an irrelevant document respectively. The precision (p(i)) and recall (r(i))
values at each position i are given in columns 3 and 4. ▀
Average Precision: Sometimes we want a single precision to compare
different retrieval algorithms on a query q. An average precision (pavg) can be
computed based on the precision at each relevant document in the ranking,

6.4 Evaluation Measures 225

||

)(

q

Dd

avg D

ip
p q

q
i

  . (19)

For the ranking in Fig. 6.3 of Example 1, the average precision is 81%:

%.81
8

%62%70%67%71%80%100%100%100



avgp (20)

Precision–Recall Curve: Based on the precision and recall values at each
rank position, we can draw a precision–recall curve where the x-axis is the
recall and the y-axis is the precision. Instead of using the precision and
recall at each rank position, the curve is commonly plotted using 11
standard recall levels, 0%, 10%, 20%, …, 100%.

Since we may not obtain exactly these recall levels in the ranking,
interpolation is needed to obtain the precisions at these recall levels, which
is done as follows: Let ri be a recall level, i  {0, 1, 2, …, 10}, and p(ri) be
the precision at the recall level ri. p(ri) is computed with

)(max)(
10

rprp rrri i  . (21)

That is, to interpolate precision at a particular recall level ri, we take the
maximum precision of all recalls between level ri and level r10.

Example 2: Following Example 1, we obtain the interpolated precisions at
all 11 recall levels in the table of Fig. 6.4. The precision-recall curve is
shown on the right.

i p(ri) ri
0 100% 0%
1 100% 10%
2 100% 20%
3 100% 30%
4 80% 40%
5 80% 50%
6 71% 60%
7 70% 70%
8 70% 80%
9 62% 90%

10 62% 100%

Fig. 6.4. The precision-recall curve ▀

Comparing Different Algorithms: Frequently, we need to compare the
retrieval results of different algorithms. We can draw their precision-recall
curves together in the same figure for comparison. Fig. 6.5 shows the

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Recall

Pr
ec

is
io

n

226 6 Information Retrieval and Web Search

curves of two algorithms on the same query and the same document
collection. We observe that the precisions of one algorithm are better than
those of the other at low recall levels, but are worse at high recall levels.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Recall

Pr
ec

is
io

n

Fig. 6.5. Comparison of two retrieval algorithms based on their precision-recall curves

Evaluation Using Multiple Queries: In most retrieval evaluations, we are
interested in the performance of an algorithm on a large number of queries.
The overall precision (denoted by)(irp) at each recall level ri is computed
as the average of individual precisions at that recall level, i.e.,

),(
||

1)(
||

1
i

Q

j
ji rp

Q
rp 



 (22)

where Q is the set of all queries and pj(ri) is the precision of query j at the
recall level ri. Using the average precision at each recall level, we can also
draw a precision-recall curve.

Although in theory precision and recall do not depend on each other, in
practice a high recall is almost always achieved at the expense of
precision, and a high precision is achieved at the expense of recall. Thus,
precision and recall has a trade-off. Depending on the application, one may
want a high precision or a high recall.

One problem with precision and recall measures is that, in many
applications, it can be very hard to determine the set of relevant documents
Dq for each query q. For example, on the Web, Dq is almost impossible to
determine because there are simply too many pages to manually inspect.
Without Dq, the recall value cannot be computed. In fact, recall does not
make much sense for Web search because the user seldom looks at pages
ranked below 30. However, precision is critical, and it can be estimated for
top ranked documents. Manual inspection of only the top 30 pages is
reasonable. The following precision computation is commonly used.

6.5 Text and Web Page Pre-Processing 227

Rank Precision: We compute the precision values at some selected rank
positions. For a Web search engine, we usually compute precisions for the
top 5, 10, 15, 20, 25 and 30 returned pages (as the user seldom looks at
more than 30 pages). We assume that the number of relevant pages is more
than 30. Following Example 1, we have p(5) = 80%, p(10) = 70%, p(15) =
53%, and p(20) = 40%.

We should note that precision is not the only measure for evaluating
search ranking. Reputation or quality of
important as we will see later in this chapter and also in Chap. 7.

F-score: Another often used evaluation measure is the F-score, which we
have used in Chap. 3. Here we can compute the F-score at each rank
position i. Recall that F-score is the harmonic mean of precision and recall:

.
)()(
)()(2

)(
1

)(
1

2)(
irip

irip

ipir

iF






(23)

Finally, the precision and recall breakeven point is also a commonly
used measure, which we have discussed in Sect. 3.3.2 in Chap. 3.

6.5 Text and Web Page Pre-Processing

Before the documents in a collection are used for retrieval, some pre-
processing tasks are usually performed. For traditional text documents (no
HTML tags), the tasks are stopword removal, stemming, and handling of
digits, hyphens, punctuations, and cases of letters. For Web pages, additional
tasks such as HTML tag removal and identification of main content blocks
also require careful considerations. We discuss them in this section.

6.5.1 Stopword Removal

Stopwords are frequently occurring and insignificant words in a language
that help construct sentences but do not represent any content of the
documents. Articles, prepositions and conjunctions and some pronouns are
natural candidates. Common stopwords in English include:

a, about, an, are, as, at, be, by, for, from, how, in, is, of, on, or,
that, the, these, this, to, was, what, when, where, who, will, with

Such words should be removed before documents are indexed and stored.
Stopwords in the query are also removed before retrieval is performed.

 the top ranked pages is also very

228 6 Information Retrieval and Web Search

6.5.2 Stemming

In many languages, a word has various syntactical forms depending on the
contexts that it is used. For example, in English, nouns have plural forms,
verbs have gerund forms (by adding “ing”), and verbs used in the past
tense are different from the present tense. These are considered as syntactic
variations of the same root form. Such variations cause low recall for a
retrieval system because a relevant document may contain a variation of a
query word but not the exact word itself. This problem can be partially
dealt with by stemming.

Stemming refers to the process of reducing words to their stems or
roots. A stem is the portion of a word that is left after removing its
prefixes and suffixes. In English, most variants of a word are generated by
the introduction of suffixes (rather than prefixes). Thus, stemming in
English usually means suffix removal, or stripping. For example,
“computer”, “computing”, and “compute” are reduced to “comput”.
“walks”, “walking” and “walker” are reduced to “walk”. Stemming enables
different variations of the word to be considered in retrieval, which
improves the recall. There are several stemming algorithms, also known as
stemmers. In English, the most popular stemmer is perhaps the Martin
Porter's stemming algorithm [47], which uses a set of rules for stemming.

Over the years, many researchers evaluated the advantages and
disadvantages of using stemming. Clearly, stemming increases the recall
and reduces the size of the indexing structure. However, it can hurt precision
because many irrelevant documents may be considered relevant. For
example, both “cop” and “cope” are reduced to the stem “cop”. However,
if one is looking for documents about police, a document that contains
only “cope” is unlikely to be relevant. Although many experiments have
been conducted by researchers, there is still no conclusive evidence one
way or the other. In practice, one should experiment with the document
collection at hand to see whether stemming helps.

6.5.3 Other Pre-Processing Tasks for Text

Digits: Numbers and terms that contain digits are removed in traditional
IR systems except some specific types, e.g., dates, times, and other pre-
specified types expressed with regular expressions. However, in search
engines, they are usually indexed.

Hyphens: Breaking hyphens are usually applied to deal with inconsistency of
usage. For example, some people use “state-of-the-art”, but others use “state
of the art”. If the hyphens in the first case are removed, we eliminate the

6.5 Text and Web Page Pre-Processing 229

inconsistency problem. However, some words may have a hyphen as an
integral part of the word, e.g., “Y-21”. Thus, in general, the system can follow
a general rule (e.g., removing all hyphens) and also have some exceptions.
Note that there are two types of removal, i.e., (1) each hyphen is replaced with
a space and (2) each hyphen is simply removed without leaving a space so that
“state-of-the-art” may be replaced with “state of the art” or “stateoftheart”. In
some systems both forms are indexed as it is hard to determine which is
correct, e.g., if “pre-processing” is converted to “pre processing”, then some
relevant pages will not be found if the query term is “preprocessing”.

Punctuation Marks: Punctuation can be dealt with similarly as hyphens.

Case of Letters: All the letters are usually converted to either the upper or
lower case.

6.5.4 Web Page Pre-Processing

We have indicated at the beginning of the section that Web pages are
different from traditional text documents. Thus, additional pre-processing
is needed. We describe some important ones below.

1. Identifying different text fields: In HTML, there are different text
fields, e.g., title, metadata, and body. Identifying them allows the retrieval
system to treat terms in different fields differently. For example, in
search engines terms that appear in the title field of a page are regarded
as more important than terms that appear in other fields and are assigned
higher weights because the title is usually a concise description of the
page. In the body text, those emphasized terms (e.g., under header tags
<h1>, <h2>, …, bold tag , etc.) are also given higher weights.

2. Identifying anchor text: Anchor text associated with a hyperlink is
treated specially in search engines because the anchor text often
represents a more accurate description of the information contained in
the page pointed to by its link. In the case that the hyperlink points to an
external page (not in the same site), it is especially valuable because it is
a summary description of the page given by other people rather than the
author/owner of the page, and is thus more trustworthy.

3. Removing HTML tags: The removal of HTML tags can be dealt with
similarly to punctuation. One issue needs careful consideration, which
affects proximity queries and phrase queries. HTML is inherently a
visual presentation language. In a typical commercial page, information
is presented in many rectangular blocks (see Fig. 6.6). Simply removing
HTML tags may cause problems by joining text that should not be
joined. For example, in Fig. 6.6, “cite this article” at the bottom of the

230 6 Information Retrieval and Web Search

left column will join “Main Page” on the right, but they should not be
joined. They will cause problems for phrase queries and proximity
queries. This problem had not been dealt with satisfactorily by search
engines at the time when this book was written.

4. Identifying main content blocks: A typical Web page, especially a
commercial page, contains a large amount of information that is not part
of the main content of the page. For example, it may contain banner ads,
navigation bars, copyright notices, etc., which can lead to poor results
for search and mining. In Fig. 6.6, the main content block of the page is
the block containing “Today’s featured article.” It is not desirable to
index anchor texts of the navigation links as a part of the content of this
page. Several researchers have studied the problem of identifying main
content blocks. They showed that search and data mining results can be
improved significantly if only the main content blocks are used. We
briefly discuss two techniques for finding such blocks in Web pages.

 Partitioning based on visual cues: This method uses visual information
to help find main content blocks in a page. Visual or rendering information
of each HTML element in a page can be obtained from the Web

Fig. 6.6. An example of a Web page from Wikipedia

6.5 Text and Web Page Pre-Processing 231

browser. For example, Internet Explorer provides an API that can output
the X and Y coordinates of each element. A machine learning model can
then be built based on the location and appearance features for
identifying main content blocks of pages. Of course, a large number of
training examples need to be manually labeled (see [12, 56] for details).

 Tree matching: This method is based on the observation that in most
commercial Web sites pages are generated by using some fixed
templates. The method thus aims to find such hidden templates. Since
HTML has a nested structure, it is thus easy to build a tag tree for each
page. Tree matching of multiple pages from the same site can be
performed to find such templates. In Chap. 9, we will describe a tree
matching algorithm for this purpose. Once a template is found, we can
identify which blocks are likely to be the main content blocks based on
the following observation: the text in main content blocks are usually
quite different across different pages of the same template, but the non-
main content blocks are often quite similar in different pages. To
determine the text similarity of corresponding blocks (which are sub-
trees), the shingle method described in the next section can be used.

6.5.5 Duplicate Detection

Duplicate documents or pages are not a problem in traditional IR.
However, in the context of the Web, it is a significant issue. There are
different types of duplication of pages and contents on the Web.

Copying a page is usually called duplication or replication, and copying
an entire site is called mirroring. Duplicate pages and mirror sites are
often used to improve efficiency of browsing and file downloading worldwide
due to limited bandwidth across different geographic regions and poor or
unpredictable network performances. Of course, some duplicate pages are
the results of plagiarism. Detecting such pages and sites can reduce the
index size and improve search results.

Several methods can be used to find duplicate information. The simplest
method is to hash the whole document, e.g., using the MD5 algorithm, or
computing an aggregated number (e.g., checksum). However, these methods
are only useful for detecting exact duplicates. On the Web, one seldom finds
exact duplicates. For example, even different mirror sites may have different
URLs, different Web masters, different contact information, different
advertisements to suit local needs, etc.

One efficient duplicate detection technique is based on n-grams (also
called shingles). An n-gram is simply a consecutive sequence of words of
a fixed window size n. For example, the sentence, “John went to school

232 6 Information Retrieval and Web Search

with his brother,” can be represented with five 3-gram phrases “John went
to”, “went to school”, “to school with”, “school with his”, and “with his
brother”. Note that 1-gram is simply the individual words.

Let Sn(d) be the set of distinctive n-grams (or shingles) contained in
document d. Each n-gram may be coded with a number or a MD5 hash
(which is usually a 32-digit hexadecimal number). Given the n-gram
representations of the two documents d1 and d2, Sn(d1) and Sn(d2), the Jaccard
coefficient can be used to compute the similarity of the two documents,

|)()(|
|)()(|

),(
21

21
21 dSdS

dSdS
ddsim

nn

nn




 . (24)

A threshold is used to determine whether d1 and d2 are likely to be
duplicates of each other. For a particular application, the window size n
and the similarity threshold are chosen through experiments.

6.6 Inverted Index and Its Compression

The basic method of Web search and traditional IR is to find documents
that contain the terms in the user query. Given a user query, one option is
to scan the document database sequentially to find the documents that
contain the query terms. However, this method is obviously impractical for
a large collection, such as the Web. Another option is to build some data
structures (called indices) from the document collection to speed up
retrieval or search. There are many index schemes for text [5]. The
inverted index, which has been shown superior to most other indexing
schemes, is a popular one. It is perhaps the most important index method
used in search engines. This indexing scheme not only allows efficient
retrieval of documents that contain query terms, but also very fast to build.

6.6.1 Inverted Index

In its simplest form, the inverted index of a document collection is
basically a data structure that attaches each distinctive term with a list of
all documents that contains the term. Thus, in retrieval, it takes constant
time to find the documents that contains a query term. Finding documents
containing multiple query terms is also easy as we will see later.

Given a set of documents, D = {d1, d2, …, dN}, each document has a
unique identifier (ID). An inverted index consists of two parts: a
vocabulary V, containing all the distinct terms in the document set, and for
each distinct term ti an inverted list of postings. Each posting stores the

6.6 Inverted Index and Its Compression 233

ID (denoted by idj) of the document dj that contains term ti and other pieces
of information about term ti in document dj. Depending on the need of the
retrieval or ranking algorithm, different pieces of information may be
included. For example, to support phrase and proximity search, a posting
for a term ti usually consists of the following,

<idj, fij, [o1, o2, …, o| fij|]>

where idj is the ID of document dj that contains the term ti, fij is the
frequency count of ti in dj, and ok are the offsets (or positions) of term ti in
dj. Postings of a term are sorted in increasing order based on the idj’s and
so are the offsets in each posting (see Example 3). This facilitates
compression of the inverted index as we will see in Sect. 6.6.4.

Example 3: We have three documents of id1, id2, and id3:

 id1: Web mining is useful.
 1 2 3 4
 id2: Usage mining applications.
 1 2 3

 id3: Web structure mining studies the Web hyperlink structure.
 1 2 3 4 5 6 7 8

The numbers below each document are the offset position of each word.
The vocabulary is the set:

{Web, mining, useful, applications, usage, structure, studies, hyperlink}

Stopwords “is” and “the” have been removed, but no stemming is applied.
Fig. 6.7 shows two inverted indices.

Applications: id2 Applications: <id2, 1, [3]>
Hyperlink: id3 Hyperlink: <id3, 1, [7]>
Mining: id1, id2, id3 Mining: <id1, 1, [2]>, <id2, 1, [2]>, <id3, 1, [3]>
Structure: id3 Structure: <id3, 2, [2, 8]>
Studies: id3 Studies: <id3, 1, [4]>
Usage: id2 Usage: <id2, 1, [1]>
Useful: id1 Useful: <id1, 1, [4]>
Web: id1, id3 Web: <id1, 1, [1]>, <id3, 2, [1, 6]>

(A) (B)

Fig. 6.7. Two inverted indices: a simple version and a more complex version

Fig. 6.7(A) is a simple version, where each term is attached with only an
inverted list of IDs of the documents that contain the term. Each inverted
list in Fig. 6.7(B) is more complex as it contains additional information,
i.e., the frequency count of the term and its positions in each document.
Note that we use idi as the document IDs to distinguish them from offsets.

234 6 Information Retrieval and Web Search

In an actual implementation, they may also be positive integers. Note also
that a posting can contain other types of information depending on the
need of the retrieval or search algorithm (see Sect. 6.8). ▀

6.6.2 Search Using an Inverted Index

Queries are evaluated by first fetching the inverted lists of the query terms,
and then processing them to find the documents that contain all (or some)
terms. Specifically, given the query terms, searching for relevant
documents in the inverted index consists of three main steps:

Step 1 (vocabulary search): This step finds each query term in the
vocabulary, which gives the inverted list of each term. To speed up the
search, the vocabulary usually resides in the main memory. Various
indexing methods, e.g., hashing, tries or B-tree, can be used to speed up
the search. Lexicographical ordering may also be employed due to its
space efficiency. Then the binary search method can be applied. The
complexity is O(log|V|), where |V| is the vocabulary size.

If the query contains only a single term, this step gives all the relevant
documents and the algorithm then goes to step 3. If the query contains
multiple terms, the algorithm proceeds to step 2.

Step 2 (results merging): After the inverted list of each term is found,
merging of the lists is performed to find their intersection, i.e., the set of
documents containing all query terms. Merging simply traverses all the
lists in synchronization to check whether each document contains all
query terms. One main heuristic is to use the shortest list as the base to
merge with the other longer lists. For each posting in the shortest list, a
binary search may be applied to find it in each longer list. Note that
partial match (i.e., documents containing only some of the query terms) can
be achieved as well in a similar way, which is more useful in practice.

Usually, the whole inverted index cannot fit in memory, so part of it
is cached in memory for efficiency. Determining which part to cache
involves analysis of query logs to find frequent query terms. The
inverted lists of these frequent query terms can be cached in memory.

Step 3 (Rank score computation): This step computes a rank (or
relevance) score for each document based on a relevance function (e.g.,
okapi or cosine), which may also consider the phrase and term proximity
information. The score is then used in the final ranking.

Example 4: Using the inverted index built in Fig. 6.7(B), we want to
search for “web mining” (the query). In step 1, two inverted lists are found:

Mining: <id1, 1, [2]>, <id2, 1, [2]>, <id3, 1, [3]>
Web: <id1, 1, [1]>, <id3, 2, [1, 6]>

6.6 Inverted Index and Its Compression 235

In step 2, the algorithm traverses the two lists and finds documents
containing both words (documents id1 and id3). The word positions are also
retrieved. In step 3, we compute the rank scores. Considering the
proximity and the sequence of words, we give id1 a higher rank (or
relevance) score than id3 as “web” and “mining” are next to each other in id1
and in the same sequence as that in the query. Different search engines
may use different algorithms to combine these factors. ▀

6.6.3 Index Construction

The construction of an inverted index is quite simple and can be done
efficiently using a trie data structure among many others. The time complexity
of the index construction is O(T), where T is the number of all terms
(including duplicates) in the document collection (after pre-processing).

For each document, the algorithm scans it sequentially and for each
term, it finds the term in the trie. If it is found, the document ID and other
information (e.g., the offset of the term) are added to the inverted list of the
term. If the term is not found, a new leaf is created to represent the term.

Example 5: Let us build an inverted index for the three documents in
Example 3, which are reproduced below for easy reference. Fig. 6.8 shows
the vocabulary trie and the inverted lists for all terms.
 id1: Web mining is useful.
 1 2 3 4
 id2: Usage mining applications.
 1 2 3

 id3: Web structure mining studies the Web hyperlink structure ▀
 1 2 3 4 5 6 7 8

To build the index efficiently, the trie is usually stored in memory.
However, in the context of the Web, the whole index will not fit in the
main memory. The following technique can be applied.

We follow the above algorithm to build the index until the memory is
full. The partial index I1 obtained so far is written on the disk. Then, we
process the subsequent documents and build the partial index I2 in
memory, and so on. After all documents have been processed, we have k
partial indices, I1, I2, …, Ik, on disk. We then merge the partial indices in a
hierarchical manner. That is, we first perform pair-wise merges of I1 and I2,
I3 and I4, and so on. This gives us larger indices I1-2, I3-4 and so on. After
the first level merging is complete, we proceed to the second level merging,
i.e., we merge I1-2 and I3-4, I5-6 and I7-8 and so on. This process continues
until all the partial indices are merged into a single index. Each merge is
fairly straightforward because the vocabulary in each partial index is

236 6 Information Retrieval and Web Search

sorted by the trie construction. The complexity of each merge is thus linear
in the number of terms in both partial indices. Since each level needs a
linear process of the whole index, the complete merging process takes
O(klog k) time. To reduce the disk space requirement, whenever a new
partial index is generated, we can merge it with a previously merged index.
That is, when we have I1 and I2, we can merge them immediately to produce
I1-2, and when I3 is produced, it is merged with I1-2 to produce I1-2-3 and so on.

Fig. 6.8. The vocabulary trie and the inverted lists

Instead of using a trie, an alternative method is to use an in-memory
hash table (or other data structures) for terms. The algorithm is quite
straightforward and will not be discussed further.

On the Web, an important issue is that pages are constantly added,
modified or deleted. It may be quite inefficient to modify the main index
because a single page change can require updates to a large number of
records of the index. One simple solution is to construct two additional
indices, one for added pages and one for deleted pages. Modification can
be regarded as a deletion and then an addition. Given a user query, it is
searched in the main index and also in the two auxiliary indices. Let the
pages returned from the search in the main index be D0, the pages returned
from the search in the index of added pages be D+ and the pages returned
from the search in the index of deleted pages be D–. Then, the final results
returned to the user is (D0  D+) – D. When the two auxiliary indices
become too large, they can be merged into the main index.

6.6.4 Index Compression

An inverted index can be very large. In order to speed up the search, it
should reside in memory as much as possible to avoid disk I/O. Because of
this, reducing the index size becomes an important issue. A natural
solution to this is index compression, which aims to represent the same

structure: <id3, 2, [2, 8]>

useful: <id1, 1, [4]>

hyperlink: <id3, 1, [7]>

mining: <id1, 1, [2]>, <id2, 1, [2]>, <id3, 1, [3]>

usage: <id2, 1, [2]>

web: <id1, 1, [1]>, <id3, 2, [1, 6]>

applications: <id2, 1, [3]>

studies: <id3, 1, [4]>

‘a’

‘s’
‘m’
‘h’

‘u’
‘u’

‘r’
‘t’

‘s’
‘e’

‘w’
‘a’

6.6 Inverted Index and Its Compression 237

information with fewer bits or bytes. Using compression, the size of an
inverted index can be reduced dramatically. In the lossless compression,
the original index can also be reconstructed exactly using the compressed
version. Lossless compression methods are the focus of this section.

The inverted index is quite amiable to compression. Since the main
space used by an inverted index is for the storage of document IDs and
offsets of each term, we thus want to reduce this space requirement. Since
all the information is represented with positive integers, we only discuss
integer compression techniques in this section.

Without compression, on most architectures an integer has a fixed-size
representation of four bytes (32 bits). However, few integers need 4 bytes
to represent, so a more compact representation (compression) is clearly
possible. There are generally two classes of compression schemes for
inverted lists: the variable-bit scheme and the variable-byte scheme.

In the variable-bit (also called bitwise) scheme, an integer is represented
with an integral number of bits. Well known bitwise methods include
unary coding, Elias gamma coding and delta coding [20], and Golomb
coding [24]. In the variable-byte scheme, an integer is stored in an integral
number of bytes, where each byte has 8 bits. A simple bytewise scheme is
the variable-byte coding [58]. These coding schemes basically map integers
onto self-delimiting binary codewords (bits), i.e., the start bit and the end bit
of each integer can be detected with no additional delimiters or markers.

An interesting feature of the inverted index makes compression even
more effective. Since document IDs in each inverted list are sorted in
increasing order, we can store the difference between any two adjacent
document IDs, idi and idi+1, where idi+1> idi, instead of the actual IDs. This
difference is called the gap between idi and idi+1. The gap is a smaller
number than idi+1 and thus requires fewer bits. In search, if the algorithm
linearly traverses each inverted list, document IDs can be recovered easily.
Since offsets in each posting are also sorted, they can be stored similarly.

For example, the sorted document IDs are: 4, 10, 300, and 305. They
can be represented with gaps, 4, 6, 290 and 5. Given the gap list 4, 6, 290
and 5, it is easy to recover the original document IDs, 4, 10, 300, and 305.
We note that for frequent terms (which appear in a large number of
documents) the gaps are small and can be encoded with short codes (fewer
bits). For infrequent or rare terms, the gaps can be large, but they do not
use up much space due to the fact that only a small number of documents
contain them. Storing gaps can significantly reduce the index size.

We now discuss each of the coding schemes in detail. Each scheme
includes a method for coding (or compression) and a method for
decoding (decompression).

238 6 Information Retrieval and Web Search

Unary Coding

Unary coding is simple. It represents a number x with x1 bits of zeros
followed by a bit of one. For example, 5 is represented as 00001. The one
bit is simply the delimitor. Decoding is also straightforward. This scheme
is effective for very small numbers, but wasteful for large numbers. It is
thus seldom used alone in practice.

Table 6.1 shows example codes of different coding schemes for 10
decimal integers. Column 2 shows the unary code for each integer.

Table 6.1: Example codes for integers of different coding schemes: Spacing in the
Elias, Golomb, and variable-byte codes separates the prefix of the code from the suffix.
 Elias Elias Golomb Golomb Variable
Decimal Unary Gamma Delta (b = 3) (b = 10) byte
1 1 1 1 1 10 1 001 0000001 0
2 01 0 10 0 100 1 11 1 010 0000010 0
3 001 0 11 0 101 01 0 1 011 0000011 0
4 0001 00 100 0 1100 01 10 1 100 0000100 0
5 00001 00 101 0 1101 01 11 1 101 0000101 0
6 000001 00 110 0 1110 001 0 1 1100 0000110 0
7 0000001 00 111 0 1111 001 10 1 1101 0000111 0
8 00000001 000 1000 00 100000 001 11 1 1110 0001000 0
9 000000001 000 1001 00 100001 0001 0 1 1111 0001001 0
10 0000000001 000 1010 00 100010 0001 10 01 000 0001010 0

Elias Gamma Coding
Coding: In the Elias gamma coding, a positive integer x is represented by:
1+log2x in unary (i.e., log2x 0-bits followed by a 1-bit), followed by the
binary representation of x without its most significant bit. Note that
1+log2x is simply the number of bits of x in binary. The coding can also
be described with the following two steps:
1. Write x in binary.
2. Subtract 1 from the number of bits written in step 1 and prepend that

many zeros.
Example 6: The number 9 is represented by 0001001, since 1+log29 = 4,
or 0001 in unary, and 9 is 001 in binary with the most significant bit
removed. Alternatively, we first write 9 in binary, which is 1001 with 4
bits, and then prepend three zeros. In this way, 1 is represented by 1 (in
one bit), and 2 is represented by 010. Additional examples are shown in
column 3 of Table 6.1. ▀
Decoding: We decode an Elias gamma-coded integer in two steps:
1. Read and count zeroes from the stream until we reach the first one. Call

this count of zeroes K.

6.6 Inverted Index and Its Compression 239

2. Consider the one that was reached to be the first digit of the integer,
with a value of 2K, read the remaining K bits of the integer.

Example 7: To decompress 0001001, we first read all zero bits from the
beginning until we see a bit of 1. We have K = 3 zero bits. We then include
the 1 bit with the following 3 bits, which give us 1001 (binary for 9). ▀

 Gamma coding is efficient for small integers but is not suited to large
integers for which the parameterized Golomb code or the Elias delta code
is more suitable.

Elias Delta Coding

Elias delta codes are somewhat longer than gamma codes for small
integers, but for larger integers such as document numbers in an index of
Web pages, the situation is reversed.

Coding: In the Elias delta coding, a positive integer x is stored with the
gamma code representation of 1+log2x, followed by the binary
representation of x less the most significant bit.

Example 8: Let us code the number 9. Since 1+log2x = 4, we have its
gamma code 00100 for 4. Since 9’s binary representation less the most
significant bit is 001, we have the delta code of 00100001 for 9. Additional
examples are shown in column 4 of Table 6.1. ▀

Decoding: To decode an Elias delta-coded integer x, we first decode the
gamma-code part 1+log2x as the magnitude M (the number of bits of x in
binary), and then retrieve the binary representation of x less the most
significant bit. Specifically, we use the following steps:

1. Read and count zeroes from the stream until you reach the first one. Call
this count of zeroes L.

2. Considering the one that was reached to be the first bit of an integer, with a
value of 2L, read the remaining L digits of the integer. This is the integer M.

3. Put a one in the first place of our final output, representing the value 2M.
Read and append the following M-1 bits.

Example 9: We want to decode 00100001. We can see that L = 2 after
step 1, and after step 2, we have read and consumed 5 bits. We also obtain
M = 4 (100 in binary). Finally, we prepend 1 to the M-1 bits (which is 001)
to give 1001, which is 9 in binary. ▀

While Elias codes yield acceptable compression and fast decoding, a
better performance in both aspects is possible with the Golomb coding.

240 6 Information Retrieval and Web Search

Golomb Coding

The Golomb coding is a form of parameterized coding in which integers to
be coded are stored as values relative to a constant b. Several variations of
the original Golomb scheme exist, which save some bits in coding compared
to the original scheme. We describe one version here.

Coding: A positive integer x is represented in two parts:
1. The first part is a unary representation of q+1, where q is the quotient
(x/b), and

2. The second part is a special binary representation of the remainder r =
xqb. Note that there are b possible remainders. For example, if b = 3,
the possible remainders will be 0, 1, and 2.

The binary representation of a remainder requires log2b or log2b bits.
Clearly, it is not possible to write every remainder in log2b bits in binary.
To save space, we want to write the first few remainders using log2b bits
and the rest using log2b bits. We must do so such that the decoder knows
when log2b bits are used and when log2b bits are used. Let i = log2b.
We code the first d remainders using i bits,

d = 2i+1 – b. (25)

It is worth noting that these d remainders are all less than d. The rest of
the remainders are coded with log2b bits and are all greater than or equal
to d. They are coded using a special binary code (also called a fixed prefix
code) with log2b (or i+1) bits.

Example 10: For b = 3, to code x = 9, we have the quotient q = 9/3 = 3.
For remainder, we have i = log2 3 = 1 and d = 1. Note that for b = 3, there
are three remainders, i.e., 0, 1, and 2, which are coded as 0, 10, and 11
respectively. The remainder for 9 is r = 9  3  3 = 0. The final code for 9
is 00010. Additional examples for b = 3 are shown in column 5 of Table 6.1.

For b = 10, to code x = 9, we have the quotient q = 9/10 = 0. For
remainder, we have i = log2 10 = 3 and d = 6. Note that for b = 10, there
are 10 remainders, i.e., 0, 1, 2, …, 10, which are coded as 000, 001, 010,
011, 100, 101, 1100, 1101, 1110, 1111 respectively. The remainder of 9 is
r = 9  0  5 = 9. The final code for 9 is 11111. Additional examples for b
= 10 are shown in column 6 of Table 6.1. ▀

We can see that the first d remainders are standard binary codes, but the
rest are not. They are generated using a tree instead. Fig. 6.9 shows an
example based on b = 5. The leaves are the five remainders. The first three
remainders (0, 1, 2) are in the standard binary code, and the rest (3 and 4)
have an additional bit. It is important to note that the first 2 bits (i = 2) of

6.6 Inverted Index and Its Compression 241

the remainder 3 (the first remainder coded in i+1 bits) is 11, which is 3
(i.e., d) in binary. This information is crucial for decoding because it
enables the algorithm to know when i+1 bits are used. We also notice that
d is completely determined by b, which helps decoding.

Fig. 6.9. The coding tree for b = 5

If b is a power of 2 (called Golomb–Rice coding), i.e., b = 2k for integer
k  0, every remainder is coded with the same number of bits because
log2b = log2b. This is also easy to see from Equation (25), i.e., d = 2k.

Decoding: To decode a Golomb-coded integer x, we use the following steps:
1. Decode unary-coded quotient q (the relevant bits are comsumed).
2. Compute i = log2 b and d = 2i+1 – b.
3. Retrieve the next i bits and assign it to r.
4. If r  d then
 retrieve one more bit and append it to r at the end;
 r = r – d.
5. Return x = qb + r.

Some explanation is in order for step 4. As we discussed above, if r  d
we need i+1 bits to code the remainder. The first line of step 4 retrieves the
additional bit and appends it to r. The second line obtains the true value of
the remainder r.

Example 11: We want to decode 11111 for b = 10. We see that q = 0
because there is no zero at the beginning. The first bit is consumed. We
know that i = log2 10 = 3 and d = 6. We then retrieve the next three bits,
111, which is 7 in decimal, and assign it to r (= 111). Since 7 > 6 (which is
d), we retrieve one more bit, which is 1, and r is now 1111 (15 in decimal).
The new r = r – d = 15 – 6 = 9. Finally, x = qb + r = 0 + 9 = 9. ▀

Now we discuss the selection of b for each term. For gap compression,
Witten et al. [59] reported that a suitable b is

,69.0 









tn

N
b

(26)

1

0 1

0 1 0

1 0 1 0

3

2

4

242 6 Information Retrieval and Web Search

where N is the total number of documents and nt is the number of
documents that contain term t.

Variable-Byte Coding

Coding: In this method, seven bits in each byte are used to code an
integer, with the least significant bit set to 0 in the last byte, or to 1 if
further bytes follow. In this way, small integers are represented efficiently.
For example, 135 is represented in two bytes, since it lies in the range 27
and 214, as 00000011 00001110. Additional examples are shown in column
6 of Table 6.1.

Decoding: Decoding is performed in two steps:

1. Read all bytes until a byte with the zero last bit is seen.
2. Remove the least significant bit from each byte read so far and

concatenate the remaining bits.

For example, 00000011 00001110 is decoded to 00000010000111, which is 135.
Finally, experimental results in [58] show that non-parameterized Elias

coding is generally not as space-efficient or as fast as parameterized
Golomb coding for retrieval. Gamma coding does not work well. Variable-
byte integers are often faster than variable-bit integers, despite having
higher storage costs, because fewer CPU operations are required to decode
variable-byte integers and they are byte-aligned on disk. A suitable
compression technique can allow retrieval to be up to twice as fast than
without compression, while the space requirement averages 20% – 25% of
the cost of storing uncompressed integers.

6.7 Latent Semantic Indexing

The retrieval models discussed so far are based on keyword or term matching,
i.e., matching terms in the user query with those in the documents. However,
many concepts or objects can be described in multiple ways (using different
words) due to the context and people’s language habits. If a user query uses
different words from the words used in a document, the document will not be
retrieved although it may be relevant because the document uses some
symonyms of the words in the user query. This causes low recall. For example,
“picture”, “image” and “photo” are synonyms in the context of digital
cameras. If the user query only has the word “picture”, relevant documents
that contain “image” or “photo” but not “picture” will not be retrieved.

Latent semantic indexing (LSI), proposed by Deerwester et al. [18],
aims to deal with this problem through the identification of statistical

6.7 Latent Semantic Indexing 243

associations of terms. It is assumed that there is some underlying latent
semantic structure in the data that is partially obscured by the randomness
of word choice. It then uses a statistical technique, called singular value
decomposition (SVD) [25], to estimate this latent structure, and to remove
the “noise”. The results of this decomposition are descriptions of terms and
documents based on the latent semantic structure derived from SVD. This
structure is also called the hidden “concept” space, which associates
syntactically different but semantically similar terms and documents.
These transformed terms and documents in the “concept” space are then
used in retrieval, not the original terms or documents. Furthermore, the
query is also transformed into the “concept” space before retrieval.

Let D be the text collection, the number of distinctive words in D be m
and the number of documents in D be n. LSI starts with an mn term-
document matrix A. Each row of A represents a term and each column
represents a document. The matrix may be computed in various ways, e.g.,
using term frequency or TF-IDF values. We use term frequency as an
example in this section. Thus, each entry or cell of the matrix A, denoted
by Aij, is the number of times that term i occurs in document j.

6.7.1 Singular Value Decomposition

What SVD does is to factor matrix A (a mn matrix) into the product of
three matrices, i.e.,

,TVUΣA  (27)

where
U is a mr matrix and its columns, called left singular vectors, are

eigenvectors associated with the r non-zero eigenvalues of AAT.
Furthermore, the columns of U are unit orthogonal vectors, i.e., UTU
= I (identity matrix).

V is an nr matrix and its columns, called right singular vectors, are
eigenvectors associated with the r non-zero eigenvalues of ATA. The
columns of V are also unit orthogonal vectors, i.e., VTV = I.

 is a rr diagonal matrix,  = diag(1, 2, …, r), i > 0. 1, 2, …,
and r, called singular values, are the non-negative square roots of
the r (non-zero) eigenvalues of AAT. They are arranged in decreasing
order, i.e., 1  2  …  r > 0.

We note that initially U is in fact an mm matrix and V an nn matrix
and  an mn diagonal matrix.  ’s diagonal consists of nonnegative
eigenvalues of AAT or ATA. However, due to zero eigenvalues,  has
zero-valued rows and columns. Matrix multiplication tells us that those

244 6 Information Retrieval and Web Search

zero-valued rows and columns from  can be dropped. Then, the last
mr columns in U and the last nr columns in V can also be dropped.

m is the number of row (terms) in A, representing the number of terms.
n is the number of columns in A, representing the number of documents.
r is the rank of A, r  min(m, n).

The singular value decomposition of A always exists and is unique up to

1. allowable permutations of columns of U and V and elements of  leaving it
still diagonal; that is, columns i and j of  may be interchanged iff row i and
j of  are interchanged, and columns i and j of U and V are interchanged.

2. sign (+/) flip in U and V.

An important feature of SVD is that we can delete some insignificant
dimensions in the transformed (or “concept”) space to optimally (in the
least square sense) approximate matrix A. The significance of the dimensions
is indicated by the magnitudes of the singular values in , which are
already sorted. In the context of information retrieval, the insignificant
dimensions may represent “noise” in the data, and should be removed. Let
us use only the k largest singular values in  and set the remaining small
ones to zero. The approximated matrix of A is denoted by Ak. We can also
reduce the size of the matrices , U and V by deleting the last rk rows
and columns from , the last rk columns in U and the last rk columns in
V. We then obtain

,T
kkkk VΣUA  (28)

which means that we use the k-largest singular triplets to approximate the
original (and somewhat “noisy”) term-document matrix A. The new space
is called the k-concept space. Fig. 6.10 shows the original matrices and
the reduced matrices schematically.

Fig. 6.10. The schematic representation of A and Ak

=

Term vectors

k

k

k

k

Terms

Documents

VT

Document
vectors

mn rnmr



rr

U A/Ak Uk

Vk
T

k

6.7 Latent Semantic Indexing 245

It is critical that the LSI method does not re-construct the original term-
document matrix A perfectly. The truncated SVD captures most of the
important underlying structures in the association of terms and documents,
yet at the same time removes the noise or variability in word usage that
plagues keyword matching retrieval methods.

Intuitive Idea of LSI: The intuition of LSI is that SVD rotates the axes of
m-dimensional space of A such that the first axis runs along the largest
variation (variance) among the documents, the second axis runs along the
second largest variation (variance) and so on. Fig. 6.11 shows an example.

The original x-y space is mapped to the x-y space generated by SVD.
We can see that x and y are clearly correlated. In our retrieval context, each
data point represents a document and each axis (x or y) in the original
space represents a term. Hence, the two terms are correlated or co-occur
frequently. In the SVD, the direction of x in which the data has the largest
variation is represented by the first column vector of U, and the direction
of y is represented by the second column vector of U. VT represents the
documents in the transformed “concept” space. The singular values in 
are simply scaling factors.

We observe that y direction is insignificant, and may represent some
“noise”, so we can remove it. Then, every data point (document) is projected
to x. We have an outlier document di that contains term x, but not term y.
However, if it is projected to x, it becomes closer to other points.

Let us see what happens if we have a query q represented with a star in
Fig. 6.11, which contains only a single term “y”. Using the traditional
exact term matching, di is not relevant because “y” does not appear in di.
However, in the new space after projection, they are quite close or similar.

Fig. 6.11. Intuition of the LSI.

6.7.2 Query and Retrieval

Given a user query q (represented by a column vector as those in A), it is
first converted into a document in the k-concept space, denoted by qk. This
transformation is necessary because SVD has transformed the original

x

x'
y’

y

di

q

246 6 Information Retrieval and Web Search

documents into the k-concept space and stored them in Vk. The idea is that
q is treated as a new document in the original space represented as a
column in A, and then mapped to qk (a row vector) as an additional
document (or column) in Vk

T. From Equation (28), it is easy to see that

 .T
kkk qq ΣU (29)

Since the columns in U are unit orthogonal vectors, Uk
TUk = I. Thus,

 .T
kk

T
k qq ΣU  (30)

As the inverse of a diagonal matrix is still a diagonal matrix, and each
entry on the diagonal is 1/i (1  i  k), if it is multiplied on both sides of
Equation (30), we obtain,

.1 T
k

T
k

-
k qq UΣ (31)

Finally, we get the following (notice that the transpose of a diagonal
matrix is itself),

.1-
kk

T
k ΣUqq  (32)

For retrieval, we simply compare qk with each document (row) in Vk
using a similarity measure, e.g., the cosine similarity. Recall that each row
of Vk (or each column of Vk

T) corresponds to a document (column) in A.
This method has been used traditionally.

Alternatively, since kVk
T (not Vk

T) represents the documents in the
transformed k-concept space, we can compare the similarity of the query
document in the transformed space, which is kqk

T, and each transformed
document in kVk

T for retrieval. The difference between the two methods is
obvious. This latter method considers scaling effects of the singular values
in k, but the former does not. However, it is not clear which method
performs better as I know of no reported study on this alternative method.

6.7.3 An Example

Example 12: We will use the example in [18] to illustrate the process. The
document collection has the following nine documents. The first five
documents are related to human computer interaction, and the last four
documents are related to graphs. To reduce the size of the problem, only
the underlined terms are used in our computation.

6.7 Latent Semantic Indexing 247

c1: Human machine interface for Lab ABC computer applications
c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system
c4: System and human system engineering testing of EPS
c5: Relation of user-perceived response time to error measurement
m1: The generation of random, binary, unordered trees
m2: The intersection graph of paths in trees
m3: Graph minors IV: Widths of trees and well-quasi-ordering
m4: Graph minors: A survey

The term-document matrix A is given below, which is a 912 matrix.
 c1 c2 c3 c4 c5 m1 m2 m3 m4
 1 0 0 1 0 0 0 0 0 human
 1 0 1 0 0 0 0 0 0 interface
 1 1 0 0 0 0 0 0 0 computer
 0 1 1 0 1 0 0 0 0 user
 0 1 1 2 0 0 0 0 0 system
 A = 0 1 0 0 1 0 0 0 0 response
 0 1 0 0 1 0 0 0 0 time
 0 0 1 1 0 0 0 0 0 EPS
 0 1 0 0 0 0 0 0 1 survey
 0 0 0 0 0 1 1 1 0 trees
 0 0 0 0 0 0 1 1 1 graph
 0 0 0 0 0 0 0 1 1 minors

After performing SVD, we obtain three matrices, U,  and VT, which are
given below. Singular values on the diagonal of  are in decreasing order.
 0.22 -0.11 0.29 -0.41 -0.11 -0.34 0.52 -0.06 -0.41
 0.20 -0.07 0.14 -0.55 0.28 0.50 -0.07 -0.01 -0.11
 0.24 0.04 -0.16 -0.59 -0.11 -0.25 -0.30 0.06 0.49
 0.40 0.06 -0.34 0.10 0.33 0.38 0.00 0.00 0.01
 0.64 -0.17 0.36 0.33 -0.16 -0.21 -0.17 0.03 0.27
 U = 0.27 0.11 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05
 0.27 0.11 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05
 0.30 -0.14 0.33 0.19 0.11 0.27 0.03 -0.02 -0.17
 0.21 0.27 -0.18 -0.03 -0.54 0.08 -0.47 -0.04 -0.58
 0.01 0.49 0.23 0.03 0.59 -0.39 -0.29 0.25 -0.23
 0.04 0.62 0.22 0.00 -0.07 0.11 0.16 -0.68 0.23
 0.03 0.45 0.14 -0.01 -0.30 0.28 0.34 0.68 0.18

 3.34 0 0 0 0 0 0 0 0
 0 2.54 0 0 0 0 0 0 0

 0 0 2.35 0 0 0 0 0 0
 0 0 0 1.64 0 0 0 0 0

 = 0 0 0 0 1.50 0 0 0 0
 0 0 0 0 0 1.31 0 0 0
 0 0 0 0 0 0 0.85 0 0

 0 0 0 0 0 0 0 0.56 0
 0 0 0 0 0 0 0 0 0.36

248 6 Information Retrieval and Web Search

 0.20 -0.06 0.11 -0.95 0.05 -0.08 0.18 -0.01 -0.06
 0.61 0.17 -0.50 -0.03 -0.21 -0.26 -0.43 0.05 0.24
 0.46 -0.13 0.21 0.04 0.38 0.72 -0.24 0.01 0.02
 0.54 -0.23 0.57 0.27 -0.21 -0.37 0.26 -0.02 -0.08
 V = 0.28 0.11 -0.51 0.15 0.33 0.03 0.67 -0.06 -0.26
 0.00 0.19 0.10 0.02 0.39 -0.30 -0.34 0.45 -0.62
 0.01 0.44 0.19 0.02 0.35 -0.21 -0.15 -0.76 0.02
 0.02 0.62 0.25 0.01 0.15 0.00 0.25 0.45 0.52
 0.08 0.53 0.08 -0.03 -0.60 0.36 0.04 -0.07 -0.45

Now let us choose only two largest singular values from , i.e., k = 2.
Thus, the concept space has only two dimensions. The other two matrices
are also truncated accordingly. We obtain the 3 matrix Uk, k and Vk

T:

 Uk k Vk
 T

 0.22 -0.11 3.34 0 0.20 0.61 0.46 0.54 0.28 0.00 0.02 0.02 0.08
 0.20 -0.07 0 2.54 -0.06 0.17 -0.13 -0.23 0.11 0.19 0.44 0.62 0.53
 0.24 0.04
 0.40 0.06
 0.64 -0.17
Ak = 0.27 0.11
 0.27 0.11
 0.30 -0.14
 0.21 0.27
 0.01 0.49
 0.04 0.62
 0.03 0.45

Now we issue a search query q, “user interface”, to find relevant
documents. The transformed query document qk of query q in the k-concept
space is computed below using Equation (32), which is (0.179 -0.004).
 0 T 0.22 -0.11
 1 0.20 -0.07
 0 0.24 0.04
 1 0.40 0.06
 0 0.64 -0.17

 0 0.27 0.11 3.34 0 -1
 0 0.27 0.11 0 2.54
 0 0.30 -0.14
 0 0.21 0.27
 0 0.01 0.49
 0 0.04 0.62
 0 0.03 0.45

qk is then compared with every document vector in Vk using the cosine
similarity. The similarity values are as follows:

c1: 0.964
c2: 0.957
c3: 0.968
c4: 0.928
c5: 0.922

= (0.179 0.004) qk =

6.8 Web Search 249

m1: 0.022
m2: 0.023
m3: 0.010
m4: 0.127

We obtain the final ranking of (c3, c1, c2, c4, c5, m4, m2, m3, m1). ▀

6.7.4 Discussion

LSI has been shown to perform better than traditional keywords based
methods. The main drawback is the time complexity of the SVD, which is
O(m2n). It is thus difficult to use for a large document collection such as
the Web. Another drawback is that the concept space is not interpretable as
its description consists of all numbers with little semantic meaning.

Determining the optimal number of dimensions k of the concept space is
also a major difficulty. There is no general consensus for an optimal number
of dimensions. The original paper [18] of LSI suggests 50–350 dimensions.
In practice, the value of k needs to be determined based on the specific
document collection via trial and error, which is a very time consuming
process due to the high time complexity of the SVD.

To close this section, one can imagine that association rules may be able
to approximate the results of LSI and avoid its shortcomings. Association
rules represent term correlations or co-occurrences. Association rule
mining has two advantages. First, its mining algorithm is very efficient.
Since we may only need rules with 2-3 terms, which are sufficient for
practical purposes, the mining algorithm only needs to scan the document
collection 2-3 times. Second, rules are easy to understand. However, little
research has been done in this direction so far.

6.8 Web Search

We now put it all together and describe the working of a search engine.
Since it is difficult to know the internal details of a commercial search engine,
most contents in this section are based on research papers, especially the
early Google paper [10]. Due to the efficiency problem, latent semantic
indexing is probably not used in Web search yet. Current search algorithms
are still mainly based on the vector space model and term matching.

A search engine starts with the crawling of pages on the Web. The
crawled pages are then parsed, indexed, and stored. At the query time, the
index is used for efficient retrieval. We will not discuss crawling here. Its
details can be found in Chap. 8. The subsequent operations of a search
engine are described below:

250 6 Information Retrieval and Web Search

Parsing: A parser is used to parse the input HTML page, which produces
a stream of tokens or terms to be indexed. The parser can be constructed
using a lexical analyzer generator such as YACC and Flex (which is from
the GNU project). Some pre-processing tasks described in Sect. 6.5 may
also be performed before or after parsing.

Indexing: This step produces an inverted index, which can be done using
any of the methods described in Sect. 6.6. For retrieval efficiency, a search
engine may build multiple inverted indices. For example, since the titles
and anchor texts are often very accurate descriptions of the pages, a small
inverted index may be constructed based on the terms appeared in them
alone. Note that here the anchor text is for indexing the page that its link
points to, not the page containing it. A full index is then built based on all
the text in each page, including anchor texts (a piece of anchor text is
indexed both for the page that contains it, and for the page that its link
points to). In searching, the algorithm may search in the small index first
and then the full index. If a sufficient number of relevant pages are found
in the small index, the system may not search in the full index.

Searching and Ranking: Given a user query, searching involves the
following steps:

1. pre-processing the query terms using some of the methods described in
Sect. 6.5, e.g., stopword removal and stemming;

2. finding pages that contain all (or most of) the query terms in the
inverted index;

3. ranking the pages and returning them to the user.

The ranking algorithm is the heart of a search engine. However, little is
known about the algorithms used in commercial search engines. We give a
general description based on the algorithm in the early Google system.

As we discussed earlier, traditional IR uses cosine similarity values or
any other related measures to rank documents. These measures only
consider the content of each document. For the Web, such content based
methods are not sufficient. The problem is that on the Web there are too
many relevant documents for almost any query. For example, using “web
mining” as the query, the search engine Google estimated that there were
46,500,000 relevant pages. Clearly, there is no way that any user will look
at this huge number of pages. Therefore, the issue is how to rank the pages
and present the user the “best” pages at the top.

An important ranking factor on the Web is the quality of the pages,
which was hardly studied in traditional IR because most documents used in
IR evaluations are from reliable sources. However, on the Web, anyone
can publish almost anything, so there is no quality control. Although a

6.8 Web Search 251

page may be 100% relevant, it may not be a quality page due to several
reasons. For example, the author may not be an expert of the query topic,
the information given in the page may be unreliable or biased, etc.

However, the Web does have an important mechanism, the hyperlinks
(links), that can be used to assess the quality of each page to some extent.
A link from page x to page y is an implicit conveyance of authority of page
x to page y. That is, the author of page x believes that page y contains
quality or authoritative information. One can also regard the fact that
page x points to page y as a vote of page x for page y. This democratic
nature of the Web can be exploited to assess the quality of each page. In
general, the more votes a page receives, the more likely it is a quality
page. The actual algorithms are more involved than simply counting the
number of votes or links pointing to a page (called in-links). We will
describe the algorithms in the next chapter. PageRank is the most well
known such algorithm (see Sect. 7.3). It makes use of the link structure of
Web pages to compute a quality or reputation score for each page. Thus, a
Web page can be evaluated based on both its content factors and its
reputation. Content-based evaluation depends on two kinds of information:

Occurrence Type: There are several types of occurrences of query terms
in a page:

Title: a query term occurs in the title field of the page.
Anchor text: a query term occurs in the anchor text of a page pointing

to the current page being evaluated.
URL: a query term occurs in the URL of the page. Many URL addresses

contain some descriptions of the page. For example, a page on Web
mining may have the URL http://www.domain.edu/Web-mining.html.

Body: a query term occurs in the body field of the page. In this case, the
prominence of each term is considered. Prominence means whether
the term is emphasized in the text with a large font, or bold and/or
italic tags. Different prominence levels can be used in a system. Note
that anchor texts in the page can be treated as plain texts for the
evaluation of the page.

Count: The number of occurrences of a term of each type. For example, a
query term may appear in the title field of the page 2 times. Then, the
title count for the term is 2.

Position: This is the position of each term in each type of occurrence. The
information is used in proximity evaluation involving multiple query
terms. Query terms that are near to each other are better than those that
are far apart. Furthermore, query terms appearing in the page in the
same sequence as they are in the query are also better.

252 6 Information Retrieval and Web Search

For the computation of the content based score (also called the IR score),
each occurrence type is given an associated weight. All type weights form
a fixed vector. Each raw term count is converted to a count weight, and all
count weights also form a vector.

The quality or reputation of a page is usually computed based on the
link structure of Web pages, which we will study in Chap. 7. Here, we
assume that a reputation score has been computed for each page.

Let us now look at two kinds of queries, single word queries and
multi-word queries. A single word query is the simplest case with only a
single term. After obtaining the pages containing the term from the
inverted index, we compute the dot product of the type weight vector and
the count weight vector of each page, which gives us the IR score of the
page. The IR score of each page is then combined with its reputation
score to produce the final score of the page.

For a multi-word query, the situation is similar, but more complex since
there is now the issue of considering term proximity and ordering. Let us
simplify the problem by ignoring the term ordering in the page. Clearly,
terms that occur close to each other in a page should be weighted higher
than those that occur far apart. Thus multiple occurrences of terms need to
be matched so that nearby terms can be identified. For every matched set, a
proximity value is calculated, which is based on how far apart the terms
are in the page. Counts are also computed for every type and proximity.
Each type and proximity pair has a type-proximity-weight. The counts are
converted into count-weights. The dot product of the count-weights and
the type-proximity-weights gives an IR score to the page. Term ordering
can be considered similarly and included in the IR score, which is then
combined with the page reputation score to produce the final rank score.

6.9 Meta-Search and Combining Multiple Rankings

In the last section, we described how an individual search engine works.
We now discuss how several search engines can be used together to
produce a meta-search engine, which is a search system that does not
have its own database of Web pages. Instead, it answers the user query by
combining the results of some other search engines which normally have
their databases of Web pages. Fig. 6.12 shows a meta-search architecture.

After receiving a query from the user through the search interface, the
meta-search engine submits the query to the underlying search engines
(called its component search engines). The returned results from all these
search engines are then combined (fused or merged) and sent to the user.

6.9 Meta-Search and Combining Multiple Rankings 253

A meta-search engine has some intuitive appeals. First of all, it
increases the search coverage of the Web. The Web is a huge information
source, and each individual search engine may only cover a small portion
of it. If we use only one search engine, we will never see those relevant
pages that are not covered by the search engine.

Fig. 6.12. A meta-search architecture

Meta-search may also improve the search effectiveness. Each component
search engine has its ranking algorithm to rank relevant pages, which is
often biased, i.e., it works well for certain types of pages or queries but not
for others. By combining the results from multiple search engines, their
biases can be reduced and thus the search precision can be improved.

The key operation in meta-search is to combine the ranked results from
the component search engines to produce a single ranking. The first task is
to identify whether two pages from different search engines are the same,
which facilitates combination and duplicate removal. Without
downloading the full pages (which is too time consuming), this process is
not simple due to aliases, symbolic links, redirections, etc. Typically,
several heuristics are used for the purpose, e.g., comparing domain names
of URLs, titles of the pages, etc.

The second task is to combine the ranked results from individual search
engines to produce a single ranking, i.e., to fuse individual rankings. There
are two main classes of meta-search combination (or fusion) algorithms:
ones that use similarity scores returned by each component system and
ones that do not. Some search engines return a similarity score (with the
query) for each returned page, which can be used to produce a better
combined ranking. We discuss these two classes of algorithms below.

It is worth noting that the first class of algorithms can also be used to
combine scores from different similarity functions in a single IR system or
in a single search engine. Indeed, the algorithms below were originally
proposed for this purpose. It is likely that search engines already use some

Search interface

Metasearch
engine

Search
engine 1

Search
engine 2

Search
engine n 

254 6 Information Retrieval and Web Search

such techniques (or their variations) within their ranking mechanisms
because a ranking algorithm needs to consider multiple factors.

6.9.1 Combination Using Similarity Scores

Let the set of candidate documents to be ranked be D = {d1, d2, …, dN}.
There are k underlying systems (component search engines or ranking
techniques). The ranking from system or technique i gives document dj the
similarity score, sij. Some popular and simple combination methods are
defined by Fox and Shaw in [22].

CombMIN: The combined similarity score for each document dj is the
minimum of the similarities from all underlying search engine systems:

CombMIN(dj) = min(s1j, s2j, …, skj). (33)

CombMAX: The combined similarity score for each document dj is the
maximum of the similarities from all underlying search engine systems:

CombMAX(dj) = max(s1j, s2j, …, skj). (34)

CombSUM: The combined similarity score for each document dj is the
sum of the similarities from all underlying search engine systems.

.)(CombSUM
1 


k

i ijj sd (35)

CombANZ: It is defined as

,
)(CombSUM

)(CombANZ
j

j
j r

d
d  (36)

where rj is the number of non-zero similarities, or the number of
systems that retrieved dj.

CombMNZ: It is defined as

jjj rdd )(CombSUM)(CombMNZ (37)

where rj is the number of non-zero similarities, or the number of
systems that retrieved dj.

It is a common practice to normalize the similarity scores from each
ranking using the maximum score before combination. Researchers have
shown that, in general, CombSUM and CombMNZ perform better.
CombMNZ outperforms CombSUM slightly in most cases.

6.9 Meta-Search and Combining Multiple Rankings 255

6.9.2 Combination Using Rank Positions

We now discuss some popular rank combination methods that use only
rank positions of each search engine. In fact, there is a field of study called
the social choice theory [33] that studies voting algorithms as techniques
to make group or social decisions (choices). The algorithms discussed
below are based on voting in elections.

In 1770 Jean-Charles de Borda proposed “election by order of merit”.
Each voter announces a (linear) preference order on the candidates. For
each voter, the top candidate receives n points (if there are n candidates in
the election), the second candidate receives n1 points, and so on. The
points from all voters are summed up to give the final points for each
candidate. If there are candidates left unranked by a voter, the remaining
points are divided evenly among the unranked candidates. The candidate
with the most points wins. This method is called the Borda ranking.

An alternative method was proposed by Marquis de Condorcet in 1785.
The Condorcet ranking algorithm is a majoritarian method where the
winner of the election is the candidate(s) that beats each of the other
candidates in a pair-wise comparison. If a candidate is not ranked by a
voter, the candidate loses to all other ranked candidates. All unranked
candidates tie with one another.

Yet another simple method, called the reciprocal ranking, sums one
over the rank of each candidate across all voters. For each voter, the top
candidate has the score of 1, the second ranked candidate has the score of
1/2, and the third ranked candidate has the score of 1/3 and so on. If a
candidate is not ranked by a voter, it is skipped in the computation for this
voter. The candidates are then ranked according to their final total scores.
This rank strategy gives much higher weight than Borda ranking to
candidates that are near the top of a list.

Example 13: We use an example in the context of meta-search to illustrate
the working of these methods. Consider a meta-search system with five
underlying search engine systems, which have ranked four candidate
documents or pages, a, b, c, and d as follows:

system 1: a, b, c, d
system 2: b, a, d, c
system 3: c, b, a, d
system 4: c, b, d
system 5: c, b

Let us denote the score of each candidate x by Score(x).

Borda Ranking: The score for each page is as follows:

256 6 Information Retrieval and Web Search

Score(a) = 4 + 3 + 2 + 1 + 1.5 = 11.5
Score(b) = 3 + 4 + 3 + 3 + 3 = 16
Score(c) = 2 + 1 + 4 + 4 + 4 = 15
Score(d) = 1 + 2 + 1 + 2 + 1.5 = 7.5

Thus the final ranking is: b, c, a, d.

Condorcet Ranking: We first build an nn matrix for all pair-wise
comparisons, where n is the number of pages. Each non-diagonal entry (i,
j) of the matrix shows the number of wins, loses, and ties of page i over
page j, respectively. For our example, the matrix is as follows:

 a b c d
a - 1:4:0 2:3:0 3:1:1
b 4:1:0 - 2:3:0 5:0:0
c 3:2:0 3:2:0 - 4:1:0
d 1:3:1 0:5:0 1:4:0 -

Fig. 6.13. The pair-wise comparison matrix for the four candidate pages

After the matrix is constructed, pair-wise winners are determined, which
produces a win, lose and tie table. Each pair in Fig. 6.13 is compared, and
the winner receives one point in its “win” column and the loser receives
one point in its “lose” column. For a pair-wise tie, both receive one point
in the “tie” column. For example, for page a, it only beats d because a is
ranked ahead of d three times out of 5 ranks (Fig. 6.13). The win, lose and
tie table for Fig. 6.13 is given in Fig. 6.14 below.

 win lose tie
a 1 2 0
b 2 1 0
c 3 0 0
d 0 3 0

Fig. 6.14. The win, lose and tie table for the comparison matrix in Fig. 6.13

To rank the pages, we use their win and lose values. If the number of
wins that a page i has is higher than another page j, then i wins over j. If
their win property is equal, we consider their lose scores, and the page
which has a lower lose score wins. If both their win and lose scores are the
same, then the pages are tied. The final ranks of the tied pages are
randomly assigned. Clearly c is the Condorcet winner in our example. The
final ranking is: c, b, a, d.

6.10 Web Spamming 257

Reciprocal Ranking:

Score(a) = 1 + 1/2 + 1/3 = 1.83
Score(b) = 1/2 + 1 + 1/2 + 1/2 + 1/2 = 3
Score(c) = 1/3 + 1/4 + 1 + 1 + 1 = 3.55
Score(d) = 1/4 + 1/3 + 1/4 + 1/3= 1.17

The final ranking is: c, b, a, d. ▀

6.10 Web Spamming

Web search has become very important in the information age. Increased
exposure of pages on the Web can result in significant financial gains
and/or fames for organizations and individuals. The rank positions of Web
pages in search are perhaps the single most important indicator of such
exposures of pages. If a user searches for information that is relevant to
your pages but your pages are ranked low by search engines, then the user
may not see the pages because one seldom clicks a large number of
returned pages. This is not acceptable for businesses, organizations, and
even individuals. Thus, it has become very important to understand search
engine ranking algorithms and to present the information in one’s pages in
such a way that the pages will be ranked high when terms related to the
contents of the pages are searched. Unfortunately, this also results in
spamming, which refers to human activities that deliberately mislead
search engines to rank some pages higher than they deserve.

There is a gray area between spamming and legitimate page optimization.
It is difficult to define precisely what are justifiable and unjustifiable
actions aimed at boosting the importance and consequently the rank
positions of one’s pages.

Assume that, given a user query, each page on the Web can be assigned
an information value. All the pages are then ranked according to their
information values. Spamming refers to actions that do not increase the
information value of a page, but dramatically increase its rank position by
misleading search algorithms to rank it high. Due to the fact that search
engine algorithms do not understand the content of each page, they use
syntactic or surface features to assess the information value of the page.
Spammers exploit this weakness to boost the ranks of their pages.

Spamming is annoying for users because it makes it harder to find truly
useful information and leads to frustrating search experiences. Spamming
is also bad for search engines because spam pages consume crawling
bandwidth, pollute the Web, and distort search ranking.

258 6 Information Retrieval and Web Search

There are in fact many companies that are in the business of helping
others improve their page ranking. These companies are called Search
Engine Optimization (SEO) companies, and their businesses are thriving.
Some SEO activities are ethical and some, which generate spam, are not.

As we mentioned earlier, search algorithms consider both content based
factors and reputation based factors in scoring each page. In this section,
we briefly describe some spam methods that exploit these factors. The
section is mainly based on [28] by Gyongyi and Garcia-Molina.

6.10.1 Content Spamming

Most search engines use variations of TF-IDF based measures to assess the
relevance of a page to a user query. Content-based spamming methods
basically tailor the contents of the text fields in HTML pages to make
spam pages more relevant to some queries. Since TF-IDF is computed
based on terms, content spamming is also called term spamming. Term
spamming can be placed in any text field:

Title: Since search engines usually give higher weights to terms in the
title of a page due to the importance of the title to a page, it is thus
common to spam the title.

Meta-Tags: The HTML meta-tags in the page header enable the owner
to include some meta information of the page, e.g., author, abstract, keywords,
content language, etc. However, meta-tags are very heavily spammed. Search
engines now give terms within these tags very low weights or completely
ignore their contents.

Body: Clearly spam terms can be placed within the page body to boost
the page ranking.

Anchor Text: As we discussed in Sect. 6.8, the anchor text of a
hyperlink is considered very important by search engines. It is indexed for
the page containing it and also for the page that it points to, so anchor text
spam affects the ranking of both pages.

URL: Some search engines break down the URL of a page into terms
and consider them in ranking. Thus, spammers can include spam terms in
the URL. For example, a URL may be http://www.xxx.com/cheap-MP3-
player-case-battery.html

There are two main term spam techniques, which simply create synthetic
contents containing spam terms.

1. Repeating some important terms: This method increases the TF
scores of the repeated terms in a document and thus increases the
relevance of the document to these terms. Since plain repetition can be

6.10 Web Spamming 259

easily detected by search engines, the spam terms can be weaven into
some sentences, which may be copied from some other sources. That is,
the spam terms are randomly placed in these sentences. For example, if
a spammer wants to repeat the word “mining”, it may add it randomly in
an unrelated (or related) sentence, e.g., “the picture mining quality of
this camera mining is amazing,” instead of repeating it many times
consecutively (next to each other), which is easy to detect.

2. Dumping of many unrelated terms: This method is used to make the
page relevant to a large number of queries. In order to create the spam
content quickly, the spammer may simply copy sentences from related
pages on the Web and glue them together.

Advertisers may also take advantage of some frequently searched
terms on the Web and put them in the target pages so that when users
search for the frequently search terms, the target pages become relevant.
For example, to advertise cruise liners or cruise holiday packages,
spammers put “Tom Cruise” in their advertising pages as “Tom Cruise”
is a popular film actor in USA and is searched very frequently.

6.10.2 Link Spamming

Since hyperlinks play an important role in determining the reputation score
of a page, spammers also spam on hyperlinks.

Out-Link Spamming: It is quite easy to add out-links in one’s pages
pointing to some authoritative pages to boost the hub cores of one’s
pages. A page is a hub page if it points to many authoritative (or quality)
pages. The concepts of authority and hub will be formally studied in the
next chapter (Sect. 7.4). To create massive out-links, spammers may use a
technique called directory cloning. There are many directories, e.g., Yahoo!,
DMOZ Open Directory, on the Web which contain a large number of links
to other Web pages that are organized according to some pre-specified
topic hierarchies. Spammers simply replicate a large portion of a directory
in the spam page to create a massive out-link structure quickly.

In-Link Spamming: In-link spamming is harder to achieve because it is
not easy to add hyperlinks on the Web pages of others. Spammers typically
use one or more of the following techniques.

1. Creating a honey pot: If a page wants to have a high reputation/quality
score, it needs quality pages pointing to it (see Sect. 7.3 in the next
chapter). This method basically tries to create some important pages that
contain links to target spam pages. For example, the spammer can create
a set of pages that contains some very useful information, e.g., glossary

260 6 Information Retrieval and Web Search

of Web mining terms, or Java FAQ and help pages. The honey pots
attract people pointing to them because they contain useful information,
and consequently have high reputation scores (high quality pages). Such
honey pots contain (hidden) links to target spam pages that the spammers
want to promote. This strategy can significantly boost the spam pages.

2. Adding links to Web directories: Many Web directories allow the user to
submit URLs. Spammers can submit the URLs of spam pages at multiple
directory sites. Since directory pages often have high quality (or authority)
and hub scores, they can boost reputation scores of spam pages
significantly.

3. Posting links to the user-generated content (reviews, forum discussions,
blogs, etc): There are numerous sites on the Web that allow the user to
freely post messages, which are called the user-generated content.
Spammers can add links pointing to their pages to the seemly innocent
messages that they post.

4. Participating in link exchange: In this case, many spammers form a
group and set up a link exchange scheme so that their sites point to each
other in order to promote the pages of all the sites.

5. Creating own spam farm: In this case, the spammer needs to control a
large number of sites. Then, any link structure can be created to boost
the ranking of target spam pages.

6.10.3 Hiding Techniques

In most situations, spammer wants to conceal or to hide the spamming
sentences, terms and links so that the Web users do not see them. They can
use a number of techniques.

Content Hiding: Spam items are made invisible. One simple method is to
make the spam terms the same color as the background color. For
example, one may use the following for hiding,

<body background = white>
 spam items
 …
 </body>

To hide a hyperlink, one can also use a very small and blank image, e.g.,

A spammer can also use scripts to hide some of the visual elements on
the page, for instance, by setting the visible HTML style attribute to false.

6.10 Web Spamming 261

Cloaking: Spam Web servers return a HTML document to the user and a
different document to a Web crawler. In this way, the spammer can present
the Web user with the intended content and send a spam page to the search
engine for indexing.

Spam Web servers can identify Web crawlers in one of the two ways:

1. It maintains a list of IP addresses of search engines and identifies search
engine crawlers by matching IP addresses.

2. It identifies Web browsers based on the user–agent field in the HTTP
request message. For instance, the user–agent name of the following HTTP
request message is the one used by the Microsoft Internet Explorer 6 browser:

GET /pub/WWW/TheProject.html HTTP/1.1
Host: www.w3.org
User–Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

User–agent names are not standard, so it is up to the requesting application
what to include in the corresponding message field. However, search
engine crawlers usually identify themselves by names distinct from normal
Web browsers in order to allow well-intended and legitimate optimization.
For example, some sites serve search engines a version of their pages that
is free of navigation links and advertisements.

Redirection: Spammers can also hide a spammed page by automatically
redirecting the browser to another URL as soon as the page is loaded.
Thus, the spammed page is given to the search engine for indexing (which
the user will never see), and the target page is presented to the Web user
through redirection. One way to achieve redirection is to use the “refresh”
meta-tag, and set the refresh time to zero. Another way is to use scripts.

6.10.4 Combating Spam

Some spamming activities, like redirection using refresh meta-tag, are easy
to detect. However, redirections by using scripts are hard to identify because
search engine crawlers do not execute scripts. To prevent cloaking, a
search engine crawler may identify itself as a regular Web browser.

Using the terms of anchor texts of links that point to a page to index the
page is able to fight content spam to some extent because anchor texts
from other pages are more trustworthy. This method was originally proposed
to index pages that were not fetched by search engine crawlers [40]. It is
now a general technique used by search engines as we have seen in Sect.
6.8, i.e., search engines give terms in such anchor texts higher weights. In
fact, the terms near a piece of anchor text also offer good editorial
judgment about the target page.

262 6 Information Retrieval and Web Search

The PageRank algorithm [10] is able to combat content spam to a certain
degree as it is based on links that point to the target pages, and the pages
that point to the target pages need to be reputable or with high PageRank
scores as well (see Chap. 7). However, it does not deal with the in-link
based spamming methods discussed above.

Instead of combating each individual type of spam, a method (called
TrustRank) is proposed in [29] to combat all kinds of spamming methods
at the same time. It takes advantage of the approximate isolation of
reputable and non-spam pages, i.e., reputable Web pages seldom pointing
to spam pages, and spam pages often link to many reputable pages (in an
attempt to improve their hub scores). Link analysis methods are used to
separate reputable pages and any form of spam without dealing with each
spam technique individually.

Combating spam can also be seen as a classification problem, i.e.,
predicting whether a page is a spam page or not. One can use any supervised
learning algorithm to train a spam classifier. The key issue is to design
features used in learning. The following are some example features used in
[44] to detect content spam.

1. Number of words in the page: A spam page tends to contain more words
than a non-spam page so as to cover a large number of popular words.

2. Average word length: The mean word length for English prose is about
5 letters. Average word length of synthetic content is often different.

3. Number of words in the page title: Since search engines usually give
extra weights to terms appearing in page titles, spammers often put
many keywords in the titles of the spam pages.

4. Fraction of visible content: Spam pages often hide spam terms by
making them invisible to the user.

Other features used include the amount of anchor text, compressibility,
fraction of page drawn from globally popular words, independent n-gram
likelihoods, conditional n-gram likelihoods, etc. Details can be found in
[44]. Its spam detection classifier gave very good results. Testing on 2364
spam pages and 14806 non-spam pages (17170 pages in total), the classifier
was able to correctly identify 2,037 (86.2%) of the 2364 spam pages, while
misidentifying only 526 spam and non-spam pages.

Another interesting technique for fighting spam is to partition each Web
page into different blocks using techniques discussed in Sect. 6.5. Each
block is given an importance level automatically. To combat link spam,
links in less important blocks are given lower transition probabilities to be
used in the PageRank computation. The original PageRank algorithm
assigns every link in a page an equal transition probability (see Sect. 7.3).
The non-uniform probability assignment results in lower PageRank scores

Bibliographic Notes 263

for pages pointed to by links in less important blocks. This method is
effective because in the link exchange scheme and the honey pot scheme,
the spam links are usually placed in unimportant blocks of the page, e.g., at
the bottom of the page. The technique may also be used to fight term spam
in a similar way, i.e., giving terms in less important blocks much lower
weights in rank score computation. This method is proposed in [11].

However, sophisticated spam is still hard to detect. Combating spam is
an on-going process. Once search engines are able to detect certain types
of spam, spammers invent more sophisticated spamming methods.

Bibliographic Notes

Information retrieval (IR) is a major research field. This chapter only gives
a brief introduction to some commonly used models and techniques. There
are several text books that have a comprehensive coverage of the field,
e.g., those by Baeza-Yates and Ribeiro-Neto [5], Grossman and Frieder
[26], Salton and McGill [53], van Rijsbergen (http://www.dcs.gla.ac.uk
/Keith/Preface.html), Witten et al. [59], and Yu and Meng [67].

A similar chapter in the book by Chakrabarti [14] also discusses many
Web specific issues and has influenced the writing of this chapter. Below,
we discuss some further readings related to Web search and mining.

On index compression, Elias coding was introduced by Elias [20] and
Golomb coding was introduced by Golomb [24]. Their applications to
index compression was studied by several researchers, e.g., Witten et al.
[59], Bell et al. [8], Moffat et al. [42], and Williams and Zobel [58].
Wikipedia is a great source of information on this topic as well.

Latent semantic index (LSI) was introduced by Deerwester et al. [18],
which uses the singular value decomposition technique (SVD) [25].
Additional information about LSI and/or SVD can be found in [9, 35, 67].
Telcordia Technologies, where LSI was developed, maintains a LSI page at
http://lsi.research.telcordia.com/ with more references.

On Web page pre-processing, the focus has been on identifying the main
content blocks of each page because a typical Web page contains a large
amount of noise, which can adversely affect the search or mining accuracy.
Several researchers have attempted the task, e.g., Bar-Yossef et al. [7], Li
et al. [37], Lin and Ho [38], Yi et al. [65], Debnath et al. [17], Gibson, et
al. [23], Ramaswamy et al. [49], Song et al. [56], Yin and Lee [66], etc.

Although search is probably the biggest application on the Web, little is
known about the actual implementation of a search engine except some
principal ideas. Sect. 6.8 is largely based on the Google paper by Brin and
Page [10], and bits and pieces in various other sources. Over the years, a

264 6 Information Retrieval and Web Search

large number of researchers have studied various aspects of Web search,
e.g., [6, 13, 15, 30, 32, 36, 48, 50, 57, 63, 64, 70].

For metasearch, the combination methods in Sect. 6.9.1 were proposed
by Fox and Shaw [22]. Aslam and Montague [3], Montague and Aslam
[43], and Nuray and Can [45] provide good descriptions of Borda ranking
and Condorcet ranking. In addition to ranking, Meng et al. [41] discussed
many other metasearch issues.

On Web spam, Gyongyi and Garcia-Molina gave an excellent taxonomy
of different types of spam [28], and the TrustRank algorithm is also due to
them [29]. An improvement to TrustRank was proposed by Wu et al. [62].
General link spam detection was studied by Adali et al. [1], Amitay et al. [2],
Baeza-Yates et al. [4], Gyongyi and Garcia-Molina [27], Wu and Davison
[61], etc. Content spam detection was studied by Fetterly et al. [21], and
Ntoulas et al. [44]. A cloaking detection algorithm is reported in [60].

Bibliography

1. Adali, S., T. Liu, and M. Magdon-Ismail. Optimal Link Bombs are
Uncoordinated. In Proceedings of 1st International Workshop on Adversarial
Information Retrieval on the Web, 2005.

2. Amitay, E., D. Carmel, A. Darlow, R. Lempel, and A. Soffer. The
connectivity sonar: detecting site functionality by structural patterns. In
Proceedings of ACM Conference on Hypertext and Hypermedia, 2003.

3. Aslam, J. and M. Montague. Models for metasearch. In Proceedings of ACM
SIGIR Conf. on Research and Development in Information Retrieval (SIGIR-
2001), 2001.

4. Baeza-Yates, R., C. Castillo, V. López, and C. Telefónica. PageRank increase
under different collusion topologies. In Proceedings of Intl. Workshop on
Adversarial Information Retrieval on the Web, 2005.

5. Baeza-Yates, R. and B. Ribeiro-Neto. Modern information retrieval. 1999:
Addison-Wesley.

6. Bar-Yossef, Z. and M. Gurevich. Random sampling from a search engine's
index. Journal of the ACM (JACM), 2008, 55(5): p. 1-74.

7. Bar-Yossef, Z. and S. Rajagopalan. Template detection via data mining and
its applications. In Proceedings of International Conference on World Wide
Web (WWW-2002), 2002.

8. Bell, T., A. Moffat, C. Nevill-Manning, I. Witten, and J. Zobel. Data
compression in full-text retrieval systems. Journal of the American Society for
Information Science, 1993, 44(9): p. 508-531.

9. Berry, M., S. Dumais, and G. O'Brien. Using linear algebra for intelligent
information retrieval. SIAM review, 1995, 37(4): p. 573-595.

10. Brin, S. and P. Lawrence. The anatomy of a large-scale hypertextual web
search engine. Computer Networks, 1998, 30(1-7): p. 107-117.

Bibliography 265

11. Cai, D., S. Yu, J. Wen, and W. Ma. Block-based web search. In Proceedings
of ACM SIGIR Research and Development in Information Retrieval (SIGIR-
2004), 2004.

12. Cai, D., S. Yu, J. Wen, and W. Ma. Extracting content structure for web pages
based on visual representation. In In Processings of APWeb-2003, 2003.

13. Cao, Y., J. Xu, T. Liu, H. Li, Y. Huang, and H. Hon. Adapting ranking SVM
to document retrieval. In Proceedings of ACM SIGIR Research and
Development in Information Retrieval (SIGIR-2006), 2006.

14. Chakrabarti, S. Mining the Web: discovering knowledge from hypertext data.
2003: Morgan Kaufmann Publishers.

15. Chakrabarti, S., K. Puniyani, and S. Das. Optimizing scoring functions and
indexes for proximity search in type-annotated corpora. In Proceedings of
International Conference on World Wide Web (WWW-2006), 2006.

16. Chen, S. and J. Goodman. An empirical study of smoothing techniques for
language modeling, 1996: Association for Computational Linguistics.

17. Debnath, S., P. Mitra, and C. Giles. Automatic extraction of informative
blocks from webpages. In Proceedings of ACM Symposium on Applied
Computing, 2005.

18. Deerwester, S., S. Dumais, G. Furnas, T. Landauer, and R. Harshman.
Indexing by latent semantic analysis. Journal of the American Society for
Information Science, 1990, 41(6): p. 391-407.

19. Deng, L., X. Chai, Q. Tan, W. Ng, and D. Lee. Spying out real user
preferences for metasearch engine personalization. In Proceedings of
Workshop on WebKDD, 2004.

20. Elias, P. Universal codeword sets and representations of the integers.
Information Theory, IEEE Transactions on, 1975, 21(2): p. 194-203.

21. Fetterly, D., M. Manasse, and M. Najork. Detecting phrase-level duplication
on the world wide web. In Proceedings of ACM SIGIR Conf. on Research and
Development in Information Retrieval (SIGIR-2005), 2005.

22. Fox, E. and J. Shaw. Combination of multiple searches. NIST Special
Publications, 1994: p. 243-243.

23. Gibson, D., K. Punera, and A. Tomkins. The volume and evolution of web
page templates. In Proceedings of International Conference on World Wide
Web (WWW-2005), 2005.

24. Golomb, S. Run-length encoding. IEEE Transactions on Information Theory,
1966, 12(3): p. 399–401.

25. Golub, G. and C. Van Loan. Matrix computations. 1996: Johns Hopkins Univ
Press.

26. Grossman, D.A. and O. Frieder. Information Retrieval: Algorithms and
Heuristics. 2004: Springer.

27. Gyöngyi, Z. and H. Garcia-Molina. Link spam alliances. In Proceedings of
International Conference on Very Large Data Bases (VLDB-2005), 2005:
VLDB Endowment.

28. Gyöngyi, Z. and H. Garcia-Molina. Web spam taxonomy. In Technical
Report, Stanford University, 2004.

266 6 Information Retrieval and Web Search

29. Gyöngyi, Z., H. Garcia-Molina, and J. Pedersen. Combating web spam with
TrustRank. In Proceedings of International Conference on Very Large Data
Bases (VLDB-2004), 2004.

30. Ho Kwok, S. and C. Yang. Searching the peer-to-peer networks: The
community and their queries. Journal of the American Society for Information
Science and Technology, 2004, 55(9): p. 783-793.

31. Joachims, T. Optimizing search engines using clickthrough data. In
Proceedings of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2002), 2002.

32. Jones, R., B. Rey, O. Madani, and W. Greiner. Generating query
substitutions. In Proceedings of International Conference on World Wide
Web (WWW-2006), 2006.

33. Kelly, J. Social choice theory: An introduction. 1988: Springer-Verlag.
34. Klavans, J. and S. Muresan. DEFINDER: Rule-based methods for the

extraction of medical terminology and their associated definitions from on-
line text. In Proceedings of Conference of American Medical Informatics
Association, 2000.

35. Korn, F., H. Jagadish, and C. Faloutsos. Efficiently supporting ad hoc queries
in large datasets of time sequences. In Proceedings of ACM SIGMOD
Conference on Management of Data (SIGMOD-1997), 1997.

36. Kraft, R., C. Chang, F. Maghoul, and R. Kumar. Searching with context. In
Proceedings of International Conference on World Wide Web (WWW-2006), 2006.

37. Li, X., T. Phang, M. Hu, and B. Liu. Using micro information units for
internet search. In Proceedings of ACM International Conference on
Information and knowledge management (CIKM-2002), 2002.

38. Lin, S. and J. Ho. Discovering informative content blocks from Web
documents. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2002), 2002.

39. Liu, B., C. Chin, and H. Ng. Mining topic-specific concepts and definitions
on the web. In Proceedings of International Conference on World Wide Web
(WWW-2003), 2003.

40. McBryan, O. GENVL and WWWW: Tools for Taming the Web. In
Proceedings of International Conference on World Wide Web (WWW-1994),
1994.

41. Meng, W., C. Yu, and K. Liu. Building efficient and effective metasearch
engines. ACM Computing Surveys (CSUR), 2002, 34(1): p. 48-89.

42. Moffat, A., R. Neal, and I. Witten. Arithmetic coding revisited. ACM
Transactions on Information Systems (TOIS), 1998, 16(3): p. 256-294.

43. Montague, M. and J. Aslam. Condorcet fusion for improved retrieval. In
Proceedings of ACM International Conference on Information and knowledge
management (CIKM-2002), 2002.

44. Ntoulas, A., M. Najork, M. Manasse, and D. Fetterly. Detecting spam web
pages through content analysis. In Proceedings of International Conference
on World Wide Web (WWW-2006), 2006.

Bibliography 267

45. Nuray, R. and F. Can. Automatic ranking of information retrieval systems
using data fusion. Information Processing & Management, 2006, 42(3): p.
595-614.

46. Ponte, J. and W. Croft. A language modeling approach to information
retrieval. In Proceedings of ACM SIGIR Conf. on Research and Development
in Information Retrieval (SIGIR-1998), 1998.

47. Porter, M. An algorithm for suffix stripping. Program: electronic library and
information systems, 2006, 40(3): p. 211-218.

48. Qiu, F. and J. Cho. Automatic identification of user interest for personalized
search. In Proceedings of International Conference on World Wide Web
(WWW-2006), 2006.

49. Ramaswamy, L., A. Iyengar, L. Liu, and F. Douglis. Automatic detection of
fragments in dynamically generated web pages. In Proceedings of
International Conference on World Wide Web (WWW-2004), 2004.

50. Richardson, M., A. Prakash, and E. Brill. Beyond PageRank: machine
learning for static ranking. In Proceedings of International Conference on
World Wide Web (WWW-2006), 2006.

51. Robertson, S., S. Walker, and M. Beaulieu. Okapi at TREC-7: automatic ad
hoc, filtering, VLC and interactive track. NIST Special Publications, 1999: p.
253-264.

52. Salton, G. and C. Buckley. Term-weighting approaches in automatic text
retrieval. Information Processing & Management, 1988, 24(5): p. 513-523.

53. Salton, G. and M. McGill. An Introduction to Modern Information Retrieval.
1983: McGraw-Hill.

54. Shen, X., B. Tan, and C. Zhai. Context-sensitive information retrieval using
implicit feedback. In Proceedings of ACM SIGIR Conf. on Research and
Development in Information Retrieval (SIGIR-2005), 2005.

55. Singhal, A. Modern information retrieval: A brief overview. IEEE Data
Engineering Bulletin, 2001, 24(4): p. 35-43.

56. Song, R., H. Liu, J. Wen, and W. Ma. Learning block importance models for
web pages. In Proceedings of International Conference on World Wide Web
(WWW-2004), 2004.

57. Sun, J., X. Wang, D. Shen, H. Zeng, and Z. Chen. CWS: a comparative web
search system. In Proceedings of International Conference on World Wide
Web (WWW-2006), 2006.

58. Williams, H. and J. Zobel. Compressing integers for fast file access. The
Computer Journal, 1999, 42(3): p. 193.

59. Witten, I., A. Moffat, and T. Bell. Managing gigabytes: compressing and
indexing documents and images. 1999: Morgan Kaufmann Publishers.

60. Wu, B. and B. Davison. Cloaking and redirection: A preliminary study.
Adversarial Information Retrieval on the Web, 2005.

61. Wu, B. and B. Davison. Identifying link farm spam pages. In Proceedings of
International Conference on World Wide Web (WWW-2005), 2005.

62. Wu, B., V. Goel, and B. Davison. Topical TrustRank: Using topicality to
combat web spam. In Proceedings of International Conference on World
Wide Web (WWW-2006), 2006.

268 6 Information Retrieval and Web Search

63. Yang, B. and G. Jeh. Retroactive answering of search queries. In Proceedings
of International Conference on World Wide Web (WWW-2006), 2006.

64. Yang, C. and K. Chan. Retrieving multimedia web objects based on pagerank
algorithm. In WWW’05 Poster, 2005.

65. Yi, L., B. Liu, and X. Li. Eliminating noisy information in web pages for data
mining. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2003), 2003.

66. Yin, X. and W. Lee. Using link analysis to improve layout on mobile devices.
In Proceedings of International Conference on World Wide Web (WWW-
2004), 2004.

67. Yu, C. and W. Meng. Principles of database query processing for advanced
applications. 1998: Morgan Kaufmann Publishers.

68. Zhai, C. Statistical Language Model for Information Retrieval. In
Proceedings of ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR-2001), 2001.

69. Zhai, C. and J. Lafferty. A study of smoothing methods for language models
applied to information retrieval. ACM Transactions on Information Systems
(TOIS), 2004, 22(2): p. 179-214.

70. Zhao, Q., S. Hoi, T. Liu, S. Bhowmick, M. Lyu, and W. Ma. Time-dependent
semantic similarity measure of queries using historical click-through data. In
Proceedings of International Conference on World Wide Web (WWW-2006),
2006.

7 Social Network Analysis

Early search engines retrieved relevant pages for the user based primarily
on the content similarity of the user query and the indexed pages of the
search engines. The retrieval and ranking algorithms were simply direct
implementation of those from information retrieval. Starting from 1996, it
became clear that content similarity alone was no longer sufficient for
search due to two reasons. First, the number of Web pages grew rapidly
during the middle to late 1990s. Given any query, the number of relevant
pages can be huge. For example, given the search query “classification
technique”, the Google search engine estimates that there are about 10
million relevant pages. This abundance of information causes a major
problem for ranking, i.e., how to choose only 10–30 pages and rank them
suitably to present to the user. Second, content similarity methods are easily
spammed. A page owner can repeat some important words and add many
remotely related words in his/her pages to boost the rankings of the pages
and/or to make the pages relevant to a large number of possible queries.

Starting from around 1996, researchers in academia and search engine
companies began to work on the problem. They resort to hyperlinks.
Unlike text documents used in traditional information retrieval, which are
often considered independent of one another (i.e., with no explicit
relationships or links among them except in citation analysis), Web pages
are connected through hyperlinks, which carry important information.
Some hyperlinks are used to organize a large amount of information at the
same Web site, and thus only point to pages in the same site. Other
hyperlinks point to pages in other Web sites. Such out-going hyperlinks
often indicate an implicit conveyance of authority to the pages being
pointed to. Therefore, those pages that are pointed to by many other pages
are likely to contain authoritative or quality information. Such linkages
should obviously be used in page evaluation and ranking in search engines.

During the period of 1997-1998, two most influential hyperlink based
search algorithms PageRank [9, 52] and HITS [37] were designed.
PageRank is the algorithm that powers the successful search engine Google.
Both PageRank and HITS were originated from social network analysis
[60]. They both exploit the hyperlink structure of the Web to rank pages
according to their levels of “prestige” or “authority”. We will study these

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_7,
© Springer-Verlag Berlin Heidelberg 2011

269

270 7 Social Network Analysis

algorithms in this chapter. We should also note that hyperlink-based page
evaluation and ranking is not the only method used by search engines. As
we discussed in Chap. 6, contents and many other factors are also considered
in producing the final ranking presented to the user.

Apart from search ranking, hyperlinks are also useful for finding Web
communities. A Web community is a cluster of densely linked pages
representing a group of people with a common interest. Beyond explicit
hyperlinks on the Web, explicit or implicit links in other contexts are
useful too, e.g., for discovering communities of named entities (e.g.,
people and organizations) in free text documents and for analyzing social
phenomena in emails and friendship networks on social networking sites.

7.1 Social Network Analysis

Social network is the study of social entities (people in an organization,
called actors), and their interactions and relationships. The interactions
and relationships can be represented with a network or graph, where each
vertex (or node) represents an actor and each link represents a relationship.
From the network we can study the properties of its structure, and the role,
position and prestige of each social actor. We can also find various kinds
of sub-graphs, e.g., communities formed by groups of actors.

Social network analysis is useful for the Web because the Web is
essentially a virtual society, and thus a virtual social network, where each
page can be regarded as a social actor and each hyperlink as a relationship.
Many of the results from social networks can be adapted and extended for
use in the Web context. The ideas from social network analysis are indeed
instrumental to the success of Web search engines.

In this section, we introduce two types of social network analysis,
centrality and prestige, which are closely related to hyperlink analysis
and search on the Web. Both centrality and prestige are measures of degree
of prominence of an actor in a social network. We introduce them below.
For a more complete treatment of the topics, please refer to the authoritative
text by Wasserman and Faust [60].

7.1.1 Centrality

Important or prominent actors are those that are linked or involved with
other actors extensively. In the context of an organization, a person with
extensive contacts (links) or communications with many other people in
the organization is considered more important than a person with relatively

7.1 Social Network Analysis 271

fewer contacts. The links can also be called ties. A central actor is one
involved in many ties. Fig. 7.1 shows a simple example using an
undirected graph. Each node in the social network is an actor and each link
indicates that the actors on the two ends of the link communicate with each
other. Intuitively, we see that the actor i is the most central actor because
he/she can communicate with most other actors.

Fig. 7.1. An example of a social network

There are different types of links or involvements between actors. Thus,
several types of centrality are defined on undirected and directed graphs.
We discuss three popular types below.

Degree Centrality

Central actors are the most active actors that have most links or ties with
other actors. Let the total number of actors in the network be n.

Undirected Graph: In an undirected graph, the degree centrality of an
actor i (denoted by CD(i)) is simply the node degree (the number of edges)
of the actor node, denoted by d(i), normalized with the maximum degree,
n1.

.
1
)()(




n

id
iCD (1)

The value of this measure ranges between 0 and 1 as n1 is the maximum
value of d(i).

Directed Graph: In this case, we need to distinguish in-links of actor i
(links pointing to i), and out-links (links pointing out from i). The degree
centrality is defined based on only the out-degree (the number of out-links
or edges), do(i).

.
1
)()('




n

id
iC o

D (2)

i

272 7 Social Network Analysis

Closeness Centrality

This view of centrality is based on the closeness or distance. The basic
idea is that an actor xi is central if it can easily interact with all other actors.
That is, its distance to all other actors is short. Thus, we can use the shortest
distance to compute this measure. Let the shortest distance from actor i to
actor j be d(i, j) (measured as the number of links in a shortest path).

Undirected Graph: The closeness centrality CC(i) of actor i is defined as

.
),(

1)(
1 




n

j

C
jid

n
iC (3)

The value of this measure also ranges between 0 and 1 as n1 is the minimum
value of the denominator, which is the sum of the shortest distances from i
to all other actors. Note that this equation is only meaningful for a
connected graph.

Directed Graph: The same equation can be used for a directed graph. The
distance computation needs to consider directions of links or edges.

Betweenness Centrality

If two non-adjacent actors j and k want to interact and actor i is on the path
between j and k, then i may have some control over their interactions.
Betweenness measures this control of i over other pairs of actors. Thus, if i
is on the paths of many such interactions, then i is an important actor.

Undirected Graph: Let pjk be the number of shortest paths between actors
j and k. The betweenness of an actor i is defined as the number of shortest
paths that pass i (denoted by pjk(i), j  i and k  i) normalized by the total
number of shortest paths of all pairs of actors not including i:

.
)(

)(



kj jk

jk
B p

ip
iC (4)

Note that there may be multiple shortest paths between actor j and actor k.
Some pass i and some do not. We assume that all paths are equally likely
to be used. CB(i) has a minimum of 0, attained when i falls on no shortest
path. Its maximum is (n1)(n2)/2, which is the number of pairs of actors
not including i.

In the network of Fig. 7.2, actor 1 is the most central actor. It lies on all
15 shortest paths linking the other 6 actors. CB(1) has the maximum value
of 15, and CB(2) = CB(3) = CB(4) = CB(5) = CB(6) = CB(7) = 0.

7.1 Social Network Analysis 273

Fig. 7.2. An example of a network illustrating the betweenness centrality

If we are to ensure that the value range is between 0 and 1, we can normalize
it with (n1)(n2)/2, which is the maximum value of CB(i). The standardized
betweenness of actor i is defined as

)2)(1(

)(
2

)('







nn

p

ip

iC
kj jk

jk

B .
(5)

Unlike the closeness measure, the betweenness can be computed even if
the graph is not connected.

Directed Graph: The same equation can be used but must be multiplied
by 2 because there are now (n1)(n2) pairs considering a path from j to k
is different from a path from k to j. Likewise, pjk must consider paths from
both directions.

7.1.2 Prestige

Prestige is a more refined measure of prominence of an actor than
centrality as we will see below. We need to distinguish between ties sent
(out-links) and ties received (in-links). A prestigious actor is defined as
one who is object of extensive ties as a recipient. In other words, to
compute the prestige of an actor, we only look at the ties (links) directed or
pointed to the actor (in-links). Hence, the prestige cannot be computed
unless the relation is directional or the graph is directed. The main
difference between the concepts of centrality and prestige is that centrality
focuses on out-links while prestige focuses on in-links. We define three
prestige measures. The third prestige measure (i.e., rank prestige) forms
the basis of most Web page link analysis algorithms, including PageRank
and HITS.

6

2
7 3

4

1

5

274 7 Social Network Analysis

Degree Prestige

Based on the definition of the prestige, it is clear that an actor is
prestigious if it receives many in-links or nominations. Thus, the simplest
measure of prestige of an actor i (denoted by PD(i)) is its in-degree,

,
1
)()(




n

id
iP I

D (6)

where dI(i) is the in-degree of i (the number of in-links of i) and n is the
total number of actors in the network. As in the degree centrality, dividing
by n – 1 standardizes the prestige value to the range from 0 and 1. The
maximum prestige value is 1 when every other actor links to or chooses
actor i.

Proximity Prestige

The degree index of prestige of an actor i only considers the actors that are
adjacent to i. The proximity prestige generalizes it by considering both the
actors directly and indirectly linked to actor i. That is, we consider every
actor j that can reach i, i.e., there is a directed path from j to i.

Let Ii be the set of actors that can reach actor i, which is also called the
influence domain of actor i. The proximity is defined as closeness or
distance of other actors to i. Let d(j, i) denote the shortest path distance
from actor j to actor i. Each link has the unit distance. To compute the
proximity prestige, we use the average distance, which is

,
||

),(

i

Ij

I

ijd
i




(7)

where |Ii| is the size of the set Ii. If we look at the ratio or proportion of
actors who can reach i to the average distance that these actors are from i,
we obtain the proximity prestige, which has the value range of [0, 1]:

,
||),(

)1(||)(
i

Ij

i
P

Iijd

nI
iP

i







(8)

where |Ii|/(n1) is the proportion of actors that can reach actor i. In one
extreme, every actor can reach actor i, which gives |Ii|/(n1) = 1. The
denominator is 1 if every actor is adjacent to i. Then, PP(i) = 1. On the
other extreme, no actor can reach actor i. Then |Ii| = 0, and PP(i) = 0.

7.2 Co-Citation and Bibliographic Coupling 275

Rank Prestige

The above two prestige measures are based on in-degrees and distances.
However, an important factor that has not been considered is the
prominence of individual actors who do the “voting” or “choosing.” In the
real world, a person i chosen by an important person is more prestigious
than chosen by a less important person. For example, a company CEO
voting for a person is much more important than a worker voting for the
person. If one’s circle of influence is full of prestigious actors, then one’s
own prestige is also high. Thus one’s prestige is affected by the ranks or
statuses of the involved actors. Based on this intuition, the rank prestige
PR(i) is defined as a linear combination of links that point to i:

),(...)2()1()(21 nPAPAPAiP RniRiRiR  (9)

where Aji = 1 if j points to i, and 0 otherwise. This equation says that an
actor’s rank prestige is a function of the ranks of the actors who vote or
choose the actor, which makes perfect sense.

Since we have n equations for n actors, we can write them in the matrix
notation. We use P to represent the vector that contains all the rank
prestige values, i.e., P = (PR(1), PR(2), …, PR(n))T (T means matrix
transpose). P is represented as a column vector. We use matrix A (where
Aij = 1 if i points to j, and 0 otherwise) to represent the adjacency matrix of
the network or graph. As a notational convention, we use bold italic letters
to represent matrices. We then have

PAP T . (10)

This equation is precisely the characteristic equation used for finding the
eigensystem of the matrix AT. P is an eigenvector of AT.

This equation and the idea behind it turn out to be very useful in Web
search. Indeed, the most well known ranking algorithms for Web search,
PageRank and HITS, are directly related to this equation. Sect. 7.3 and 7.4
will focus on these two algorithms and describe how to solve the equation
to obtain the prestige value of each actor (or each page on the Web).

7.2 Co-Citation and Bibliographic Coupling

Another area of research concerned with links is the citation analysis of
scholarly publications. A scholarly publication usually cites related prior
work to acknowledge the origins of some ideas in the publication and to
compare the new proposal with existing work. Citation analysis is an area

276 7 Social Network Analysis

of bibliometric research, which studies citations to establish the relationships
between authors and their work.

When a publication (also called a paper) cites another publication, a
relationship is established between the publications. Citation analysis uses
these relationships (links) to perform various types of analysis. A citation can
represent many types of links, such as links between authors, publications,
journals and conferences, and fields, or even between countries. We will
discuss two specific types of citation analysis, co-citation and bibliographic
coupling. The HITS algorithm of Sect. 7.4 is related to these two types of
analysis.

7.2.1 Co-Citation

Co-citation is used to measure the similarity of two papers (or
publications). If papers i and j are both cited by paper k, then they may be
said to be related in some sense to each other, even though they do not
directly cite each other. Fig. 7.3 shows that papers i and j are co-cited by
paper k. If papers i and j are cited together by many papers, it means that i
and j have a strong relationship or similarity. The more papers they are
cited by, the stronger their relationship is.

Fig. 7.3. Paper i and paper j are co-cited by paper k

Let L be the citation matrix. Each cell of the matrix is defined as
follows: Lij = 1 if paper i cites paper j, and 0 otherwise. Co-citation
(denoted by Cij) is a similarity measure defined as the number of papers
that co-cite i and j, and is computed with

,
1




n

k
kjkiij LLC (11)

where n is the total number of papers. Cii is naturally the number of papers
that cite i. A square matrix C can be formed with Cij, and it is called the co-
citation matrix. Co-citation is symmetric, Cij = Cji, and is commonly used
as a similarity measure of two papers in clustering to group papers of
similar topics together.

i k

j

7.3 PageRank 277

7.2.2 Bibliographic Coupling

Bibliographic coupling operates on a similar principle, but in a way it is
the mirror image of co-citation. Bibliographic coupling links papers that
cite the same articles so that if papers i and j both cite paper k, they may be
said to be related, even though they do not directly cite each other. The
more papers they both cite, the stronger their similarity is. Fig. 7.4 shows
both papers i and j citing (referencing) paper k.

Fig. 7.4. Both paper i and paper j cite paper k

We use Bij to represent the number of papers that are cited by both
papers i and j:

.
1




n

k
jkikij LLB (12)

Bii is naturally the number of references (in the reference list) of paper i. A
square matrix B can be formed with Bij, and it is called the bibliographic
coupling matrix. Bibliographic coupling is also symmetric and is
regarded as a similarity measure of two papers in clustering.

We will see later that two important types of pages on the Web, hubs
and authorities, found by the HITS algorithm are directly related to co-
citation and bibliographic coupling matrices.

7.3 PageRank

The year 1998 was an important year for Web link analysis and Web
search. Both the PageRank and the HITS algorithms were reported in that
year. HITS was presented by Jon Kleinberg in January, 1998 at the Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms. PageRank was
presented by Sergey Brin and Larry Page at the Seventh International World
Wide Web Conference (WWW7) in April, 1998. Based on the algorithm,
they built the search engine Google. The main ideas of PageRank and
HITS are really quite similar. However, it is their dissimilarity that made a

i k

j

278 7 Social Network Analysis

huge difference as we will see later. Since that year, PageRank has
emerged as the dominant link analysis model for Web search, partly due to
its query-independent evaluation of Web pages and its ability to combat
spamming, and partly due to Google’s business success. In this section, we
focus on PageRank. In the next section, we discuss HITS. A detailed study
of these algorithms can also be found in [40].

PageRank relies on the democratic nature of the Web by using its vast
link structure as an indicator of an individual page's quality. In essence,
PageRank interprets a hyperlink from page x to page y as a vote, by page x,
for page y. However, PageRank looks at more than just the sheer number
of votes or links that a page receives. It also analyzes the page that casts
the vote. Votes casted by pages that are themselves “important” weigh
more heavily and help to make other pages more “important.” This is
exactly the idea of rank prestige in social networks (see Sect. 7.1.2).

7.3.1 PageRank Algorithm

PageRank is a static ranking of Web pages in the sense that a PageRank
value is computed for each page off-line and it does not depend on search
queries. Since PageRank is based on the measure of prestige in social
networks, the PageRank value of each page can be regarded as its prestige.
We now derive the PageRank formula. Let us first state some main
concepts again in the Web context.

In-links of page i: These are the hyperlinks that point to page i from other
pages. Usually, hyperlinks from the same site are not considered.

Out-links of page i: These are the hyperlinks that point out to other pages
from page i. Usually, links to pages of the same site are not considered.

From the perspective of prestige, we use the following to derive the
PageRank algorithm.

1. A hyperlink from a page pointing to another page is an implicit
conveyance of authority to the target page. Thus, the more in-links that a
page i receives, the more prestige the page i has.

2. Pages that point to page i also have their own prestige scores. A page
with a higher prestige score pointing to i is more important than a page
with a lower prestige score pointing to i. In other words, a page is
important if it is pointed to by other important pages.

According to rank prestige in social networks, the importance of page i (i’s
PageRank score) is determined by summing up the PageRank scores of all
pages that point to i. Since a page may point to many other pages, its

7.3 PageRank 279

prestige score should be shared among all the pages that it points to.
Notice the difference from rank prestige, where the prestige score is not
shared.

To formulate the above ideas, we treat the Web as a directed graph G =
(V, E), where V is the set of vertices or nodes, i.e., the set of all pages, and
E is the set of directed edges in the graph, i.e., hyperlinks. Let the total
number of pages on the Web be n (i.e., n = |V|). The PageRank score of the
page i (denoted by P(i)) is defined by:

,)()(
),(





Eij jO

jP
iP (13)

where Oj is the number of out-links of page j. Mathematically, we have a
system of n linear equations (13) with n unknowns. We can use a matrix to
represent all the equations. Let P be a n-dimensional column vector of
PageRank values, i.e.,

P = (P(1), P(2), …, P(n))T.

Let A be the adjacency matrix of our graph with





 


otherwise0

),(if1
Eji

OA
iij

(14)

We can write the system of n equations with (similar to Equation 10)

PAP T . (15)

This is the characteristic equation of the eigensystem, where the
solution to P is an eigenvector with the corresponding eigenvalue of 1.
Since this is a circular definition, an iterative algorithm is used to solve it.
It turns out that if some conditions are satisfied (which will be described
shortly), 1 is the largest eigenvalue and the PageRank vector P is the
principal eigenvector. A well known mathematical technique called
power iteration can be used to find P.

However, the problem is that Equation (15) does not quite suffice
because the Web graph does not meet the conditions. To introduce these
conditions and the enhanced equation, let us derive the same Equation (15)
based on the Markov chain [32].

In the Markov chain model, each Web page or node in the Web graph is
regarded as a state. A hyperlink is a transition, which leads from one state
to another state with a probability. Thus, this framework models Web
surfing as a stochastic process. It models a Web surfer randomly surfing

280 7 Social Network Analysis

the Web as a state transition in the Markov chain. Recall that we used Oi to
denote the number of out-links of a node i. Each transition probability is
1/Oi if we assume the Web surfer will click the hyperlinks in the page i
uniformly at random, the “back” button on the browser is not used and the
surfer does not type in an URL. Let A be the state transition probability
matrix, a square matrix of the following format,





























nnnn

n

n

AAA

AAA

AAA

...
...
...
...

...

...

.

21

22221

11211

A

Aij represents the transition probability that the surfer in state i (page i)
will move to state j (page j). Aij is defined exactly as in Equation (14).

Given an initial probability distribution vector that a surfer is at each
state (or page) p0 = (p0(1), p0(2), …, p0(n))T (a column vector) and an nn
transition probability matrix A, we have





n

i

ip
1

0 1)((16)





n

j
ijA

1
1. (17)

Equation (17) is not quite true for some Web pages because they have
no out-links. If the matrix A satisfies Equation (17), we say that A is the
stochastic matrix of a Markov chain. Let us assume A is a stochastic
matrix for the time being and deal with it not being that later.

In a Markov chain, a question of common interest is: Given the initial
probability distribution p0 at the beginning, what is the probability that m
steps/transitions later that the Markov chain will be at each state j? We can
determine the probability that the system (or the random surfer) is in state
j after 1 step (1 state transition) by using the following reasoning:

,)()1()(
1

01 



n

i
ij ipAjp (18)

where Aij(1) is the probability of going from i to j in 1 transition, and Aij(1)
= Aij. We can write it with a matrix:

7.3 PageRank 281

0pAp T1 . (19)

In general, the probability distribution after k steps/transitions is:

1-kk pAp T . (20)

Equation (20) looks very similar to Equation (15). We are getting there.
By the Ergodic Theorem of Markov chains [32], a finite Markov chain

defined by the stochastic transition matrix A has a unique stationary
probability distribution if A is irreducible and aperiodic. These
mathematical terms will be defined as we go along.

The stationary probability distribution means that after a series of
transitions pk will converge to a steady-state probability vector  regardless
of the choice of the initial probability vector p0, i.e.,

πp 


k
k
lim . (21)

When we reach the steady-state, we have pk = pk+1 =, and thus  =AT.
 is the principal eigenvector of AT with eigenvalue of 1. In PageRank, 
is used as the PageRank vector P. Thus, we again obtain Equation (15),
which is re-produced here as Equation (22):

PAP T . (22)

 Using the stationary probability distribution  as the PageRank vector
is reasonable and quite intuitive because it reflects the long-run
probabilities that a random surfer will visit the pages. A page has a high
prestige if the probability of visiting it is high.

Now let us come back to the real Web context and see whether the
above conditions are satisfied, i.e., whether A is a stochastic matrix and
whether it is irreducible and aperiodic. In fact, none of them is satisfied.
Hence, we need to extend the ideal-case Equation (22) to produce the
“actual PageRank model”. Let us look at each condition below.

First of all, A is not a stochastic (transition) matrix. A stochastic
matrix is the transition matrix for a finite Markov chain whose entries in
each row are non-negative real numbers and sum to 1 (i.e., Equation 17).
This requires that every Web page must have at least one out-link. This is
not true on the Web because many pages have no out-links, which are
reflected in transition matrix A by some rows of complete 0’s. Such pages
are called the dangling pages (nodes).

Example 1: Fig. 7.5 shows an example of a hyperlink graph.

282 7 Social Network Analysis

Fig. 7.5. An example of a hyperlink graph

If we assume that the Web surfer will click the hyperlinks in a page
uniformly at random, we have the following transition probability matrix:





























02121000
000000
313103100

000010
00021021
00021210

A . (23)

For example A12 = A13 = 1/2 because node 1 has two out-links. We can see
that A is not a stochstic matrix because the fifth row is all 0’s, i.e., page 5
is a dangling page. ▀

We can fix this problem in several ways in order to convert A to a
stochastic transition matrix. We describe only two ways here:

1. Remove those pages with no out-links from the system during the
PageRank computation as these pages do not affect the ranking of any
other page directly. Out-links from other pages pointing to these pages
are also removed. After PageRanks are computed, these pages and
hyperlinks pointing to them can be added in. Their PageRanks are easy
to calculate based on Equation (22). Note that the transition probabilities
of those pages with removed links will be slightly affected but not
significantly. This method is suggested in [9].

2. Add a complete set of outgoing links from each such page i to all the
pages on the Web. Thus the transition probability of going from i to
every page is 1/n assuming uniform probability distribution. That is, we
replace each row containing all 0’s with e/n, where e is n-dimensional
vector of all 1’s.

If we use the second method to make A a stochastic matrix by adding a
link from page 5 to every page, we obtain

3 4

6

1

2

5

7.3 PageRank 283





























02121000
616161616161
313103100

000010
00021021
00021210

A .

(24)

Below, we assume that either one of the above is done to make A a
stochastic matrix.

Second, A is not irreducible. Irreducible means that the Web graph G is
strongly connected.

Definition (strongly connected): A directed graph G = (V, E) is strongly

connected if and only if, for each pair of nodes u, v ∈ V, there is a path
from u to v.

 A general Web graph represented by A is not irreducible because for
some pair of nodes u and v, there is no path from u to v. For example, in
Fig. 7.5, there is no directed path from node 3 to node 4. The adjustment in
Equation (24) is not enough to ensure irreducibility. That is, in A , there is
still no directed path from node 3 to node 4. This problem and the next
problem can be dealt with using a single strategy (to be described shortly).

Finally, A is not aperiodic. A state i in a Markov chain being periodic
means that there exists a directed cycle that the chain has to traverse.

Definition (aperiodic): A state i is periodic with period k > 1 if k is the
smallest number such that all paths leading from state i back to state i
have a length that is a multiple of k. If a state is not periodic (i.e., k = 1),
it is aperiodic. A Markov chain is aperiodic if all states are aperiodic.

Example 2: Fig. 7.6 shows a periodic Markov chain with k = 3. The
transition matrix is given on the left. Each state in this chain has a period
of 3. For example, if we start from state 1, to come back to state 1 the only
path is 1-2-3-1 for some number of times, say h. Thus any return to state 1
will take 3h transitions. In the Web, there could be many such cases. ▀

Fig. 7.6. A periodic Markov chain with k = 3.

1


















001
100
010

A 1

1
2

1

3

284 7 Social Network Analysis

It is easy to deal with the above two problems with a single strategy.

 We add a link from each page to every page and give each link a small
transition probability controlled by a parameter d.

The augmented transition matrix becomes irreducible because it is clearly
strongly connected. It is also aperiodic because the situation in Fig. 7.6 no
longer exists as we now have paths of all possible lengths from state i back
to state i. That is, the random surfer does not have to traverse a fixed cycle
for any state. After this augmentation, we obtain an improved PageRank
model. In this model, at a page, the random surfer has two options:

1. With probability d, he randomly chooses an out-link to follow.
2. With probability 1d, he jumps to a random page without a link.

Equation (25) gives the improved model,

PAEP 





  Td

n
d)1((25)

where E is eeT (e is a column vector of all 1’s) and thus E is a nn square
matrix of all 1’s. 1/n is the probability of jumping to a particular page. n is
the total number of nodes in the Web graph. Note that Equation (25)
assumes that A has already been made a stochastic matrix.

Example 3: If we follow our example in Fig. 7.5 and Equation (24) (we
use A for A here), the augmented transition matrix is





























061610619061061061
157610619061061061
15761061061061061
061610619061157157
061610611211061157
06161061061157061

)1(Td
n

d AE

(26)

▀

(1d)E/n + dAT is a stochastic matrix (but transposed). It is also
irreducible and aperiodic as we discussed above. Here we use d = 0.9.

If we scale Equation (25) so that eTP = n, we obtain

PAeP Tdd )1(. (27)

Before scaling, we have eTP = 1 (i.e., P(1) + P(2) + … + P(n) = 1 if we
recall that P is the stationary probability vector  of the Markov chain).
The scaling is equivalent to multiplying n on both sides of Equation (25).

7.3 PageRank 285

This gives us the PageRank formula for each page i as follows:





n

j
ji jPAddiP

1

),()1()((28)

which is equivalent to the formula given in the PageRank papers [9, 52]:





Eij jO

jP
ddiP

),(

)()1()(. (29)

The parameter d is called the damping factor which can be set to between
0 and 1. d = 0.85 is used in [9, 52].

The computation of PageRank values of the Web pages can be done
using the well known power iteration method [31], which produces the
principal eigenvector with the eigenvalue of 1. The algorithm is simple,
and is given in Fig. 7.7. One can start with any initial assignments of
PageRank values. The iteration ends when the PageRank values do not
change much or converge. In Fig. 7.7, the iteration ends after the 1-norm
of the residual vector is less than a pre-specified threshold . Note that the
1-norm for a vector is simply the sum of all the components.

PageRank-Iterate(G)
P0  e/n
k  1
repeat

;)1(1-k
T

k dd PAeP 
k  k + 1;

until ||Pk – Pk-1||1 < 
return Pk

Fig. 7.7. The power iteration method for PageRank

Since we are only interested in the ranking of the pages, the actual
convergence may not be necessary. Thus, fewer iterations are needed. In
[9], it is reported that on a database of 322 million links the algorithm
converges to an acceptable tolerance in roughly 52 iterations.

7.3.2 Strengths and Weaknesses of PageRank

The main advantage of PageRank is its ability to fight spam. A page is
important if the pages pointing to it are important. Since it is not easy for
Web page owner to add in-links into his/her page from other important
pages, it is thus not easy to influence PageRank. Nevertheless, there are

286 7 Social Network Analysis

reported ways to influence PageRank. Recognizing and fighting spam is an
important issue in Web search.

Another major advantage of PageRank is that it is a global measure and
is query independent. That is, the PageRank values of all the pages on the
Web are computed and saved off-line rather than at the query time. At the
query time, only a lookup is needed to find the value to be integrated with
other strategies to rank the pages. It is thus very efficient at the query time.
Both these two advantages contributed greatly to Google’s success.

The main criticism is also the query-independence nature of PageRank.
It could not distinguish between pages that are authoritative in general and
pages that are authoritative on the query topic. Google may have other ways
to deal with the problem, which we do not know due to the proprietary nature
of the Google’s search algorithm. Another criticism is that PageRank does
not consider time, which we discuss in the next sub-section.

Finally, we note again that the link-based ranking is not the only strategy
used in a search engine. Many other information retrieval methods, heuristics,
and empirical parameters are also employed. However, their details are not
published. We should also note that PageRank is not the only link-based
static and global ranking algorithm. All major search engines, such as Bing
and Yahoo!, have their own algorithms. Researchers also proposed other
ranking methods that are not based on links, e.g., BrowseRank [45], which
is based on a browsing graph built from the user search log.

7.3.3 Timed PageRank and Recency Search

The Web is a dynamic environment. It changes constantly. Quality pages
in the past may not be quality pages now or in the future. Apart from pages
that contain well-established facts and classics which do not change
significantly over time, most contents on the Web change constantly. New
pages or contents are added, and ideally, outdated contents and pages are
deleted. However, in practice, many outdated pages and links are not
deleted. This causes problems for Web search because such outdated pages
may still be ranked high. Furthermore, the Web also has a huge number of
time sensitive content pages, e.g., news articles, current events pages, and
research publications. Thus, search has a temporal dimension. However,
PageRank favors pages that have many in-links. To some extent, we can
say that it favors older pages because they have existed on the Web for a
long time and thus have accumulated many in-links. Then the problem is
that new pages, which are of high quality and also give the up-to-date
information, will not be assigned high scores and consequently will not be
ranked high because they have fewer or no in-links. It is thus difficult for
users to find the latest information on the Web based on PageRank.

7.3 PageRank 287

Researchers have addressed this problem (called recency search). Here,
we only describe a time-sensitive ranking algorithm called TS-Rank [43],
which is an extension to PageRank. The idea of TS-Rank is simple. Instead
of using a constant damping factor d as a parameter in PageRank, TS-Rank
uses a function of time f(ti) (0 ≤ f(ti) ≤ 1) to achieve the time sensitive
purpose, where ti is the difference between the current time and the time
when page i was created or last updated. f(ti) returns a probability that the
random surfer will follow an actual link on the page. 1  f(ti) returns the
probability that the surfer will jump to a random page. Note that the same
trick as in PageRank of adding artificial links to pages is still used. Thus,
at a particular page i, the surfer can take one of the two actions:

1. With probability f(ti), he randomly chooses an out-going link to follow.
2. With probability 1  f(ti), he jumps to a random page without a link.

The intuition here is that if the page was created or last updated a long
time ago, then the pages that it points to are even older and are probably
out of date. Then the 1  f(ti) value for the page should be large, which
means that the surfer will have a high probability of jumping to a random
page. If a page is new, then its 1  f(ti) value should be small, which means
that the surfer will have a high probability to follow an out-link of the page
and a small probability of jumping to a random page. Note that in this
formulation, the age of the page being pointed to is irrelevant. With this
augmentation, the non-matrix form of Equation (15) becomes:

),()(
)(1

)(
1

jPAtf
n

tf
iP T

n

j
jij

j
T 













 (30)

where PT(i) is the TS-Rank value of page i, n is the total number of pages,
and 1/n is the probability of going to a random page j. In the matrix form,
Equation (30) is:

  ,T
TT PHFP  (31)

where F and H are both n  n square matrices defined by

 ,)(1
n

tf
F i

ij


 (32)

.
otherwise0

),(if)(





 


Eji

O

tf
H

i

i

ij (33)

It is easy to show that (F + H) is a stochastic transition matrix of the
augmented Markov chain. (F + H) is also irreducible and aperiodic

288 7 Social Network Analysis

because of the random jump links. Like PageRank, the Markov chain
defined by (F + H) thus also has a unique stationary probability
distribution regardless of the choice of the initial probability of the random
surfer being at each state/page. The stationary probability distribution is
the final TS-Rank (column) vector PT. To solve Equation (31), we still use
the power iteration method. Note that if f(ti) is a constant between 0 and 1
for every page, TS-Rank becomes PageRank.

As for how to define f(ti), it is application dependent. For different
applications, different functions may be needed depending on how the time
affects the domains. For an application of publication research in [44], the
following exponential decay function was used:

.5.0)(3
it

itf  (34)

For a complete new page in a Web site, which has few or no in-links,
we can use the average TS-Rank value of the past pages of the site, which
represents the reputation of the site.

7.4 HITS

HITS stands for Hypertext Induced Topic Search [37]. Unlike PageRank
which is a static ranking algorithm, HITS is search query dependent. When
the user issues a search query, HITS first expands the list of relevant pages
returned by a search engine and then produces two rankings of the
expanded set of pages, authority ranking and hub ranking.

An authority is a page with many in-links. The idea is that the page
may have authoritative content on some topic and thus many people trust it
and thus link to it. A hub is a page with many out-links. The page serves
as an organizer of the information on a particular topic and points to many
good authority pages on the topic. When a user comes to this hub page,
he/she will find many useful links which take him/her to good content
pages on the topic. Fig. 7.8 shows an authority page and a hub page.

The key idea of HITS is that a good hub points to many good authorities
and a good authority is pointed to by many good hubs. Thus, authorities
and hubs have a mutual reinforcement relationship. Fig. 7.9 shows a set
of densely linked authorities and hubs (a bipartite sub-graph).

Below, we first present the HITS algorithm, and also make a connection
between HITS and co-citation and bibliographic coupling in bibliometric
research. We then discuss the strengths and weaknesses of HITS, and
describe some possible ways to deal with its weaknesses.

7.4 HITS 289

Fig. 7.8. An authority page and a hub page

Fig. 7.9. A densely linked set of authorities and hubs

7.4.1 HITS Algorithm

Before describing the HITS algorithm, let us first describe how HITS
collects pages to be ranked. Given a broad search query, q, HITS collects a
set of pages as follows:

1. It sends the query q to a search engine system. It then collects t (t = 200
is used in the HITS paper) highest ranked pages, which assume to be
highly relevant to the search query. This set is called the root set W.

2. It then grows W by including any page pointed to by a page in W and
any page that points to a page in W. This gives a larger set called S.
However, this set can be very large. The algorithm restricts its size by
allowing each page in W to bring at most k pages (k = 50 is used in the
HITS paper) pointing to it into S. The set S is called the base set.

HITS then works on the pages in S, and assigns every page in S an
authority score and a hub score. Let the number of pages to be studied be
n. We again use G = (V, E) to denote the (directed) link graph of S. V is the
set of pages (or nodes) and E is the set of directed edges (or links). We use
L to denote the adjacency matrix of the graph.

An authority A hub

 Authorities Hubs

290 7 Social Network Analysis



 


otherwise0

),(if1 Eji
Lij

(35)

Let the authority score of the page i be a(i), and the hub score of page i
be h(i). The mutual reinforcing relationship of the two scores is
represented as follows:





Eij

jhia
),(

)()((36)





Eji

jaih
),(

)()((37)

Writing them in the matrix form, we use a to denote the column vector
with all the authority scores, a = (a(1), a(2), …, a(n))T, and use h to denote
the column vector with all the hub scores, h = (h(1), h(2), …, h(n))T,

a = LTh (38)

h = La (39)

The computation of authority scores and hub scores is basically the same
as the computation of the PageRank scores using the power iteration
method. If we use ak and hk to denote authority and hub scores at the kth
iteration, the iterative processes for generating the final solutions are

ak = LTLak1
 (40)

hk = LLThk1 (41)

starting with
a0 = h0 = (1, 1, …, 1). (42)

Note that Equation (40) (or Equation 41) does not use the hub (or
authority) vector due to substitutions of Equation (38) and Equation (39).

After each iteration, the values are also normalized (to keep them small)
so that





n

i

ia
1

1)(

(43)





n

i

ih
1

1)(

(44)

7.4 HITS 291

The power iteration algorithm for HITS is given in Fig. 7.10. The
iteration ends after the 1-norms of the residual vectors are less than some
thresholds a and h. Hence, the algorithm finds the principal eigenvectors
at “equilibrium” as in PageRank. The pages with large authority and hub
scores are better authorities and hubs respectively. HITS will select a few
top ranked pages as authorities and hubs, and return them to the user.

Although HITS will always converge, there is a problem with
uniqueness of limiting (converged) authority and hub vectors. It is shown
that for certain types of graphs, different initializations to the power
method produce different final authority and hub vectors. Some results can
be inconsistent or wrong. Farahat et al. [23] gave several examples. The
heart of the problem is that there are repeated dominant (principal)
eigenvalues (several eigenvalues are the same and are dominant
eigenvalues), which are caused by the problem that LTL (respectively LLT)
is reducible [39, 40]. The first PageRank solution (Equation (22)) has the
same problem. However, the PageRank inventors found a way to get
around the problem. A modification similar to PageRank may be applied
to HITS.

7.4.2 Finding Other Eigenvectors

The HITS algorithm given in Fig. 7.10 finds the principal eigenvectors,
which in a sense represent the most densely connected authorities and hubs
in the graph G defined by a query. However, in some cases, we may also
be interested in finding several densely linked collections of hubs and
authorities among the same base set of pages. Each of such collections

HITS-Iterate(G)
a0  h0  (1, 1, …, 1);
k  1
Repeat

;1 k
T

k LaLa

;1 k
T

k hLLh
ak  ak /||ak||1; // normalization
hk  hk /||hk||1; // normalization
k  k + 1;

until ||ak – ak-1||1 < a and ||hk – hk-1||1 < h;
return ak and hk

Fig. 7.10. The HITS algorithm based on power iteration

292 7 Social Network Analysis

could potentially be relevant to the query topic, but they could be well-
separated from one another in the graph G for a variety of reasons. For
example,

1. The query string may be ambiguous with several very different
meanings, e.g., “jaguar”, which could be a cat or a car.

2. The query string may represent a topic that may arise as a term in the
multiple communities, e.g. “classification”.

3. The query string may refer to a highly polarized issue, involving groups
that are not likely to link to one another, e.g. “abortion”.

In each of these examples, the relevant pages can be naturally grouped into
several clusters, also called communities. In general, the top ranked
authorities and hubs represent the major cluster (or community). The
smaller clusters (or communities), which are also represented by bipartite
sub-graphs as that in Fig. 7.9, can be found by computing non-principal
eigenvectors. Non-principal eigenvectors are calculated in a similar way to
power iteration using methods such as orthogonal iteration and QR
iteration. We will not discuss the details of these methods. Interested
readers can refer to the book by Golub and Van Loan [31].

7.4.3 Relationships with Co-Citation and Bibliographic
Coupling

Authority pages and hub pages have their matches in the bibliometric
citation context. An authority page is like an influential research paper
(publication) which is cited by many subsequent papers. A hub page is like
a survey paper which cites many other papers (including those influential
papers). It is no surprise that there is a connection between authority and
hub, and co-citation and bibliographic coupling.

Recall that co-citation of pages i and j, denoted by Cij, is computed as

ij
T

n

k
kjkiij LLC)(

1

LL


. (45)

This shows that the authority matrix (LTL) of HITS is in fact the co-
citation matrix C in the Web context. Likewise, recall that bibliographic
coupling of two pages i and j, denoted by Bij, is computed as

,)(
1

ij
T

n

k
jkikij LLB LL



 (46)

7.4 HITS 293

which shows that the hub matrix (LLT) of HITS is the bibliographic
coupling matrix B in the Web context.

7.4.4 Strengths and Weaknesses of HITS

The main strength of HITS is its ability to rank pages according to the
query topic, which may be able to provide more relevant authority and hub
pages. The ranking may also be combined with information retrieval based
rankings. However, HITS has several disadvantages.

 First of all, it does not have the anti-spam capability of PageRank. It is
quite easy to influence HITS by adding out-links from one’s own page
to point to many good authorities. This boosts the hub score of the page.
Because hub and authority scores are interdependent, it in turn also
increases the authority score of the page.

 Another problem of HITS is topic drift. In expanding the root set, it can
easily collect many pages (including authority pages and hub pages)
which have nothing to do the search topic because out-links of a page
may not point to pages that are relevant to the topic and in-links to pages
in the root set may be irrelevant as well because people put hyperlinks
for all kinds of reasons, including spamming.

 The query time evaluation is also a major drawback. Getting the root
set, expanding it and then performing eigenvector computation are all
time consuming operations.
Over the years, many researchers tried to deal with these problems. We

briefly discuss some of them below.
It was reported by several researchers in [7, 41, 49] that small changes

to the Web graph topology can significantly change the final authority and
hub vectors. Minor perturbations have little effect on PageRank, which is
more stable than HITS. This is essentially due to the random jump step of
PageRank. Ng et al. [49] proposed a method by introducing the same
random jump step to HITS (by jumping to the base set uniformly at
random with probability d), and showed that it could improve the stability
of HITS significantly. Lempel and Moran [41] proposed SALSA, a
stochastic algorithm for link structure analysis. SALSA combines some
features of both PageRank and HITS to improve the authority and hub
computation. It casts the problem as two Markov chains, an authority
Markov chain and a hub Markov chain. SALSA is less susceptible to spam
since the coupling between hub and authority scores is much less strict.

Bharat and Henzinger [7] proposed a simple method to fight two site
nepotistic links. That means that a set of pages on one host points to a

294 7 Social Network Analysis

single page on a second host. This drives up the hub scores of the pages on
the first host and the authority score of the page on the second host. A
similar thing can be done for hubs. These links may be authored by the
same person and thus are regarded as “nepotistic” links to drive up the
ranking of the target pages. [7] suggests weighting the links to deal with
this problem. That is, if there are k edges from documents on a first host to
a single document on a second host we give each edge an authority
weight of 1/k. If there are l edges from a single page on a first host to a set
of pages on a second host, we give each edge a hub weight of 1/l. These
weights are used in the authority and hub computation. There are much
more sophisticated spam techniques now involving more than two sites.

Regarding the topic drifting of HITS, existing fixes are mainly based on
content similarity comparison during the expansion of the root set. In [12],
if an expanded page is too different from the pages in the root set in terms
of content similarity (based on cosine similarity), it is discarded. The
remaining links are also weighted according to similarity. [12] proposes a
method that uses the similarity between the anchor text of a link and the
search topic to weight the link (instead of giving each link 1 as in HITS).
[11] goes further to segment the page based on the DOM (Document
Object Model) tree structure to identify the blocks or subtrees that are
more related to the query topic instead of regarding the whole page as
relevant to the search query. This is a good way to deal with multi-topic
pages, which are abundant on the Web. A recent work on this is block-
based link analysis [10], which segments each Web page into different
blocks. Each block is given a different importance value according to its
location in the page and other information. The importance value is then
used to weight the links in the HITS (and also PageRank) computation.
This will reduce the impact of unimportant links, which usually cause
topic drifting and may even be a link spam.

7.5 Community Discovery

Intuitively, a community is simply a group of entities (e.g., people or
organizations) that shares a common interest or is involved in an activity
or event. In Sect. 7.4.2, we showed that the HITS algorithm can be used to
find communities. The communities are represented by dense bipartite
sub-graphs. We now describe several other community finding algorithms.
Apart from the Web, communities also exist in emails and text documents.
This section describes two community finding algorithms for the Web, one
community finding algorithm for emails, and one community finding
algorithm for text documents.

7.5 Community Discovery 295

There are many reasons for discovering communities. For example, in
the context of the Web, Kumar et al. [38] listed three reasons:

1. Communities provide valuable and possibly the most reliable, timely,
and up-to-date information resources for a user interested in them.

2. They represent the sociology of the Web: studying them gives insights
into the evolution of the Web.

3. They enable target advertising at a very precise level.

7.5.1 Problem Definition

Definition (community): Given a finite set of entities S = {s1, s2, …, sn}
of the same type, a community is a pair C = (T, G), where T is the
community theme and G  S is the set of all entities in S that shares the
theme T. If si  G, si is said to be a member of the community C.

Some remarks about this definition are in order:

 A theme defines a community. That is, given a theme T, the set of
members of the community is uniquely determined. Thus, two
communities are equal if they have the same theme.

 A theme can be defined arbitrarily. For example, it can be an event (e.g.,
a sport event or a scandal) or a concept (e.g., Web mining).

 An entity si in S can be in any number of communities. That is,
communities may overlap, or multiple communities may share
members.

 The entities in S are of the same type. For example, this definition does
not allow people and organizations to be in the same community.

 By no means does this definition cover every aspect of communities in
the real world. For example, it does not consider the temporal dimension
of communities. Usually a community exists within a specific period of
time. Similarly, an entity may belong to a community during some time
periods.

 This is a conceptual definition. In practice, different community mining
algorithms have their own operational definitions which usually depend
on how communities manifest themselves in the given data (which we
will discuss shortly). Furthermore, the algorithms may not be able to
discover all the members of a community or its precise theme.

Communities may also have hierarchical structures.

Definition (sub-community, super-community, and sub-theme): A
community (T, G) may have a set of sub-communities {(T1, G1), …,

296 7 Social Network Analysis

(Tm, Gm)}, where Ti is a sub-theme of T and Gi  G. (T, G) is also called
a super-community of (Ti, Gi). In the same way, each sub-community
(Ti, Gi) can be further decomposed, which gives us a community
hierarchy.

Community Manifestation in Data: Given a data set, which can be a set
of Web pages, a collection of emails, or a set of text documents, we want
to find communities of entities in the data. However, the data itself usually
does not explicitly give us the themes or the entities (community members)
associated with the themes. The system needs to discover the hidden
community structures. Thus, the first issue that we need to know is how
communities manifest themselves. From such manifested evidences, the
system can discover possible communities. Different types of data may
have different forms of manifestation. We give three examples.

Web Pages:
1. Hyperlinks: A group of content creators sharing a common interest is

usually inter-connected through hyperlinks. That is, members in a
community are more likely to be connected among themselves than
outside the community.

2. Content words: Web pages of a community usually contain words that
are related to the community theme.

Emails:
1. Email exchange between entities: Members of a community are more

likely to communicate with one another.
2. Content words: Email contents of a community also contain words

related to the theme of the community.

Text documents:
1. Co-occurrence of entities: Members of a community are more likely to

appear together in the same sentence and/or the same document.
2. Content words: Words in sentences indicate the community theme.

Clearly, the key form of manifestation of a community is that its members
are linked in some way. The associated text often contains words that are
indicative of the community theme.

Objective of Community Discovery: Given a data set containing entities,
we want to discover hidden communities of the entities. For each
community, we want to find the theme and its members. The theme is
usually represented with a set of keywords.

7.5 Community Discovery 297

7.5.2 Bipartite Core Communities

HITS finds dense bipartite graph communities based on broad topic
queries. The question is whether it is possible to find all such communities
efficiently from the crawl of the whole Web without using eigenvector
computation which is relatively inefficient. Kumar et al. [38] presented a
technique for finding bipartite cores, which are defined as follows.

Recall that the node set of a bipartite graph can be partitioned into two
subsets, which we denote as set F and set C. A bipartite core is a
complete bipartite sub-graph with at least i nodes in F and at least j nodes
in C. A complete bipartite graph on node sets F and C contains all possible
edges between the vertices of F and the vertices of C. Note that edges
within F or within C are allowed here to suit the Web context, which deviate
from the traditional definition of a complete bipartite graph. Intuitively, the
core is a small (i, j)-sized complete bipartite sub-graph of the community,
which contains some core members of the community but not all.

The cores that we seek are directed, i.e., there is a set of i pages all of
which link to a set of j pages, while no assumption is made of links out of
the latter set of j pages. Intuitively, the former is the set of pages created
by members of the community, pointing to what they believe are the most
valuable pages for that community. For this reason we will refer to the i
pages that contain the links as fans, and the j pages that are referenced as
centers (as in community centers). Fans are like specialized hubs, and
centers are like authorities. Fig. 7.11 shows an example of a bipartite core.

Fig. 7.11. A (4, 3) bipartite core

In Fig. 7.11, each fan page links to every center page. Since there are
four fans and three centers, this is called a (4, 3) bipartite core. Such a core
almost certainly represents a Web community, but a community may have
multiple bipartite cores.

Given a large number of pages crawled from the Web, which is
represented as a graph, the procedure for finding bipartite cores consists of
two major steps: pruning and core generation.

 4 Fans 3 Centers

298 7 Social Network Analysis

Step 1: Pruning

We describe two types of pruning to remove those unqualified pages to be
fans or centers. There are also other pruning methods given in [38].

1. Pruning by in-degree: we can delete all pages that are very highly
referenced (linked) on the Web, such as homepages of Web portals
(e.g., Yahoo!, AOL, etc). These pages are referenced for a variety of
reasons, having little to do with any single emerging community, and
they can be safely deleted. That is, we delete pages with the number of
in-links great than k, which is determined empirically (k = 50 in [38]).

2. Iterative pruning of fans and centers: If we are interested in finding
(i, j) cores, clearly any potential fan with an out-degree smaller than j
can be pruned and the associated edges deleted from the graph.
Similarly, any potential center with an in-degree smaller than i can be
pruned and the corresponding edges deleted from the graph. This
process can be done iteratively: when a fan gets pruned, some of the
centers that it points to may have their in-degrees fall below the
threshold i and qualify for pruning as a result. Similarly, when a center
gets pruned, a fan that points to it could have its out-degree fall below
its threshold of j and qualify for pruning.

Step 2: Generating all (i, j) Cores

After pruning, the remaining pages are used to discover cores. The method
works as follows: Fixing j, we start with all (1, j) cores. This is simply the
set of all vertices with out-degree at least j. We then construct all (2, j)
cores by checking every fan which also points to any center in a (1, j) core.
All (3, j) cores can be found in the same fashion by checking every fan
which points to any center in a (2, j) core, and so on. The idea is similar to
the Apriori algorithm for association rule mining (see Chap. 2) as every
proper subset of the fans in any (i, j) core forms a core of smaller size.

Based on the algorithm, Kumar et al. found a large number of topic
coherent cores from a crawl of the Web [38]. We note that this algorithm
only finds the core pages of the communities, not all members (pages). It
also does not find the themes of the communities or their hierarchical
organizations.

7.5.3 Maximum Flow Communities

Bipartite cores are usually very small and do not represent full communities.
In this section, we define and find maximum flow communities based on
the work of Flake et al. [24, 25]. The algorithm requires the user to give a

7.5 Community Discovery 299

set of seed pages, which are examples of the community that the user
wishes to find.

Given a Web link graph G = (V, E), a maximum flow community is
defined as a collection C  V of Web pages such that each member page u
 C has more hyperlinks (in either direction) within the community C than
outside of the community V-C. Identifying such a community is intractable
in the general case because it can be mapped into a family of NP-complete
graph partition problems. Thus, we need to approximate and recast it into a
framework with less stringent conditions based on the network flow model
from operations research, specifically the maximum flow model.

The maximum flow model can be stated as follows: We are given a
graph G = (V, E), where each edge (u, v) is thought of as having a positive
capacity c(u, v) that limits the quantity of a product that may be shipped
through the edge. In such a situation, it is often desirable to have the
maximum amount of flow from a starting point s (called the source) and a
terminal point t (called the sink). Intuitively, the maximum flow of the
graph is determined by the bottleneck edges. For example, given the graph
in Fig. 7.12 with the source s and the sink t, if every edge has the unit
capacity, the bottleneck edges are W-X and Y-Z.

Fig. 7.12. A simple flow network.

The Max Flow-Min Cut theorem of Ford and Fulkerson [26] proves that
the maximum flow of a network is identical to the minimum cut that
separates s and t. Many polynomial time algorithms exist for solving the s-
t maximum flow problem. If Fig. 7.12 is a Web link graph, it is natural to
cut the edges W-X and Y-Z to produce two Web communities.

The basic idea of the approach in [26] is as follows: It starts with a set S
of seed pages, which are example pages of the community that the user
wishes to find. The system then crawls the Web to find more pages using
the seed pages. A maximum flow algorithm is then applied to separate the
community C involving the seed pages and the other pages. These steps
may need to be repeated in order to find the desired community. Fig. 7.13
gives the algorithm.

The algorithm Find-Community is the control program. It takes a set S
of seed Web pages as input, and crawls to a fixed depth including in-links

W X

Y Z
s t

300 7 Social Network Analysis

as well as out-links (with in-links found by querying a search engine). It
then applies the procedure Max-Flow-Community to the induced graph G
from the crawl. After a community C is found, it ranks the pages in the
community by the number of edges that each has inside of the community.
Some highest ranked non-seed pages are added to the seed set. This is to
create a big seed set for the next iteration in order to crawl more pages.
The algorithm then iterates the procedure. Note that the first iteration may
only identify a very small community. However, when new seeds are
added, increasingly larger communities are identified. Heuristics are used
to decide when to stop.

The procedure Max-Flow-Community finds the actual community from
G. Since a Web graph has no source and sink, it first augments the web
graph by adding an artificial source, s, with infinite capacity edges routed
to all seed vertices in S; making each pre-existing edge bidirectional and
assigning each edge a constant capacity k. It then adds an artificial sink t

Algorithm Find-Community (S)
while number of iteration is less than desired do
 build G = (V, E) by doing a fixed depth crawl starting from S;
 k = |S|;
 C = Max-Flow-Community(G, S, k);
 rank all v  C by the number of edges in C;
 add the highest ranked non-seed vertices to S
end-while
return all v  V still connected to the source s

Procedure Max-Flow-Community(G, S, k)
create artificial vertices, s and t and add to V; // V is the vertex set of G.
for all v  S do
 add (s, v) to E with c(s, v) =  // E is the edge set of G.
endfor
for all (u, v)  E, u  s do
 c(u, v) = k;
 if (v, u)  E then

add (v, u) to E with c(v, u) = k
endif

endfor
for all v  V, v  S  {s, t} do
 add (v, t) to E with c(v, t) = 1
endfor
Max-Flow(G, s, t);
return all v  V still connected to s.

Fig. 7.13. The algorithm for mining maximum flow communities

7.5 Community Discovery 301

and routes all vertices except the source, the sink, and the seed vertices to t
with unit capacity. After augmenting the web graph, a residual flow graph
is produced by a maximum flow procedure (Max-Flow()). All vertices
accessible from s through non-zero positive edges form the desired result.
The value k is heuristically chosen to be the size of the set S to ensure that
after the artificial source and sink are added to the original graph, the same
cuts will be produced as the original graph (see the proof in [24]). Fig. 7.14
shows the community finding process.

Finally, we note that this algorithm does not find the theme of the
community or the community hierarchy (i.e., sub-communities and so on).

Fig. 7.14. Schematic representation of the community finding process

7.5.4 Email Communities Based on Betweenness

Email has become the predominant means of communication in the
information age. It has been established as an indicator of collaboration
and knowledge (or information) exchange. Email exchanges provide
plenty of data on personal communication for the discovery of shared
interests and relationships between people, which were hard to discover
previously.

It is fairly straightforward to construct a graph based on email data.
People are the vertices and the edges are added between people who
corresponded through email. Usually, the edge between two people is
added if a minimum number of messages passed between them. The
minimum number is controlled by a threshold, which can be tuned.

To analyze an email graph or network, one can make use of all the
centrality measures and prestige measures discussed in Sect. 7.1. We now
focus on community finding only.

We are interested in people communities, which are subsets of vertices
that are related. One way to identify communities is by partitioning the

S

Community
Artificial
source

Cut set

Artificial
sink

Outside of the
community

302 7 Social Network Analysis

graph into discrete clusters such that there are few edges lying between the
clusters. This definition is similar to that of the maximum flow community.
Betweenness in social networks is a natural measure for identifying those
edges in between clusters or communities [59]. The idea is that inter-
community links, which are few, have high betweenness values, while the
intra-community edges have low betweenness values. However, the
betweenness discussed in Sect. 7.1 is evaluated on each person in the
network. Here, we need to evaluate the betweenness of each edge. The
idea is basically the same and Equation (4) can be used here without
normalization because we only find communities in a single graph. The
betweenness of an edge is simply the number of shortest paths that pass it.

If the graph is not connected, we identify communities from each
connected component. Given a connected graph, the method works
iteratively in two steps (Fig. 7.15):

repeat
Compute the betweenness of each edge in the remaining graph;
Remove the edge with the highest betweenness

until the graph is suitably partitioned.

Fig. 7.15. Community finding using the betweenness measure.

Since the removal of an edge can strongly affect the betweenness of many
other edges, we need to repeatedly re-compute the betweenness of all
edges. The idea of the method is very similar to the minimum-cut method
discussed in Sect. 7.5.3.

The stopping criteria can be designed according to applications. In
general, we consider that the smallest community is a triangle. The
algorithm should stop producing more unconnected components if there is
no way to generate triangle communities. A component of five or fewer
vertices cannot consist of two viable communities. The smallest such
component is six, which has two triangles connected by one edge, see Fig.
7.16. If any discovered community does not have a triangle, it may not be
considered as a community. Clearly, other stopping criteria can be used.

Fig. 7.16. The smallest possible graph of two viable communities.

7.5 Community Discovery 303

7.5.5 Overlapping Communities of Named Entities

Most community discovery algorithms are based on graph partitioning,
which means that an entity can belong to only a single community.
However, in real life, a person can be in multiple communities (see the
definition in Sect. 7.5.1). For example, he/she can be in the community of
his/her family, the community of his/her colleagues and the community of
his/her friends. A heuristic technique is presented in [42] for finding
overlapping communities of entities in text documents.

In the Web or email context, there are explicit links connecting entities
and forming communities. In free text documents, no explicit links exist.
Then the question is: what constitutes a link between two entities in text
documents? As we indicated earlier, one simple technique is to regard two
entities as being linked if they co-occur in the same sentence. This method
is reasonable because if two people are mentioned in a sentence there is
usually a relationship between them.

The objective is to find entity communities from a text corpus, which
could be a set of given documents or the returned pages from a search
engine using a given entity as the search query. An entity here refers to the
name of a person or an organization.

The algorithm in [42] consists of four steps:

1. Building a link graph: The algorithm first parses each document. For
each sentence, it identifies named entities contained in the sentence. If a
sentence has more than one named entities, these entities are pair-wise
linked. The keywords in the sentence are attached to the linked pairs to
form their textual contents. All the other sentences are discarded.

2. Finding all triangles: The algorithm then finds all triangles, which are
the basic building blocks of communities. A triangle consists of three
entities bound together. The reason for using triangles is that it has been
observed by researchers that a community expands predominantly by
triangles sharing a common edge.

3. Finding community cores: It next finds community cores. A community
core is a group of tightly bound triangles, which are relaxed complete
sub-graphs (or cliques). Intuitively, a core consists of a set of tightly
connected members of a community.

4. Clustering around community cores: For those triangles and also entity
pairs that are not in any core, they are assigned to cores according to
their textual content similarities with the discovered cores.

It is clear that in this algorithm a single entity can appear in multiple
communities because an entity can appear in multiple triangles. To finish
off, the algorithm also ranks the entities in each community according to

304 7 Social Network Analysis

degree centrality. Keywords associated with the edges of each community
are also ranked. The top keywords are assumed to represent the theme of the
community. The technique has been applied to find communities of political
figures and celebrities from Web documents with promising results.

Bibliographic Notes

Social network analysis has a relative long history. A large number of
interesting problems were studied in the past 60 years. The book by
Wasserman and Faust [60] is an authoritative text of the field. There are
also many other books, e.g., “Social Network Analysis: A Handbook” by
John Scott, “Networks: An Introduction” by Mark Newman, “Models and
Methods in Social Network Analysis” by Peter J. Carrington, "Social
Network Analysis" by David Knoke and Song Yang, "Models and
Methods in Social Network Analysis" edited by Peter J. Carrington, John
Scott and Stanley Wasserman, and "Link Analysis: An Information
Science Approach" by Mike Thelwall. Co-citation [55] and bibliographic
coupling [36] are from bibliometrics. The book edited by Borgman [8] is a
good source of information on both the research and applications of
bibliometrics.

The use of social network analysis in the Web context (also called link
analysis) started with the PageRank algorithm proposed by Brin and Page
[9] and Page et al. [52], and the HITS algorithm proposed by Kleinberg
[37]. PageRank is also the algorithm that powers the Google search engine.
Due to several weaknesses of HITS, many researchers have tried to
improve it. Various enhancements were reported by Lempel and Moran
[41], Bharat and Henzinger [7], Chakrabarti et al. [13], Cai et al. [10], etc.
The book by Langville and Meyer [40] contains in-depth analyses of
PageRank, HITS and many enhancements to HITS. Other works related to
Web link analysis include those in [14, 35, 46] on improving the PageRank
computation, in [22] on searching workspace Web, in [15, 27, 28, 51] on
the evolution of the Web and the search engine influence on the Web, in
[18, 19, 50, 56] on other link based models, in [5, 47, 48, 54] on Web
graph and its characteristics, in [4, 6, 33] on sampling of Web pages, and
in [3, 16, 20, 43, 53, 62, 63] on the temporal dimension of Web search. In
[45], a new user-browsing based link analysis and ranking method was
proposed. This method employs search logs and the continuous time
Markov model for ranking, unlike PageRank which uses the discrete time
Markov model.

On community discovery, HITS can find some communities by
computing non-principal eigenvectors [29, 37]. Kumar et al. [38] proposed

Bibliography 305

the algorithm for finding bipartite cores. Flake et al. [25] introduced the
maximum flow community mining. Ino et al. [34] presented a more strict
definition of communities. Tyler et al. [59] gave the method for finding
email communities based on betweenness. The algorithm for finding
overlapping communities of named entities from texts was given by Li et
al. [42]. More recent developments on communities and social networks
on the Web can be found in [1, 2, 17, 21, 30, 57, 58, 61, 64].

Bibliography

1. Aleman-Meza, B., M. Nagarajan, C. Ramakrishnan, L. Ding, P. Kolari, A.
Sheth, I. Arpinar, A. Joshi, and T. Finin. Semantic analytics on social
networks: experiences in addressing the problem of conflict of interest
detection. In Proceedings of International Conference on World Wide Web
(WWW-2006), 2006.

2. Andersen, R. and K. Lang. Communities from seed sets. In Proceedings of
International Conference on World Wide Web (WWW-2006), 2006.

3. Baeza-Yates, R., F. Saint-Jean, and C. Castillo. Web structure, dynamics and
page quality. In Proceedings of String Processing and Information Retrieval,
2002: Springer.

4. Bar-Yossef, Z. and M. Gurevich. Random sampling from a search engine's
index. Journal of the ACM (JACM), 2008, 55(5): p. 1-74.

5. Barabasi, L. and R. Albert. Emergence of Scaling in Random Walk. Science,
1999, 286(5439): p. 509-512.

6. Bharat, K. and A. Broder. A technique for measuring the relative size and
overlap of public web search engines. Computer Networks, 1998, 30(1-7): p.
379-388.

7. Bharat, K. and M. Henzinger. Improved algorithms for topic distillation in a
hyperlinked environment. In Proceedings of ACM SIGIR Conf. on Research
and Development in Information Retrieval (SIGIR-1998), 1998.

8. Borgman, C. and J. Furner. Scholarly communication and bibliometrics.
Annual Review of Information Science and Technology, 2002, 36: p. 3-72.

9. Brin, S. and P. Lawrence. The anatomy of a large-scale hypertextual web
search engine. Computer Networks, 1998, 30(1-7): p. 107-117.

10. Cai, D., S. Yu, J. Wen, and W. Ma. Block-based web search. In Proceedings
of ACM SIGIR Research and Development in Information Retrieval (SIGIR-
2004), 2004.

11. Chakrabarti, S. Integrating the document object model with hyperlinks for
enhanced topic distillation and information extraction. In Proceedings of 10th
international conference on World Wide Web. 2001, ACM: Hong Kong,
Hong Kong. p. 211-220.

12. Chakrabarti, S., B. Dom, S. Kumar, P. Raghavan, S. Rajagopalan, A.
Tomkins, D. Gibson, and J. Kleinberg. Mining the Web's link structure.
Computer, 2002, 32(8): p. 60-67.

306 7 Social Network Analysis

13. Chakrabarti, S., K. Puniyani, and S. Das. Optimizing scoring functions and
indexes for proximity search in type-annotated corpora. In Proceedings of
International Conference on World Wide Web (WWW-2006), 2006.

14. Chen, Y., Q. Gan, and T. Suel. Local methods for estimating pagerank values.
In Proceedings of ACM International Conference on Information and
knowledge management (CIKM-2004), 2004.

15. Cho, J. and S. Roy. Impact of search engines on page popularity. In
Proceedings of International Conference on World Wide Web (WWW-2004),
2004.

16. Diaz, F. Integration of news content into web results. In Proceedings of ACM
International Conference on Web Search and Data Mining (WSDM-2009),
2009.

17. Diesner, J. and K. Carley. Exploration of communication networks from the
Enron email corpus. In Proceedings of Workshop on Link Analysis,
Counterterrorism and Security at SDM’05, 2005.

18. Diligenti, M., M. Gori, and M. Maggini. Web page scoring systems for
horizontal and vertical search. In Proceedings of International Conference on
World Wide Web (WWW-2002), 2002.

19. Ding, C., X. He, P. Husbands, H. Zha, and H. Simon. PageRank, HITS and a
unified framework for link analysis. In Proceedings of SIAM International
Conference on Data Mining (SDM-2002), 2002.

20. Dong, A., Y. Chang, Z. Zheng, G. Mishne, J. Bai, R. Zhang, K. Buchner, C.
Liao, and F. Diaz. Towards recency ranking in web search. In Proceedings of
ACM International Conference on Web Search and Data Mining (WSDM-
2010), 2010.

21. Eckmann, J. and E. Moses. Curvature of co-links uncovers hidden thematic
layers in the world wide web. Proceedings of the National Academy of
Sciences of the United States of America, 2002, 99(9): p. 5825.

22. Fagin, R., R. Kumar, K. McCurley, J. Novak, D. Sivakumar, J. Tomlin, and
D. Williamson. Searching the workplace web. In Proceedings of International
Conference on World Wide Web (WWW-2003), 2003.

23. Farahat, A., T. LoFaro, J. Miller, G. Rae, and L. Ward. Authority rankings
from HITS, PageRank, and SALSA: Existence, uniqueness, and effect of
initialization. SIAM Journal on Scientific Computing, 2006, 27(4): p. 1181-
1201.

24. Flake, G., S. Lawrence, and C. Giles. Efficient identification of web
communities. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2000), 2000.

25. Flake, G., S. Lawrence, C. Giles, and F. Coetzee. Self-organization of the web
and identification of communities. IEEE Computer, 2002, 35(3): p. 66-71.

26. Ford, L. and D. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 1956, 8(3): p. 399-404.

27. Fortunato, S., A. Flammini, and F. Menczer. Scale-free network growth by
ranking. Physical review letters, 2006, 96(21): p. 218701.

Bibliography 307

28. Fortunato, S., A. Flammini, F. Menczer, and A. Vespignani. Topical interests
and the mitigation of search engine bias. Proceedings of the National
Academy of Sciences, 2006, 103(34): p. 12684.

29. Gibson, D., J. Kleinberg, and P. Raghavan. Inferring web communities from
link topology. In Proceedings of ACM Conference on Hypertext and
Hypermedia, 1998.

30. Girvan, M. and M. Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences of the United
States of America, 2002, 99(12): p. 7821.

31. Golub, G. and C. Van Loan. Matrix computations. 1996: Johns Hopkins Univ
Press.

32. Grimmet, G. and D. Stirzaker. Probability and Random Process. 1989:
Oxford University Press.

33. Henzinger, M., A. Heydon, M. Mitzenmacher, and M. Najork. Measuring
index quality using random walks on the Web. Computer Networks, 1999,
31(11-16): p. 1291-1303.

34. Ino, H., M. Kudo, and A. Nakamura. Partitioning of Web graphs by
community topology. In Proceedings of International Conference on World
Wide Web (WWW-2005), 2005.

35. Kamvar, S., T. Haveliwala, C. Manning, and G. Golub. Extrapolation
methods for accelerating PageRank computations. In Proceedings of
International Conference on World Wide Web (WWW-2003), 2003.

36. Kessler, M. Bibliographic coupling between scientific papers. American
documentation, 1963, 14(1): p. 10-25.

37. Kleinberg, J. Authoritative sources in a hyperlinked environment. Journal of
the ACM (JACM), 1999, 46(5): p. 604-632.

38. Kumar, R., P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the Web
for emerging cyber-communities. Computer Networks, 1999, 31(11-16): p.
1481-1493.

39. Langville, A. and C. Meyer. Deeper inside pagerank. Internet Mathematics,
2004, 1(3): p. 335-380.

40. Langville, A. and C. Meyer. Google's PageRank and beyond: the science of
search engine rankings. 2006: Princeton University Press.

41. Lempel, R. and S. Moran. The stochastic approach for link-structure analysis
(SALSA) and the TKC effect. Computer Networks, 2000, 33(1-6): p. 387-
401.

42. Li, X., B. Liu, and P. Yu. Discovering overlapping communities of named
entities. Knowledge Discovery in Databases: PKDD 2006, 2006: p. 593-600.

43. Li, X., B. Liu, and P. Yu. Time Sensitive Ranking with Application to
Publication Search. In Proceedings of IEEE International Conference on
Data Mining (ICDM-2008), 2008.

44. Li, X., B. Liu, and P. Yu. Time sensitive ranking with application to
publication search. In Link Mining: Models, Algorithms, and Applications, P.
Yu, J. Han, and C. Faloutsos, Editors. 2010, Springer. p. 187-209.

45. Liu, Y., B. Gao, T. Liu, Y. Zhang, Z. Ma, S. He, and H. Li. BrowseRank:
letting web users vote for page importance. In Proceedings of ACM SIGIR

308 7 Social Network Analysis

Conf. on Research and Development in Information Retrieval (SIGIR-2008),
2008.

46. McSherry, F. A uniform approach to accelerated PageRank computation. In
Proceedings of International Conference on World Wide Web (WWW-2005),
2005.

47. Menczer, F. Evolution of document networks. Proceedings of the National
Academy of Sciences of the United States of America, 2004, 101(Suppl 1): p.
5261.

48. Menczer, F. Growing and navigating the small world web by local content.
Proceedings of the National Academy of Sciences of the United States of
America, 2002, 99(22): p. 14014.

49. Ng, A., A. Zheng, and M. Jordan. Stable algorithms for link analysis. In
Proceedings of ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR-2001), 2001.

50. Nie, Z., Y. Zhang, J. Wen, and W. Ma. Object-level ranking: bringing order
to web objects. In Proceedings of International Conference on World Wide
Web (WWW-2005), 2005.

51. Ntoulas, A., J. Cho, and C. Olston. What's new on the web?: the evolution of
the web from a search engine perspective. In Proceedings of International
Conference on World Wide Web (WWW-2004), 2004.

52. Page, L., S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: Bringing order to the web. In Technical Report 1999–0120. 1998,
Computer Science Department, Stanford University.

53. Pandey, S., S. Roy, C. Olston, J. Cho, and S. Chakrabarti. Shuffling a stacked
deck: The case for partially randomized ranking of search engine results. In
Proceedings of International Conference on Very Large Data Bases (VLDB-
2005), 2005.

54. Pennock, D., G. Flake, S. Lawrence, E. Glover, and C. Giles. Winners don't
take all: Characterizing the competition for links on the web. Proceedings of
the National Academy of Sciences of the United States of America, 2002,
99(8): p. 5207.

55. Small, H. Co citation in the scientific literature: A new measure of the
relationship between two documents. Journal of the American Society for
Information Science, 1973, 24(4): p. 265-269.

56. Tomlin, J. A new paradigm for ranking pages on the world wide web. In
Proceedings of International Conference on World Wide Web (WWW-2003),
2003.

57. Toyoda, M. and M. Kitsuregawa. Creating a Web community chart for
navigating related communities. In Proceedings of ACM Conf. on Hypertext
and Hypermedia, 2001.

58. Toyoda, M. and M. Kitsuregawa. Extracting evolution of web communities
from a series of web archives. In Proceedings of ACM Conf. on Hypertext and
Hypermedia, 2003.

59. Tyler, J.R., D.M. Wilkinson, and B.A. Huberman. Email as Spectroscopy:
Automated Discovery of Community Structure within Organizations.
Communities and Technologies, 2003.

Bibliography 309

60. Wasserman, S. and K. Faust. Social Network Analysis. 1994: Cambridge
University Press.

61. Wu, X., L. Zhang, and Y. Yu. Exploring social annotations for the semantic
web. In Proceedings of International Conference on World Wide Web
(WWW-2006), 2006.

62. Yu, P.S., X. Li, and B. Liu. Adding the Temporal Dimension to Search – A
Case Study in Publication Search. In Proceedings of International Conference
on Web Intelligence, 2005.

63. Zhang, R., Y. Chang, Z. Zheng, D. Metzler, and J. Nie. Search result re-
ranking by feedback control adjustment for time-sensitive query. In
Proceedings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Association for
Computational Linguistics, 2009.

64. Zhou, D., E. Manavoglu, J. Li, C. Giles, and H. Zha. Probabilistic models for
discovering e-communities. In Proceedings of International Conference on
World Wide Web (WWW-2006), 2006.

8 Web Crawling

Web crawlers, also known as spiders or robots, are programs that auto-
matically download Web pages. Since information on the Web is scattered
among billions of pages served by millions of servers around the globe,
users who browse the Web can follow hyperlinks to access information,
virtually moving from one page to the next. A crawler can visit many sites
to collect information that can be analyzed and mined in a central location,
either online (as it is downloaded) or off-line (after it is stored).

Were the Web a static collection of pages, we would have little long term
use for crawling. Once all the pages are fetched and saved in a repository,
we are done. However, the Web is a dynamic entity evolving at rapid rates.
Hence there is a continuous need for crawlers to help applications stay
current as pages and links are added, deleted, moved or modified.

There are many applications for Web crawlers. One is business intelligence,
whereby organizations collect information about their competitors and
potential collaborators. Another use is to monitor Web sites and pages of
interest, so that a user or community can be notified when new information
appears in certain places. There are also malicious applications of crawlers,
for example, that harvest email addresses to be used by spammers or
collect personal information to be used in phishing and other identity theft
attacks. The most widespread use of crawlers is, however, in support of search
engines. In fact, crawlers are the main consumers of Internet bandwidth. They
collect pages for search engines to build their indexes. Well known search
engines such as Google, Yahoo! and MSN run very efficient universal
crawlers designed to gather all pages irrespective of their content. Other
crawlers, sometimes called preferential crawlers, are more targeted. They
attempt to download only pages of certain types or topics.

This chapter introduces the main concepts, algorithms and data structures
behind Web crawlers. After discussing the implementation issues that all
crawlers have to address, we describe different types of crawlers: universal,
focused, and topical. We also discuss some of the ethical issues around
crawlers. Finally, we peek at possible future uses of crawlers in support of
alternative models where crawling and searching activities are distributed
among a large community of users connected by a dynamic and adaptive
peer network.

By Filippo Menczer

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_8,
© Springer-Verlag Berlin Heidelberg 2011

311

312 8 Web Crawling

8.1 A Basic Crawler Algorithm

In its simplest form, a crawler starts from a set of seed pages (URLs) and
then uses the links within them to fetch other pages. The links in these
pages are, in turn, extracted and the corresponding pages are visited. The
process repeats until a sufficient number of pages are visited or some other
objective is achieved. This simple description hides many delicate issues
related to network connections, spider traps, URL canonicalization, page
parsing, and crawling ethics. In fact, Google founders Sergey Brin and
Lawrence Page, in their seminal paper, identified the Web crawler as the
most sophisticated yet fragile component of a search engine [6].

Figure 8.1 shows the flow of a basic sequential crawler. Such a crawler
fetches one page at a time, making inefficient use of its resources. Later in
the chapter we discuss how efficiency can be improved by the use of
multiple processes, threads, and asynchronous access to resources. The
crawler maintains a list of unvisited URLs called the frontier. The list is
initialized with seed URLs which may be provided by the user or another
program. In each iteration of its main loop, the crawler picks the next URL
from the frontier, fetches the page corresponding to the URL through
HTTP, parses the retrieved page to extract its URLs, adds newly
discovered URLs to the frontier, and stores the page (or other extracted
information, possibly index terms) in a local disk repository. The crawling
process may be terminated when a certain number of pages have been
crawled. The crawler may also be forced to stop if the frontier becomes
empty, although this rarely happens in practice due to the high average
number of links (on the order of ten out-links per page across the Web).

A crawler is, in essence, a graph search algorithm. The Web can be seen
as a large graph with pages as its nodes and hyperlinks as its edges. A
crawler starts from a few of the nodes (seeds) and then follows the edges
to reach other nodes. The process of fetching a page and extracting the
links within it is analogous to expanding a node in graph search.

The frontier is the main data structure, which contains the URLs of
unvisited pages. Typical crawlers attempt to store the frontier in the main
memory for efficiency. Based on the declining price of memory and the
spread of 64-bit processors, quite a large frontier size is feasible. Yet the
crawler designer must decide which URLs have low priority and thus get
discarded when the frontier is filled up. Note that given some maximum
size, the frontier will fill up quickly due to the high fan-out of pages. Even
more importantly, the crawler algorithm must specify the order in which
new URLs are extracted from the frontier to be visited. These mechanisms
determine the graph search algorithm implemented by the crawler.

8.1 A Basic Crawler Algorithm 313

Fig. 8.1. Flow chart of a basic sequential crawler. The main data operations are
shown on the left, with dashed arrows.

8.1.1 Breadth-First Crawlers

The frontier may be implemented as a first-in-first-out (FIFO) queue,
corresponding to a breadth-first crawler. The URL to crawl next comes
from the head of the queue and new URLs are added to the tail of the
queue. Once the frontier reaches its maximum size, the breadth-first crawler
can add to the queue only one unvisited URL from each new page crawled.

314 8 Web Crawling

The breadth-first strategy does not imply that pages are visited in
“random” order. To understand why, we have to consider the highly
skewed, long-tailed distribution of indegree in the Web graph. Some pages
have a number of links pointing to them that are orders of magnitude larger
than the mean. Indeed, the mean indegree is not statistically significant
when the indegree k is distributed according to a power law Pr(k)  k
with exponent  < 3 [49]. For the Web graph, this is the case, with   2.1
[7]. This means that the fluctuations of indegree are unbounded, i.e., the
standard deviation is bounded only by the finite size of the graph.
Intuitively, popular pages have so many incoming links that they act like
attractors for breadth-first crawlers. It is therefore not surprising that the
order in which pages are visited by a breadth-first crawler is highly
correlated with their PageRank or indegree values. An important
implication of this phenomenon is an intrinsic bias of search engines to
index well connected pages.

Another reason that breadth-first crawlers are not “random” is that they
are greatly affected by the choice of seed pages. Topical locality measures
indicate that pages in the link neighborhood of a seed page are much more
likely to be related to the seed pages than randomly selected pages. These
and other types of bias are important to universal crawlers (Sect. 8.3).

As mentioned earlier, only unvisited URLs are to be added to the
frontier. This requires some data structure to be maintained with visited
URLs. The crawl history is a time-stamped list of URLs fetched by the
crawler tracking its path through the Web. A URL is entered into the
history only after the corresponding page is fetched. This history may be
used for post-crawl analysis and evaluation. For example, we want to see if
the most relevant or important resources are found early in the crawl
process. While history may be stored on disk, it is also maintained as an
in-memory data structure for fast look-up, to check whether a page has
been crawled or not. This check is required to avoid revisiting pages or
wasting space in the limited-size frontier. Typically a hash table is appropriate
to obtain quick URL insertion and look-up times (O(1)). The look-up
process assumes that one can identify two URLs effectively pointing to the
same page. This introduces the need for canonical URLs (see Sect. 8.2).

Another important detail is the need to prevent duplicate URLs from being
added to the frontier. A separate hash table can be maintained to store the
frontier URLs for fast look-up to check whether a URL is already in it.

8.1.2 Preferential Crawlers

A different crawling strategy is obtained if the frontier is implemented as a
priority queue rather than a FIFO queue. Typically, preferential crawlers

8.2 Implementation Issues 315

assign each unvisited link a priority based on an estimate of the value of
the linked page. The estimate can be based on topological properties (e.g.,
the indegree of the target page), content properties (e.g., the similarity
between a user query and the source page), or any other combination of
measurable features. For example, the goal of a topical crawler is to follow
edges that are expected to lead to portions of the Web graph that are
relevant to a user-selected topic. The choice of seeds is even more
important in this case than for breadth-first crawlers. We will discuss
various preferential crawling algorithms in Sects. 8.4 and 8.5. For now let
us simply assume that some function exists to assign a priority value or
score to each unvisited URL. If pages are visited in the order specified by
the priority values in the frontier, then we have a best-first crawler.

The priority queue may be a dynamic array that is always kept sorted by
URL scores. At each step, the best URL is picked from the head of the
queue. Once the corresponding page is fetched, the URLs extracted from
it must, in turn, be scored. They are then added to the frontier in such a
manner that the sorting order of the priority queue is maintained. As for
breadth-first, best-first crawlers also need to avoid duplicate URLs in the
frontier. Keeping a separate hash table for look-up is an efficient way to
achieve this. The time complexity of inserting a URL into the priority
queue is O(logF), where F is the frontier size (looking up the hash requires
constant time). To dequeue a URL, it must first be removed from the
priority queue (O(logF)) and then from the hash table (again O(1)). Thus
the parallel use of the two data structures yields a logarithmic total cost per
URL. Once the frontier’s maximum size is reached, only the best URLs
are kept; the frontier must be pruned after each new set of links is added.

8.2 Implementation Issues

8.2.1 Fetching

To fetch pages, a crawler acts as a Web client; it sends an HTTP request to
the server hosting the page and reads the response. The client needs to
timeout connections to prevent spending unnecessary time waiting for
responses from slow servers or reading huge pages. In fact, it is typical to
restrict downloads to only the first 10-100 KB of data for each page. The
client parses the response headers for status codes and redirections.
Redirect loops are to be detected and broken by storing URLs from a
redirection chain in a hash table and halting if the same URL is
encountered twice. One may also parse and store the last-modified header
to determine the age of the document, although this information is known

316 8 Web Crawling

to be unreliable. Error-checking and exception handling is important
during the page fetching process since the same code must deal with
potentially millions of remote servers. In addition, it may be beneficial to
collect statistics on timeouts and status codes to identify problems or
automatically adjust timeout values. Programming languages such as Java,
Python and Perl provide simple programmatic interfaces for fetching pages
from the Web. However, one must be careful in using high-level interfaces
where it may be harder to detect lower-level problems. For example, a
robust crawler in Perl should use the Socket module to send HTTP requests
rather than the higher-level LWP library (the World-Wide Web library for
Perl). The latter does not allow fine control of connection timeouts.

8.2.2 Parsing

Once (or while) a page is downloaded, the crawler parses its content, i.e.,
the HTTP payload, and extracts information both to support the crawler’s
master application (e.g., indexing the page if the crawler supports a search
engine) and to allow the crawler to keep running (extracting links to be
added to the frontier). Parsing may imply simple URL extraction from
hyperlinks, or more involved analysis of the HTML code. The Document
Object Model (DOM) establishes the structure of an HTML page as a tag
tree, as illustrated in Fig. 8.2. HTML parsers build the tree in a depth-first
manner, as the HTML source code of a page is scanned linearly.

Unlike program code, which must compile correctly or else will fail
with a syntax error, correctness of HTML code tends to be laxly enforced
by browsers. Even when HTML standards call for strict interpretation, de
facto standards imposed by browser implementations are very forgiving.
This, together with the huge population of non-expert authors generating
Web pages, imposes significant complexity on a crawler's HTML parser.
Many pages are published with missing required tags, tags improperly
nested, missing close tags, misspelled or missing attribute names and values,
missing quotes around attribute values, unescaped special characters, and
so on. As an example, the double quotes character in HTML is reserved
for tag syntax and thus is forbidden in text. The special HTML entity
" is to be used in its place. However, only a small number of authors
are aware of this, and a large fraction of Web pages contains this illegal
character. Just like browsers, crawlers must be forgiving in these cases;
they cannot afford to discard many important pages as a strict parser would
do. A wise preprocessing step taken by robust crawlers is to apply a tool
such as tidy (www.w3.org/People/Raggett/tidy) to clean up the HTML
content prior to parsing. To add to the complexity, there are many coexisting

8.2 Implementation Issues 317

HTML and XHTML reference versions. However, if the crawler only
needs to extract links within a page and/or the text in the page, simpler
parsers may suffice. The HTML parsers available in high-level languages
such as Java and Perl are becoming increasingly sophisticated and robust.

Fig. 8.2. Illustration of the DOM (or tag) tree built from a simple HTML page.
Internal nodes (shown as ovals) represent HTML tags, with the <html> tag as the
root. Leaf nodes (shown as rectangles) correspond to text chunks.

A growing portion of Web pages are written in formats other than
HTML. Crawlers supporting large-scale search engines routinely parse and
index documents in many open and proprietary formats such as plain text,
PDF, Microsoft Word and Microsoft PowerPoint. Depending on the

318 8 Web Crawling

application of the crawler, this may or may not be required. Some formats
present particular difficulties as they are written exclusively for human
interaction and thus are especially unfriendly to crawlers. For instance,
some commercial sites use graphic animations in Flash; these are difficult
for a crawler to parse in order to extract links and their textual content. Other
examples include image maps and pages making heavy use of Javascript for
interaction. New challenges are going to come as new standards such as
Scalable Vector Graphics (SVG), Asynchronous Javascript and XML
(AJAX), and other XML-based languages gain popularity.

8.2.3 Stopword Removal and Stemming

When parsing a Web page to extract the content or to score new URLs
suggested by the page, it is often helpful to remove so-called stopwords,
i.e., terms such as articles and conjunctions, which are so common that
they hinder the discrimination of pages on the basis of content.

Another useful technique is stemming, by which morphological
variants of terms are conflated into common roots (stems). In a topical
crawler where a link is scored based on the similarity between its source
page and the query, stemming both the page and the query helps improve
the matches between the two sets and the accuracy of the scoring function.

Both stop-word removal and stemming are standard techniques in
information retrieval, and are discussed in greater detail in Chap. 6.

8.2.4 Link Extraction and Canonicalization

HTML parsers provide the functionality to identify tags and associated
attribute-value pairs in a given Web page. In order to extract hyperlink
URLs from a page, we can use a parser to find anchor (<a>) tags and grab
the values of the associated href attributes. However, the URLs thus
obtained need to be further processed. First, filtering may be necessary to
exclude certain file types that are not to be crawled. This can be achieved
with white lists (e.g., only follow links to text/html content pages) or black
lists (e.g., discard links to PDF files). The identification of a file type may
rely on file extensions. However, they are often unreliable and sometimes
missing altogether. We cannot afford to download a document and then
decide whether we want it or not. A compromise is to send an HTTP
HEAD request and inspect the content-type response header, which is
usually a more reliable label.

Another type of filtering has to do with the static or dynamic nature of
pages. A dynamic page (e.g., generated by a CGI script) may indicate a

8.2 Implementation Issues 319

query interface for a database or some other application in which a crawler
may not be interested. In the early days of the Web, such pages were few
and easily recognizable, e.g., by matching URLs against the /cgi-bin/
directory name for CGI scripts, or against the special characters [?=&] used
in CGI query strings. However, the use of dynamic content has become
much more common; it is used in a variety of sites for content that is
perfectly indexable. Most importantly, its dynamic nature is very difficult
to recognize via URL inspection. For these reasons, most crawlers no
longer make such distinction between static and dynamic content. While a
crawler normally would not create query URLs autonomously (unless it is
designed to probe the so-called deep or hidden Web, which contain
databases with query interfaces), it will happily crawl URLs hard-coded in
HTML source of parsed pages. In other words, if a URL is found in a
Web page, it is fair game. There is one important exception to this
strategy, the spider trap, which is discussed below.

Before links can be added to the frontier, relative URLs must be
converted to absolute URLs. For example, the relative URL news/today.html
in the page http://www.somehost.com/index.html is to be transformed into
the absolute form http://www.somehost.com/news/today.html. There are
various rules to convert relative URLs into absolute ones. A relative URL
can be expressed as a relative or absolute path relative to the Web server’s
document root directory. The base URL may be specified by an HTTP
header or a meta-tag within an HTML page, or not at all–in the latter case
the directory of the hyperlink’s source page is used as a base URL.

Converting relative URLs is just one of many steps that make up the
canonicalization process, i.e., the conversion of a URL into a canonical
form. The definition of canonical form is somewhat arbitrary, so that
different crawlers may specify different rules. For example, one crawler may
always specify the port number within the URL (e.g., http://www.somehost.
com:80/), while another may specify the port number only when it is not
80 (the default HTTP port). As long as the canonical form is applied
consistently by a crawler, such distinctions are inconsequential. Some
programming languages such as Perl provide modules to manage URLs,
including methods for absolute/relative conversion and canonicalization.
However, several canonicalization steps require the application of heuristic
rules, and off-the-shelf tools typically do not provide such functionalities.
A crawler may also need to use heuristics to detect when two URLs point
to the same page in order to minimize the likelihood that the same page is
fetched multiple times. Table 8.1 lists the steps typically employed to
canonicalize a URL.

320 8 Web Crawling

Table 8.1. Some transformations to convert URLs to canonical forms. Stars
indicate heuristic rules, where there is a tradeoff between the risk of altering the
semantics of the URL (if a wrong guess is made) and the risk of missing duplicate
URLs (if no transformation is applied) for the same target

Description and transformation Example and canonical form

Default port number http://cs.indiana.edu:80/
Remove http://cs.indiana.edu/
Root directory http://cs.indiana.edu
Add trailing slash http://cs.indiana.edu/
Guessed directory* http://cs.indiana.edu/People
Ad http://cs.indiana.edu/People/
Fragment http://cs.indiana.edu/faq.html#3
Remove http://cs.indiana.edu/faq.html
Current or parent directory http://cs.indiana.edu/a/./../b/
Resolve path http://cs.indiana.edu/b/
Default filename* http://cs.indiana.edu/index.html
Remove http://cs.indiana.edu/
Needlessly encoded characters http://cs.indiana.edu/%7Efil/
Decode http://cs.indiana.edu/~fil/
Disallowed characters http://cs.indiana.edu/My File.htm
Encode http://cs.indiana.edu/My%20File.htm
Mixed/upper-case host names http://CS.INDIANA.EDU/People/
Lower-case http://cs.indiana.edu/People/

8.2.5 Spider Traps

A crawler must be aware of spider traps. These are Web sites where the
URLs of dynamically created links are modified based on the sequence of
actions taken by the browsing user (or crawler). Some e-commerce sites
such as Amazon.com may use URLs to encode which sequence of
products each user views. This way, each time a user clicks a link, the
server can log detailed information on the user's shopping behavior for
later analysis. As an illustration, consider a dynamic page for product x,
whose URL path is /x and that contains a link to product y. The URL path
for this link would be /x/y to indicate that the user is going from page x to
page y. Now suppose the page for y has a link back to product x. The
dynamically created URL path for this link would be /x/y/x, so that the
crawler would think this is a new page when in fact it is an already visited
page with a new URL. As a side effect of a spider trap, the server may
create an entry in a database every time the user (or crawler) clicks on
certain dynamic links. An example might be a blog or message board
where users can post comments. These situations create sites that appear
infinite to a crawler, because the more links are followed, the more new

d trailing slash

8.2 Implementation Issues 321

URLs are created. However these new “dummy” links do not lead to existing
or new content, but simply to dynamically created form pages, or to pages
that have already been visited. Thus a crawler could go on crawling inside
the spider trap forever without actually fetching any new content.

In practice spider traps are not only harmful to the crawler, which
wastes bandwidth and disk space to download and store duplicate or
useless data. They may be equally harmful to the server sites. Not only
does the server waste its bandwidth, the side effect of a crawler caught in a
spider trap may also be filling a server-side database with bogus entries.
The database may eventually become filled to capacity, and the site may
be disabled as a result. This is a type of denial of service attack carried out
unwittingly by the crawler.

In some cases a spider trap needs the client to send a cookie set by the
server for the dynamic URLs to be generated. So the problem is prevented
if the crawler avoids accepting or sending any cookies. However, in most
cases a more proactive approach is necessary to defend a crawler against
spider traps. Since the dummy URLs often become larger and larger in size
as the crawler becomes entangled in a spider trap, one common heuristic
approach to tackle such traps is by limiting the URL sizes to some
maximum number of characters, say 256. If a longer URL is encountered,
the crawler should simply ignore it. Another way is by limiting the number
of pages that the crawler requests from a given domain. The code
associated with the frontier can make sure that every consecutive sequence
of, say, 100 URLs fetched by the crawler contains at most one URL from
each fully qualified host name. This approach is also germane to the issue
of crawler etiquette, discussed later.

8.2.6 Page Repository

Once a page is fetched, it may be stored/indexed for the master application
(e.g., a search engine). In its simplest form a page repository may store
the crawled pages as separate files. In this case each page must map to a
unique file name. One way to do this is to map each page's URL to a
compact string using some hashing function with low probability of
collisions, e.g., MD5. The resulting hash value is used as a (hopefully)
unique file name. The shortcoming of this approach is that a large scale
crawler would incur significant time and disk space overhead from the
operating system to manage a very large number of small individual files.

A more efficient solution is to combine many pages into one file. A
naïve approach is to simply concatenate some number of pages (say 1,000)
into each file, with some special markup to separate and identify the pages

322 8 Web Crawling

within the file. This requires a separate look-up table to map URLs to file
names and IDs within each file. A better method is to use a database to
store the pages, indexed by (canonical) URLs. Since traditional RDBMSs
impose high overhead, embedded databases such as the open-source
Berkeley DB are typically preferred for fast access. Many high-level
languages such as Java and Perl provide simple APIs to manage Berkeley
DB files, for example as tied associative arrays. This way the storage
management operations become nearly transparent to the crawler code,
which can treat the page repository as an in-memory data structure.

8.2.7 Concurrency

A crawler consumes three main resources: network, CPU, and disk. Each
is a bottleneck with limits imposed by bandwidth, CPU speed, and disk
seek/transfer times. The simple sequential crawler described in Sect. 8.1
makes a very inefficient use of these resources because at any given time
two of them are idle while the crawler attends to the third.

The most straightforward way to speed-up a crawler is through
concurrent processes or threads. Multiprocessing may be somewhat easier
to implement than multithreading depending on the programming language
and platform, but it may also incur a higher overhead due to the
involvement of the operating system in the management (creation and
destruction) of child processes. Whether threads or processes are used, a
concurrent crawler may follow a standard parallel computing model as
illustrated in Fig. 8.3. Basically each thread or process works as an
independent crawler, except for the fact that access to the shared data
structures (mainly the frontier, and possibly the page repository) must be
synchronized. In particular a frontier manager is responsible for locking
and unlocking the frontier data structures so that only one process or
thread can write to them at one time. Note that both enqueueing and
dequeuing are write operations. Additionally, the frontier manager would
maintain and synchronize access to other shared data structures such as the
crawl history for fast look-up of visited URLs.

It is a bit more complicated for a concurrent crawler to deal with an
empty frontier than for a sequential crawler. An empty frontier no longer
implies that the crawler has reached a dead-end, because other processes
may be fetching pages and adding new URLs in the near future. The
process or thread manager may deal with such a situation by sending a
temporary sleep signal to processes that report an empty frontier. The
process manager needs to keep track of the number of sleeping processes;
when all the processes are asleep, the crawler must halt.

8.3 Universal Crawlers 323

Fig. 8.3. Architecture of a concurrent crawler

The concurrent design can easily speed-up a crawler by a factor of 5 or
10. The concurrent architecture however does not scale up to the
performance needs of a commercial search engine. We discuss in Sect. 8.3
further steps that can be taken to achieve more scalable crawlers.

8.3 Universal Crawlers

General purpose search engines use Web crawlers to maintain their indices
[4], amortizing the cost of crawling and indexing over the millions of
queries received between successive index updates (though indexers are

324 8 Web Crawling

designed for incremental updates [13]. These large-scale universal
crawlers differ from the concurrent breadth-first crawlers described above
along two major dimensions:

1. Performance: They need to scale up to fetching and processing
hundreds of thousands of pages per second. This calls for several
architectural improvements.

2. Policy: They strive to cover as much as possible of the most important
pages on the Web, while maintaining their index as fresh as possible.
These goals are, of course, conflicting so that the crawlers must be
designed to achieve good tradeoffs between their objectives.

Next we discuss the main issues in meeting these requirements.

8.3.1 Scalability

Figure 8.4 illustrates the architecture of a large-scale crawler, based on the
accounts in the literature [6, 8, 25]. The most important change from the
concurrent model discussed earlier is the use of asynchronous sockets in
place of threads or processes with synchronous sockets. Asynchronous
sockets are non-blocking, so that a single process or thread can keep
hundreds of network connections open simultaneously and make efficient
use of network bandwidth. Not only does this eliminate the overhead due
to managing threads or processes, it also makes locking access to shared
data structures unnecessary. Instead, the sockets are polled to monitor their
states. When an entire page has been fetched into memory, it is processed
for link extraction and indexing. This “pull” model eliminates contention
for resources and the need for locks.

The frontier manager can improve the efficiency of the crawler by
maintaining several parallel queues, where the URLs in each queue refer to
a single server. In addition to spreading the load across many servers
within any short time interval, this approach allows to keep connections
with servers alive over many page requests, thus minimizing the overhead
of TCP opening and closing handshakes.

The crawler needs to resolve host names in URLs to IP addresses. The
connections to the Domain Name System (DNS) servers for this purpose
are one of the major bottlenecks of a naïve crawler, which opens a new
TCP connection to the DNS server for each URL. To address this
bottleneck, the crawler can take several steps. First, it can use UDP instead
of TCP as the transport protocol for DNS requests. While UDP does not
guarantee delivery of packets and a request can occasionally be dropped,
this is rare. On the other hand, UDP incurs no connection overhead with a

8.3 Universal Crawlers 325

significant speed-up over TCP. Second, the DNS server should employ a
large, persistent, and fast (in-memory) cache. Finally, the pre-fetching of
DNS requests can be carried out when links are extracted from a page. In
addition to being added to the frontier, the URLs can be scanned for host
names to be sent to the DNS server. This way, when a URL is later ready
to be fetched, the host IP address is likely to be found in the DNS cache,
obviating the need to propagate the request through the DNS tree.

Fig. 8.4. High-level architecture of a scalable universal crawler

326 8 Web Crawling

In addition to making more efficient use of network bandwidth through
asynchronous sockets, large-scale crawlers can increase network
bandwidth by using multiple network connections switched to multiple
routers, thus utilizing the networks of multiple Internet service providers.
Similarly, disk I/O throughput can be boosted via a storage area network
connected to a storage pool through a fibre channel switch.

8.3.2 Coverage vs. Freshness vs. Importance

Given the size of the Web, it is not feasible even for the largest-scale
crawlers employed by commercial search engines to index all of the
content that could be accessed. Instead, search engines aim to focus on the
most “important” pages, where importance is assessed based on various
factors such as link popularity measures (indegree or PageRank) [14, 22].
At the time of this writing the three major commercial search engines
report index sizes in the order of 1010 pages, while the indexable Web may
be at least an order of magnitude larger.

The simplest strategy to bias the crawler in favor of popular pages is to
do nothing – given the long-tailed distribution of indegree discussed in
Sect. 8.1, a simple breadth-first crawling algorithm will tend to fetch the
pages with the highest PageRank by definition, as confirmed empirically
[41]. In fact, one would have to apply a reverse bias to obtain a fair sample
of the Web. Suppose that starting with a random Web walk, we wanted a
random sample of pages drawn with uniform probability distribution
across all pages. We can write the posterior probability of adding a page p
to the sample as Pr(accept(p)|crawl(p))Pr(crawl(p)) where the first factor
is the conditional probability of accepting the page into the sample given
that it was crawled, and the second factor is the prior probability of
crawling the page in the random walk. We can find the acceptance strategy
to obtain a uniform sample by setting the product to a constant, yielding
Pr(accept(p)|crawl(p))  1/Pr(crawl(p)). The prior Pr(crawl(p)) is given by
the PageRank of p, and can be approximated during the random walk by
the frequency f(p) that the crawler has encountered a link to p. So
therefore, each visited page p should be accepted with probability
proportional to 1/f(p). Empirical tests on a simulated Web graph validate
that this strategy yields a sample of the graph that is statistically
representative of the original [23].

The goal to cover as many pages as possible (among the most important
ones) is in conflict with the need to maintain a fresh index. Because of the
highly dynamic nature of the Web, with pages being added, deleted, and
modified all the time, it is necessary for a crawler to revisit pages already

8.4 Focused Crawlers 327

in the index in order to keep the index up-to-date. Many studies have been
conducted to analyze the dynamics of the Web, i.e., the statistical
properties of the processes leading to change in Web structure and content
66, 101, 152, 177, 416]. They all indicate that the Web changes at very
rapid rates. While early studies relied on the values reported by Web
servers in the last-modified HTTP header, recently there is consensus that
this information has little reliability. The most recent and exhaustive study
at the time of this writing [42] reports that while new pages are created at a
rate of about 8% per week, only about 62% of the content of these pages is
really new because pages are often copied from existing ones. The link
structure of the Web is more dynamic, with about 25% new links created
per week. Once created, pages tend to change little so that most of the
changes observed in the Web are due to additions and deletions rather than
modifications. Finally, there is an agreement on the observation that the
degree of change of a page is a better predictor of future change than the
frequency of change [20, 42]. This suggests that crawler revisit strategies
based on frequency of change [4, 13] may not be the most appropriate for
achieving a good tradeoff between coverage and freshness.

8.4 Focused Crawlers

Rather than crawling pages from the entire Web, we may want to crawl
only pages in certain categories. One applications of such a preferential
crawler would be to maintain a Web taxonomy such as the Yahoo!
Directory (dir.yahoo.com) or the volunteer-based Open Directory Project
(ODP, dmoz.org). Suppose you are the ODP editor for a certain category;
you may wish to launch such a crawler from an initial seed set of pages
relevant to that category, and see if any new pages discovered should be
added to the directory, either directly under the category in question or one
of its subcategories. A focused crawler attempts to bias the crawler
towards pages in certain categories in which the user is interested.

Chakrabarti et al. [11] proposed a focused crawler based on a classifier.
The idea is to first build a text classifier using labeled example pages from,
say, the ODP. Then the classifier would guide the crawler by preferentially
selecting from the frontier those pages that appear most likely to belong to
the categories of interest, according to the classifier's prediction. To train
the classifier, example pages are drawn from various categories in the
taxonomy as shown in Fig. 8.5. The classification algorithm used was the
naïve Bayesian method (see Chap. 3). For each category c in the taxonomy
we can build a Bayesian classifier to compute the probability Pr(c|p) that a
crawled page p belongs to c (by definition, Pr(top|p) = 1 for the top or root

328 8 Web Crawling

category). The user can select a set c* of categories of interest. Each
crawled page is assigned a relevance score.

 
 *).|Pr()(

cc
pcpR (1)

3

Two strategies were explored. In the “soft” focused strategy, the crawler
uses the score R(p) of each crawled page p as a priority value for all
unvisited URLs extracted from p. The URLs are then added to the frontier,
which is treated as a priority queue (see Sect. 8.1.2). In the “hard” focused
strategy, for a crawled page p, the classifier first finds the leaf category

)(ˆ pc in the taxonomy most likely to include p:

ˆ c (p)  arg max
c: c'c

Pr(c | p). (2)

If an ancestor of)(ˆ pc is a focus category, i.e., c’:)(ˆ pc  c’ c’ c*,
then the URLs from the crawled page p are added to the frontier. Otherwise
they are discarded. The idea is illustrated in Fig. 8.5 (left). For example,
imagine a crawler focused on soccer (c' = soccer  c*) visits a page p in
the FIFA World Cup Germany 2006 site. If the classifier correctly assigns
p to the leaf category ĉ =Sports/Soccer/Competitions/World_Cup/2006, the

Fig. 8.5. Left: A taxonomy supporting a focused crawler. The areas in gray
represent the categories of interest c*. A crawler with hard focus would add to the
frontier the links extracted from a page classified in the leaf category 1̂c because
its ancestor category c' is of interest to the user, while the links from a page
classified in 2ĉ would be discarded. Right: A context graph with L = 3 layers
constructed to train a context focused crawler from the target set in layer = 0.

8.4 Focused Crawlers 329

links extracted from p are added to the frontier because 2006 is a
subcategory of Sports/Soccer (ĉ soccer). The soft and hard focus
strategies worked equally well in experiments.

Another element of the focused crawler is the use of a distiller. The
distiller applies a modified version of the HITS algorithm [28] to find
topical hubs. These hubs provide links to authoritative sources on a focus
category. The distiller is activated at various times during the crawl and
some of the top hubs are added to the frontier.

Context-Focused Crawlers are another type of focused crawlers. They
also use naïve Bayesian classifiers as a guide, but in this case the
classifiers are trained to estimate the link distance between a crawled page
and a set of relevant target pages [18]. To see why this might work,
imagine looking for information on “machine learning.” One might go to
the home pages of computer science departments and from there to faculty
pages, which may then lead to relevant pages and papers. A department
home page, however, may not contain the keywords “machine learning.” A
typical focused or best-first crawler would give such a page a low priority
and possibly never follow its links. However, if the crawler could estimate
that pages about machine learning are only two links away from a page
containing the keywords “computer science department,” then it would
give the department home page a higher priority.

The context-focused crawler is trained using a context graph with L
layers (Fig. 8.5 right). The seed (target) pages form the layer 0 of the
graph. The pages corresponding to the in-links to the seed pages are in
layer 1. The in-links to the layer 1 pages make up the layer 2, and so on.
The in-links to any page can be obtained by submitting a link: query to a
search engine. The seed pages in layer 0 (and possibly those in layer 1) are
then concatenated into a single large document, and the top few terms
according to the TF-IDF weighting scheme (see Chap. 6) are selected as
the vocabulary (feature space) to be used for classification. A naïve
Bayesian classifier is built for each layer in the context graph. A prior
probability Pr() = 1/L is assigned to each layer. All the pages in a layer
are used to compute Pr(t|), the probability of occurrence of a term t given
the layer (class) . At the crawling time, these are used to compute Pr(p|)
for each crawled page p. The posterior probability Pr(|p) of p belonging
to layer can then be computed for each layer from Bayes’ rule. The layer

* with highest posterior probability wins:

).|Pr(maxarg)(* pp  (3)

330 8 Web Crawling

If Pr(*|p) is less than a threshold, p is classified into the “other” class,
which represents pages that do not have a good fit with any of the layers in
the context graph. If Pr(*|p) exceeds the threshold, p is classified into *.

The set of classifiers corresponding to the context graph provides a
mechanism to estimate the link distance of a crawled page from a relevant
page. If the mechanism works, the computer science department page in
our example will get classified into layer 2. The crawler maintains a
separate priority queue for each layer, containing the links extracted from
visited pages classified in that layer. Each queue is sorted by the scores
Pr(|p). The next URL to crawl is taken from the non-empty queue with
the smallest . So the crawler gives precedence to links that appear to be
closest to relevant targets. It is shown in [18] that the context-focused
crawler outperforms the standard focused crawler in experiments.

While the majority of focused crawlers in the literature have employed
the naïve Bayesian method as the classification algorithm to score
unvisited URLs, an extensive study with hundreds of topics has provided
strong evidence that classifiers based on SVM or neural networks can yield
significant improvements in the quality of the crawled pages [47].

8.5 Topical Crawlers

For many preferential crawling tasks, labeled (positive and negative)
examples of pages are not available in sufficient numbers to train a
focused crawler before the crawl starts. Instead, we typically have a small
set of seed pages and a description of a topic of interest to a user or user
community. The topic can consist of one or more example pages (possibly
the seeds) or even a short query. Preferential crawlers that start with only
such information are often called topical crawlers [8, 14, 38]. They do not
have text classifiers to guide crawling.

Even without the luxury of a text classifier, a topical crawler can be
smart about preferentially exploring regions of the Web that appear
relevant to the target topic by comparing features collected from visited
pages with cues in the topic description.

To illustrate a topical crawler with its advantages and limitations, let us
consider the MySpiders applet (myspiders.informatics.indiana.edu). Figure
8.6 shows a screenshot of this application. The applet is designed to
demonstrate two topical crawling algorithms, best-N-first and InfoSpiders,
both discussed below [45].

MySpiders is interactive in that a user submits a query just like one
would do with a search engine, and the results are then shown in a

8.5 Topical Crawlers 331

window. However, unlike a search engine, this application has no index to
search for results. Instead the Web is crawled in real time. As pages
deemed relevant are crawled, they are displayed in a list that is kept sorted
by a user-selected criterion: score or recency. The score is simply the
content (cosine) similarity between a page and the query (see Chap. 6); the
recency of a page is estimated by the last-modified header, if returned by
the server (as noted earlier this is not a very reliable estimate).

Fig. 8.6. Screenshot of the MySpiders applet in action. In this example the user
has launched a population of crawlers with the query “search censorship in france”
using the InfoSpiders algorithm. The crawler reports some seed pages obtained
from a search engine, but also a relevant blog page (bottom left) that was not
returned by the search engine. This page was found by one of the agents, called
Spider2, crawling autonomously from one of the seeds. We can see that Spider2
spawned a new agent, Spider13, who started crawling for pages also containing
the term “italy.” Another agent, Spider5, spawned two agents one of which,
Spider11, identified and internalized the relevant term “engine.”

One of the advantages of topic crawling is that all hits are fresh by
definition. No stale results are returned by the crawler because the pages
are visited at query time. This makes this type of crawlers suitable for

332 8 Web Crawling

applications that look for very recently posted documents, which a search
engine may not have indexed yet. On the down side, the search is slow
compared to a traditional search engine because the user has to wait while
the crawler fetches and analyzes pages. If the user's client machine (where
the applet runs) has limited bandwidth, e.g., a dial-up Internet connection,
the wait is likely infeasible. Another disadvantage is that the ranking
algorithms cannot take advantage of global prestige measures, such as
PageRank, available to a traditional search engine.

Several research issues around topical crawlers have received attention.
One key question is how to identify the environmental signals to which
crawlers should attend in order to determine the best links to follow. Rich
cues such as the markup and lexical (text) signals within Web pages, as
well as features of the link graph built from pages already seen, are all
reasonable sources of evidence to exploit.

Crawlers can use the evidence available to them in different ways, for
example more or less greedily. The goals of the application also provide
crucial context. For example the desired properties of the pages to be
fetched (similar pages, popular pages, authoritative pages, recent pages,
and so on) can lead to significant differences in crawler design and
implementation. The task could be constrained by parameters like the
maximum number of pages to be fetched (long crawls vs. short crawls) or
the memory available. A crawling task can thus be viewed as a constrained
multi-objective search problem. The wide variety of objective functions,
coupled with the lack of appropriate knowledge about the search space,
make such a problem challenging.

In the remainder of this section we briefly discuss the theoretical
conditions necessary for topical crawlers to function, and the empirical
evidence supporting the existence of such conditions. Then we review
some of the machine learning techniques that have been successfully
applied to identify and exploit useful cues for topical crawlers.

8.5.1 Topical Locality and Cues

The central assumption behind topical crawlers is that Web pages contain
reliable cues about each other’s content. This is a necessary condition for
designing a crawler that has a better-than-random chance to preferentially
visit pages relevant with respect to a given topic. Indeed, if no estimates
could be made about unvisited pages, then all we could do is a random
walk through the Web graph, or an exhaustive search (using breadth-first
or depth-first search algorithms). Fortunately, crawling algorithms can use
cues from words and hyperlinks, associated respectively with a lexical and

8.5 Topical Crawlers 333

a link topology. In the former, two pages are close to each other if they
have similar textual content; in the latter, if there is a short path between
them (we will see what “short” means).

Lexical metrics are text similarity measures derived from the vector
space model (see Chap. 6). The cluster hypothesis behind this model is
that a document lexically close to a relevant document (with respect to the
given query) is also relevant with high probability [51].

Link metrics typically look at hyperlinks as directed edges in a graph,
but a path can also be defined in an undirected sense, in which case two
pages have a short link distance between them if they are co-cited or co-
referenced, even if there is no directed path between them. Links are a very
rich source of topical information about Web pages.

From a crawler's perspective, there are two central questions:

1. link-content conjecture: whether two pages that link to each other are
more likely to be lexically similar to each other, compared to two
randomly selected pages;

2. link-cluster conjecture: whether two pages that link to each other are
more likely to be semantically related to each other, compared to two
randomly selected pages.

A first answer to the link-content conjecture was obtained by computing
the cosine similarity between linked and random pairs of pages, showing
that the similarity is an order of magnitude higher in the former case [15].
The same study also showed that the anchor text tends to be a good
(similar) description of the target page.

The link-content conjecture can be generalized by looking at the decay
in content similarity as a function of link distance from a source page. This
decay was measured by launching an exhaustive breadth-first crawl from
seed sets of 100 topics in the Yahoo! directory [35]. Let us use the cosine
similarity measure (p1, p2) between pages p1 and p2 (see Chap. 6). We can
measure the link distance 1(p1, p2) along the shortest directed path from p1
and p2, revealed by the breadth-first crawl. Both distances 1(q, p) and
similarities (q, p) were averaged for each topic q over all pages p in the
crawl set q

dP for each depth d:

)(1),(),(1
1

1
q
i

d

i

q
iq

d
P

NNi
N

pqdq p
d




  (4)





p

d

p
d

Pp
q
d

P
pq

N
pqdq),(1),(),( (5)

334 8 Web Crawling

where Nd
q is the size of the cumulative page set Pd

q = {p | 1(q, p) ≤ d}.
The crawlers were stopped at depth d = 3, yielding 3000 data points

 {(p, d): q {1, …, 100}, d {1, 2, 3}}.

These points were then used for fitting an exponential decay model:
2

1)1()(
 

  e (6)

where  is the noise level in similarity, measured empirically by
averaging across random pairs of pages. The parameters 1 and 2 are set
by fitting the data. This was done for pages in various top-level domains,
and the resulting similarity decay curves are plotted in Fig. 8.7.

Fig. 8.7. Illustration of the link-content conjecture. The curves plot, for each top-
level domain, the decay in mean cosine similarity between pages as a function of
their mean directed link distance, obtained by fitting data from 100 exhaustive
breadth-first crawls starting from the 100 Yahoo! directory topics [35].

The curves provide us with a rough estimate of how far in link space one
can make inferences about lexical content. We see that a weak signal is
still present three links away from the starting pages for all but the .com
domain, and even further for the .edu domain. Such heterogeneity is not
surprising – academic pages are written carefully to convey information
and proper pointers, while business sites often do not link to related sites
because of competition. Therefore a topical crawler in the commercial
domain would have a harder task, other things being equal. A solution may

8.5 Topical Crawlers 335

be to use undirected links. More specifically, if a crawler can obtain in-
links to good pages (by querying a search engine), it can use co-citation to
detect hubs. If a page links to several good pages, it is probably a good hub
and all its out-links should be given high priority. This strategy, related to
the so-called sibling locality [1], has been used in focused crawlers [11]
and in topical crawlers for business intelligence [46]. In addition to co-
citation, one could look at bibliographic coupling: if several good pages
link to a certain page, that target is likely to be a good authority so it and
its in-links should be given high priority. Fig. 8.8 illustrates various ways
in which crawlers can exploit co-citation and bibliographic coupling.

Fig. 8.8. Crawling techniques exploiting co-citation (top) and bibliographic
coupling (bottom). Dashed edges represent in-links, which require access to a
search engine or connectivity server. Page A is a good hub, so it should be given
high priority; once fetched, page B linked by it can be discovered and placed in
the frontier with high priority since it is likely to be a good authority. Page C is
also a good hub, so D should be given high priority. Page E is a good authority, so
it should be given high priority. Its URL can also be used to discover F, which
may be a good hub and should be placed in the frontier. G is also a good authority,
so H should be given high priority and I should be placed in the frontier.

336 8 Web Crawling

The link-cluster conjecture, also known as linkage locality [11], states
that one can infer the meaning of a page by looking at its neighbors. This
is actually more important than inferring lexical content, since the latter is
only relevant insofar as it is correlated with the semantic content of pages.
The same exhaustive crawl data used to validate the link-content conjecture
can also be used to explore the link-cluster conjecture, namely the extent to
which relevance is preserved within link space neighborhoods and the
decay in expected relevance as one browses away from a relevant page
[35]. The link-cluster conjecture can be simply formulated in terms of the
conditional probability that a page p is relevant with respect to some query
q, given that page r is relevant and that p is within d links from r:

Rq (d)  Pr(relq (p) | relq (r)1(r, p)  d] (7)

where relq() is a binary relevance assessment with respect to q. In other
words a page has a higher than random probability of being about a certain
topic if it is in the neighborhood of other pages about that topic. Rq(d) is
the posterior relevance probability given the evidence of a relevant page
nearby. The conjecture is then represented by the likelihood ratio (q, d)
between Rq(d) and the prior relevance probability Gq  Pr(relq(p)), also
known as the generality of the query. If semantic inferences are possible
within a link radius d, then the following condition must hold:

.1
)(

),(
q

q

G

dR
dq (8)

To illustrate the meaning of the link-cluster conjecture, consider a random
crawler searching for pages about a topic q. Call q(t) the probability that
the crawler hits a relevant page at time t. Solving the recursion

q (t 1) q (t)Rq (1)  (1q (t))Gq (9)

for q(t+1) = q(t) yields the stationary hit rate

.
)1(1

*

qq

q
q RG

G


 (10)

The link-cluster conjecture is a necessary and sufficient condition for
such a crawler to have a better than chance hit rate:

.1)1,(*  qGqq  (11)

Figure 8.9 plots the mean likelihood ratio (q, d) versus the mean link
distance (q, d) obtained by fitting an exponential decay function

8.5 Topical Crawlers 337

() 13e
4

5 (12)

to the same 300 data points {(q, d)}. Note that this three-parameter model
is more complex than the one used to validate the link-content conjecture,
because ( = 0) must also be estimated from the data ((q, 0) = 1/Gq).
The fitted curve reveals that being within a radius of three links from a
relevant page increases the relevance probability by a factor (q, d) >>1.
This is very reassuring for the design of topical crawlers. It also suggests
that crawlers should attempt to remain within a few links from some
relevant source. In this range hyperlinks create detectable signals about
lexical and semantic content, despite the Web's apparent lack of structure.

Fig. 8.9. Illustration of the link-cluster conjecture. The curve plots the decay in
mean likelihood ratio as a function of mean directed link distance from a relevant
page, obtained by fitting data from 100 exhaustive breadth-first crawls starting
from as many Yahoo! directory topics [35].

The link-content and link-cluster conjectures can be further developed
by looking at the correlation between content-based, link-based, and
semantic-based similarity measures. Using the ODP as a ground truth, we
can express the semantic similarity between any two pages in the
taxonomy [32, 36] and see how it can be approximated by content and link
similarity measures. For content one can consider for example cosine
similarity based on TF or TF-IDF term weights. For link similarity one
can similarly represent a page as a bag of links (in-links, out-links, or

338 8 Web Crawling

both/undirected) and then apply a Jaccard coefficient or a cosine
similarity. Figure 8.10 shows, for various topical domains from the ODP,
the correlation between semantic similarity and two representative content
and link similarity measures. We observe significant heterogeneity in the
correlations, suggesting that topical crawlers have an easier job in some
topics (e.g., “news”) than others (e.g., “games”). Another observation is
that in some topical domains (e.g., “home”) textual content is a more
reliable signal, while in others (e.g., “computers”) links are more helpful.

Fig. 8.10. Pearson correlation coefficients between the semantic similarity
extracted from ODP [32] and two representative content and link similarity
measures. The correlations are measured using a stratified sample of 150,000
URLs from the ODP, for a total of 4 billion pairs [36]. Content similarity is cosine
with TF weights, and link similarity is the Jaccard coefficient with undirected
links.

8.5.2 Best-First Variations

The majority of crawling algorithms in the literature are variations of the
best-first scheme described in Sect. 8.1.2. The difference is in the
heuristics that they use to score unvisited URLs. A very simple instance is
the case where each URL is queued into the frontier with priority given by
the content similarity between the topic description and the page from

8.5 Topical Crawlers 339

which the URL was extracted. Content similarity can be measured with the
standard cosine similarity, using TF or TFIDF term weights (in the latter case
the crawler must have global or topic-contextual term frequency information
available). This simple crawler is also known as naïve best-first.

Many variations of the naïve best-first crawlers are possible. Some give
more importance to certain HTML markups, such as the title, or to text
segments marked by special tags, such as headers. Other techniques focus
on determining the most appropriate textual context to score a link. One

Fig. 8.11. Link context from distance-weighted window (top) and from the DOM
tree (bottom).

340 8 Web Crawling

alternative to using the entire page or just the anchor text as context, used
by InfoSpiders [37] and Clever [9], is a weighted window where topic
keywords occurrences near the anchor count more toward the link score
than those farther away, as shown in Fig. 8.11. Another approach is to
consider the tag (DOM) tree of the HTML page [8]. The idea is to walk up
the tree from the link anchor toward the root, stopping at an appropriate
aggregation node. The link context is then obtained by the text in the tag
subtree rooted at the aggregation node (Fig. 8.11).

SharkSearch [24] is an improved version of the earlier FishSearch
crawler [16]. It uses a similarity measure like the one used in the naïve
best-first crawler as a first step for scoring unvisited URLs. The similarity
is computed for anchor text, a fixed-width link context, the entire source
page, and ancestor pages. The ancestors of a URL are the pages that appear
on the crawl path to the URL. SharkSearch, like its predecessor FishSearch,
maintains a depth bound. That is, if the crawler finds unimportant pages on
a crawl path it stops crawling further along that path. To this end, each
URL in the frontier is associated with a depth and a potential score. The
score of an unvisited URL is obtained from a linear combination of anchor
text similarity, window context similarity, and an inherited score. The
inherited score is the similarity of the source page to the topic, unless it is
zero, in which case it is inherited from the source's parent (and recursively
from its ancestors). The implementation of SharkSearch requires to preset
three similarity coefficients in addition to the depth bound. This crawler
does not perform as well as others described below.

Rather than (or in addition to) improving the way we assign priority
scores to unvisited URLs, we can also improve on a naïve best-first crawler
by altering the priority scheme. A classic trade-off in machine learning is
that between exploration and exploitation of information. A crawler is no
different: it can greedily pursue the best-looking leads based on noisy
quality estimates, or be more explorative and visit some pages that seem
less promising, but might lead to better pages. The latter approach is taken
in many optimization algorithms in order to escape local optima and reach
a global optimum with some probability. As it turns out, the same strategy
is also advantageous for topical crawlers. Visiting some URLs with lower
priority leads to a better overall quality of the crawler pages than strictly
following the best-first order. This is demonstrated by best-N-first, a
crawling algorithm that picks N URLs at a time from the frontier (the top N
by priority score) and fetches them all. Once all N pages are visited, the
newly extracted URLs are merge-sorted into the priority queue, and the
cycle is repeated. The best-N-first crawler with N = 256 is a very strong
competitor, outperforming most of the other topical crawlers in the
literature [38, 48]. Figure 8.12 shows a comparison with two crawlers

8.5 Topical Crawlers 341

discussed thus far. Note that a concurrent implementation of a best-first
crawler with N threads or processes is equivalent to a best-N-first crawler.

8.5.3 Adaptation

All the crawlers discussed thus far use a static strategy both to evaluate
unvisited URLs and to manage the frontier. Thus they do not learn from
experience or adapt to the context of a particular topic in the course of the
crawl. In this section we describe a number of machine learning techniques
that have been incorporated into adaptive topical crawlers.

The intelligent crawler uses a statistical model for learning to assign
priorities to the URLs in the frontier, considering Bayesian interest factors
derived from different features [1]. For example, imagine that the crawler
is supposed to find pages about soccer and that 40% of links with the
keyword football in the anchor text lead to relevant pages, versus a
background or prior frequency of only 2% of crawled pages being
relevant. Then the crawler assigns an interest factor

Fig. 8.12. Performance of best-N-first crawler with N = 256 (BFS256) compared
with a naïve best-first crawler (BFS1) and a breadth-first crawler. Recall refers to
sets of relevant pages that the crawlers are supposed to discover; averages and
error bars are computed across 100 crawls from as many ODP topics.

342 8 Web Crawling

20
)](Pr[

)](|)(Pr[
),(








prel

panchorfootballprel

anchorfootballsoccer

soccer

soccer


 (13)

to the feature “keyword football in anchor.” Recall relsoccer(p) is the binary
relevance score (0 or 1) of page p to soccer. The interest factors are treated
as independent sources of evidence, or likelihoods. They are combined by
a linear combination of log-likelihoods, with user-defined weight parameters.
The features employed by the intelligent crawler may be diverse, depending
on the particular crawling task. They may include tokens extracted from
candidate URLs, source page content and links, co-citation (sibling)
relationships, and/or other characteristics of the visited and unvisited
URLs. As more evidence is accumulated and stored throughout the crawl,
the interest factors are recalculated and the priorities updated, so that the
frontier is always sorted according to the most recent estimates. Thus
intelligent crawlers adapt to the content and link structure of the Web
neighborhoods being explored.

The original focused crawlers described earlier also use machine
learning, in particular a classifier that guides the crawler. However the
classifier is trained before the crawl is launched, and no learning occurs
during the crawl. Therefore we do not consider it an adaptive crawler.
However, in a later “accelerated” version of the focused crawler [8], an
online learning apprentice was added to the system; the original (baseline)
classifier then acts as a critic, providing the apprentice with training
examples for learning to classify outgoing links from the features of the
pages from which they are extracted. Suppose page p1 is fetched and
contains a link to page p2. Later, p2 is fetched and the baseline classifier
assigns it to a relevant class. This information is passed to the apprentice,
which uses the labeled example (“the link from p1 to p2 is good”) to learn to
classify the link to p2 as good based on the textual features in the context of
the anchor within p1. Future links with a similar context should be given
high priority. Conversely, if p2 is deemed irrelevant by the baseline
classifier, the apprentice learns to predict (“bad link”) when it encounters a
link with a similar context in the future. The features used to train the
apprentice were textual tokens associated with a link context based on the
DOM tree, and the learning algorithm used by the apprentice was a naïve
Bayesian classifier. This approach led to a significant reduction in the
number of irrelevant pages fetched by the focused crawler.

While the accelerated focused crawler is not a topical crawler because it
still needs labeled examples to train the baseline classifier prior to the
crawl, the idea of training an apprentice online during the crawl can be

8.5 Topical Crawlers 343

applied in topical crawlers as well. Indeed this is a type of reinforcement
learning technique employed in several crawlers, using different features
and/or different learning algorithms for the apprentice. In reinforcement
learning [27] we have a network where nodes are states and directed links
are actions. An action a  A (think “anchor”) moves an agent from a state
p  P (think “page”) to another state according to a transition function L: P
 A  P. Thus an adaptive crawler is seen as an agent moving from page
to page. Actions are rewarded according to a function r: P  A  . We
want to learn a policy mapping states to actions, : P  A, that maximizes
future reward discounted over time:







0

0),()(
t

tt
t aprpV  (14)

where we follow action (link) at=(pt) from state (page) pt at each time
step t. The parameter  determines how future rewards are discounted (0 
 < 1). If  = 0, the reinforcement learning policy is the greedy one
employed by the naïve best-first crawler. To learn an optimal policy, we
define the value of selecting action a from state p, and following the
optimal policy thereafter:

)],([),(),(* apLVaprapQ  (15)

where V* is the value function of the optimal policy *(p) = argmaxaQ(p,
a). The question then becomes how to estimate the function Q, i.e., to
assign a value to a link a based on the context information in page p from
which the link is extracted. However, the actions available to the crawler
are not limited to the links from the last page visited; any of the actions
corresponding to the URLs in the frontier are available. Furthermore, there
is no reason why the Q value of a link should be a function of a particular
source page; if links to the same target page are extracted from multiple
source pages, the estimated values of the anchors can be combined, for
example Q(u) = max{(p, a): L(p, a) = u}Q(p, a). This way Q values can be
computed not for links (anchors), but for target pages (URLs); the state
and action spaces are thus greatly reduced, basically collapsing all visited
pages into a single degenerate state and all links to their target URLs. The
policy  reduces to the simple selection of the URL in the frontier with the
maximum Q value.

One way to calculate Q values is via a naïve Bayesian classifier. This
method was found to work well compared to a breadth-first crawler for the
tasks of crawling computer science research papers and company directory
information [33, 50]. In this case, the classifier was trained off-line rather
than online while crawling, using labeled examples as in the focused

344 8 Web Crawling

crawler. Training the classifier to predict future reward ( > 0) was better
than only using immediate reward ( = 0). For future reward the authors
use a heavy discount  = 0.5, arguing that it is optimal to be greedy in
selecting URLs from the frontier, so that one can crawl toward the nearest
relevant page. This assumes that all relevant targets are within reach. So
there is no reason to delay reward. However, as discussed earlier, a crawler
typically deals with noisy data, so the classifier’s Q estimates are not
entirely reliable; more importantly, a typical crawler cannot possibly cover
the entire search space. These factors suggest that it may be advantageous
to occasionally give up some immediate reward in order to explore other
directions, potentially leading to pockets or relevant pages unreachable by
a greedy crawler (see Fig. 8.12).

Using a previously trained classifier to compute Q values for URLs in
the frontier means that supervised learning is combined with reinforcement
learning. As for focused crawlers, labeled examples must be available
prior to the start of the crawl. This may be possible in tasks such as the
collection of research articles, but is not a realistic assumption for typical
topical crawlers. An adaptive crawling algorithm that actually uses rein-
forcement learning while crawling online, without any supervised learning,
is InfoSpiders. This crawler employs various machine learning techniques
to exploit various types of Web regularities. InfoSpiders are inspired by
artificial life models in which a population of agents lives, learn, evolve,
and die in an environment. Individual agents learn during their lifetimes
based on their experiences, with the environment playing the role of a
critic, providing rewards and penalties for actions. Agents may also reproduce,
giving rise to new agents similar to them, and die. The environment is the
Web, the actions consist of following links and visiting pages and the text
and link features of pages are the signals that agents can internalize into
their learned and evolved behaviors. Feedback from the environment
consists of a finite energy resource, necessary for survival. Each action has
an energy cost, which may be fixed or proportional to, say, the size of a
fetched page or the latency of a page download [17]. Energy is gained
from visiting new pages relevant to the query topic. A cache prevents an
agent from accumulating energy by visiting the same page multiple times.
In the recent version of InfoSpiders, each agent maintains its own frontier
of unvisited URLs [38]. The agents can be implemented as concurrent
processes/threads, with non-contentious access to their local frontiers. Fig.
8.13 illustrates the representation and flow of an individual agent.

The adaptive representation of each InfoSpiders agent consists of a list
of keywords (initialized with the topic description) and a neural net used to
evaluate new links. Each input unit of the neural net receives a count of the
frequency with which the keyword occurs in the vicinity of each link,

8.5 Topical Crawlers 345

weighted to give more importance to keywords occurring near the anchor
and maximum for the anchor text (Fig. 8.11). The neural net has a single
output unit whose activation is used as a Q value (score) for each link u in
input. The agent’s neural net learns to predict the Q value of the link’s
target URL u given the inputs from the link's source page p. The reward
function r(u) is the cosine similarity between the agent’s terms and the
target page u. The future discounted optimal value V*(u) is approximated
using the highest neural net prediction among the links subsequently
extracted from u. This procedure is similar to the reinforcement learning
algorithm described above, except that the neural net replaces the naïve
Bayesian classifier. The neural net is trained by the back-propagation
algorithm [52]. This mechanism is called connectionist reinforcement
learning [30]. While the neural net can in principle model nonlinear
relationships between term frequencies and pages, in practice we have
used a simple perceptron whose prediction is a linear combination of the
keyword weights. Such a learning technique provides each InfoSpiders
agent with the capability to adapt its own link-following behavior in the
course of a crawl by associating relevance estimates with particular
patterns of keyword frequencies around links.

Fig. 8.13. A single InfoSpiders agent. The link context is the weighted window as
shown in Fig. 8.11: for each newly extracted URL and for each term in the agent's
term list, this produces a weight that is fed into the neural network, whose output
is stored as the link's priority score in the frontier.

The neural net's link scores are combined with estimates based on the
cosine similarity between the agent's keyword list and the entire source
page. A parameter  (0    1) regulates the relative importance given to
the estimates based on the neural net versus the source page. Based on the

346 8 Web Crawling

combined score  the agent uses a stochastic selector to pick one of the
links in the frontier with probability

 








'
)'(

)(

)Pr(
u

u

u

e

e
u (16)

where u is a URL in the local frontier . Parameter  regulates the
greediness of the link selector. Its value can be fixed or evolved with the
agent.

After a new page u has been fetched, the agent receives an energy
payoff proportional to the difference between the reward r(u) and the cost
charged for the download. An agent dies when it runs out of energy. The
energy level is also used to determine whether or not the agent should
reproduce after visiting a page. An agent reproduces when the energy level
passes a fixed threshold. The reproduction is meant to bias the search
toward areas with pages relevant to the topic. Topical locality suggests that
if an agent visits a few relevant pages in rapid sequence, more relevant
pages are likely to be nearby (in the frontier). To exploit this, the
accumulated energy results in a short-term doubling of the frequency with
which the crawler explores this agent’s frontier. At reproduction, the
agent’s energy and frontier are split in half with the offspring (new agent
or thread). According to ecological theory, this way the agent population is
supposed to move toward an optimal cover of the Web graph in
proportion to the local density of resources, or relevant pages.

In addition to the individual's reinforcement learning and the
population’s evolutionary bias, InfoSpiders employ a third adaptive
mechanism. At reproduction, the offspring’s keyword vector is mutated
(expanded) by adding a new term. The chosen term/keyword is the one
that is most frequent in the parent’s last visited page, i.e., the page that
triggered the reproduction. This selective query expansion strategy,
illustrated in Fig. 8.6, is designed to allow the population to diversify and
expand its focus according to each agent’s local context. An InfoSpiders
crawler incorporating all of these adaptive techniques has been shown to
outperform various versions of naïve best-first crawlers (Fig. 8.14) when
visiting a sufficiently large number of pages (more than 10,000) so that the
agents have time to adapt [38, 53].

8.5 Topical Crawlers 347

Fig. 8.14. Performance plots [38]: average target recall RT(t) (top) and average
precision PD(t) (similarity to topic description, bottom). The averages are
calculated over 10 ODP topics. After 50,000 pages crawled, one tailed t-tests
reveal that both BFS256 and InfoSpiders outperform the breadth-first crawler on
both performance metrics. InfoSpiders outperform BFS256 on recall, while the
difference in precision is not statistically significant.

348 8 Web Crawling

8.6 Evaluation

Given the goal of building a “good” crawler, a critical question is how to
evaluate crawlers so that one can reliably compare two crawling algorithms
and conclude that one is “better” than the other. Since a crawler is usually
designed to support some application, e.g., a search engine, it can be
indirectly evaluated through the application it supports. However,
attribution is problematic; if a search engine works better than another
(assuming that were easy to determine!), how can we attribute this difference
in performance to the underlying crawling algorithms as opposed to the
ranking or indexing schemes? Thus it is desirable to evaluate crawlers
directly.

Often crawler evaluation has been carried out by comparing a few
crawling algorithms on a limited number of queries/tasks without considering
the statistical significance. Such anecdotal results, while important, do not
suffice for thorough performance comparisons. As the Web crawling field
has matured, a need has emerged for evaluating and comparing disparate
crawling strategies on common tasks through well-defined performance
measures. Let us review the elements of such an evaluation framework,
which can be applied to topical as well as focused crawlers.

A comparison between crawlers must be unbiased and must allow one
to measure statistically significant differences. This requires a sufficient
number of crawl runs over different topics, as well as sound methodologies
that consider the temporal nature of crawler outputs. Significant challenges
in evaluation include the general unavailability of relevant sets for particular
topics or queries. Unfortunately, meaningful experiments involving real
users for assessing the relevance of pages as they are crawled are extremely
problematic. In order to obtain a reasonable notion of crawl effectiveness
one would have to recruit a very large number of subjects, each of whom
would have to judge a very large number of pages. Furthermore, crawls
against the live Web pose serious time constraints and would be overly
burdensome to the subjects.

To circumvent these problems, crawler evaluation typically relies on
defining measures for automatically estimating page relevance and quality.
The crawler literature reveals several performance measures used for these
purposes. A page may be considered relevant if it contains some or all of
the keywords in the topic/query. The frequency with which the keywords
appear on the page may also be considered [14]. While the topic of interest
to the user is often expressed as a short query, a longer description may be
available in some cases. Similarity between the short or long description
and each crawled page may be used to judge the page's relevance [24, 39,
53]. The pages used as the crawl's seed URLs may be combined together

8.6 Evaluation 349

into a single document, and the cosine similarity between this document
and a crawled page may serve as the page’s relevance score [3]. A classifier
may be trained to identify relevant pages. The training may be done using
seed pages or other pre-specified relevant pages as positive examples. The
trained classifier then provides boolean or continuous relevance scores for
each of the crawled pages [11, 18]. Note that if the same classifier, or a
classifier trained on the same labeled examples, is used both to guide a
(focused) crawler and to evaluate it, the evaluation is not unbiased. Clearly
the evaluating classifier would be biased in favor of crawled pages. To
partially address this issue, an evaluation classifier may be trained on a
different set than the crawling classifier. Ideally the training sets should be
disjoint. At a minimum the training set used for evaluation must be
extended with examples not available to the crawler [47]. Another
approach is to start N different crawlers from the same seeds and let them
run until each crawler gathers P pages. All of the NP pages collected
from the crawlers are ranked against the topic query/description using a
retrieval algorithm such as cosine. The rank provided by the retrieval
system for each page is then used as a relevance score. Finally, one may
use algorithms, such as PageRank or HITS, that provide authority or
popularity estimates for each crawled page. A simpler method would be to
use just the number of in-links to the crawled page to derive similar
information [3, 14]. Many variations of link-based methods using topical
weights may be applied to measure the topical quality of pages [5, 10].

Once each page is assessed, a method is needed to summarize the
performance of a crawler across a set of crawled pages. Given a particular
measure of page relevance and/or importance we can summarize the
performance of the crawler with metrics that are analogous to the
information retrieval notions of precision and recall (see Chap. 6).
Lacking well-defined relevant sets, the classic boolean relevance is
replaced by one of the scores outlined above. A few precision-like
measures are found in the literature. In case we have boolean relevance
scores, we could measure the rate at which “good” pages are found; if 100
relevant pages are found in the first 500 pages crawled, we have an
acquisition rate or harvest rate of 20% at 500 pages [1]. If the relevance
scores are continuous (e.g., from cosine similarity or a trained classifier)
they can be averaged over the crawled pages. The average relevance, as
shown in Fig. 8.14, may be computed over the progress of the crawl [39].
Sometimes running averages are calculated over a window of a number of
pages, e.g., the last 50 pages from a current crawl point [11]. Another
measure from information retrieval that has been applied to crawler
evaluation is search length [37], defined as the number of pages (or the
number of irrelevant pages) crawled before a certain percentage of the

350 8 Web Crawling

relevant pages are found. Search length is akin to the reciprocal of
precision for a preset level of recall.

Recall-like measures would require normalization by the number of
relevant pages. Since this number is unknown for Web crawling tasks, it
might appear that recall cannot be applied to crawlers. However, even if
unknown, the size of the relevant set is a constant. Therefore, it can be
disregarded as a scaling factor when comparing two crawling algorithms
on the same topical query. One can simply sum the quality or relevance
estimates (obtained by one of the methods outlined above) over the course
of a crawl, and obtain a total relevance as shown in Fig. 8.14.

It is possible to design crawling experiments so that a set of relevant
target pages is known by the experimenter. Then precision and recall can
be calculated from the fraction of these relevant targets that are discovered
by the crawler, rather than based on relevance estimates. One way to
obtain a set of relevant pages is from a public directory such as the ODP.
This way one can leverage the classification already carried out by the
volunteer editors of the directory. The experimenter can select as topics a
set of categories from the ODP, whose distance from the root of the ODP
taxonomy can be determined so as to obtain topics with generality/
specificity appropriate for the crawling task [38, 53]. Figure 8.5 (left)
illustrates how subtrees rooted at a chosen category can be used to harvest
a set of relevant target pages. If a page is classified in a subtopic of a target
topic, it can be considered relevant with respect to the target topic.

If a set of known relevant target pages is used to measure the
performance of a topical crawler, these same pages cannot be used as seeds
for the crawl. Two approaches have been proposed to obtain suitable seed
pages. One is to perform a back-crawl from the target pages [53]. By
submitting link: queries to a search engine API, one can obtain a list of
pages linking to each given target; the process can be repeated from these
parent pages to find “grandparent” pages, and so on until a desired link
distance is reached. The greater the link distance, the harder the task is for
the crawler to locate the relevant targets from these ancestor seed pages.
The procedure has the desired property that directed paths are guaranteed
to exist from any seed page to some relevant targets. Given the potentially
large fan-in of pages, sampling is likely required at each stage of the back-
crawl to obtain a suitable number of seeds. The process is similar to the
construction of a context graph, as shown in Fig. 8.5 (right). A second
approach is to split the set of known relevant pages into two sets; one set
can be used as seeds, the other as targets. While there is no guarantee that
the targets are reachable from the seeds, this approach is significantly
simpler because no back-crawl is necessary. Another advantage is that
each of the two relevant subsets can be used in turn as seeds and targets. In

8.6 Evaluation 351

this way, one can measure the overlap between the pages crawled starting
from the two disjoint sets. A large overlap is interpreted as robustness of
the crawler in covering relevant portions of the Web [8, 11].

The use of known relevant pages as proxies for unknown relevant sets
implies an important assumption, which we can illustrate by the Venn
diagram in Fig. 8.15. Here S is a set of crawled pages and T is the set of
known relevant target pages, a subset of the relevant set R. Let us consider
the measure of recall. Using T as if it were the relevant set means that we
are estimating the recall |R  S| / |R| by |T  S| / |T|. This approximation
only holds if T is a representative, unbiased sample of R independent of the
crawl process. While the crawler attempts to cover as much as possible of
R, it should not have any information about how pages in T are sampled
from R. If T and S are not independent, the measure is biased and
unreliable. For example if a page had a higher chance of being selected in
T because it was in S, or vice versa, then the recall would be overestimated.
The same independence assumption holds for precision-like measures,
where we estimate |R  S| / |S| by |T  S| / |S|. A consequence of the
independence requirement is that if the ODP is used to obtain T, the
experimenter must prevent the crawler from accessing the ODP. This
would bias the results because, once a relevant ODP category page is
found, all of the relevant target pages can be reached by the crawler in a
short breadth-first sweep. Preventing access to the ODP may pose a
challenge because so many ODP mirrors exist on the Web. They may not
be known by the experimenter, and not trivial to detect.

To summarize, crawler performance measures [53] can be characterized
along two dimensions: the source of relevance assessments (target pages

Fig. 8.15. Illustration of precision and recall measures based on known relevant
target pages and underlying independence assumption/requirement.

352 8 Web Crawling

vs. similarity to their descriptions) and the normalization factor (average
relevance, or precision, vs. total relevance, or recall). Using target pages as
the relevant sets we can define crawler precision and recall as follows:

||
||),(




T

TS
tR t

T


 (17)

||
||),(

t

t
T S

TS
tP 


 (18)

where St is the set of pages crawled at time t (t can be wall clock time,
network latency, number of pages visited, number of bytes downloaded,
and so on). T is the relevant target set, where  represents the parameters
used to select the relevant target pages. This could include for example the
depth of ODP category subtrees used to extract topic-relevant pages.
Analogously we can define crawler precision and recall based on similarity
to target descriptions:

||

),(
),(






T

Dp
tR tSp

D

 
(19)

||

),(
),(

t

Sp
D S

Dp
tP t

 



(20)

where D is the textual description of the target pages, selected with
parameters , and  is a text-based similarity function, e.g., cosine
similarity (see Chap. 6). Figure 8.14 shows two examples of performance
plots for three different crawlers discussed earlier in this chapter. The two
plots depict RT and PD as a function of pages crawled. InfoSpiders and the
BFS256 crawler are found to outperform the breadth-first crawler.
InfoSpiders gain a slight edge in recall once the agents have had an
opportunity to adapt. This evaluation involves each of the three crawlers
visiting 50,000 pages for each of 10 topics, for a total of 1.5 million pages.

Another set of evaluation criteria can be obtained by scaling or
normalizing any of the above performance measures by the critical
resources used by a crawler. This way, one can compare crawling
algorithms by way of performance/cost analysis. For example, with limited
network bandwidth one may see latency as a major bottleneck for a
crawling task. The time spent by a crawler on network I/O can be
monitored and applied as a scaling factor to normalize precision or recall.

8.7 Crawler Ethics and Conflicts 353

Using such a measure, a crawler designed to preferentially visit short
pages, or pages from fast servers [17], would outperform one that can
locate pages of equal or even better quality but less efficiently.

8.7 Crawler Ethics and Conflicts

Crawlers, especially when efficient, can put a significant strain on the
resources of Web servers, mainly on their network bandwidth. A crawler
that sends many page requests to a server in rapid succession, say ten or
more per second, is considered impolite. The reason is that the server
would be so busy responding to the crawler that its service to other
requests, including those from human browsing interactively, would
deteriorate. In the extreme case a server inundated with requests from an
aggressive crawler would become unable to respond to other requests,
resulting in an effective denial of service attack by the crawler.

To prevent such incidents, it is essential for a crawler to put in place
measures to distribute its requests across many servers, and to prevent any
one server (fully qualified host name) from receiving requests at more than
some reasonably set maximum rate (say, one request every few seconds).
In a concurrent crawler, this task can be carried out by the frontier
manager, when URLs are dequeued and passed to individual threads or
processes. This practice not only is required by politeness toward servers,
but also has the additional benefits of limiting the impact of spider traps
and not overloading the server, which will respond slowly.

Preventing server overload is just one of a number of policies required
of ethical Web agents [19]. Such policies are often collectively referred to
as crawler etiquette. Another requirement is to disclose the nature of the
crawler using the User-Agent HTTP header. The value of this header
should include not only a name and version number of the crawler, but
also a pointer to where Web administrators may find information about the
crawler. Often a Web site is created for this purpose and its URL is
included in the User-Agent field. Another piece of useful information is the
email contact to be specified in the From header.

Finally, crawler etiquette requires compliance with the Robot
Exclusion Protocol. This is a de facto standard providing a way for Web
server administrators to communicate which files may not be accessed by a
crawler. This is accomplished via an optional file named robots.txt in the
root directory of the Web server (e.g., http://www.somehost.com/robots.txt).
The file provides access policies for different crawlers, identified by the
User-agent field. For any user-agent value (or the default “*”) a number of
Disallow entries identify directory subtrees to be avoided. Compliant

354 8 Web Crawling

crawlers must fetch and parse a server's robots.txt file before sending
requests to that server. For example, the following policy in robots.txt:
 User-agent: *
 Disallow: /

directs any crawler to stay away from the entire server. Some high-level
languages such as Perl provide modules to parse robots.txt files. It is wise
for a crawler to cache the access policies of recently visited servers, so that
the robots.txt file need not be fetched and parsed every time a request is
sent to the same server. Additionally, Web authors can indicate if a page
may or may not be indexed, cached, or mined by a crawler using a special
HTML meta-tag. Crawlers need to fetch a page in order to parse this tag,
therefore this approach is not widely used. More details on the robot exclusion
protocols can be found at http://www.robotstxt.org/wc/robots.html.

When discussing the interactions between information providers and
search engines or other applications that rely on Web crawlers, confusion
sometime arises between the ethical, technical, and legal ramifications of
the Robot Exclusion Protocol. Compliance with the protocol is an ethical
issue, and non-compliant crawlers can justifiably be shunned by the Web
community. However, compliance is voluntary, and a robots.txt file cannot
enforce it. Servers can, however, block access to a client based on its IP
address. Thus it is likely that a crawler which does not comply with the
Exclusion Protocol and does not follow proper etiquette will be quickly
blocked by many servers. Crawlers may disguise themselves as browsers
by sending a browser's identifying string in the User-Agent header. This
way a server administrator may not immediately detect lack of compliance
with the Exclusion Protocol, but an aggressive request profile is likely to
reveal the true nature of the crawler. To avoid detection, some mischievous
crawlers send requests at low and randomized rates. While such behaviors
may be reprehensible, they are not illegal – at least not at the time of this
writing. Nonetheless, there have been cases of businesses bringing lawsuits
against search organizations for not complying with the Robot Exclusion
Protocol. In a recent lawsuit involving the Internet Archive's WayBack
Machine (www.archive.org), a plaintiff not only attributed legal weight to
the Exclusion Protocol, but also expected that a newly added robots.txt
policy should have retroactive value!

Deception does not occur only by crawlers against servers. Some
servers also attempt to deceive crawlers. For example, Web administrators
may attempt to improve the ranking of their pages in a search engine by
providing different content depending on whether a request originates from
a browser or a search engine crawler, as determined by inspecting the
request's User-Agent header. This technique, called cloaking, is frowned

8.7 Crawler Ethics and Conflicts 355

upon by search engines, which remove sites from their indices when such
abuses are detected. For more information about Web spam, see Chap. 6.

One of the most serious challenges for crawlers originates from the
rising popularity of pay-per-click advertising. If a crawler is not to follow
advertising links, it needs to have a robust detection algorithm to
discriminate ads from other links. A bad crawler may also pretend to be a
genuine user who clicks on the advertising links in order to collect more
money from merchants for the hosts of advertising links.

The above examples suggest a view of the Web as a new playground for
artificial intelligence (AI). Crawlers need to become increasingly sophi-
sticated to prevent insidious forms of spam from polluting and exploiting
the Web environment. Malicious crawlers are also becoming smarter in
their efforts, not only to spam but also to steal personal information and in
general to deceive people and crawlers for illicit gains. One chapter of this
arms race has been the development of CAPTCHAs [55], graphics-based
inverse Turing tests automatically generated by server sites to keep out
malicious crawlers. Maybe a stronger AI will be a positive outcome of
crawler evolution; maybe a less usable Web will be a hefty price to pay.

Interestingly, the gap between humans and crawlers may be narrowing
from both sides. While crawlers become smarter, some humans are
dumbing down their content to make it more accessible to crawlers. For
example some online news providers use simpler titles than can be easily
classified and interpreted by a crawler as opposed or in addition to witty
titles that can only be understood by humans.

Another gap that is getting narrower is the distinction between browsers
and crawlers, with a growing gray area between the two. A business may
wish to disallow crawlers from its site if it provides a service by which it
wants to entice human users to visit the site, say to make a profit via ads on
the site. A competitor crawling the information and mirroring it on its own
site, with different ads, is a clear violator not only of the Robot Exclusion
Protocol but also possibly of copyright law. What about an individual user
who wants to access the information but automatically hide the ads? There
are many browser extensions that allow users to perform all kinds of tasks
that deviate from the classic browsing activity, including hiding ads,
altering the appearance and content of pages, adding and deleting links,
adding functionality to pages, pre-fetching pages, and so on. Such
extensions have some of the functionalities of crawlers. Should they
identify themselves through the User-Agent header as distinct from the
browser with which they are integrated? Should a server be allowed to
exclude them? And should they comply with such exclusion policies?
These too are questions about ethical crawler behaviors that remain open
for the moment.

356 8 Web Crawling

8.8 Some New Developments

The typical use of (universal) crawlers thus far has been for creating and
maintaining indexes for general purpose search engines. However a more
diverse use of (topical) crawlers is emerging both for client and server
based applications. Topical crawlers are becoming important tools to
support applications such as specialized Web portals (a.k.a. “vertical”
search engines), live crawling, and competitive intelligence.

Another characteristic of the way in which crawlers have been used by
search engines up to now is the one-directional relationship between users,
search engines, and crawlers. Users are consumers of information provided
by search engines, search engines are consumers of information provided
by crawlers, and crawlers are consumers of information provided by users
(authors). This one-directional loop does not allow, for example, information
to flow from a search engine (say, the queries submitted by users) to a
crawler. It is likely that commercial search engines will soon leverage the
huge amounts of data collected from their users to focus their crawlers on
the topics most important to the searching public. To investigate this idea
in the context of a vertical search engine, a system was built in which the
crawler and the search engine engage in a symbiotic relationship [44]. The
crawler feeds the search engine which in turn helps the crawler. It was
found that such a symbiosis can help the system learn about a community's
interests and serve such a community with better focus.

As discussed in Sect. 8.3, universal crawlers have to somehow focus on
the most “important” pages given the impossibility to cover the entire Web
and keep a fresh index of it. This has led to the use of global prestige
measures such as PageRank to bias universal crawlers, either explicitly
[14, 22] or implicitly through the long-tailed structure of the Web graph
[41]. An important problem with these approaches is that the focus is
dictated by popularity among “average” users and disregards the hetero-
geneity of user interests. A page about a mathematical theorem may appear
quite uninteresting to the average user, if one compares it to a page about a
pop star using indegree or PageRank as a popularity measure. Yet the math
page may be highly relevant and important to a small community of users
(mathematicians). Future crawlers will have to learn to discriminate
between low-quality pages and high-quality pages that are relevant to very
small communities.

Social networks have recently received much attention among Web
users as vehicles to capture commonalities of interests and to share relevant
information. We are witnessing an explosion of social and collaborative
engines in which user recommendations, opinions, and annotations are
aggregated and shared. Mechanisms include tagging (e.g., del.icio.us and

8.8 Some New Developments 357

flickr.com), ratings (e.g., stumbleupon.com), voting (e.g., digg.com), and
hierarchical similarity (GiveALink.org). One key advantage of social
systems is that they empower humans rather than depending on crawlers to
discover relevant resources. Further, the aggregation of user recommendations
gives rise to a natural notion of trust. Crawlers could be designed to expand
the utility of information collected through social systems. For example it
would be straightforward to obtain seed URLs relevant to specific
communities of all sizes. Crawlers would then explore the Web for other
resources in the neighborhood of these seed pages, exploiting topical
locality to locate and index other pages relevant to those communities.

Social networks can emerge not only by mining a central repository of
user-provided resources, but also by connecting hosts associated with
individual users or communities scattered across the Internet. Imagine a
user creating its own micro-search engine by employing a personalized
topical crawler, seeded for example with a set of bookmarked pages.
Desktop search applications make it easy to also share certain local files, if
so desired. Can federations of such micro-engine agents emerge on the
basis of mutual interests? Peer-to-peer (P2P) networks are beginning to be
seen as robust architectures ideal for brokering among individual needs
and catering to communities [31].

Adaptive peer-based search systems driven by simple distributed
adaptive query routing algorithms can spontaneously organize into
networks with efficient communication and with emerging clusters
capturing semantic locality. Specifically, in a P2P search application called
6Search (6S), each peer crawls the Web in a focused way, guided by its
user’s information context. Each peer submits and responds to queries
to/from its neighbors. This search process has no centralized control.
Peers depend on local adaptive routing algorithms to dynamically change
the topology of the peer network and search for the best neighbors to
answer their queries. Machine learning techniques are being explored to
improve local adaptive routing. Validation of the 6S framework and
network via simulations with 70500 model users based on actual Web
crawls has yielded encouraging preliminary results. The network topology
rapidly converges from a random network to a small-world network, with
clusters emerging to match user communities with shared interests [2].
Additionally the quality of the results is significantly better than obtained
by centralized search engines built with equivalent resources, and
comparable with the results from much larger search engines such as
Google [57, 58].

The integration of effective personalized/topical crawlers with adaptive
query routing algorithms is the key to the success of peer-based social
search systems. Many synergies may be exploited in this integration by

358 8 Web Crawling

leveraging contextual information about the local peer that is readily
available to the crawler, as well as information about the peer's neighbors
that can be mined through the stream of queries and results routed through
the local peer. An open-source prototype of 6S enabling sharing of
bookmarks, one-click crawling, and distributed collaborative search is
available (http://homer.informatics.indiana.edu/~nan/6S/). If successful,
this kind of application could create a new paradigm for crawling and
searching where universal crawlers and search engines are complemented
with swarms of personal crawlers and micro-engines tuned to the
specialized information needs of individual users and dynamic self-
organized social networks.

Bibliographic Notes

General ideas and techniques about crawling can be found in [6, 8], but
little is known about implementation details of commercial crawlers.
Focused crawling discussed in this chapter is based on [8, 11, 18] .
Literature on topical crawling algorithms is extensive [e.g., [1, 14, 16, 17,
24, 33, 34, 37, 38, 46, 48, 50]. Topical crawlers have been used for building
focused repositories, automating resource discovery, and supporting
software agents. For example, topical crawlers are used to collect papers
for building scientific literature digital libraries such as CiteSeer and
Google Scholar [29, 33, 56]. Applications of topical crawlers to business
and competitive intelligence are discussed in [46], and biomedical
applications in [54]. Controversial applications to harvest personal
information for spam and phishing purposes are illustrated in [26].

On best-first crawlers, various methods have been used to determine an
appropriate textual context in which to evaluate and score unvisited links.
Using the anchor text is one strategy [15]. Another strategy is to use
windows of a fixed size, e.g., 50 words around the anchor, in place of/in
addition to the anchor text [24]. The weighted window used by InfoSpiders
[37] yields a weight for each link, which is then fed to a neural network to
score each link. In the tag (DOM) tree approach [8], using the parent node
of the anchor as aggregation node worked well in a business intelligence
crawling task [46]. There is a tradeoff analogous to that between precision
and recall when we consider the optimal size of a link context: small
contexts (e.g., anchor text) have the highest average similarities to the
target page, but also highest chance to miss important cues about the
target. Larger contexts (e.g., parent or grand-parent aggregator node) have
lower average similarities to the target, but lower chance to miss all the
keywords in the target. This suggests a greedy optimization scheme: climb

Bibliography 359

the DOM tree from the anchor until sufficient terms are present in the link
context [43]. This approach outperformed both the fixed-window method
(with optimal window size) and the DOM tree method with a fixed
aggregator depth (anchor, parent, or grandparent).

Early versions of InfoSpiders were described in [34, 37, 39]. Certain
aspects of evolutionary computation have also been used in other topical
crawlers such as the itsy bitsy spider [12]. Another adaptive mechanism
for topical crawlers inspired by natural processes is ant colony
optimization [21]. The idea is that a population of agents leaves a trail of
pheromone along the paths that lead to relevant pages, gradually biasing
the crawl toward promising portions of the Web graph. A more extensive
review of adaptive topical crawling algorithms can be found in [40].

Bibliography

1. Aggarwal, C., F. Al-Garawi, and P. Yu. Intelligent crawling on the World
Wide Web with arbitrary predicates. In Proceedings of 10th Internaitonal
Conference on World Wide Web (WWW-2001), 2001.

2. Akavipat, R., L. Wu, and F. Menczer. Small world peer networks in
distributed Web search. In Proceedings of Alternative Track Papers and
Posters Proceedings of International Conference on World Wide Web, 2004.

3. Amento, B., L. Terveen, and W. Hill. Does “authority” mean quality?
Predicting expert quality ratings of Web documents. In Proceedings of ACM
SIGIR Conf. on Research and Development in Information Retrieval (SIGIR-
2000), 2000.

4. Arasu, A., J. Cho, H. Garcia-Molina, A. Paepcke, and S. Raghavan. Searching
the web. ACM Transactions on Internet Technology (TOIT), 2001, 1(1): p. 2-
43.

5. Bharat, K. and M. Henzinger. Improved algorithms for topic distillation in a
hyperlinked environment. In Proceedings of ACM SIGIR Conf. on Research
and Development in Information Retrieval (SIGIR-1998), 1998.

6. Brin, S. and P. Lawrence. The anatomy of a large-scale hypertextual web
search engine. Computer Networks, 1998, 30(1-7): p. 107-117.

7. Broder, A., R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A.
Tomkins, and J. Wiener. Graph structure in the web. Computer Networks,
2000, 33(1-6): p. 309-320.

8. Chakrabarti, S. Mining the Web: discovering knowledge from hypertext data.
2003: Morgan Kaufmann Publishers.

9. Chakrabarti, S., B. Dom, S. Kumar, P. Raghavan, S. Rajagopalan, A.
Tomkins, D. Gibson, and J. Kleinberg. Mining the Web's link structure.
Computer, 2002, 32(8): p. 60-67.

360 8 Web Crawling

10. Chakrabarti, S., B. Dom, P. Raghavan, S. Rajagopalan, D. Gibson, and J.
Kleinberg. Automatic resource compilation by analyzing hyperlink structure
and associated text. Computer Networks, 1998, 30(1-7): p. 65-74.

11. Chakrabarti, S., M. Van den Berg, and B. Dom. Focused crawling: a new
approach to topic-specific Web resource discovery. Computer Networks,
1999, 31(11-16): p. 1623-1640.

12. Chen, H., Y. Chung, M. Ramsey, and C. Yang. A smart itsy bitsy spider for
the web. Journal of the American Society for Information Science, 1998,
49(7): p. 604-618.

13. Cho, J. and H. Garcia-Molina. The evolution of the web and implications for
an incremental crawler. In Proceedings of International Conference on Very
Large Data Bases (VLDB-2000), 2000.

14. Cho, J., H. Garcia-Molina, and L. Page. Efficient crawling through URL
ordering. Computer Networks, 1998, 30(1-7): p. 161-172.

15. Davison, B. Topical locality in the Web. In Proceedings of ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR-
2000), 2000.

16. De Bra, P. and R. Post. Information retrieval in the World-Wide Web: making
client-based searching feasible. Computer Networks, 1994, 27(2): p. 183-192.

17. Degeratu, M., G. Pant, and F. Menczer. Latency-dependent fitness in
evolutionary multithreaded web agents. In Proceedings of GECCO Workshop
on Evolutionary Computation and Multi-Agent Systems, 2001.

18. Diligenti, M., F. Coetzee, S. Lawrence, C. Giles, and M. Gori. Focused
crawling using context graphs. In Proceedings of International Conference on
Very Large Data Bases (VLDB-2000), 2000.

19. Eichmann, D. Ethical Web agents. Computer Networks and ISDN Systems,
1995, 28(1-2): p. 127-136.

20. Fetterly, D., M. Manasse, M. Najork, and J. Wiener. A large scale study of the
evolution of Web pages. Software: Practice and Experience, 2004, 34(2): p.
213-237.

21. Gasparetti, F. and A. Micarelli. Swarm intelligence: Agents for adaptive web
search. In Proceedings of European Conf. on Artificial Intelligence (ECAI-
2004), 2004.

22. Henzinger, M., A. Heydon, M. Mitzenmacher, and M. Najork. Measuring
index quality using random walks on the Web. Computer Networks, 1999,
31(11-16): p. 1291-1303.

23. Henzinger, M., A. Heydon, M. Mitzenmacher, and M. Najork. On near-
uniform URL sampling. Computer Networks, 2000, 33(1-6): p. 295-308.

24. Hersovici, M., M. Jacovi, Y. Maarek, D. Pelleg, M. Shtalhaim, and S. Ur. The
shark-search algorithm. An application: tailored Web site mapping. Computer
Networks, 1998, 30(1-7): p. 317-326.

25. Heydon, A. and M. Najork. Mercator: A scalable, extensible web crawler.
World Wide Web, 1999, 2(4): p. 219-229.

26. Jagatic, T., N. Johnson, M. Jakobsson, and F. Menczer. Social phishing.
Communications of the ACM, 2007, 50(10): p. 94-100.

Bibliography 361

27. Kaelbling, L., M. Littman, and A. Moore. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research 1996, 4: p. 237–285.

28. Kleinberg, J. Authoritative sources in a hyperlinked environment. Journal of
the ACM (JACM), 1999, 46(5): p. 604-632.

29. Lawrence, S., L. Giles, and K. Bollacker. Digital libraries and autonomous
citation indexing. Computer, 2002, 32(6): p. 67-71.

30. Lin, L. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning, 1992, 8(3): p. 293-321.

31. Lu, J. and J. Callan. Content-based retrieval in hybrid peer-to-peer networks.
In Proceedings of ACM International Conference on Information and
knowledge management (CIKM-2003), 2003.

32. Maguitman, A., F. Menczer, H. Roinestad, and A. Vespignani. Algorithmic
detection of semantic similarity. In Proceedings of International Conference
on World Wide Web (WWW-2005), 2005.

33. McCallum, A., K. Nigam, J. Rennie, and K. Seymore. A machine learning
approach to building domain-specific search engines. In Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI-1999), 1999.

34. Menczer, F. ARACHNID: Adaptive retrieval agents choosing heuristic
neighborhoods for information discovery. In Proceedings of International
Conference on Machine Learning (ICML-1997), 1997.

35. Menczer, F. Lexical and semantic clustering by web links. Journal of the
American Society for Information Science and Technology, 2004, 55(14): p.
1261-1269.

36. Menczer, F. Mapping the semantics of web text and links. Internet
Computing, IEEE, 2005, 9(3): p. 27-36.

37. Menczer, F. and R. Belew. Adaptive retrieval agents: Internalizing local
context and scaling up to the Web. Machine Learning, 2000, 39(2): p. 203-
242.

38. Menczer, F., G. Pant, and P. Srinivasan. Topical web crawlers: Evaluating
adaptive algorithms. ACM Transactions on Internet Technology (TOIT),
2004, 4(4): p. 378-419.

39. Menczer, F., G. Pant, P. Srinivasan, and M. Ruiz. Evaluating topic-driven
Web crawlers. In Proceedings of ACM SIGIR Conf. on Research and
Development in Information Retrieval (SIGIR-2001), 2001.

40. Micarelli, A. and F. Gasparetti. Adaptive focused crawling. In P. Brusilovsky,
W. Nejdl, and A. Kobsa (eds.), Adaptive Web., 2007: Springer-Verlag.

41. Najork, M. and J. Wiener. Breadth-first crawling yields high-quality pages. In
Proceedings of International Conference on World Wide Web (WWW-2001),
2001.

42. Ntoulas, A., J. Cho, and C. Olston. What's new on the web?: the evolution of
the web from a search engine perspective. In Proceedings of International
Conference on World Wide Web (WWW-2004), 2004.

43. Pant, G. Deriving link-context from HTML tag tree. In Proceedings of ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery (DMKD’03), 2003.

362 8 Web Crawling

44. Pant, G., S. Bradshaw, and F. Menczer. Search engine-crawler symbiosis:
Adapting to community interests. Research and AdvancedTechnology for
Digital Libraries, 2004: p. 221-232.

45. Pant, G. and F. Menczer. MySpiders: Evolve your own intelligent Web
crawlers. Autonomous Agents and Multi-Agent Systems, 2002, 5(2): p. 221-
229.

46. Pant, G. and F. Menczer. Topical crawling for business intelligence. Research
and Advanced Technology for Digital Libraries, 2004: p. 233-244.

47. Pant, G. and P. Srinivasan. Learning to crawl: Comparing classification
schemes. ACM Transactions on Information Systems (TOIS), 2005, 23(4): p.
430-462.

48. Pant, G., P. Srinivasan, and F. Menczer. Exploration versus exploitation in
topic driven crawlers. In Proceedings of WWW-02 Workshop on Web
Dynamics, 2002.

49. Pastor-Satorras, R. and A. Vespignani. Evolution and structure of the
Internet: A statistical physics approach. 2004: Cambridge Univ Press.

50. Rennie, J. and A. McCallum. Using reinforcement learning to spider the web
efficiently. In Proceedings of International Conference on Machine Learning
(ICML-1999), 1999.

51. Rijsbergen, C.v. Information Retrieval. 1979: Butterworths. Second edition.
52. Rumelhart, D., G. Hinton, and R. Williams. Learning internal representations

by error propagation. D. Rumelhart and J. McClelland (eds.), Parallel
Distributed Processing: Explorations in the Microstructure of Cognition,
1996.

53. Srinivasan, P., F. Menczer, and G. Pant. A general evaluation framework for
topical crawlers. Information Retrieval, 2005, 8(3): p. 417-447.

54. Srinivasan, P., J. Mitchell, O. Bodenreider, G. Pant, F. Menczer, and P. Acd.
Web crawling agents for retrieving biomedical information. In Proceedings of
Workshop on Agents in Bioinformatics (NETTAB’02), 2002.

55. Von Ahn, L., M. Blum, N. Hopper, and J. Langford. CAPTCHA: Using hard
AI problems for security. Advances in Cryptology—EUROCRYPT-2003,
2003: p. 646-646.

56. Witten, I., C. Nevill-Manning, and S. Cunningham. Building a digital library
for computer science research: technical issues. Australian Computer Science
Communications, 1996, 18 p. 534-542.

57. Wu, L., R. Akavipat, and F. Menczer. 6S: Distributing crawling and searching
across Web peers. In Proceedings of IASTED Int. Conf. on Web Technologies,
Applications, and Services, 2005.

58. Wu, L., R. Akavipat, and F. Menczer. Adaptive query routing in peer Web
search. In Proceedings of International Conference on World Wide Web
(WWW-2005), 2005.

9 Structured Data Extraction: Wrapper
Generation

Web information extraction is the problem of extracting target information
items from Web pages. There are two general problems: extracting infor-
mation from natural language text and extracting structured data from Web
pages. This chapter focuses on extracting structured data. A program for
extracting such data is usually called a wrapper. Extracting information
from text is studied mainly in the natural language processing community.

Structured data on the Web are typically data records retrieved from
underlying databases and displayed in Web pages following some fixed
templates. In this chapter, we still call them data records. Extracting such
data records is useful because it enables us to obtain and integrate data
from multiple sources (Web sites and pages) to provide value-added services,
e.g., customizable Web information gathering, comparative shopping,
meta-search, etc. With more and more companies and organizations
disseminating information on the Web, the ability to extract such data from
Web pages is becoming increasingly important. At the time of writing this
book, there are several companies working on extracting products sold
online, product reviews, job postings, research publications, forum
discussions, statistics data tables, news articles, search results, etc.

Researchers and Internet companies started to work on the extraction
problem from the middle of 1990s. There are three main approaches:

1. Manual approach: By observing a Web page and its source code, the
human programmer finds some patterns and then writes a program to
extract the target data. To make the process simpler for programmers,
several pattern specification languages and user interfaces have been
built. However, this approach is not scalable to a large number of sites.

2. Wrapper induction: This is the supervised learning approach, and is
semi-automatic. The work started around 1995-1996. In this approach, a
set of extraction rules is learned from a collection of manually labeled
pages or data records. The rules are then employed to extract target data
items from other similarly formatted pages.

3. Automatic extraction: This is the unsupervised approach started
around 1998. Given a single or multiple pages, it automatically finds

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_9,
© Springer-Verlag Berlin Heidelberg 2011

363

364 9 Structured Data Extraction: Wrapper Generation

patterns or grammars from them for data extraction. Since this approach
eliminates the manual labeling effort, it can scale up data extraction to a
huge number of sites and pages.

The first approach will not be discussed further. This chapter focuses on
the last two approaches. Sects. 9.2 and 9.3 study supervised wrapper
learning, and the rest of the chapter studies automatic extraction.

9.1 Preliminaries

To start our discussion, let us see some real pages that contain structured
data that we want to extract. We then develop a Web data model and a
HTML mark-up encoding scheme for the data model. Data extraction is
simply the reverse engineering task. That is, given the HTML mark-up
encoded data (i.e., Web pages), the extraction system recovers the original
data model and extracts data from the encoded data records.

9.1.1 Two Types of Data Rich Pages

There are mainly two types of data rich pages. Data in such pages are
usually retrieved from underlying databases and displayed on the Web
following some fixed templates.
1. List pages: Each of such pages contains several lists of objects. Fig. 9.1

shows such a page, which has two lists of products. From a layout point
of view, we see two data regions (one horizontal and one vertical).
Within each region, the data records are formatted using the same
template. The templates used in the two regions are different.

2. Detail pages: Such a page focuses on a single object. For example, in
Fig. 9.2, the page focuses on the product “iPod Video 30GB, Black”.
That is, it contains all the details of the product, name, image, price and
other purchasing information, product description, customer rating, etc.

Note that when we say that a page focuses on a particular object (or lists of
objects), we do not mean that the page contains no other information. In
fact, it almost certainly contains other information. For example, in the
page for “iPod Video 30GB, Black” (Fig. 9.2), there are some related
products on the right-hand side, company information at the top, and
copyright notices, terms and conditions, privacy statements at the bottom,
etc. They are not shown in Fig. 9.2 as we want the main part of the product
clearly eligible. For list pages, it is often easy to use some heuristics to
identify the main data regions, but for detail pages, it is harder.

9.1 Preliminaries 365

Fig. 9.1. A segment of a list page with two data regions

Fig. 9.2. A segment of a detail page

366 9 Structured Data Extraction: Wrapper Generation

In Fig. 9.1, the description of each product is called a data record.
Notice that the data records in this page are all flat with no nesting. Fig.
9.3(A) contains some nested data records, which makes the problem more
interesting and also harder. The first product, “Cabinet Organizers by
Copco,” has two sizes (9-in. and 12-in.) with different prices. These two
organizers are not at the same level as “Cabinet Organizers by Copco”.

Our objective: We want to extract the data and produce the data table
given in Fig. 9.3(B). “image 1” and “Cabinet Organizers by Copco” are
repeated for the first two rows due to the nesting.

9.1.2 Data Model

We now describe a data model commonly used for structured data on the
Web. In the next sub-section, we present a HTML mark-up encoding of
the model and the data, which helps extraction.

Most Web data can be modeled as nested relations, which are typed
objects allowing nested sets and tuples. The types are defined as follows:

(A) An example of a nested data record

image 1 Cabinet Organizers by Copco 9-in. Round Turntable: White ***** $4.95
image 1 Cabinet Organizers by Copco 12-in. Round Turntable: White ***** $7.95
image 2 Cabinet Organizers 14.75x9

Cabinet Organizer (Non-

skid): White
***** $7.95

image 3 Cabinet Organizers 22x6 Cookware Lid Rack **** $19.95

(B) Extraction results

Fig. 9.3. An example input page and output data table

9.1 Preliminaries 367

 There is a set of basic types, B = {B1, B2, …, Bk}. Each Bi is an atomic
type, and its domain, denoted by dom(Bi), is a set of constants;

 If T1, T2, …, Tn are basic or set types, then [T1, T2, …, Tn] is a tuple type
with the domain dom([T1, T2, …, Tn]) = {[v1, v2, …, vn] | vi  dom(Ti)};

 If T is a tuple type, then {T} is a set type with the domain dom({T})
being the power set of dom(T).

A basic type Bi is analogous to the type of an attribute in relational
databases, e.g., string and int. In the context of the Web, Bi is usually a text
string, image-file, etc. The example in Fig. 9.4 shows a nested tuple type
product, with attributes

 name (of type string),
 image (of type image-file), and
 differentSizes (a set type), consisting of a set of tuples with attributes:
 size (of type string), and
 price (of type string).

 product [name: string;
 image: image-file;
 differentSizes: { [size: string;
 price: string;] }]

Fig. 9.4. An example nested type

We can also define flat tuple and set types:

 If T1, T2, …, Tn are basic types, then [T1, T2, …, Tn] is a flat tuple type;
 If T is a flat tuple type, then {T} is a flat set type.

Classic flat relations are of flat set types. Nested relations are of
arbitrary set types. Types can be represented as trees.

 A basic type Bi is a leaf tree or node;
 A tuple type [T1, T2, …, Tn] is a tree rooted at a tuple node with n sub-

trees, one for each Ti;
 A set type {T} is a tree rooted at a set node with one sub-tree.

An instance of a type T is simply an element of dom(T). Clearly,
instances can be represented as trees as well:

 An instance (constant) of a basic type is a leaf tree;
 A tuple instance [v1, v2, …, vn] forms a tree rooted at a tuple node with n

children or sub-trees representing attribute values v1, v2, …, vn;
 A set instance {e1, e2, …, en} forms a set node with n children or sub-

trees representing the set elements e1, e2, …, and en.

368 9 Structured Data Extraction: Wrapper Generation

An instance of a tuple type (also known as a tuple instance) is usually
called a data record in the data extraction research. An instance of a set
type (also known as a set instance) is usually called a list as in an actual
Web page the data records in the set are presented in a particular order. An
instance of a flat tuple type is called a flat data record (no nested lists),
and an instance of a flat set type is called a list of flat data records.

We note that attribute names are not included in the type tree. We next
introduce a labeling of a type tree, which is defined recursively:

 If a set node is labeled , then its child is labeled .0, a tuple node;
 If a tuple node is labeled , then its n children are labeled .1, …, .n.

We can think of labels as abstract names for types or attributes. For example,
in Fig. 9.4 the top level tuple type is “product”, its three children are
attributes: product.name, product.image, and product.differentSizes. .0
labels a tuple node without a name of two attributes, “size” and “price”.

9.1.3 HTML Mark-Up Encoding of Data Instances

In a Web page, the data is encoded or formatted with HTML mark-up tags.
This sub-section discusses the encoding of data instances in the above
abstract data model using HTML tags.

Web pages are written in HTML consisting of plain texts, tags and links
to image, audio and video files, and other pages. Most HTML tags work in
pairs. Each pair consists of an open tag and a close tag indicated by < >
and </> respectively. Within each corresponding tag-pair, there can be
other pairs of tags, resulting in nested structures. Thus, HTML tags can
naturally encode nested data. We note the following:

1. There are no designated tags for each type as HTML was not designed
as a data encoding language. Any HTML tag can be used for any type.

2. For a tuple type, values (data items) of different attributes are usually
encoded differently to distinguish them and to highlight important items.

3. A tuple may be partitioned into several groups or sub-tuples. Each group
covers a disjoint subset of attributes and may be encoded differently.

Based on these characteristics of the HTML language, the HTML mark-up
encoding of instances is defined recursively below. We encode based on
the type tree, where each node of the tree is associated with an encoding
function, which will encode (or mark-up) all the instances of the type in
the same way. We will use the tuple type and its attributes explicitly
because values of different attributes in the tuple type are typically
encoded differently. We use T.i to represent a value instance of the tuple
type T and attribute i. We use enc to denote an abstract encoding function.

9.1 Preliminaries 369

 For a leaf node of a basic type labeled , an instance c is encoded with
 enc(:c) = OPEN-TAGS c CLOSE-TAGS

 where OPEN-TAGS is a sequence of open HTML tags, and CLOSE-
TAGS is the sequence of corresponding close HTML tags. The number
of tags is greater than or equal to 0.

 For a tuple node labeled  of n children or attributes, [.1, …, .n], the
attributes are first partitioned into h ( 1) groups <.1, …, .e>,
<.(e+1),…, .g> … <.(k+1), …, .n> and an instance [v1, …, vn] of
the tuple node is encoded with

 enc(:[v1, …, vn]) = OPEN-TAGS1 enc(v1) … enc(ve) CLOSE-TAGS1
 OPEN-TAGS2 enc(ve+1)…enc(vg) CLOSE-TAGS2
 …
 OPEN-TAGSh enc(vk+1)…enc(vn) CLOSE-TAGSh

 where OPEN-TAGSi is a sequence of open HTML tags, and CLOSE-
TAGSi is the sequence of corresponding close tags. The number of tags
is greater than or equal to 0.

 For a set node labeled , an non-empty set instance {e1, e2, …, en} is
encoded with

 enc(:{e1, …, en}) = OPEN-TAGS enc(ej1)…enc(ejn) CLOSE-TAGS,

 where OPEN-TAGS is a sequence of open HTML tags, and CLOSE-
TAGS is the sequence of corresponding close HTML tags. The number
of tags is greater than or equal to 0. The set elements are ordered based
on an ordering function <. With ordering, a set instance is called a list.
An empty set instance is encoded with OPEN-TAGS CLOSE-TAGS.

By no means does this mark-up encoding cover all cases in Web pages. In
fact, each group of a tuple type can be further divided. Anyway, you get
the idea. We should also note that in an actual Web page the encoding is
usually done not only by HTML tags, but also by words and punctuation
marks. For example, in Fig. 9.5, if we are interested in extracting the
addresses and the area codes, the punctuation marks are useful.

Fig. 9.5. Words and punctuation marks are also used in data encoding

370 9 Structured Data Extraction: Wrapper Generation

9.2 Wrapper Induction

We are now ready to study the first approach to data extraction, namely
wrapper induction, which is based on supervised learning. A wrapper
induction system learns data extraction rules from a set of labeled training
examples. Labeling is usually done manually, which simply involves
marking the data items in the training pages/examples that the user wants
to extract. The learned rules are then applied to extract target data from
other pages with the same mark-up encoding or the same template.

The algorithm discussed in this section is based on the Stalker system
[28]. Related work includes WIEN [19], Softmealy [17], WL2 [10], the
systems in [18] and [43], etc. The next section describes a different
learning approach, which is based on the IDE system given in [38].

Stalker models the Web data as nested relations. Let us model the restaurant
page in Fig. 9.5. It has four addresses in four different cities. The type tree of
the data is given in Fig. 9.6 (the country code is omitted). For each type,
we also added an intuitive label. The wrapper uses a tree structure based
on this to facilitate extraction rule learning and data extraction.

Fig. 9.6. Type tree of the restaurant page in Fig. 9.5

Below, we first introduce the data extraction process, and then describe
the learning algorithm for generating extraction rules.

9.2.1 Extraction from a Page

A Web page can be seen as a sequence of tokens S (e.g., words, numbers
and HTML tags). The extraction is done using a tree structure called the
EC tree (embedded catalog tree), which models the data embedding in a
HTML page. The EC tree is based on the type tree above. The root of the
tree is the document containing the whole token sequence S of the page,
and the content of each child node is a subsequence of the sequence of its
parent node. To extract a node of interest, the wrapper uses the EC
description of the page and a set of extraction rules. Fig. 9.7 shows the EC
tree of the page in Fig. 9.5. Note that we use LIST here because the set of

String: Name

String:
Street

String:
City

Set: Addresses

Integer:
Area-Code

String:
Phone-No.

Tuple: Restaurant

Tuple: Address

9.2 Wrapper Induction 371

addresses are already ordered in a page. For an extraction task, the EC tree
for a data source is specified by the user (not discovered by the system).

Fig. 9.7. The EC tree of the HTML page in Fig. 9.5

For each node in the tree, the wrapper identifies or extracts the content
of the node from its parent, which contains the sequence of tokens of all its
children. Each extraction is done using two rules, the start rule and the
end rule. The start rule identifies the beginning of the node and the end
rule identifies the end of the node. This strategy is applicable to both leaf
nodes (which represent data items) and list nodes. For a list node, list
iteration rules are needed to break the list into individual data records
(tuple instances). To extract items from the data records, data extraction
rules are applied to each record. All the rules are learned during wrapper
induction, which will be discussed in Sect. 9.2.2. Given the EC tree and
the rules, any node can be extracted by following the tree path P from the
root to the node by extracting each node in P from its parent.

The extraction rules are based on the idea of landmarks. Each landmark
is a sequence of consecutive tokens and is used to locate the beginning or
the end of a target item. Let us use the example in Fig. 9.5 to introduce
extraction rules and the extraction process based on the EC tree (Fig. 9.7).
Fig. 9.8 shows the HTML source code of the page in Fig. 9.5.

1: <p> Restaurant Name: Good Noodles

2: 205 Willow, <i>Glen</i>, Phone 1-<i>773</i>-366-1987
3: 25 Oak, <i>Forest</i>, Phone (800) 234-7903
4: 324 Halsted St., <i>Chicago</i>, Phone 1-<i>800</i>-996-5023
5: 700 Lake St., <i>Oak Park</i>, Phone: (708) 798-0008 </p>

Fig. 9.8. The HTML source of the page in Fig. 9.5

Let us try to extract the restaurant name “Good Noodles”. The following
rule can be used to identify the beginning of the name:

R1: SkipTo()

This rule means that the system should start from the beginning of the page
and skip all the tokens until it sees the first tag. is a landmark.

Name

Street City

LIST (Addresses)

Area-Code Phone-No.

Address

Page

372 9 Structured Data Extraction: Wrapper Generation

Obviously, SkipTo(:) and SkipTo(<i>) will not work. According to the EC
tree in Fig. 9.7, R1 is applied to the parent of node name, which is the root
node. The root node contains the token sequence of the whole page.

Similarly, to identify the end of the restaurant name, we can use:

R2: SkipTo()

R2 is applied from the end of the page toward the beginning. R1 is called
the start rule and R2 is called the end rule.

Note that a rule may not be unique. For example, we can also use the
following rules (and many more) to identify the beginning of the name:

R3: SkiptTo(Name _Punctuation_ _HtmlTag_)
or R4: SkiptTo(Name) SkipTo()

R3 means that we skip everything till the word “Name” followed by a
punctuation symbol and then a HTML tag. In this case, “Name
Punctuation _HtmlTag_” together is a landmark. _Punctuation_ and
HtmlTag are called wildcards. A wildcard represents a class of tokens.
For example, _HtmlTag_ represents any HTML tag, i.e., any HTML tag
matches the wildcard _HtmlTag_. R4 means that we skip everything till
the word “Name” and then again skip everything till the tag . Since
wrapper induction algorithms find simple rules first, R1 will be produced.

Now, suppose that we also want to extract each area code. The wrapper
needs to perform the following steps:

1. Identify the entire list of addresses. We can use the start rule
SkipTo(

), and the end rule SkipTo(</p>).

2. Iterate through the list (lines 2-5 in Fig. 9.8) to break it into four
individual records. To identify the beginning of each address, the wrapper
can start from the first token of the parent and repeatedly apply the start
rule SkipTo() to the content of the list. Each successive identification
of the beginning of an address starts from where the previous one ends.
Similarly, to identify the end of each address, it starts from the last
token of its parent and repeatedly apply the end rule SkipTo().

Once each address record is identified or extracted, we can extract the area
code in it. Due to variations in the format of area codes (some are in italic
and some are not), we need to use disjunctions. In this case, the disjunctive
start and the end rules are respectively R5 and R6:

R5: either SkipTo(() R6: either SkipTo())
 or SkipTo(-<i>) or SkipTo(</i>)

In a disjunctive rule, the disjuncts are applied sequentially until a disjunct
can identify the target node.

9.2 Wrapper Induction 373

Finally, we summarize the data extraction features of Stalker.

1. Extraction is done hierarchically based on the EC tree, which enables
extraction of items at any level of the hierarchy.

2. The extraction of each node is independent of its siblings. No contextual
or ordering information of siblings is used in extraction or rule learning.

3. Each extraction is done using two rules, the start rule and the end rule.
Each rule consists of an ordered list of disjuncts (could be one).

9.2.2 Learning Extraction Rules

We now present the wrapper learning algorithm for generating extraction
rules. The basic idea is as follows: To generate the start rule for a node in
the EC tree, some prefix tokens or their wildcards of the node are
identified as the landmarks that can uniquely identify the beginning of the
node. To generate the end rule for a node, some suffix tokens or their
wildcards of the node are identified as the landmarks. The rule generation
process for the start rule and the end rule is basically the same. Their
applications are also similar except that to apply a start rule the system
starts by consuming the first token in the sequence of the parent and goes
towards the last token, while for an end rule the system starts from the last
token in the sequence of the parent and goes towards the first. Without loss
of generality, in this section, we will discuss only the generation of start
rules.

For rule learning, the user first marks or labels the target items that need
to be extracted in a few training examples. For instance, we have the
examples in Fig. 9.8, which are addresses from the page in Fig. 9.5.
Suppose we want to generate rules to extract the area code from each
address. The area codes are labeled (marked) as in Fig. 9.9. A graphic user
interface can make the labeling process very easy.

Given a set of labeled training examples E, the learning algorithm
should generate extraction rules that extract all the target items (also called
positive items) without extracting any other items (called negative items).

Learning is done based on the machine learning method, sequential
covering (see Sect. 3.4.1). The algorithm is given in Fig. 9.10. In each

E1: 205 Willow, <i>Glen</i>, Phone 1-<i>773</i>-366-1987
E2: 25 Oak, <i>Forest</i>, Phone (800) 234-7903
E3: 324 Halsted St., <i>Chicago</i>, Phone 1-<i>800</i>-996-5023
E4: 700 Lake St., <i>Oak Park</i>, Phone: (708) 798-0008

Fig. 9.9. Training examples: four addresses with labeled area codes

374 9 Structured Data Extraction: Wrapper Generation

iteration, the algorithm LearnRule() (Fig. 9.10) generates a perfect
disjunct that covers as many positive items as possible and does not cover
any negative item in E (Examples). Then, all the examples whose positive
items are covered by the rule are removed. The next iteration starts. The
input to LearnRule() is E. Once all the positive items are covered, the rule
is returned (line 6), which consists of an ordered list of learned disjuncts.

The function LearnDisjunct() performs the actual generation of perfect
disjuncts (Fig. 9.11). It works as follows: It first chooses a Seed example
(line 1), which is the shortest example. In the case of Fig. 9.9, it is E2. It
then generates the initial candidate disjuncts. Let us explain using a
generic Seed, which can be represented as follows:

t1 t2 … tk <target item> tk+1 tk+2 … tn,

where ti is a token and <target item> is a labeled target item. We call t1 t2
… tk the prefix sequence of the target item, and tk+1tk+2…tn the suffix
sequence of the target item. The initial candidate disjuncts for the start rule
are tk, and its matching wildcards. Let us use seven wildcards, _Numeric_,
AlphaNum, _Alphabetic_, _Capitalized_, _AllCaps_, _HtmlTag_, and
Punctuation. Their meanings are self-explanatory. For the example E2
of Fig. 9.9, the following candidate disjuncts are generated:

D1: SkipTo(()
D2: SkipTo(_Punctuation_)

In line 4 of LearnDisjunct(), the function BestDisjunct() selects the best
disjunct using a set of heuristics given in Fig. 9.13.

In this case, D1 is selected as the best disjunct. D1 is a perfect disjunct,
i.e., it only covers positive items in E2 and E4 but not any negative items
in E. D1 is returned from LearnDisjunct(), which also ends the first
iteration of LearnRule(). E2 and E4 are removed (line 4) of Fig. 9.10. The
next iteration of LearnRule() is left with E1 and E3. LearnDisjunct() will
select E1 as Seed as it is shorter. Two candidates are then generated:

D3: SkipTo(<i>)
D4: SkipTo(_HtmlTag_)

Both these two candidates match early in the uncovered examples, E1 and
E3. Thus, they cannot uniquely locate the positive items. Even worse, they
can match to negative items in the two already covered examples, E2 and
E4. Refinement is thus needed, which aims to specialize a disjunct by
adding more terminals (a token or one of its matching wildcards) to it. We
hope the refined version will be able to uniquely identify the positive items
in some examples without matching any negative item in any example in
E. Two refinement strategies are used:

9.2 Wrapper Induction 375

Algorithm LearnRule(Examples) // Examples: training examples
1 Rule   // Rule: the returned rule
2 while Examples   do
3 Disjunct  LearnDisjunct(Examples);
4 remove all examples in Examples covered by Disjunct;
5 add Disjunct to Rule
6 return Rule

Fig. 9.10. The main learning algorithm  based on sequential covering

Function LearnDisjunct(Examples)
1 let Seed  Examples be the shortest example;
2 Candidates  GetInitialCandidates(Seed);
3 while Candidates   do
4 D  BestDisjunct(Candidates);
5 if D is a perfect disjunct then
6 return D
7 Candidates  Candidates  Refine(D, Seed);
8 remove D from Candidates;
9 return D

Fig. 9.11. Learning disjuncts

Function Refine(D, Seed)
1 D is a consecutive landmarks (l0, l1, …, ln); // li is in fact SkipTo(li)
2 TopologyRefs  LandmarkRefs  ;
3 for i = 1 to n do // t0 or t1 below may be null
4 for each sequence s = t0 li t1 before the target item in Seed do
5 LandmarkRefs  LandmarkRefs  {(l0, …, li1, t0 li, …, ln)} 
 {(l0, …, li1, x li, …, ln) | x is a wildcard that matches t0}
  {(l0, …, li t1, li+1, …, ln)} 
 {(l0, …, li x, li+1, …, ln) | x is a wildcard that matches t1}
6 for each token t between li1 and li before the target item in Seed do
7 ToplogyRefs  TopologyRefs  {(l0, …, li, t, li+1, …, ln)} 
 {(l0, …, li, x, li+1, …, ln)} | x is a wildcard that matches t}
8 return TopologyRefs  LandmarkRefs

Fig. 9.12. Refining a disjunct to generate more specialized candidates

BestDisjunct () prefer candidates that have:
- more correct matches
- accepts fewer false positives
- fewer wildcards
- longer end-landmarks

Fig. 9.13. Choosing the best disjunct

376 9 Structured Data Extraction: Wrapper Generation

1. Landmark refinement (lines 4-5 in Fig. 9.12): Increase the size of a
landmark li by concatenating a terminal (a token t0 or t1, and its matching
wildcards) at the beginning or at the end of li. If t0 or t1 does not exist, it
will not be considered. We note that each landmark li in the algorithm in
Fig. 9.12 actually represents the SkipTo(li).

2. Topology refinement (lines 6-7 in Fig. 9.12): Increase the number of
landmarks by adding 1-terminal landmarks, i.e., t and its matching
wildcards. Note that l0 is not a landmark, which is used to simplify the
algorithm presentation. It represents the beginning of the Seed example.

Let us go back to our running example. D3 is selected as the best disjunct
(line 4 of Fig. 9.11). Clearly, D3 is not a perfect disjunct. Then, refinement
is carried out. Landmark refinement produces the following candidates:

D5: SkipTo(- <i>)
D6: SkipTo(_Punctuation_ <i>)

Topology refinement produces the 15 candidates in Fig. 9.14. We can
already see that D5, D10, D12, D13, D14, D15, D18 and D21 match
correctly with E1 and E3 and fail to match on E2 and E4. Using the
heuristics in Fig. 9.13, D5 is selected as the final solution as it has longest
last landmark (- <i>). D5 is then returned by LearnDisjunct(). It is
possible that no perfect disjunct can be found after all possible refinements
have been tried. In this case, an imperfect best disjunct will be returned
(line 9 in Fig. 9.11).

Since all the examples are covered, LearnRule() ends and returns the
disjunctive (start) rule “either D1 or D5”, i.e.,

R7: either SkipTo(()
 or SkipTo(- <i>)

In summary, we note the following:

1. The algorithm presented in this section is by no mean the only possible
algorithm. Many variations are possible. Of course, there are also many

D7: SkipTo(205) SkipTo(<i>) D15: SkipTo(_Numeric_) SkipTo(<i>)
D8: SkipTo(Willow) SkipTo(<i>) D16: SkipTo(_Alphabetic_) SkipTo(<i>)
D9: SkipTo(,) SkipTo(<i>) D17: SkipTo(_Punctuation_) SkipTo(<i>)
D10: SkipTo(<i>) SkipTo(<i>) D18: SkipTo(_HtmlTag_) SkipTo(<i>)
D11: SkipTo(Glen) SkipTo(<i>) D19: SkipTo(_Capitalized_) SkipTo(<i>)
D12: SkipTo(1) SkipTo(<i>) D20: SkipTo(_AlphaNum_) SkipTo(<i>)
D13: SkipTo(-) SkipTo(<i>) D21: SkipTo(</i>) SkipTo(<i>)
D14: SkipTo(Phone) SkipTo(<i>)

Fig. 9.14. All 15 topology refinements of D3

9.2 Wrapper Induction 377

other entirely different algorithms for wrapper induction.
2. In our discussion above, we used only the SkipTo() function in

extraction rules. However, in some situations it may not be sufficiently
expressive. Therefore, other functions may be added. For example,
Stalker also has the SkipUntil() function. Its argument is a part of the
target item to be extracted, and is not consumed when the rule is
applied. That is, the rule stops right before its occurrence.

9.2.3 Identifying Informative Examples

One of the important issues in wrapper learning is the manual labeling of
training examples. To ensure accurate learning, a large number of training
examples are needed. To manually label them is labor intensive and time
consuming. The question is: is it possible to automatically select
(unlabelled) examples that are informative for the user to label? Clearly,
examples of the same format are of limited use. Examples that represent
exceptions are informative as they are different from already labeled
examples. Active learning is an approach that helps identify informative
unlabeled examples automatically. Given a set of unlabeled examples U,
the approach works as follows in the wrapper induction context:

1. Randomly select a small subset L of unlabeled examples from U
2. Manually label the examples in L, and U = U  L;
3. Learn a wrapper W based on the labeled set L;
4. Apply W to U to find a set of informative examples L;
5. Stop if L = , otherwise go to step 2.

The key is to find informative examples in step 4. In [27], Muslea et al.
proposed a method, called co-testing, to identify informative examples.

The idea of co-testing is simple. It exploits the fact that there are often
multiple ways of extracting the same item. Thus, the system can learn
different rules, forward and backward rules, to locate the same item. Let
us use learning of start rules as an example. The rules learned in Sect. 9.2.2
are called forward rules because they consume tokens from the beginning
of the example to the end. In a similar way, we can also learn backward
rules that consume tokens from the end of the example to the beginning.

Given an unlabeled example, both the forward rule and backward rule
are applied. If the two rules disagree on the beginning of a target item in
the example, this example is given to the user to label. The intuition behind
is simple. When the two rules agree, the extraction is very likely to be
correct. When the two rules do not agree on the example, one of them must

378 9 Structured Data Extraction: Wrapper Generation

be wrong. By giving the user the example to label, we obtain a labeled
informative training example.

9.2.4 Wrapper Maintenance

Once a wrapper is generated, it is applied to other Web pages that contain
similar data and are formatted in the same ways as the training examples.
This introduces new problems.
1. If the site changes, does the wrapper know the change? This is called the

wrapper verification problem.
2. If the change is correctly detected, how to automatically repair the

wrapper? This is called the wrapper repair problem.

One way to deal with both problems is to learn the characteristic patterns
of the target items, which are then used to monitor the extraction to check
whether the extracted items are correct. If they are incorrect, the same
patterns can be used to locate the correct items assuming that the page
changes are minor formatting changes. This is called re-labeling. After re-
labeling, re-learning is performed to produce a new wrapper. These two
tasks are very difficult because contextual and/or semantic information is
often needed to detect changes and to find the new locations of the target
items. Wrapper maintenance is still an active research area.

9.3. Instance-Based Wrapper Learning

The wrapper induction method discussed in the previous section requires a
set of labeled examples to learn extraction rules. Active learning may be
applied to identify informative examples for labeling to reduce the manual
labeling effort. In this section, we introduce an instance-based learning
approach to wrapper building, which has been implemented by a company
and is in commercial use. This method does not learn extraction rules.
Instead, it extracts target items in a new instance/page by comparing their
prefix and suffix token strings with those of the corresponding items in the
labeled examples. At the beginning, the user needs to label only a single
example, which is then used to identify target items from unlabeled
examples. If some item in an unlabeled example cannot be identified, it is
sent for labeling, which is active learning but with no additional
mechanism. Thus, in this approach the user labels only a minimum number
of training examples. The method described here is based on the IDE
algorithm in [38], which is given in Fig. 9.15. It consists of three steps:

9.3. Instance-Based Wrapper Learning 379

1. A random example p from a set of unlabeled training examples S is
selected for labeling (line 1). The examples here can be a set of detail
pages or a set of data records identified from list pages. We will see in
Sect. 9.8 that data records in list pages can be identified automatically.

2. The user labels/marks the target items in the selected example p (line 2).
The system also stores a sequence of k consecutive tokens right before
each labeled item (called the prefix string of the item) and a sequence of
k consecutive tokens right after the labeled item (called the suffix string
of the item). The prefix and suffix strings of all target items form a
template. Storing the prefix and suffix strings is to avoid keeping the
whole page in memory. The value of k does not affect the extraction
result. If it is too small, the algorithm can always get more tokens from
the original page. In practice, we can give k a large number, say 30, so
that the system does not have to refer back to the original page during
extraction. The variable Templates keeps all templates (line 3).

3. The algorithm then starts to extract items from unlabeled examples (line
4–9) using the function extract() (line 5). For each unlabeled example d,
it compares the stored prefix and suffix strings of each target item with
the token string of d to identify its corresponding item. If some item
from d cannot be identified, d is passed to the user for labeling (line 6)
(which is active learning), i.e., d is an informative example.

Let us use an example to show what a template looks like. For example, in
the page of Fig. 9.1, we are interested in extracting three items from each
product, namely, name, image, and price. The template (Tj) for a labeled
example j is represented with:

 Tj = patname, patimage, patprice

Each pati in Tj consists of a prefix string and a suffix string of the item i.
For example, if the product image is embedded in the following source:

Algorithm IDE(S) // S is the set of unlabeled examples.
1. p  randomSelect(S); // Randomly select a page p from S
2. Tp  labeling(p); // the user labels the page p
3. Templates  Tp; // initialization
4. for each remaining unlabeled example d in S do
5. if (extract(Templates, d)) then
6. Td  labeling(d);
7. insert Td into Templates
8. end-if
9. end-for

Fig. 9.15. The IDE algorithm

380 9 Structured Data Extraction: Wrapper Generation

 … <table><tr><td> </td><td></td> …
then we have (we use k = 3 and regard each HTML tag as a token)

patimg = (img, prefix:<table><tr><td>, suffix:</td><td></td>).
Extract(Templates, d) function: For each unlabeled example d, extract()
tries to use each saved template T ( Templates) to match with the token
string of d to identify every target item in d. If a sequence of prefix (and
respectively suffix) tokens of a target item g in T matches a sequence of
prefix (and suffix) tokens of an item f in d that uniquely identifies f in d, f
is regarded as g’s corresponding item in d. By “uniquely identifies”, we
mean that only item f in d matches g based on their prefix and suffix
strings. An example is given below.

After item f, which corresponds to item g in T, is identified and
extracted from d, we use the token strings of d before f and after f to find
the remaining target items using the same template T. This process continues
until all the corresponding items of those items in T are identified from d.
If the corresponding item of an item in T cannot be uniquely identified
from d, then the extraction using T fails on d. The next template in
Templates is tried. If every template in Templates fails on d, d is sent to the
user for labeling (line 6 of Fig. 9.15). The algorithm is fairly straightforward,
and thus is omitted. See [38] for more details, which also discusses how to
deal with some additional issues, e.g., missing items in a page.

Fig. 9.16 gives an example to show how a target item is uniquely
identified. Assume that 5 tokens <table><tr><td><i> are saved in the
prefix string of item price from a labeled example. Given an unlabeled
example, after scanning through its token string, we obtain the match
situation in Fig. 9.16. That is, we find 4 ’s, three <i> together, and
only one <td><i> together, which can match some prefix tokens of
price. These are shown in four rows below the saved prefix string. The

prefix: <table> <tr> <td> <i> price
  (10)
  <i>(17) (18)
  <td>(23) <i>(24) (25)
  <i>(67) (68)

 1 3 4

Fig. 9.16. The price is found uniquely.

…<td> ……<td> <i> …
 8 9 10 15 16 17 18

… <tr> <td> <i> $25.00 …...
 22 23 24 25

...
 <i>
 65 66 67 68

HTML
source of the

9.4 Automatic Wrapper Generation: Problems 381

number within each “()” is the sequence id of the token (the tag) in the
unlabeled example. “” means no match. The HTML source is given in the
box of Fig. 9.16 with sequence id’s attached. We observe that the
beginning of price is uniquely identified because the sequence of prefix
tokens of price, <td><i>, has only one match. Note that we do not need
to use all the saved tokens in the prefix string of price. This technique is
thus called sufficient match. We see that is not unique because there
are 4 ’s. <i> is not unique because there are 3 matches.

Once the beginning of item price is found, the algorithm tried to locate
the ending of item price in the same way by comparing suffix strings in the
opposite direction. After item price is identified and extracted, the
algorithm goes to identify other items if they are not extracted.

The final set of templates and the extract() function together form a
wrapper, which can be used to extract target items from future examples.

Apart from performing active learning automatically, there are two other
interesting features about IDE. Firstly, there is no pre-specified sequence
of items to be extracted. For example, the order of items in the HTML
source may be: name, price, and image. If at the beginning we can identify
item price uniquely in the unlabeled example, we can then start from price
and search forward to find item image and search backward to find item
name. The final extraction sequence of items may be price, image and
name. Secondly, the method exploits local contexts in extraction. It may
be the case that from the whole page/data record we are unable to identify
a particular item. However, within a local area, it is easy to identify the
item. For instance, in the above example, after identifying item price, we
only need to search for item image in the rest of the input. Even a similar
item appears before price, it will not be considered. Evaluation results in
[38] show that this simple technique works very well.

9.4 Automatic Wrapper Generation: Problems

Wrapper generation using supervised learning has two main shortcomings:
1. It is not suitable for a large number of sites due to the manual labeling

effort. For example, if a shopping site wants to extract all the products
sold on the Web, manual labeling becomes almost an impossible task.

2. Wrapper maintenance is very costly. The Web is a dynamic environment.
Sites change constantly. Since wrapper learning systems mainly rely on
HTML formatting tags, if a site changes its formatting templates, the
existing wrapper for the site will become invalid. As we discussed
earlier, automatic verification and repair are still difficult. Doing them
manually is very costly if the number of sites involved is large.

382 9 Structured Data Extraction: Wrapper Generation

Due to these problems, automatic (or unsupervised) extraction has been
studied by researchers. Automatic extraction is possible because data
records (tuple instances) in a Web site are usually encoded using a very
small number of fixed templates. It is possible to find these templates by
mining repeated patterns in multiple data records. The rest of the chapter
focuses on automatic extraction.

Note that in general we use the term “templates” to refer to hidden
templates employed by Web page designers. We use the term “patterns” to
refer to regular structures that the system has discovered.

9.4.1 Two Extraction Problems

In Sects. 9.1.2 and 9.1.3, we described an abstract model of structured data
on the Web (i.e., nested relations), and a HTML mark-up encoding of the
data model respectively. The general goal of data extraction is to recover
the hidden schema from the HTML mark-up encoded data. In the rest of
the chapter, we focus on two problems, which are really quite similar.

Problem 1: Extraction Based on a Single List Page

Input: A single HTML string S, which contains k non-overlapping
substrings s1, s2, …, sk with each si encoding an instance of a set type.
That is, each si contains a collection Wi of mi ( 2) non-overlapping sub-
substrings encoding mi instances of a tuple type.

Output: k tuple types 1, 2, …, k, and k collections C1, C2, …, Ck of
instances of the tuple types such that for each collection Ci there is a
HTML encoding function enci such that enci: Ci  Wi is a bijection.

We use the example in Fig. 9.1 to explain. The input string S is the full Web
page (only part of it is shown in Fig. 9.1). In this page, there are two
substrings s1 and s2 that encode two set instances, i.e., the two sets of data
records. s1 consists of four encodings (displayed horizontally) enc1(I1),
enc1(I2), enc1(I3), enc1(I4) of four product instances I1, I2, I3, I4 of a tuple
type 1, according to some mark-up encoding function enc1. Similarly, s2
consists of encodings of some other products (displayed vertically). One
important note is that S often contains some other information (not shown
in Fig. 9.1) apart from the encoded data. An algorithm needs to work on the
string S to find each substring and construct the tuple type by generating a
pattern from each substring representing the mark-up encoding function enci.

The pattern may be represented as a regular expression. Data
extraction can be done using the regular expression or the original pattern
as we will see in Sect. 9.11.1.

9.4 Automatic Wrapper Generation: Problems 383

Problem 2: Extraction Based on Multiple Pages

Input: A collection W of k HTML strings, which encodes k instances of
the same type.

Output: A type , and a collection C of instances of type , such that
there is a HTML encoding enc such that enc: C  W is a bijection.

The input consists of a collection of k encodings enc(I1), enc(I2), …,
enc(Ik) of instances I1, I2, …, Ik of a nested type , according to some
mark-up encoding function enc. An algorithm works on the encoded
instances and constructs the type by generating a pattern (the encoding
function enc), which again may be represented as a regular expression and
used to extract data from other pages. Note that, for this problem, the input
may be a set of detail pages (of a tuple type) or list pages (of a set type).

The next few sections describe several techniques to solve the two
problems. As we will see in Sect. 9.10, most techniques for solving
problem 1 can also be used for solving problem 2.

9.4.2 Patterns as Regular Expressions

A regular expression can be naturally used to model the HTML encoded
version of a nested type. Given an alphabet of symbols Σ and a special
token “#text” that is not in Σ, a regular expression over Σ is a string over
Σ  {#text, *, ?, |, (,)} defined as follows:

 The empty string ε and all elements of   {#text} are regular expressions.
 If A and B are regular expressions, then AB, (A|B) and (A)? are regular

expressions, where (A|B) stands for A or B and (A)? stands for (A|ε).
 If A is a regular expression, (A)* is a regular expression, where (A)*

stands for ε or A or AA or ...
We also use (A)+ as a shortcut for A(A)*, which can be used to model the
set type of a list of tuples. (A)? indicates that A is optional. (A|B) represents
a disjunction. If a regular expression does not include (A|B), it is called a
union-free regular expression. Regular expressions are often employed to
represent extraction patterns (or encoding functions). However, extraction
patterns do not have to be regular expressions, as we will see later.

Given a regular expression, a nondeterministic finite-state automaton
can be constructed and employed to match its occurrences in string
sequences representing Web pages. In the process, data items can be
extracted, which are text strings represented by #text.

384 9 Structured Data Extraction: Wrapper Generation

9.5 String Matching and Tree Matching

As we can see from both problems in Sect. 9.4.1, the key is to find the
encoding template from a collection of encoded instances of the same type.
A natural way to do this is to detect repeated patterns from HTML
encoding strings. String matching and tree matching are obvious
techniques for the task. Tree matching is useful because HTML encoding
strings also form nested structures due to their nested HTML tags. Such
nested structures can be modeled as trees, commonly known as DOM (tag)
trees. DOM stands for Document Object Model (http://www.w3.org/DOM/).
Below we describe some string matching and tree matching algorithms.

9.5.1 String Edit Distance

String edit distance (also known as Levenshtein distance) is perhaps the
most widely used string matching/comparison technique. The edit distance
of two strings, s1 and s2, is defined as the minimum number of point
mutations required to change s1 into s2, where a point mutation is one of:
(1) change a character, (2) insert a character, and (3) delete a character.

Assume we are given two strings s1 and s2. The following recurrence
relations define the edit distance, d(s1, s2), of two strings s1 and s2:

d(ε, ε) = 0 // ε represents an empty string
d(s, ε) = d(ε, s) = |s| // |s| is the length of string s
d(s1–+c1, s2–+c2) = min(d(s1–, s2–) + p(c1, c2), d(s1–+c1, s2–) + 1,

 d(s1–, s2–+c2) + 1),

where c1 and c2 are the last characters of s1 (= s1–+c1) and s2 (= s2–+c2)
respectively, and p(c1, c2) = 0 if c1 = c2; p(c1, c2) = 1, otherwise.

The first two rules are obvious. Let us examine the last one. Since
neither string is empty, each has a last character, c1 and c2 respectively. c1
and c2 have to be explained in an edit of s1–+c1 into s2–+c2. If c1 = c2, they
match with no penalty, i.e., p(c1, c2) = 0, and the overall edit distance is
d(s1–, s2–). If c1  c2, then c1 could be changed into c2, giving p(c1, c2) = 1
and an overall cost d(s1–, s2–)+1. Another possibility is to edit s1–+c1 into s2–
and then insert c2, giving d(s1–+c1, s2–)+1. The last possibility is to delete c1
and edit s1– into s2–+c2, giving d(s1–, s2–+c2)+1. There are no other
alternatives. We take the least expensive, i.e., min. of these alternatives.

From the relations, we can see that d(s1, s2) depends only on d(s1, s2)
where s1 is a shorter string than s1, or s2 is a shorter string than s2, or both.
Thus, the dynamic programming technique can be applied to compute
the edit distance of two strings.

9.5 String Matching and Tree Matching 385

We can use a two-dimensional matrix, m[0..|s1|, 0..|s2|], to hold the edit
distances. The low right corner cell m(|s1|, |s2|) will furnish the required
value of the edit distance d(s1, s2). We have

m[0, 0] = 0
m[i, 0] = i, i =1, 2, ..., |s1|
m[0, j] = j, j =1, 2, ..., |s2|
m[i, j] = min(m[i1, j1] + p(s1[i], s2[j]), m[i1, j] + 1, m[i, j1] + 1),

 where i = 1, 2, ..., |s1|, j = 1, 2, ..., |s2|, and p(s1[i], s2[j]) = 0 if
s1[i] = s2[j]; p(s1[i], s2[j]) = 1, otherwise.

Once the edit distance computation is completed, we can find the
alignment of characters that give the final distance. For this, we need to
record which case in the above recursive rule minimizes the distance, and
then trace back the path that corresponds to the best alignment. Note that,
in many cases, the minimal choice is not unique, and different paths could
have been drawn, which indicate alternative optimal alignments.

Example 1: We want to compute the edit distance and find the alignment
of the following two strings:

s1: X G Y X Y X Y X
s2: X Y X Y X Y T X

The edit distance matrix is given in Fig. 9.17. The final edit distance value
is 2, which is the value in the bottom right corner cell. Fig. 9.17 also shows
the trace back path. Notice that a diagonal line means match or change, a
vertical line means insertion, and a horizontal line means deletion. Thus,
the final alignment of our two strings is:

s1: X G Y X Y X Y  X
s2: X  Y X Y X Y T X

Fig. 9.17. The edit distance matrix and back trace path

 s1 X G Y X Y X Y X
s2 0 1 2 3 4 5 6 7 8
X 1 0 1 2 3 4 5 6 7
Y 2 1 1 1 2 3 4 5 6
X 3 2 2 2 1 2 3 4 5
Y 4 3 3 2 2 1 2 3 4
X 5 4 4 3 2 2 1 2 3
Y 6 5 5 4 3 2 2 1 2
T 7 6 6 5 4 3 3 2 2
X 8 7 7 6 5 4 3 3 2

386 9 Structured Data Extraction: Wrapper Generation

The time-complexity of the algorithm is O(|s1||s2|) (to fill the matrix).
The space complexity is also O(|s1||s2|). Back trace takes O(|s1|+|s2|) time.

The normalized edit distance ND(s1, s2) is defined as the edit distance
divided by the mean length of the two strings:

.
2/|)||(|

),(
),(

21

21
21

ss

ssd
ssND


 (1)

Another commonly used denominator is max(|s1|, |s2|).
Finally, in data extraction, “change a character” may be undesirable

(which represents a disjunction in regular expressions). A large distance
may be used to disallow it. We will discuss this issue again in Sect. 9.11.2.

9.5.2 Tree Matching

Like string edit distance, tree edit distance between two trees A and B
(labeled ordered rooted trees) is the cost associated with the minimum set
of operations needed to transform A into B. In the classic formulation, the
set of operations used to define tree edit distance includes, node removal,
node insertion, and node replacement. A cost is assigned to each operation.
Solving the tree edit distance problem is to find a minimum-cost mapping
between two trees. The concept of mapping is formally defined as:

Let X be a tree and let X[i] be the ith node of tree X in a preorder walk of
the tree. A mapping M between a tree A of size n1 and a tree B of size n2 is
a set of ordered pairs (i, j), one from each tree, satisfying the following
conditions for all (i1, j1), (i2, j2)  M:

(1) i1 = i2 iff j1 = j2;
(2) A[i1] is on the left of A[i2] iff B[j1] is on the left B[j2];
(3) A[i1] is an ancestor of A[i2] iff B[j1] is an ancestor of B[j2].

Intuitively, the definition requires that each node appears no more than
once in a mapping and the order among siblings and the hierarchical
relation among nodes are preserved. Fig. 9.18 shows a mapping example.

Several algorithms have been proposed to address the problem of
finding the minimum set of operations (i.e., the one with the minimum
cost) to transform one tree into another. All the formulations have
complexities above quadratic. In [33], a solution based on dynamic
programming is presented with the complexity of O(n1n2h1h2), where n1
and n2 are the sizes of the trees and h1 and h2 are the heights of the trees. In
[9, 35], two improved algorithms are presented, and in [41], it is shown
that if the trees are not ordered, the problem is NP-complete.

9.5 String Matching and Tree Matching 387

Fig. 9.18. A general tree mapping example

In the above general setting, mapping can cross levels, e.g., node a in
tree A and node a in tree B (Fig. 9.18). Replacements are also allowed,
e.g., node b in A and node h in B. We now define a restricted tree mapping
[37], called simple tree matching (STM), in which no node replacement
and no level crossing are allowed. In STM, the aim is to find the maximum
matching between two trees (not the edit distance of two trees). This
restricted model has been found quite effective for Web data extraction.

Let A and B be two trees, and i  A and j  B be two nodes in A and B
respectively. A matching between two trees is defined to be a mapping M
such that, for every pair (i, j)  M where i and j are non-root nodes,
(parent(i), parent(j))  M. A maximum matching is a matching with the
maximum number of pairs.

Let A = RA:A1, …, Ak and B = RB:B1,…, Bn be two trees, where RA and
RB are the roots of A and B, and Ai and Bj are the ith and jth first-level sub-
trees of A and B respectively. Let W(A, B) be the number of pairs in the
maximum matching of trees A and B. If RA and RB contain identical
symbols, the maximum matching between A and B (i.e., W(A, B)) is m(A1,
…, Ak, B1, …, Bn) + 1, where m(A1, …, Ak, B1, …, Bn) is the number
of pairs in the maximum matching of A1, …, Ak and B1, …, Bn. If RA 
RB, W(A, B)) = 0. Formally, W(A, B) is defined as follows:








 ;
otherwise1),...,,,...,(

 if 0
),(

11 nk

BA

BBAAm

RR
BAW

m(, ) = 0 //  represents an empty sub-tree list.
m(s, ) = m(, s) = 0 // s matches any non-empty sub-tree list
m(A1, …, Ak, B1, …, Bn) = max(m(A1, …, Ak-1, B1, …, Bn-1) + W(Ak, Bn),

 m(A1, …, Ak, B1, …, Bn-1),
 m(A1, …, Ak-1, B1, …, Bn)).

This definition of m is similar to that of the string edit distance except
that here we compute the maximum matching rather than the distance and

c

b a

p

c

h e

p

d a d

A B

388 9 Structured Data Extraction: Wrapper Generation

that W(Ak, Bn) needs to be computed recursively since Ak and Bn are sub-
trees. Clearly, the dynamic programming technique is again applicable.

We now give an algorithm for simple tree matching (STM), which
computes W(A, B). The algorithm is also called STM (Fig. 9.19). STM is a
top-down algorithm. It evaluates the similarity by producing the maximum
matching through dynamic programming. The algorithm has the
complexity of O(n1n2), where n1 and n2 are the sizes of trees A and B
respectively.

In line 1, the roots of A and B are compared first. If the roots contain
distinct symbols, then the two trees do not match at all. If the roots contain
identical symbols, then the algorithm recursively finds the maximum
matching between first-level sub-trees of A and B and save it in a W matrix
(line 8). Based on the W matrix, a dynamic programming scheme is
applied to find the number of pairs in a maximum matching between two
trees A and B. We use an example (Fig. 9.20) to explain the algorithm.

To find the maximum matching between trees A and B, their roots (N1
and N15) are compared first. Since N1 and N15 contain identical symbols,
m1,15[4, 2]+1 is returned as the maximum matching value between trees A
and B (line 11). The m1,15 matrix is computed based on the W1,15 matrix.
Each entry in W1,15, e.g., W1,15[i, j], is the maximum matching between the
ith and jth first-level sub-trees of A and B, which is computed recursively
based on its m matrix. For example, W1,15[4, 2] is computed recursively by
building the matrices (E)-(H). All the relevant cells are shaded. The zero
column and row in m matrices are initializations. Note that we use
subscripts for both m and W to indicate the nodes that they are working on.

Algorithm: STM(A, B)
1. if the roots of the two trees A and B contain distinct symbols then
2. return (0)
3. else k  the number of first-level sub-trees of A;
4. n  the number of first-level sub-trees of B;
5. Initialization: m[i, 0]  0 for i = 0, …, k;
 m[0, j]  0 for j = 0, …, n;
6. for i = 1 to k do
7. for j = 1 to n do
8. m[i, j]  max(m[i, j1], m[i1, j], m[i1, j1]+W[i, j]),
 where W[i, j]  STM(Ai, Bj)
9. end-for
10. end-for
11. return (m[k, n]+1)
12. end-if

Fig. 9.19. The simple tree matching (STM) algorithm

9.5 String Matching and Tree Matching 389

Fig. 9.20. (A) Tree A; (B) Tree B; (C) m matrix for the first level sub-trees of N1
and N15; (D) W matrix for the first level sub-trees of N1 and N15; (E)-(H) m
matrixes and W matrixes for the lower level sub-trees.

The normalized simple tree matching NSTM(A, B) is obtained by
dividing the matching score by the mean number of nodes in the two trees:

2/))()((
),(

),(
BnodesAnodes

BASTM
BANSTM


 .

(2)

We may also use max(nodes(A), nodes(B)) as the denominator. nodes(X)
denotes the number of nodes in tree X.

Similar to string edit distance, after matching computation, we can trace
back in the m matrices to find the aligned nodes from the two trees.

e d d e

j

b b c

f

p

c

g

h i

b

p

c

g

h

d e

 0 1 (N16) 2 (N16-N17)
0 0 0 0

1 (N2) 0 3 3
2 (N2-N3) 0 3 5
3 (N2-N4) 0 3 5
4 (N2-N5) 0 3 6

 1 (N16) 2 (N17)
1 (N2) 3 0
2 (N3) 0 2
3 (N4) 2 0
4 (N5) 0 3

 0 1 (N20) 2 (N20-N21)
0 0 0 0

1 (N11) 0 2 2

 1(N20) 2(N21)
1 (N11) 2 0

 1 (N22)
1 (N12) 1
2 (N13) 0
3 (N14) 0

(C) m1,15 (D) W1,15

(E) m5,17

(G) m11,20 (H) W11,20

(F) W5,17

(A) (B)
N1 N15

N2 N3 N4 N5

 N6 N7 N8 N9 N10

N11

N12 N13 N14

 N18 N19 N20 N21

N22

N16 N17

f

 0 1 (N22)
0 0 0

1 (N12) 0 1
2 (N12-N13) 0 1
3 (N12-N14) 0 1

390 9 Structured Data Extraction: Wrapper Generation

9.6 Multiple Alignment

In order to find repeated patterns from HTML strings based on string edit
distance or tree matching, we need alignments of strings and trees. We
have discussed how to obtain the alignment of two strings or trees. However,
a Web page usually contains more than two data records, thus more than
two strings or trees need to be aligned. Producing a global alignment of all
the strings or trees is crucial. The task is called multiple alignment.

In [6], Carrillo and Lipman proposed an optimal multiple alignment
based on multidimensional dynamic programming. However, its time
complexity is exponential, and is thus not suitable for practical use. Many
heuristic methods exist. We describe two of them: the center star method
and the partial tree alignment method in [40].

9.6.1 Center Star Method

This is a classic technique [14]. It is commonly used for multiple string
alignments, but can be adopted for trees. The method is applied to data
extraction based on alignments of HTML strings in [8]. Let the set of
strings to be aligned be S. In the method, a string sc that minimizes

 Ss ic
i

ssd),((3)

is first selected as the center string. d(sc, si) is the distance of two strings.
The algorithm then iteratively computes the alignment of rest of the strings
with sc. Spaces are added when needed. The algorithm is in Fig. 9.21.

CenterStar(S)
1. choose the center star sc using Equation (3);
2. initialize the multiple sequence alignment M that contains only sc;
4. for each s in S-{sc} do
5. let c* be the aligned version of sc in M;
6. let s and c* be the optimally aligned strings of s and c*;
7. add aligned strings s and c* into the multiple alignment M;
8. add spaces to each string in M, except, s and c*, at locations where new

spaces are added to c*
9. endfor
10. return multiple string alignment M

Fig. 9.21. The center star algorithm

Example 2: We have three strings, i.e., S = {ABC, XBC, XAB}. ABC is
selected as the center string sc. Let us align the other strings with ABC.

9.6 Multiple Alignment 391

Iteration 1: Align c* (= sc) with s =XBC:
 c* : A B C
 | |
 s : X B C
 Update M: A B C  A B C
 X B C
Iteration 2: Align c* with s = XAB:
 c* :  A B C
 | |
 s : X A B 
 Update M: A B C   A B C
 X B C  X B C
 X A B 

Assume there are k strings in S and all strings have length n, finding the
center takes O(k2n2) time and the iterative pair-wise alignment takes O(kn2)
time. Thus, the overall time complexity is O(k2n2).

For our data extraction task, this method has two shortcomings:
1. the algorithm runs slowly for pages containing many data records and/or

data records containing many tags (i.e., long strings) because finding the
center string needs O(k2n2) time.

2. if the center string (or tree) does not have a particular data item, other
data records that contain the same data item may not be aligned
properly. For example, the letter X’s in the last two strings (in bold) are
not aligned in the final result, but they should.

Let us discuss the second point further. As we mentioned in Sect. 9.5.1,
giving the cost of 1 for “changing a letter” in edit distance is problematic
(e.g., A and X in the first and second strings in the final result) because of
optional data items in data records. The problem can be partially dealt with
by disallowing “changing a letter” (e.g., giving it a very large cost).
However, this introduces another problem. For example, if we align only
ABC and XBC, it is not clear which of the following alignment is better.
 (1) A – B C (2) – A B C
 – X B C X – B C

If we also consider the string XAB, then (2) is better. However, the
center star method does not have this global view. The partial tree
alignment algorithm described below deals with both problems nicely.

9.6.2 Partial Tree Alignment

This method is proposed in [40] for multiple tree alignment in the context
of data extraction. It can also be used for aligning multiple strings. For

392 9 Structured Data Extraction: Wrapper Generation

simplicity, we describe the method in the context of trees. The main idea is
as follows: The algorithm aligns multiple trees by progressively growing a
seed tree. The seed tree, denoted by Ts, is initially picked to be the tree
with the maximum number of data fields, which is similar to the center
string but without the O(k2n2) pair-wise tree matching to choose it. The
reason for choosing this seed tree is clear as it is more likely for this tree to
have a good alignment with data fields in other data records. Then, for
each Ti (i ≠ s), the algorithm finds for each node in Ti a matching node in
Ts. If no match can be found for a node vi, then the algorithm attempts to
expand the seed tree by inserting vi into Ts. The expanded seed tree Ts is
then used in subsequent matching. The insertion is done only if a position
for vi can be uniquely determined in Ts. Otherwise, it is left unmatched.
Thus the alignment is partial. It represents a least commitment approach.
Early uncertain commitments can result in undesirable effects for later
matches. Note that although the method was designed originally for
aligning multiple trees, it can also be adapted for aligning multiple strings.

Partial Alignment of Two Trees

Before presenting the full algorithm for aligning multiple trees, let us first
look at the partial alignment of two trees. As indicated above, after Ts and
Ti are matched, some nodes in Ti can be aligned with their corresponding
nodes of Ts because they match one another. For those nodes in Ti that are
not matched, we want to insert them into Ts as they may contain optional
data items. There are two possible situations when inserting a new node vi
from Ti into Ts, depending on whether a location in Ts can be uniquely
determined to insert vi. Instead of considering a single node vi, we can
consider each set of unmatched consecutive sibling nodes vj…vm from Ti
together. Without loss of generality, we assume that the parent of vj…vm
has a match in Ts and we want to insert vj…vm into Ts under the same parent
node. We only insert vj…vm into Ts if a position for inserting vj…vm can be
uniquely determined in Ts. Otherwise, they will not be inserted into Ts and
left unaligned. The location for inserting vj…vm can be uniquely decided:

1. If vj…vm have two neighboring siblings in Ti, one on the right and one
on the left, that are matched with two consecutive siblings in Ts. Fig.
9.22(A) shows such a situation, which gives one part of Ts and one part
of Ti. We can see that node c in Ti can be inserted into Ts between node
b and node e in Ts because node b and node e in Ts and Ti match. The
new (extended) Ts is also shown in Fig. 9.22(A). We note that nodes a,
b, c and e may also have their own children. We did not draw them to
save space. This applies to all the cases below.

9.6 Multiple Alignment 393

2. If vj…vm has only one left neighboring sibling x in Ti and x matches the
right most node x in Ts, then vj…vm can be inserted after node x in Ts.
Fig. 9.22(B) illustrates this case.

3. If vj…vm has only one right neighboring sibling x in Ti and it matches
the left most node x in Ts, then vj…vm can be inserted before node x in
Ts. This case is similar to the second case above.

Otherwise, we cannot uniquely decide a location for unmatched nodes in Ti
to be inserted into Ts. This is shown in Fig. 9.22(C). The unmatched node x
in Ti could be inserted into Ts in two positions, between nodes a and b, or
between node b and e in Ts. In this situation, we will not insert it into Ts.

Fig. 9.22. Expand the seed: (A) and (B) unique insertion; (C) insertion ambiguity

Partial Alignment of Multiple Trees

Fig. 9.23 gives the full algorithm for multiple tree alignment based on
partial alignment of two trees. S is the set of input trees. We use a simple
example in Fig. 9.24 to explain the algorithm. S has three example trees.

Lines 1–2 (Fig. 9.23) find the tree with the most data items. It is used as
the seed tree Ts. In Fig. 9.24, the seed tree is the first tree (we omitted
many nodes on the left of T1). Line 3 initializes R, which is used to store
those trees that are not completely aligned with Ts in each iteration. Line 4
starts the while loop to align every other tree against Ts. Line 5 picks the
next unaligned tree, and line 6 does the tree matching. Line 7 finds all the
matched pairs by tracing the matrix results of line 6. This function is
similar to aligning two strings using edit distance. In Fig. 9.24, Ts and T2

p Ts Ti

(C)

p

a b e

(A)

c e b

c e

p

b

New Ts

a

a

(B)

b e f e g

p p Ts Ti

f e g

p

b

New Ts

a

e a b x

p p Ts Ti

a e

394 9 Structured Data Extraction: Wrapper Generation

produce one match, node b. Nodes w, c, k and g are not matched to Ts. Lines 8
and 9 attempt to insert the unmatched nodes into Ts. This is the partial tree
alignment discussed above. In Fig. 9.24, none of the nodes w, c, k and g in
T2 can be inserted into Ts because no unique location can be found. Thus, it
will not pass the if-statement (InsertIntoSeed() returns false in line 9 of
Fig. 9.23). Lines 13–14 inserts T2 into R, which is a list of trees that need
to be re-matched since some data items are not aligned and not inserted
into Ts. In Fig. 9.24, when matching T3 with Ts in the next iteration, all
unmatched nodes c, h and k can be inserted into Ts (line 9). Since there are
some insertions, we re-match those trees in R. Line 10 and line 11 put the
trees in R into S and reinitializes R. T3 will not be inserted into R (line 13).

In Fig. 9.24, T2 is the only tree in R, which will be matched to the new
Ts in the next round. Now, every node in T2 can be matched or inserted,
and the process completes. Line 18 of Fig. 9.23 outputs the data items
from each tree according to the alignment. Note that if there are still
un-matched nodes with data after the algorithm completes (e.g., R ≠
), each un-matched data will occupy a single column by itself. Table 1
shows the data table for the trees in Fig. 9.24. We use “1” to indicate a data
item.

The complexity of the algorithm is O(k2n2), where k is the number of
trees in S and n is the size of each tree (we assume that all the trees are of
similar size). However, as reported in [40], in practice, the algorithm

Algorithm PartialTreeAlignment(S)
1. Sort trees in S in descending order of the number of unaligned data items;
2. Ts  the first tree (which is the largest) and delete it from S;
3. R  ;
4. while (S ≠ ) do
5. Ti  select and delete next tree from S; // follow the sorted order
6. STM(Ts, Ti); // tree matching
7. AlignTrees(Ts, Ti); // based on the result from line 6
8. if Ti is not completely aligned with Ts then
9. if InsertIntoSeed(Ts, Ti) then // True: some insertions are done
10. S  S  R;
11. R  
12 endif;
13. if there are still unaligned items in Ti that are not inserted into Ts then
14. R  R  {Ti}
15. endif;
16. endif;
17. endwhile;
18. Output data fields from each Ti to a data table based on the alignment results.

Fig. 9.23. The partial tree alignment algorithm

almost always goes through S only once (i.e., R = ).

9.6 Multiple Alignment 395

Fig. 9.24. Iterative tree alignment with two iterations

Table 1. Final data table (“1” indicates a data item)

 … x b w c d h k g
T1 … 1 1 1
T2 1 1 1 1 1
T3 1 1 1 1 1

In fact, to make the algorithm complete, a recursive call should be added
after line 17 in Fig. 9.23 to handle the case when R ≠ , i.e., to further
align only those trees in R. The following three lines can be added:

18. if R   then
19. PartialTreeAlignment(R)
20. endif

This takes care of the situation where some items are not aligned and
not inserted. However, it is shown in [40] that this part is usually not
needed for data extraction.

We make two remarks about this complete algorithm. First, the
recursion will terminate even if no alignment and/or no insertion is made

d x … b

p

c k g w

p

b d h k c

p

b

d x … b

p

k c x … b

p

d h

c k g w

p

b

wx… b

p

c d h k

S  R.
R contains only T2

No node inserted

c, h, and k are inserted

Ts = T1 T2 T3

T2

g

Ts

New Ts

Initial set S

396 9 Structured Data Extraction: Wrapper Generation

to the seed tree because the seed tree is deleted in each recursion and thus
R becomes smaller and smaller. Second, the algorithm can found multiple
templates in the data. The seed tree from each recursion represents a
different template.

9.7 Building DOM Trees

DOM (Document Object Model) tree building from input pages is a
necessary step for many data extraction algorithms. We describe two
methods for building DOM trees, which are also commonly called tag
trees (we will use them interchangeably in this chapter).

Using Tags Alone: Most HTML tags work in pairs. Each pair consists of
an open tag and a close tag (indicated by < > and </> respectively). Within
each corresponding tag-pair, there can be other pairs of tags, resulting in a
nested structure. Building a DOM tree from a page using its HTML code is
thus natural. In the tree, each pair of tags is a node, and the nested pairs of
tags within it are the children of the node. Two tasks need to be performed:

1. HTML code cleaning: Some tags do not require close tags (e.g., ,
<hr> and <p>) although they have close tags. Hence, additional close
tags should be inserted to ensure all tags are balanced. Ill-formatted tags
also need to be fixed. Such error tags are usually close tags that cross
different nested blocks, e.g., <tr> … <td> … </tr> … </td>, which can
be hard to fix if multiple levels of nesting exist. There are open source
programs that can be used to clean up HTML pages. One popular
program is called tidy (available at http://tidy.sourceforge. net/).

2. Tree building: We can follow the nested blocks of the HTML tags in the
page to build the DOM tree. It is fairly straightforward. We will not
discuss it further.

This method works for most pages. However, for some ill-formatted tags,
even the tidy program cannot fix. Then, the constructed DOM trees may be
wrong, which makes it difficult for subsequent data extraction.

Using Tags and Visual Cues: Instead of analyzing the HTML code to
fix errors, rendering or visual information (i.e., the locations on the screen
at which tags are rendered) can be used to infer the structural relationship
among tags and to construct a DOM tree. This method leads to more
robust tree construction due to the high error tolerance of the rendering
engines of Web browsers (e.g., Internet Explorer). As long as the browser
is able to render a page correctly, its tag tree can be built correctly.

9.8 Extraction Based on a Single List Page: Flat Data Records 397

In a Web browser, each HTML element (consisting of an open tag,
optional attributes, optional embedded HTML content, and a close tag that
may be omitted) is rendered as a rectangle. The visual information can be
obtained after the HTML code is rendered by a Web browser. A DOM tree
can then be constructed based on the nested rectangles (resulted from
nested tags). The details are as follows:

1. Find the four boundaries of the rectangle of each HTML element by
calling the rendering engine of a browser, e.g., Internet Explorer.

2. Follow the sequence of open tags and perform containment checks to
build the tree. Containment check means checking if one rectangle is
contained in another.

Let us use an example to illustrate the process. Assume we have the
HTML code on the left of Fig. 9.25. However, there are three errors in the
code. The close tag </td> for line 3 is put after the open tag for line 4.
Also, the close tags </tr> in line 5 and </td> in line 7 are missing. However,
this HTML segment can be rendered correctly in a browser, with the
boundary coordinates for each HTML element shown in the middle of Fig.
9.25. Using this visual information, it is easy to build the tree on the right.

Fig. 9.25. A HTML code segment, boundary coordinates and the resulting tree

9.8 Extraction Based on a Single List Page: Flat Data
Records

We are now ready to perform the data extraction task. In this and the next
sections, we study the first extraction problem in Sect. 9.4.1, i.e., extraction
based on a single list page. This section focuses on a simpler case, i.e., a
list (a data region) containing only flat data records (no nesting). We
assume that the DOM tree has been built for the page. In Sect. 9.10, we

1 <table>
2 <tr>
3 <td> data1 <td>
4 </td>data2 </td>
5 <tr>
6 <td> data3 </td>
7 <td> data4
8 </tr>
9 </table>

left right top bottom

100 300 200 400
100 300 200 300
100 200 200 300
200 300 200 300
100 300 300 400
100 200 300 400
200 300 300 400

table

tr tr

td td td td

398 9 Structured Data Extraction: Wrapper Generation

will study the second extraction problem based on multiple input pages.
The techniques studied in this section are based on the work in [24, 40].

Given a list page containing multiple lists and each list contains multiple
data records (at least two), the following tasks are performed:

1. Identify each list (also called a data region), i.e., mine all data regions,
2. Segment data records in each list or data region, and
3. Align data items in the data records to produce a data table for each data

region and also a regular expression pattern.

9.8.1 Two Observations about Data Records

Data records in each list (or data region) are encoded using the same
HTML mark-up encoding. Finding the data records and its hidden schema
means to find repeated patterns and align them. String or tree
matching/comparison are natural techniques. The problem, however, is the
efficiency because a data record can start from anywhere in a page and has
any length. It is prohibitive to try all possibilities. If all data records have
exactly the same tag string, then the problem is easier. However, in
practice, a set of data records typically does not have exactly the same tag
string or data items due to missing or optional items (see Fig. 9.26). The
two important observations below help to solve the problem, which are
based on the DOM tree structure [24].

Observation 1: A group of data records that contains descriptions of a set
of similar objects is typically presented in a contiguous region of a page
and is formatted using similar HTML tags. Such a region represents a
list or a data region. For example, in Fig. 9.26 two books are presented
in one contiguous region.

Observation 2: A list of data records in a region is formed by some child
sub-trees of the same parent node. It is unlikely that a data record starts
in the middle of a child sub-tree and ends in the middle of another child
sub-tree. Instead, it starts from the beginning of a child sub-tree and ends
at the end of the same or a later child sub-tree.

For example, Fig. 9.27 shows the DOM tree of the page in Fig. 9.26
(with some parts omitted). In this tree, each data record is wrapped in
five TR nodes with their sub-trees under the same parent TBODY. The
two data records are in the two dash-lined boxes. It is unlikely that a data
record starts from TD* and ends at TD# (Fig. 9.27).

The second observation makes it possible to design an efficient
algorithm to identify data records because it limits the tags from which a
data record may start and end in a DOM tree.

9.8 Extraction Based on a Single List Page: Flat Data Records 399

Fig. 9.27. The DOM tree of the page segment in Fig. 9.26

9.8.2 Mining Data Regions

This first step mines every data region in a Web page that contains a list of
data records (a set instance). Finding data regions (or individual data
records in them) directly is, however, hard. We first mine generalized
nodes (defined below). A sequence of adjacent generalized nodes forms a

Fig. 9.26. An example of a page segment

HTML

HEAD
BODY

TR
 |
TD

TD TD TD TD

TR TR
 |
TD

TR TR TR
|

 TD

TR
 |
TD

TR
 |
TD

TR
 |
TD

TABLE P

TR

TD* TD TD TD

TD TD TD# TD

TABLE

TBODY

data
record 1

data
record 2

400 9 Structured Data Extraction: Wrapper Generation

data region. From each data region, we identify the actual data records
(discussed in Sect. 9.8.3). Below, we define generalized nodes and data
regions using the DOM (tag) tree:

Definition: A generalized node (a node combination) of length r consists
of r (r  1) nodes in the DOM tree with the following two properties:

 (1) the nodes all have the same parent;
 (2) the nodes are adjacent.

We introduce the generalized node to capture the situation that a data
record is contained in several sibling HTML tag nodes rather than one. For
example, in Fig. 9.27, we see that each notebook is contained in five table
rows (or five TR nodes). We call each node in the HTML tag tree a tag
node to distinguish it from a generalized node.

Definition: A data region is a collection of two or more generalized
nodes with the following properties:
(1) the generalized nodes all have the same parent;
(2) the generalized nodes all have the same length;
(3) the generalized nodes are all adjacent;
(4) the similarity between adjacent generalized nodes is greater than a

fixed threshold.

For example, in Fig. 9.27, we can form two generalized nodes. The first
one consists of the first five children TR nodes of TBODY, and the second
one consists of the next five children TR nodes of TBODY. We should
note that although the generalized nodes in a data region have the same
length (the same number of children nodes of a parent node in the tag tree),
their lower level nodes in their sub-trees can be quite different. Thus, they
can capture a wide variety of regularly structured objects. We also note
that a generalized node may not represent a final data record (see Sect.
9.8.3), but will be used to find the final data records.

To further explain different kinds of generalized nodes and data regions,
we make use of an artificial DOM/tag tree in Fig. 9.28. For notational
convenience, we do not use actual HTML tag names but ID numbers to
denote tag nodes in a tree. The shaded areas are generalized nodes. Nodes
5 and 6 are generalized nodes of length 1 and they together define the data
region labeled 1 if the similarity condition (4) is satisfied. Nodes 8, 9 and
10 are also generalized nodes of length 1 and they together define the data
region labeled 2 if the similarity condition (4) is satisfied. The pairs of
nodes (14, 15), (16, 17) and (18, 19) are generalized nodes of length 2.
They together define the data region labeled 3 if the similarity condition
(4) is satisfied. It should be emphasized that a data region includes the sub-
trees of the component nodes, not just the component nodes alone.

9.8 Extraction Based on a Single List Page: Flat Data Records 401

Fig. 9.28. An illustration of generalized nodes and data regions

Comparing Generalized Nodes

In order to find each data region in a Web page, the mining algorithm
needs to find the following: (1) Where does the first generalized node of a
data region start? For example, in Region 2 of Fig. 9.28, it starts at node 8.
(2) How many tag nodes or components does a generalized node in each
data region have? For example, in Region 2 of Fig. 9.28, each generalized
node has one tag node (or one component).

Let the maximum number of tag nodes that a generalized node can have
be K, which is normally a small number (< 10). In order to answer (1), we
can try to find a data region starting from each node sequentially. To
answer (2), we can try one node, two node combination, …, K node
combination. That is, we start from each node and perform all 1-node
comparisons, all 2-node comparisons, and so on (see the example below).
We then use the comparison results to identify each data region.

The number of comparisons is actually not very large because:

 Due to the two observations in Sect. 9.8.1, we only need to perform
comparisons among the children nodes of a parent node. For example,
in Fig. 9.28, we do not compare node 8 with node 13.

 Some comparisons done for earlier nodes are the same as for later nodes
(see the example below).

We use Fig. 9.29 to illustrate the comparison. There are 10 nodes below
the parent node p. We start from each node and perform string (or tree)
comparison of all possible combinations of component nodes. Let the
maximum number of components that a generalized node can have be 3.

1

3

10

2

7 8 9

Region 2

5 6

Region 1

4

11 12

14 15 20 16 17 19 18 13

Region 3

402 9 Structured Data Extraction: Wrapper Generation

Fig. 9.29. Combination and comparison

Start from node 1: We compute the following string or tree comparisons.

 (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10)
 (1-2, 3-4), (3-4, 5-6), (5-6, 7-8), (7-8, 9-10)
 (1-2-3, 4-5-6), (4-5-6, 7-8-9).
(1, 2) means that the tag string of node 1 is compared with the tag string
of node 2. The tag string of a node includes all the tags of the sub-tree of
the node. (1-2, 3-4) means that the combined tag string of nodes 1 and 2
is compared with the combined tag string of nodes 3 and 4.

Start from node 2: We only compute:

 (2-3, 4-5), (4-5, 6-7), (6-7, 8-9)
 (2-3-4, 5-6-7), (5-6-7, 8-9-10).

We do not need to do 1-node comparisons because they have been done
when we started from node 1 above.

Start from node 3: We only need to compute:

 (3-4-5, 6-7-8).

Again, we do not need to do 1-node comparisons. Also, 2-node comparisons
are not necessary as they were done when we started at node 1.

We do not need to start from any other node after node 3 because all the
computations have been done.

The Overall Algorithm

The overall algorithm (called MDR) is given in Fig. 9.30. It traverses the
tag tree from the root downward in a depth-first fashion (lines 5 and 6).
Node is any tree node. K is the maximum number of tag nodes in a
generalized node (10 is sufficient).  is the similarity threshold. The node
comparison can be done either using string edit distance or tree matching
(e.g., STM). The similarity threshold can be set empirically.

Line 1 says that the algorithm will not search for data regions if the
depth of the sub-tree at Node is 2 or 1 as it is unlikely that a data region is
formed with only a single level of tag(s).

2 1 3 4 6 5 7 8 9 10

p

9.8 Extraction Based on a Single List Page: Flat Data Records 403

At each internal node, the function CombComp() (line 2) performs
string (tree) comparisons of various combinations of the children sub-trees,
which have been discussed above. The function IdenDRs() (line 3) uses
the comparison results to find similar children node combinations (using
the similarity threshold ) to obtain generalized nodes and data regions
(DataRegions) under Node (i.e., among the children of Node). That is, it
decides which combinations represent generalized nodes and where the
beginning and end are for each data region. DataRegions consists of a set
of data regions, and each data region contains a list of tag nodes organized
as generalized nodes of the region. IdenDRs() is discussed further below.
Line 4 says that if some nodes are not covered by discovered data regions,
the algorithm will go down the tree further from these nodes to see
whether they contain data regions (lines 5 and 6).

We note that a generalized node may not be a data record, but may
contain more than one data record. Fig. 9.31 illustrates the point. This data
region has eight data records. Each row has two. However, each row will
be reported as a generalized node because rows 14 are similar. We will
explain how to find data records from each generalized node shortly.

Fig. 9.31. A possible configuration of data records

 Algorithm MDR(Node, K, )
 1 if TreeDepth(Node) >= 3 then
 2 CombComp(Node.Children, K);
 3 DataRegions  IdenDRs(Node, K, );
 4 if (UncoveredNodes  Node.Children  UDRDataRegionsDR) ≠  then
 5 for each ChildNode  UncoveredNodes do
 6 DataRegions  DataRegions  MDR(ChildNode, K, );
 7 return DataRegions
 8 else return 

Fig. 9.30. The MDR algorithm

row 1

row 2

row 3

row 4

1 2

3 4

5 6

8 7

404 9 Structured Data Extraction: Wrapper Generation

Let us come back to the function IdenDRs(), which is not hard to design
and it is omitted. Interested readers can refer to [24]. We only describe two
issues that the function needs to consider.

1. It is clear from Fig. 9.28 that there may be several data regions under a
single parent node Node. Generalized nodes in different data regions
may have different number of tag node components.

2. A property about similar strings (or trees) is that if a set of strings
(trees), s1, s2, s3, …., sn, is similar to one another, then a combination of
any number of them is also similar to another combination of them of
the same number. IdenDRs should only report generalized nodes of the
smallest length that cover a data region. For Fig. 9.31, it only reports
each row as a generalized node rather than a combination of two rows
(rows 1-2, and rows 3-4).

The computation of the algorithm is dominated by string (or tree)
comparison. Assume that the total number of nodes in the tag tree is N, the
number of comparisons is in the order of O(NK2). Since K is normally very
small, the computation requirement of the algorithm is low. Visual
information (see Sect. 9.8.5) and simple heuristics can be applied to reduce
the number of string (tree) comparisons substantially.

9.8.3 Identifying Data Records in Data Regions

As we have discussed above, a generalized node may consist of multiple
data records. Fig. 9.31 shows an example, where each row is a generalized
node that contains two data records. To find data records from each
generalized node in a data region, the following observation is useful:

 If a generalized node contains two or more data records, these data
records must be similar in terms of their tag strings.

This is clear because we assume that a data region contains descriptions of
similar data records. Identifying data records from each generalized node
in a data region is relatively easy because they are nodes (together with
their sub-trees) at the same level as the generalized node, or nodes at a
lower level of the DOM/tag tree. This can be done in two steps:

1. Produce one rooted tree for each generalized node: An artificial root
node is created first, and all the components (which are sub-trees) of the
generalized node are then put as its children.

2. Call the MDR algorithm using the tree built in step 1: Due to the
observation above, this step will find the data records if exist. Otherwise,
the generalized node is a data record. Two issues needs to be considered.

7

9.8 Extraction Based on a Single List Page: Flat Data Records 405

 The discovered data records should cover all the data items in the
original generalized node.

 Each data record should not be too small, e.g., a single number or a
piece of text, which is likely to be an entry in a spreadsheet table.

Further details can be found in [24, 39], where handling non-contiguous
data records is also discussed. For example, two books are described in
two table rows. One row lists the names of the two books in two cells, and
the next row lists the other pieces of information about the books also in
two cells. This results in the following sequence in the HTML code: name
1, name 2, description 1, description 2.

9.8.4 Data Item Alignment and Extraction

Once data records in each data region are discovered, they are aligned to
produce an extraction pattern that can be used to extract data from the
current page and also other pages that use the same encoding template. We
use the partial tree alignment algorithm to perform the task in two steps:
1. Produce a rooted tree for each data record: An artificial root node is

created first. The sub-trees of the data record are then put as its children.
2. Align the resulting trees: The trees of all the data records in each data

region are aligned using the partial tree alignment method in Sect. 9.6.2.
After alignments are done, the final seed tree can be used as the
extraction pattern, or be turned into a regular expression.

Conflict Resolution: In tree matching and alignment, it is possible that
multiple matches can give the same maximum score, but only one match is
correct. Then, we need to decide which one. For example, in Fig. 9.32,
node c in tree A can match either the first or the last node c in tree B.

Fig. 9.32. Two trees with more than one possible match: which is correct?

To deal with this problem, we can use data content similarity. Data
items that share some common substrings are more likely to match. In
many cases, a data item contains both the attribute name and the attribute
value. For example, “shopping in 24 hours” and “shopping within a week”.

g c

b a

p

c

b a

p

c

B A

406 9 Structured Data Extraction: Wrapper Generation

The data content similarity can in fact be considered in the simple tree
matching (STM) algorithm in Fig. 9.19 with minor changes to line 1 and
line 11. Data contents (data items) should be included as leaves of the
DOM trees. When data items are matched, their match score is computed.
In [39], the longest common subsequence (LCS) is used, but cosine
similarity should work too. Let q be the number of words in the LCS of the
two data items, and m be the maximal number of words contained in them.
Their matching score is computed with q/m.

9.8.5 Making Use of Visual Information

It is quite clear that many visual features that are designed to help people
locate and understand information in a Web page can help data extraction.
We have already shown that visual cues can be used to construct DOM
trees. In fact, they can be exploited everywhere. Here are some examples:

 Reduce the number of string or tree comparisons. If two sub-trees are
visually too different, they do not need to be compared.

 Confirm the boundary of data records using the space gap between data
records. It is usually the case that gaps between data records are larger
than gaps between items within a data record.

 Determine item alignment. Visual alignment (left, right or center) of
items can help determine whether two data items should match. Relative
positions of the data items in each data record are very helpful too.

 Identify data records based on their contour shapes. This method was
exploited to segment data records from search engine results [42].

9.8.6 Some Other Techniques

Both string comparison and tree comparison based methods have been
used to solve the data extraction problem. The task described in Sect. 9.8.2
can be done either based on strings or based on trees. A pure string based
method called IEPAD is proposed in [8]. It finds patterns from the HTML
tag string and then uses the patterns to extract data. The center star method
is used to align multiple strings. A more sophisticated string based method,
which also deals with nested records, is proposed in [34]. The main
problem with string based methods is that they can find many patterns and
it is hard to determine which one is correct. Some patterns may even cross
boundaries of data records. In [8], the user needs to choose the right
pattern for extraction. In [34], multiple pages containing similar data
records and other methods are used to choose the right pattern. This

9.9 Extraction Based on a Single List Page: Nested Data Records 407

problem is not a major issue for tree based methods because of the tree
structures, which eliminate most alternatives. The observations made in
Sect. 9.8.1 were also very helpful. In [22], a method based on constraints
and the EM algorithm is proposed, which needs to use some information
from detail pages to segment data records. Note that a data record usually
(not always) has a link to its detail page, which contains the detail
description of the object (e.g., a product) represented by the data record.

Visual information is extensively used in [42] to segment snippets (data
records) of returned pages from search engines. It uses the contour shape
on the left of each snippet, distance from the left boundary of the page, and
also the type of each line in the snippet (e.g., text line, link line, empty
line, etc.) to determine the similarity of candidate data records. In [26], a
set of visual signals is identified and clustered to help find data records.

Several researchers also explored the idea of using some simple domain
knowledge to help identify data records [36], e.g., a key piece of data or
information that appears in every data record. In [32], Song et al. extended
this idea and also MDR by proposing an automated method to identify a
sub-tree (called the anchor tree) that exists in every data record. Data
records are then identified by looking for other elements around the
anchors.

9.9 Extraction Based on a Single List Page: Nested Data
Records

The problem with the method in Sect. 9.8 is that it is not suitable for nested
data records, i.e., data records containing nested lists. Since the number of
elements in a list of each data record can be different, using a fixed
threshold to determine the similarity of data records will not work.

The problem, however, can be dealt with as follows. Instead of
traversing the DOM tree top down, we can traverse it post-order. This
ensures that nested lists at lower levels are found first based on repeated
patterns before going to higher levels. When a nested list is found, its
records are collapsed to produce a single pattern which replaces the list of
data records. When comparisons are made at a higher level, the algorithm
only sees the pattern. Thus it is treated as a flat data record. This solves the
fixed threshold problem above. We introduce an algorithm below, which is
based on the NET system in [25]. A running example is also given to
illustrate the process.

The NET algorithm is given in Fig. 9.33. It is basically a post-order tree
traversal algorithm. The observations in Sect. 9.8.1 are still applicable
here. The function TraverseAndMatch() performs the post-order traversal.

408 9 Structured Data Extraction: Wrapper Generation

During the process, each nested list is collapsed. The function
PutDataInTables() (line 3) outputs the extracted data to the user in
relational tables (a page may have multiple data regions, and data in each
region are put in a separate table). Line 3 can be easily done if the function
TraverseAndMatch() saves the nodes whose children form data records.

Line 1 of TraverseAndMatch() says that the algorithm will not search
for data records if the depth of the sub-tree from Node is 2 or 1 as it is
unlikely that a data record is formed with only a single level of tag(s). This
parameter can be changed. The Match() function performs tree matching
on child sub-trees of Node and pattern generation.  is the threshold for a
match of two trees that are considered sufficiently similar.

Algorithm NET(Root, )
1 TraverseAndMatch(Root, );
2 for each top level node Node whose children have aligned data records do
3 PutDataInTables(Node);
4 endfor

Function TraverseAndMatch (Node, )
1 if Depth(Node)  3 then
2 for each Child  Node.Children do
3 TraverseAndMatch(Child, );
4 endfor
5 Match(Node, );
6 endif

Fig. 9.33. The NET algorithm

Function Match(Node, )
1 Children  Node.Children;
2 while Children   do
3 ChildFirst  select and remove the first child from Children;
4 for each ChildR in Children do
5 if TreeMatch(ChildFirst, ChildR) >  then
6 AlignAndLink();
7 Children  Children – {ChildR}
8 endfor
9 if some alignments (or links) have been made with ChildFirst then
10 GenNodePattern(ChildFirst)
11 endwhile
12 If consecutive child nodes in Children are aligned then
13 GenRecordPattern(Node)

Fig. 9.34. The Match function

9.9 Extraction Based on a Single List Page: Nested Data Records 409

Match(): The Match() function is given in Fig. 9.34. Fig. 9.35 shows a
running example. In this figure, Ni represents an internal node, and tj
represents a terminal (leaf) node with a data item. We use the same shape
or shading to indicate matching nodes. We explain the algorithm below.

Given the input node Node, line 1 obtains all its children to be matched.
In our example, Children of p are t1, N1, N2, N3, N4, t2, N5, N6, N7, N8,
and N9 (with their sub-trees). Lines 2–4 set every pair of child nodes to be
matched. The matching is done by TreeMatch(), which uses algorithm
STM() in Fig. 9.19. AlignAndLink() (line 6) aligns and links all matched
data items (leaf nodes) in ChildFirst and ChildR. The links are directional,
i.e., from earlier data items to later (matched) data items. If ChildR matches
ChildFirst, ChildR is removed from Chirdren so that it will not be matched
again later (line 7). For our example, after lines 411, the resulting
matches and links (dashed lines) are given in Fig. 9.35. Assume they all
satisfy the match condition in line 5.

In lines 910, if some alignments (or links) have been made, the
GenNodePattern() function generates a node pattern for all the nodes
(including their sub-trees) that match ChildFirst. This function first gets
the set of matched nodes ChildR’s, and then calls PartialTreeAlignment()
in Fig. 9.23 to produce a pattern which is the final seed tree. Note that
PartialTreeAlignment() can be simplified here because most alignments
have been done. Only insertions and matching of unaligned items are
needed. A node pattern can also be represented as a regular expression.

In lines 1213, it collapses the sub-trees to produce a global pattern for
the data records (which are still unknown). Notice that lines 910 already
produced the pattern for each child sub-tree. The GenRecordPattern()
function simply produces a regular expression pattern for the list of data
records. This is essentially a grammar induction problem [16].

t1

 p

 N3 N4

t6 t7 t8

 N1 t2

t3 t4

N5

t9 t10

N7 N6

t12 t13 t11

N8 N9

t14 t15 t16

N2

t5

Fig. 9.35. A running example: All matched items are linked

410 9 Structured Data Extraction: Wrapper Generation

Grammar induction in our context is to infer a regular expression given
a finite set of positive and negative example strings. However, we only
have a single positive example (a list of hidden data records). Fortunately,
structured data in Web pages are usually highly regular which enables
heuristic methods to generate “simple” regular expressions. Here, we
introduce such a simple method, which depends on three assumptions:

1. The nodes in the first data record at each level must be complete, e.g., in
Fig. 9.35, nodes t1, N1 and N2 must all be present.

Function GenRecordPattern(Node)
1 String  Assign a distinctive symbol to each set of matched children of Node;
2 Initilize a data structure for NFA N = (Q, , , q0, F), where Q is the set of

states,  is the symbol set containing all symbols appeared in String,  is the
transition relation that is a partial function from Q  (  {}) to Q, and F is
the set of accept states, Q  {q0} (q0 is the start state),    and F  ;

3 qc  q0; // qc is the current state
4 for each symbol s in String in sequence do
5 if  a transition (qc, s) = qn then
6 qc  qn // transit to the next state;
7 else if  (qi, s) = qj, where qi, qj  Q then // s appeared before
8 if  (qf, ) = qi, where (qi, s) = qj and f  c then
9 TransitTo(qc, qf)
10 else TransitTo(qc, qi)
11 qc  qj
12 else create a new state qc+1 and a transition (qc, s) = qc+1,
 i.e.,     {((qc, ), qc+1)}
13 Q  Q  {qc+1};
14 qc  qc+1
15 if s is the last symbol in String then
16 Assign the state with the largest subscript the accept state qr, F = {qr};
17 TransitTo(qc, qr);
18 endfor
19 generate a regular expression based on the NFA N;
20 Substitute all the node patterns into the regular expression.

Function TransitTo(qc, qs)
1 while qc  qs do
2 if  (qc, ) = qk and k>c then
3 qc  qk

4 else create a transition (qc, ) = qc+1, i.e.,     {((qc, ), qc+1)};
5 qc  qc+1
6 endwhile

Fig. 9.36. Generating regular expressions

9.9 Extraction Based on a Single List Page: Nested Data Records 411

2. The first node of every data record at each level must be present, e.g., at
the level of t1 and t2, they both must be present, and at the next level,
N1, N3, N5, N7 and N8 must be present. Note that the level here is in
the hierarchical data organizational sense (not the HTML code sense).

3. Nodes within a single flat data record (no nesting) do not match one
another, e.g., N1 and N3 do not appear in the same data record.

The GenRecordPattern() function is given in Fig. 9.36. It generates a
regular expression pattern.

Line 1 in Fig. 9.36 simply produces a string for generating a regular
expression. For our example, we obtain the following:

 t1 N1 N2 N3 N4 t2 N5 N6 N7 N8 N9
 String: a b c b c a b c b b c

Lines 23 initialize a NFA (non-deterministic finite automaton). Lines
418 traverses String from left to right to construct the NFA. For our
example, we obtain the final NFA in Fig. 9.37.

Fig. 9.37. The generated NFA and its regular expression

Line 19 produces a regular expression from the NFA, which is shown in
Fig. 9.37 on the right.

Line 20 produces the final pattern (Fig. 9.38) by substituting the node
patterns into the regular expression. Here, we use node t1 as the pattern
(the seed tree) for nodes t1 and t2, the N1 sub-tree as the pattern for all the
linked sub-trees rooted at N1, N3, N5, N7 and N8. The N2 sub-tree is the
pattern of the sub-trees rooted at N2, N4, N6 and N9.

Fig. 9.38. The regular expression produced from Fig. 9.35

Some additional notes about the algorithm are in order:

 Each child node here represents a sub-tree (e.g., N1, N2, etc).
Assumption 1 does not require lower level nodes of each sub-tree in the
first data record to be complete (no missing items). We will see an

t1 N2

t5

N1

t3 t4

? + +

(a (b c?)+)+
a b





c


q0 q1 q3 q4

412 9 Structured Data Extraction: Wrapper Generation

example in Fig. 9.40 and Fig. 9.41.
 Regular expressions produced by the algorithm do not allow

disjunctions (i.e., A|B) except (A|), which means that A is optional.
Such regular expresses are called union-free regular expressions.
However, disjunctions are possible at lower level matches of the sub-
trees. We will discuss the issue of disjunction again in Sect. 9.11.2.

 Function GenRecordPattern() in Fig. 9.37 assumes that under Node
there is only one data region, which may not be true. The algorithm can
be easily extended to take care of multiple data regions under Node. In
fact, the NET() algorithm here is a simplified version to present the
main ideas. For practical use, it can be significantly enhanced to remove
most assumptions if not all.

Finally, the function PutDataInTables() (line 3 of NET() in Fig. 9.33)
simply outputs data items in a table, which is straightforward after the data
record patterns are found. For the example in Fig. 9.35, the following data
table is produced (only terminal nodes contain data):

Fig. 9.39. The output data table for the example in Fig. 9.35

Fig. 9.42. The output data table for the example in Fig. 9.40

t1 t3 t4 t5
t1 t6 t7 t8
t2 t9 t10 t11
t2 t12 t13
t2 t14 t15 t16

N3

t8 t9

t2

 N2

 N4 N5

N1

 N3

t8 t9

t2

N2

 N5 +

t5 t6

t1 N6

Fig. 9.40. Aligned data nodes are linked

N6

t3 t4 t5 t6 t7 t7

N1

Fig. 9.41. Alignment after collapsing

t1

?

t1 t3 t4
t1 t5 t6 t7
t2 t8 t9

9.10 Extraction Based on Multiple Pages 413

Let us use a smaller but more complete example (Fig. 9.40) to show that
generating a pattern of a lower level list makes it possible for a higher
level matching. At the level of N4N5 (which has the parent N2), t3t5
and t4t6 are matched (assume they satisfy the match condition, line 5 of
Fig. 9.34). They are aligned and linked (dash lines). N4 and N5 are data
records at this level (nested in N2 in this case), in which t7 is optional. N4
and N5 are then collapsed to produce a pattern data record using
GenNodePattern() first and then GenRecordPattern(), which does not do
anything in this case. t7 is marked with a “?”, indicating that it is optional.
The pattern data record is N5 (selected based on the
PartialTreeAlignment() function). The sub-tree at N4 is then omitted in
Fig. 9.41. N5 is marked with a “+” indicating that there is one or more
such data records and that the sub-tree of N5 is the pattern. We can see in
Fig. 9.41 that the sub-trees rooted at N2 and N3 can now match. The final
output data table is given in Fig. 9.42.

9.10 Extraction Based on Multiple Pages

We now discuss the second extraction problem described in Sect. 9.4.1.
Given multiple pages with the same encoding template, the system finds
patterns from them to be used to extract data from other similar pages. The
collection of input pages can be a set of list pages or detail pages. Below,
we first see how the techniques described so far can be applied in this
setting, and then describe a technique specifically designed for this setting.

9.10.1 Using Techniques in Previous Sections

We discuss extraction of list pages and detail pages separately.

Given a Set of List Pages

Since the techniques described in previous sections are for a single list
page, they can obviously be applied to multiple list pages. The pattern
discovered from a single page can be used to extract data from the rest of
the pages. Multiple list pages may also help improve the extraction. For
example, patterns from all input pages may be found separately and
merged to produce a single refined pattern. This can deal with the problem
that a single page may not contain the complete information.

Given a Set of Detail Pages

In some applications, one needs to extract data from detail pages as they

414 9 Structured Data Extraction: Wrapper Generation

contain more information. For example, in a list page, the information on
each product is usually quite brief, e.g., containing only the name, image,
and price. However, if an application also needs the product description
and customer reviews, one has to extract them from detail pages.

For extraction from detail pages, we can treat each page as a data record
and apply the algorithms described in Sect. 9.8 and/or Sect. 9.9. For
instance, to apply the NET algorithm, we can simply construct a rooted
tree as input to NET as follows: (1) create an artificial root node, and (2)
make the DOM tree of each page as a child sub-tree of the artificial root.

9.10.2 RoadRunner Algorithm

We now describe the RoadRunner algorithm [11], which is designed
specifically for problem 2. Given a set of pages, each containing one or
more data records (i.e., the pages can be list pages or detail pages), the
algorithm compares the pages to find similarities and differences, and in
the process generating a union-free regular expression (i.e., a regular
expression without disjunctions) extractor/wrapper. The approach works as
follows:

 To start, it takes a random page as the regular expression wrapper W.
 The wrapper W is then refined by matching it sequentially with the

HTML code of each remaining page pi. It generalizes W by solving
mismatches between the wrapper W and the page pi. A mismatch occurs
when some token in pi does not match the grammar of the wrapper.

There are two types of mismatches:

1. Text string mismatches: They indicate data fields or items.
2. Tag mismatches: They indicate
 optional items, or
 iterators (a list of repeated patterns):

In this case, a mismatch occurs at the beginning of a repeated pattern
and the end of a list. The system finds the last token of the mismatch
position and identifies some candidate repeated patterns from the
wrapper and the page pi by searching forward. It then compares the
candidates with the upward portion of the page pi to confirm.

The algorithm is best explained with an example, which is given in Fig.
9.43. In this figure, page 1 on the left (in HTML code) is the initial
wrapper. Page 2 on the right is a new page to be matched with page 1.

Let us look at some matches and mismatches. Lines 13 of both pages
are the same and thus match. Lines 4 of both pages are text strings and are

9.11 Some Other Issues 415

different. They are thus data items to be extracted. We go down further.
Lines 6 of the pages do not match. Line 6 of page 1 matches line 7 of page
2. Thus, is likely to be optional. Line 11 of page 1 and line
12 of page 2 give another mismatch. Since they are text strings, they are
thus data items to be extracted. Line 17 of page 1 and line 18 of page 2 are
also data items. Another mismatch occurs at line 19 of page 1 and line 20
of page 2. Further analysis will find that we have a list here. The final
refined regular expression wrapper is given at the bottom of Fig. 9.43.

Fig. 9.43. A wrapper generation example

The match algorithm is exponential in the input string length as it has to
explore all possibilities. A set of heuristics is introduced to lower the
complexity by limiting the space to explore and to backtrack. In [1], a
more efficient method is given based on sophisticated tag path analysis.

9.11 Some Other Issues

We now briefly discuss a few other issues that are important to automatic
extraction techniques.

- Wrapper (initially Page 1): - Sample (page 2)

1: <HTML> parsing 1: <HTML>
2: Books of: 2: Books of:
3: 3:
4: Paul Smith string mismatch 4: Mike Jones
5: 5:
6: tag mismatch (?) 6:
 7:
7: 8:
8-10: <I>Title:</I> 9-11: <I>Title:</I>
11: Web Mining string mismatch (#text) 12: Databases
12: 13:
13: 14:
14-16: <I>Title:</I> 15-17: <I>Title:</I>
17: Data Mining string mismatch (#text) 18: HTML Premier
18: 19:
19: tag mismatch (+) 20:
20: </HTML> 21-23: <I>Title:</I>
 terminal tag search and 24: Javascript
 square matching 25:
 26:
- Wrapper after solving mismatches: 27: </HTML>

 <HTML>Books of:#text
 ()?

 (<I>Title:</I>#text)+
 <HTML>

416 9 Structured Data Extraction: Wrapper Generation

9.11.1 Extraction from Other Pages

Once the encoding template pattern is found, it can be used to extract data
from other pages that contain data encoded in the same way. There are
three ways to perform the extraction:

 Finite-state machines: An encoding template pattern is usually represented
as a regular expression. A nondeterministic finite-state automaton can
be constructed to match occurrences of the pattern in the input string
representing a Web page. In the process, data items are extracted.

 Pattern matching: It is also possible to directly match the string or tree
pattern against the input to extract data. This approach is more flexible
than finite-state machines because pattern matching allows partial
matching. For example, in the page where the pattern is discovered, an
optional item does not occur, but it occurs in some other pages. Pattern
matching can deal with this easily. In the process, the pattern can be
enhanced as well by inserting the new optional item in it.

 Extracting each page independently: The above two approaches can be
problematic if the Web site use many different templates to encode its
data. If we start to extract after only finding one pattern, then the data
encoded using other templates will not be extracted. One solution to this
is to find patterns from each page and extract the page using only the
discovered patterns from the page. However, handling each page
individually is inefficient.

Detecting new templates: To detect new templates without sacrificing
efficiency of mining extraction patterns from each page, a pre-screening
strategy may be applied. In most applications, the user is interested in only
a particular kind of data, e.g., products, research publications, or job
postings. It is usually possible to design some simple and efficient
heuristics to check whether a page contains such data. If so, a full blown
extraction is performed using already generated patterns. If no data is
extracted from the page, it is an indication that the page is encoded with a
different template. A new mining process can be initiated to discover the
new template.

9.11.2 Disjunction or Optional

In automatic extraction, it can be difficult to recognize disjunctions. For
example, for the three digital cameras in Fig. 9.44, it is easy to know that
“On Sale” is an optional item. However, for the prices (including “Out of
stock”), it is hard to decide whether they are optional items or disjuncts of
a disjunction. The HTML codes for the three fields are given below,

9.11 Some Other Issues 417

(1) $250.00
(2) <i> $300.00 </i>
(3) <i> Out of stock </i>.

If they are treated as optional items, they are put in three different
columns in the output table, but if they are disjuncts, they are put in the
same column. In this example, it is easy for a human user to see that they
are disjuncts, i.e., (#text) | (<i> #text </i>) | (<i>
#text</i>).

Fig. 9.44. Disjuncts or optional items

There are two main pieces of information that can be used to determine
whether they are optional or disjuncts:

1. Visual information: If they are in the same relative location with respect
to their objects, then they are more likely to be disjuncts. In the above
example, the three items are all at the same relative location.

2. Data type information: If the data items are of the same type, they are
more likely to be disjuncts. “$250.00” and “$300.00” are of the same
type, but “Out of stock” is not.

In many cases, it can be hard to decide. Fortunately, disjunctive cases
are rare on the Web. Even if an extraction system does not deal with
disjunction, it does not cause a major problem. For example, if “Out of
stock” is identified as optional, it is probably acceptable.

9.11.3 A Set Type or a Tuple Type

Sometimes it can also be difficult to determine whether a list is a tuple
type or a set type. For example, if all the lists of a set type have the same
number of elements, it is hard to know if they are in fact attributes of a
tuple. For instance, the following are three colors of a jacket with different
prices. Clearly, they represent a set instance with a list of three tuples:

<tr><td>Blue:</td> <td> $5.00 </td></tr>
<tr><td>Yellow:</td> <td> $6.50 </td></tr>
<tr><td>Pink:</td> <td> $10.99 </td></tr>.

(1) (2) (3)

Digital camera 4mp

 $250.00

Digital camera 5mp

$300.00
On Sale

Digital camera 3mp

Out of stock

418 9 Structured Data Extraction: Wrapper Generation

However, the following specifications of a particular product are obviously
the attributes of the product. Without knowing the semantics of the
encoded data, it is difficult to know that the above three are a set instance
and the following two are attributes of a tuple:

<tr><td>weight:</td> <td> 30 kg </td></tr>
<tr><td>height:</td> <td> 5 m </td></tr>.

If multiple lists of the same type are available, we may have some additional
information to make the decision. For instance, one pair of shoes has three
colors, and another has four colors. We can be fairly confident that
different sets of colors represent set instances (or lists). In the second
example, if all products have both height and width, it is more likely that
they are attributes. However, these heuristics do not always hold. In some
cases, it is hard to decide without understanding of the data semantics.

9.11.4 Labeling and Integration

Once the data is extracted from a page/site and put in tables, it is desirable
to label each column (assigning an attribute name to it). Some preliminary
studies have been reported in [2, 34]. However, the problem is still very
much open. Furthermore, the extracted data from multiple sites may need
to be integrated. There are two main integration problems. The first one is
schema matching, which matches columns of data tables. The second one
is data value/instance match. For example, in one site, Coca Cola is
called “Coke”, but in another site it is called “Coca Cola”. The problem is:
how does the system know that they are the same semantically? In Chap.
10, we will study some data integration techniques.

9.11.5 Domain Specific Extraction

In most applications, the user is only interested in some specific data objects,
e.g., products sold online, and for each object, only some specific items are
needed, e.g., product name, image, and price. Domain specific information
can be exploited to simplify and also to speed up the extraction
dramatically. Such information can be utilized in at least two ways.

1. Quickly identify pages that may contain required data. For example, it is
fairly easy to design some domain heuristics to determine whether a
page contains a list of products (a list page). One heuristic is to detect
repeated images and repeated prices in some fixed order and interval.
Such heuristics are usually very efficient to execute and can be used to
filter out those pages that are unlikely to contain required data. The

Bibliographic Notes 419

extraction algorithm, which is slower, will only run on those pages that
are very likely to contain target data.

2. Identifying target items in a data record. Based on the characteristics of
target items, it may be easy to identify and label the target items. For
example, it is often easy to find product names and product images
based on simple heuristics. If heuristics are not reliable, machine
learning methods may be applied to learn models to identify target
items. For example, in [44], an extended conditional random fields
method (CRF) [21] is used to learn an extraction model, which is then
used to extract target items from new data records.

9.12 Discussion

Finally, we discuss the main advantages and disadvantages of wrapper
induction and automatic data extraction. The key advantage of wrapper
induction is that it extracts only the data that the user is interested in. Due
to manual labeling, there is no schema matching problem. However, data
value or instance matching is still needed. The main disadvantages are that
it is not scalable to a large number of sites due to significant manual
efforts, and that maintenance is very costly if sites change frequently.

The main advantages of automatic extraction are that it is scalable to a
huge number of sites, and that there is little maintenance cost. The main
disadvantage is that it can extract a large amount of unwanted data because
the system does not know what is interesting to the user. Also, in some
applications, the extracted data from multiple sites need integration, i.e.,
their schemas as well as values need to be matched, which are difficult tasks.
However, if the application domain is narrow, domain heuristics may be
sufficient to filter out unwanted data and to perform the integration tasks.

In terms of extraction accuracy, it is reasonable to assume that wrapper
induction is more accurate than automatic extraction, although there is no
reported large scale study comparing the two approaches.

Bibliographic Notes

Web data extraction techniques can be classified into three main
categories: (1) wrapper programming languages and visual platforms, (2)
wrapper induction, and (3) automatic data extraction. The first approach
provides some specialized pattern specification languages and visual
platforms to help the user construct extraction programs. Systems that
follow this approach include WICCAP [23], Wargo [29], Lixto [3], etc.

420 9 Structured Data Extraction: Wrapper Generation

The second approach is wrapper induction, which uses supervised
learning to learn data extraction rules from a set of manually labeled
positive and negative examples. A theoretical work on wrapper learning
based on the PAC learning framework was done by Kushmerick [20].
Example wrapper induction systems include WIEN [19], Softmealy [17],
Stalker [28], WL2 [10], Thresher [15], IDE [38], [18], [43], etc. Most
existing systems are based on inductive learning from a set of labeled
examples. IDE [38] employs a simple instance-based learning technique,
which performs active learning at the same time so that the user only needs
to label a very small number of pages. Related ideas are also used in [7]
and [15]. Most existing wrapper induction systems built wrappers based on
similar pages from the same site. Zhu et al. [44, 45] reported a system that
learns from labeled pages from multiple sites in a specific domain. The
resulting wrapper can be used to extract data from other sites. This avoids
the labor intensive work of building a wrapper for each site.

The third approach is automatic extraction. In [12], Embley et al.
studied the automatic identification of data record boundaries given a list
page. The technique uses a set of heuristic rules and domain ontologies. In
[4], Buttler et al. proposed additional heuristics to perform the task without
using domain ontologies. The MDR algorithm discussed in this chapter
was proposed by Liu et al. [24]. It uses string edit distance in pattern
finding (incidentally, Lloyd Allison has a great page on string edit
distance). An algorithm based on the visual information was given by
Zhao et al. [42] for extracting search engine results. Another visual based
system is given in [31]. These systems, however, do not align or extract
data items from data records. Chang et al. [8] reported a semi-automatic
system called IEPAD to find extraction patterns from a list page to extract
data items. The DeLa system by Wang et al. [34] works similarly. The
DEPTA system by Zhai and Liu [40] works in a different way. It first
segments data records, and then aligns and extracts data items in the data
records using the partial tree alignment algorithm. Both DEPTA and
IEPAD do not deal with nested data records, which are dealt with in NET
[25] and DeLa [34]. Other related work includes [5, 26, 32, 36], which use
the visual information, the domain knowledge or automatically found
anchor trees.

The RoadRunner system, which needs multiple pages as input, was
proposed by Crescenzi et al. [11]. Its theoretical foundation was given by
Grumbach and Mecca [13]. Sects. 9.1 and 9.4 are influenced by this paper.
The work of RoadRunner was improved by Arasu and Garcia-Molina in
their EXALG system [1]. Both systems need multiple input pages with a
common schema/template and assume that these pages are given. The

Bibliography 421

pages can be either detail pages or list pages. The method proposed in [22]
works in a similar setting. A tree-matching based method is given in [30].

Bibliography

1. Arasu, A. and H. Garcia-Molina. Extracting structured data from web pages.
In Proceedings of ACM SIGMOD Conference on Management of Data
(SIGMOD-2003), 2003.

2. Arlotta, L., V. Crescenzi, G. Mecca, and P. Merialdo. Automatic annotation
of data extracted from large web sites. In Proceedings of Intl. Workshop on
Web and Databases, 2003.

3. Baumgartner, R., S. Flesca, and G. Gottlob. Visual web information
extraction with lixto. In Proceedings of International Conference on Very
Large Data Bases (VLDB-2001), 2001.

4. Buttler, D., L. Liu, and C. Pu. A fully automated object extraction system for
the World Wide Web. In Proceedings of International Conference on
Distributed Computing Systems (ICDCS-2001), 2002.

5. Cafarella, M., A. Halevy, D. Wang, E. Wu, and Y. Zhang. Webtables:
Exploring the power of tables on the web. In Proceedings of International
Conference on Very Large Data Bases (VLDB-2008), 2008.

6. Carrillo, H. and D. Lipman. The multiple sequence alignment problem in
biology. SIAM Journal on Applied Mathematics, 1988, 48(5): p. 1073-1082.

7. Chang, C., M. Kayed, M. Girgis, and K. Shaalan. A survey of web
information extraction systems. IEEE Transactions on Knowledge and Data
Engineering, 2006: p. 1411-1428.

8. Chang, C. and S. Lui. IEPAD: information extraction based on pattern
discovery. In Proceedings of International Conference on World Wide Web
(WWW-2001), 2001.

9. Chen, W. New algorithm for ordered tree-to-tree correction problem. Journal
of Algorithms, 2001, 40(2): p. 135-158.

10. Cohen, W., M. Hurst, and L. Jensen. A flexible learning system for wrapping
tables and lists in HTML documents. In Proceedings of International
Conference on World Wide Web (WWW-2002), 2002.

11. Crescenzi, V., G. Mecca, and P. Merialdo. RoadRunner: Towards automatic
data extraction from large web sites. In Proceedings of International
Conference on Very Large Data Bases (VLDB-2001), 2001.

12. Embley, D., Y. Jiang, and Y. Ng. Record-boundary discovery in Web
documents. ACM SIGMOD Record, 1999, 28(2): p. 467-478.

13. Grumbach, S. and G. Mecca. In search of the lost schema. Database Theory—
ICDT’99, 1999: p. 314-331.

14. Gusfield, D. Algorithms on strings, trees, and sequences: computer science
and computational biology. 1997: Cambridge Univ Press.

422 9 Structured Data Extraction: Wrapper Generation

15. Hogue, A. and D. Karger. Thresher: automating the unwrapping of semantic
content from the World Wide Web. In Proceedings of International
Conference on World Wide Web (WWW-2005), 2005.

16. Honavar, V. and G. Slutzki. eds. Grammatical Inference. Fourth Intl
Colloquium on Grammatical Inference. 1998, LNCS 1433. Springer-Verlag.

17. Hsu, C. and M. Dung. Generating finite-state transducers for semi-structured
data extraction from the Web. Information Systems, 1998, 23(8): p. 521-538.

18. Irmak, U. and T. Suel. Interactive wrapper generation with minimal user
effort. In Proceedings of International Conference on World Wide Web
(WWW-2006), 2006.

19. Kushmerick, N. Wrapper induction for information extraction, PhD Thesis.
1997.

20. Kushmerick, N. Wrapper induction: Efficiency and expressiveness. Artificial
Intelligence, 2000, 118(1-2): p. 15-68.

21. Lafferty, J., A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In
Proceedings of International Conference on Machine Learning (ICML-2001),
2001.

22. Lerman, K., L. Getoor, S. Minton, and C. Knoblock. Using the structure of
Web sites for automatic segmentation of tables. In Proceedings of ACM
SIGMOD Conference on Management of Data (SIGMOD-2004), 2004.

23. Li, Z. and W. Ng. Wiccap: From semi-structured data to structured data. In
Proceedings of 11th IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems (ECBS'04), 2004.

24. Liu, B., R. Grossman, and Y. Zhai. Mining data records in Web pages. In
Proceedings of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2003), 2003.

25. Liu, B. and Y. Zhai. NET - A System for Extracting Web Data from Flat and
Nested Data Records. In Proceedings of Intl. Conf. on Web Information
Systems Engineering (WISE2005), 2005.

26. Miao, G., J. Tatemura, W. Hsiung, A. Sawires, and L. Moser. Extracting data
records from the web using tag path clustering. In Proceedings of
International Conference on World Wide Web (WWW-2009), 2009.

27. Muslea, I., S. Minton, and C. Knoblock. Active learning with multiple views.
Journal of Artificial Intelligence Research, 2006, 27(1): p. 203-233.

28. Muslea, I., S. Minton, and C. Knoblock. A hierarchical approach to wrapper
induction. In Proceedings of Intl. Conf. on Autonomous Agents (AGENTS-
1999), 1999.

29. Raposo, J., A. Pan, M. Álvarez, J. Hidalgo, and A. Vina. The wargo system:
Semi-automatic wrapper generation in presence of complex data access
modes. In Proceedings of Workshop on Database and Expert Systems
Applications, 2002.

30. Reis, D., P. Golgher, A. Silva, and A. Laender. Automatic web news
extraction using tree edit distance. In Proceedings of International
Conference on World Wide Web (WWW-2004), 2004.

Bibliography 423

31. Simon, K. and G. Lausen. ViPER: augmenting automatic information
extraction with visual perceptions. In Proceedings of ACM International
Conference on Information and knowledge management (CIKM-2005), 2005.

32. Song, X., J. Liu, Y. Cao, C. Lin, and H. Hon. Automatic extraction of web
data records containing user-generated content. In Proceedings of ACM
International Conference on Information and knowledge management
(CIKM-2010), 2010.

33. Tai, K. The tree-to-tree correction problem. Journal of the ACM (JACM),
1979, 26(3): p. 433.

34. Wang, J. and F. Lochovsky. Data extraction and label assignment for web
databases. In Proceedings of International Conference on World Wide Web
(WWW-2003), 2003.

35. Wang, J., B. Shapiro, D. Shasha, K. Zhang, and K. Currey. An algorithm for
finding the largest approximately common substructures of two trees. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 2002, 20(8): p.
889-895.

36. Yang, J., R. Cai, Y. Wang, J. Zhu, L. Zhang, and W. Ma. Incorporating site-
level knowledge to extract structured data from web forums. In Proceedings
of International Conference on World Wide Web (WWW-2009), 2009.

37. Yang, W. Identifying syntactic differences between two programs. Software:
Practice and Experience, 1991, 21(7): p. 739-755.

38. Zhai, Y. and B. Liu. Extracting web data using instance-based learning.
World Wide Web, 2007, 10(2): p. 113-132.

39. Zhai, Y. and B. Liu. Structured data extraction from the web based on partial
tree alignment. IEEE Transactions on Knowledge and Data Engineering,
2006: p. 1614-1628.

40. Zhai, Y. and B. Liu. Web data extraction based on partial tree alignment. In
Proceedings of International Conference on World Wide Web (WWW-2005),
2005.

41. Zhang, K., R. Statman, and D. Shasha. On the editing distance between
unordered labeled trees. Information Processing Letters, 1992, 42(3): p. 133-
139.

42. Zhao, H., W. Meng, Z. Wu, V. Raghavan, and C. Yu. Fully automatic
wrapper generation for search engines. In Proceedings of International
Conference on World Wide Web (WWW-2005), 2005.

43. Zheng, S., R. Song, J. Wen, and C. Giles. Efficient record-level wrapper
induction. In Proceedings of ACM International Conference on Information
and knowledge management (CIKM-2009), 2009.

44. Zhu, J., Z. Nie, J. Wen, B. Zhang, and W. Ma. 2D conditional random fields
for web information extraction. In Proceedings of International Conference
on Machine Learning (ICML-2005), 2005.

45. Zhu, J., Z. Nie, J. Wen, B. Zhang, and W. Ma. Simultaneous record detection
and attribute labeling in web data extraction. In Proceedings of ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-2006), 2006.

10 Information Integration

In Chap. 9, we studied data extraction from Web pages. The extracted data
is put in tables. For an application, it is, however, often not sufficient to
extract data from only a single site. Instead, data from a large number of
sites are gathered in order to provide value-added services. In such cases,
extraction is only part of the story. The other part is the integration of the
extracted data to produce a consistent and coherent database because
different sites typically use different data formats. Intuitively, integration
means to match columns in different data tables that contain the same type
of information (e.g., product names) and to match values that are
semantically identical but represented differently in different Web sites
(e.g., “Coke” and “Coca Cola”). Unfortunately, limited integration
research has been done so far in this specific context. Much of the Web
information integration research has been focused on the integration of
Web query interfaces. This chapter will have several sections on their
integration. However, many ideas developed are also applicable to the
integration of the extracted data because the problems are similar.

Web query interfaces are used to formulate queries to retrieve needed
data from Web databases (called the deep Web). Fig. 10.1 shows two
query interfaces from two travel sites, expedia.com and vacation.com. The
user who wants to buy an air ticket typically tries many sites to find the
cheapest ticket. Given a large number of alternative sites, he/she has to
access each individually in order to find the best price, which is tedious.
To reduce the manual effort, we can construct a global query interface
that allows uniform access to disparate relevant sources. The user can then
fill in his/her requirements in this single global interface and all the
underlying sources (or databases) will be automatically filled and searched.
The retrieved results from multiple sources also need to be integrated. Both
integration problems, i.e., integration of query interfaces and integration of
returned results, are challenging due to the heterogeneity of Web sites.

Clearly, integration is not peculiar only to the Web. It was, in fact, first
studied in the context of relational databases and data warehouse. Hence,
this chapter first introduces most integration related concepts using traditional
data models (e.g., relational) and then shows how the concepts are tailored
to Web applications and how Web specific problems are handled.

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_10,
© Springer-Verlag Berlin Heidelberg 2011

425

426 10 Information Integration

Fig. 10.1. Two examples of Web query interfaces

10.1 Introduction to Schema Matching

Information/data integration has been studied in the database community
since the early 1980s [2, 12, 30]. The fundamental problem is schema
matching, which takes two (or more) database schemas to produce a
mapping between elements (or attributes) of the two (or more) schemas
that correspond semantically to each other. The objective is to merge the
schemas into a single global schema. This problem arises in building a
global database that comprises several distinct but related databases. One
application scenario in a company is that each department has its database
about customers and products that are related to the operations of the
department. Each database is typically designed independently and possibly
by different people to optimize database operations required by the functions
of the department. This results in different database schemas in different
departments. However, to consolidate the data about customers or company
operations across the organization in order to have a more complete under-
standing of its customers and to better serve them, integration of databases
is needed. The integration problem is clearly also important on the Web as
we discussed above, where the task is to integrate data from multiple sites.

There is a large body of literature on the topic. Most techniques have
been proposed to achieve semi-automatic matching in specific domains
(see the surveys in [12, 22, 30, 32]). Unfortunately, the criteria and
methods used in match operations are almost all based on domain
heuristics which are not easily formulated mathematically. Thus, to build a
schema matching system, we need to produce mapping heuristics which
reflect our understanding of what the user considers to be a good match.

Schema matching is challenging for many reasons. First of all, schemas
of identical concepts may have structural and naming differences. Schemas
may model similar but not identical contents, and may use different data
models. They may also use similar words for different meanings.

10.1 Introduction to Schema Matching 427

Although it may be possible for some specific applications, in general, it
is not possible to fully automate all matches between two schemas because
some semantic information that determines the matches between two
schemas may not be formally specified or even documented. Thus, any
automatic algorithm can only generate candidate matches that the user
needs to verify, i.e., accept, reject or change. Furthermore, the user should
also be allowed to specify matches for elements that the system is not able
to find satisfactory match candidates. Let us see a simple example.

Example 1: Consider two schemas, S1 and S2, representing two customer
relations, Cust and Customer.

S1 S2
Cust Customer

CNo CustID
CompName Company
FirstName Contact
LastName Phone

We can represent the mapping with a similarity relation, , over the
power sets of S1 and S2, where each pair in  represents one element of the
mapping. For our example schemas, we may obtain

 Cust.CNo  Customer.CustID
 Cust.CompName  Customer.Company
 {Cust.FirstName, Cust.LastName}  Customer.Contact ▀

There are various types of matching based on the input information [30].

1. Schema-level only matching: In this type of matching, only the schema
information (e.g. names and data types) is considered. No data instance
is available.

2. Domain and instance-level only matching: In this type of match, only
instance data and possibly the domain of each attribute are provided. No
schema is available. Such cases occur quite frequently on the Web,
where we need to match corresponding columns of the hidden schemas.

3. Integrated matching of schema, domain and instance data: In this
type of match, both schemas and instance data (possibly domain
information) are available. The match algorithm can exploit clues from
all of them to perform matching.

There are existing approaches to all above types of matching. We will
focus on the first two types. The third type usually combines the results of
techniques from the first two, which we discuss in Sect. 10.5. Before going
to the details, we first discuss some pre-processing tasks that usually need
to be done before matching.

428 10 Information Integration

10.2 Pre-Processing for Schema Matching

For pre-processing, issues such as concatenated words, abbreviations, and
acronyms are dealt with. That is, they need to be normalized before being
used in matching [18, 26, 36].

Prep 1 (Tokenization): This process breaks an item, which can be a
schema element (attribute) or attribute value, into atomic words. Such
items are usually concatenated words. Delimiters (such as “-”, “_”, etc.)
and case changes of letters are used to suggest the breakdown. For
example, we can break “fromCity” into “from City”, and “first-name”
into “first name”. A domain dictionary of words is typically maintained
to help the breakdown. Note that if “from”, “city”, “first” and “name”
are not in the dictionary, they will be added to the dictionary. Existing
dictionary words are also utilized to suggest the breakdown. For
example, “deptcity” will be split into “dept” and “city” if “city” is a
word. The dictionary may be constructed automatically, which consists
of all the individual words appeared in the given input used in
matching, e.g., schemas, instance data and domains. The dictionary is
updated as the processing progresses. However, the tokenization step
has to be done with care. For example, we have “Baths” and “Bathrooms”
if we split “Bath” with “Room” it could be a mistake because “Rooms”
could have a very different meaning (the number of rooms in the
house). To be sure, we need to ensure that “Bathroom” is not an English
word, for which an online English dictionary may be employed.

Prep 2 (Expansion): It expands abbreviations and acronyms to their full
words, e.g., from “dept” to “departure”. The expansion is usually done
based on the auxiliary information provided by the user or collected
from other sources. Constraints may be imposed to ensure that the
expansion is likely to be correct. For example, we may require that the
word to be expanded is not in the English dictionary, with at least three
letters, and having the same first letter as the expanding word. For
example, “CompName” is first converted to (Comp, Name) in
tokenization, and then “Comp” is expanded to “Company”.

Prep 3 (Stopword removal and stemming): These are information
retrieval pre-processing methods (see Chap. 6). They can be performed
to attribute names and domain values. A domain specific stopword list
may also be constructed manually. This step is useful especially in
linguistic based matching methods discussed below.

Prep 4 (Standardization of words): Irregular words are standardized to a
single form (e.g., using WordNet [27]), “colour” “color”, “Children”
 “Child”.

10.3 Schema-Level Matching 429

10.3 Schema-Level Matching

A schema level matching algorithm relies on information about schema
elements, such as name, description, data type and relationship types (such
as part-of, is-a, etc.), constraints and schema structures. Before introducing
some matching methods using such information, let us introduce the notion
of match cardinality, which describes the number of elements in one
schema that match the number of elements in the other schema.

In general, given two schemas, S1 and S2, within a single match in the
match relation one or more elements of S1 can match one or more elements
of S2. We thus have 1:1, 1:m, m:1 and m:n matches. 1:1 match means that
one element of S1 corresponds to one element of S2, and 1:m means that
one element of S1 corresponds to a set of m (m > 1) elements of S2.

Example 2: Consider the following schemas:
S1 S2
Cust Customer

CustomID CustID
Name FirstName
Phone LastName

We can find the following 1:1 and 1:m matches:
1:1 CustomID CustID
1:m Name FirstName, LastName ▀

m:1 match is similar to 1:m match; m:n match is considerably more
complex. An example of an m:n match is to match Cartesian coordinates
with polar coordinates. There is little work on such complex matches.
Most existing approaches are for 1:1 and 1:m matches.

We now describe some general matching approaches that employ
various types of information available in schemas. There are two main
types of information in schemas, natural language words and constraints.
Thus, there are two main types of approaches to matching.

10.3.1 Linguistic Approaches

They are used to derive match candidates based on the names, comments
or descriptions of schema elements [7, 8, 10, 11, 18, 26, 36].

Name Match

N1  Equality of names: The same name in different schemas often has the
same semantics.

430 10 Information Integration

N2  Synonyms: The names of two elements from different schemas are
synonyms, e.g., Customer  Client. This requires the use of thesaurus
and/or dictionaries such as WordNet. In many cases, domain dependent
or enterprise specific thesaurus and dictionaries are required.

N3  Equality of hypernyms: A is a hypernym of B if B is a kind of A. If
X and Y have the same hypernym, they are likely to match. For
example, “Car” is-a “vehicle” and “automobile” is-a “vehicle”. Thus,
we have Car  vehicle, automobile  vehicle, and Car  automobile.

N4  Common substrings: Edit distance and similar pronunciation may be
used. For example, CustomerID  CustID, and ShipTo  Ship2.

N5  Cosine similarity: Some names are natural language words or phrases
(after pre-processing). Then, text similarity measures are useful.
Cosine similarity is a popular similarity measure used in information
retrieval (see Chap. 6). This method is also very useful for Web query
interface integration since the labels of the schema elements are natural
language words or phrases (see the query interfaces in Fig. 10.1)

N6  User provided name matches: The user may provide a domain
dependent match dictionary (or table), a thesaurus, and/or an ontology.

Description Match

In many databases, there are comments to schema elements, e.g.,

S1: CNo // customer unique number
S2: CustID // id number of a customer

These comments can be compared based on the cosine similarity as well.

D1 – Use the cosine similarity to compare comments after stemming and
stopword removal.

10.3.2 Constraint Based Approaches

Constraints such as data types, value ranges, uniqueness, relationship types
and cardinalities, etc., can be exploited in determining candidate matches
[18, 26, 28, 29].

C1: An equivalence or compatibility table for data types and keys that
specifies compatibility constraints for two schema elements to match
can be provided, e.g., string  varchar, and (primary key)  unique.

10.4 Domain and Instance-Level Matching 431

Example 3: Consider the following two schemas:
S1 S2
Cust Customer

CNo: int, primary key CustID: int, unique
CompName: varchar (60) Company: string
CTname: varchar (15) Contact: string
StartDate: date Date: date

Constraints can suggest that “CNo” matches “CustID”, and “StartDate”
may match “Date”. “CompName” in S1 may match “Company” in S2 or
“Contact” in S2. Likewise, “CTname” in S1 may match “Company” or
“Contact” in S2. In both cases, the types match. Although in these two
cases, we are unable to find a unique match, the approach helps limit the
number of match candidates and may be combined with other matchers
(e.g., name and instance matchers). For structured schemas, hierarchical
relationships such as is-a and part-of relationships may be utilized to help
match. ▀

In the context of the Web, the constraint information above is often not
explicitly available because Web databases are for general public who are
unlikely to know what an int, string or varchar is. Thus, these types are
never shown in Web pages. However, some information may be inferred
from the domain or instance information, which we discuss next.

10.4 Domain and Instance-Level Matching

In this type of matching, value characteristics are exploited to match
schema elements [4, 11, 18, 34, 35]. For example, the two attribute names
may match according to the linguistic similarity, but they may have
different domain value characteristics. Then, they may not be the same but
homonyms. For example, Location in a real estate sell may mean the
address, but could also mean some specific locations, e.g., lakefront
property, hillside property, etc.

In many applications, data instances are available, which is often the
case in the Web database context. In some applications, although the
instance information is not available, the domain information of each
attribute may be obtained. This is the case for Web query interfaces. Some
attributes in the query interface contain a list of possible values (the
domain) for the user to choose from. No type information is explicitly
given, but it can often be inferred. We note that the set of value instances
of an attribute can be treated in the similar way as a domain. Thus, we will
only deal with domains below.

432 10 Information Integration

Let us look at two types of domains or types of values: simple domains
and composite domains. The domain similarity of two attributes, A and B,
is the similarity of their domains: dom(A) and dom(B).

Definition (Simple Domain): A simple domain is a domain in which
each value has only a single component, i.e., the value cannot be
decomposed.

A simple domain can be of any type, e.g., year, time, money, area, month,
integer, real, string, etc.

Data Type: If there is no type specification at the schema level, we
identify the data type from the domain values. Even if there is a type
specification at the schema level for each attribute, we can still refine the
type to find more characteristic patterns. For example, the ISBN number of
a book may be specified as a string type in a given schema. However, due
to its fixed format, it is easy to generate a characteristic pattern from a set
of ISBN numbers, e.g., a regular expression. Other examples include
phone numbers, post codes, money, etc. Such specialized patterns are more
useful in matching compatible attribute types.

We describe two approaches for type identification: semi-automatic [36,
37] and automatic [11, 18] approaches.

Semi-automatic approach: This is done via pattern matching. The pattern
for each type may be expressed as a regular expression, which is defined
by a human expert. For example, the regular expression for the time type
can be defined as “[09]{2}:[09]{2}" or “dd:dd” (d for digit from 0-9)
which recognizes time of the form “03:15”. One can use such regular
expressions to recognize integer, real, string, month, weekday, date, time,
datetime (combination of date and time), etc. To identify the data type, we
can simply apply all the regular expression patterns to determine the type.

In some cases, the values themselves may contain some information on
the type. For example, values that contain “$” or “US$” indicate the
monetary type. For all values that we cannot infer their types, we can
assume their domains are of string type with an infinite cardinality.

Automated approach: Machine learning techniques, e.g., grammar
induction, may be used to learn the underlying grammar/pattern of the
values of an attribute, and then use the grammar to match attribute values
of the other schemas. This method is particularly useful for value of fixed
format, e.g., zip codes, phone numbers, zip codes, ISBNs, date entries, or
money-related entries, if their regular expressions are not specified by the
user.

10.4 Domain and Instance-Level Matching 433

The following methods may be used in matching:
DI 1 – Data types are used as constraints. The method C1 above is

applicable here. If the data/domain types of two attributes are not
compatible, they should not be matched. We can use a table specifying
the degree of compatibility between a set of predefined generic data
types, to which data types of schema elements are mapped in order to
determine their similarity.

DI 2 – For numerical data, value ranges, averages and variances can be
computed to access the level of similarity.

DI 3 – For categorical data, we can extract and compare the set of values
in the two domains to check whether the two attributes from different
schemas share some common values. For example, if an attribute from
S1 contains many “Microsoft” entries and an attribute in S2 also contains
some “Microsoft”’s, then we can propose them as a match candidate.

DI 4 – For alphanumeric data, string-lengths and alphabetic/non-alphabetic
ratios are also helpful.

DI 5 – For textual data, information retrieval methods such as the cosine
measure may be used to compare the similarity of all data values in the
two attributes.

DI 6 – Schema element name as value is another match indicator, which
characterizes the cases where matches relate some data instances of a
schema with a set of elements (attributes) in another schema. For
example, in the airfare domain one schema uses “Economy” and
“Business” as instances (values) of the attribute “Ticket Class”, while
in another interface, “Economy” and “Business” are attributes with the
Boolean domain (i.e., “Yes” and “No”). This kind of match can be
detected if the words used in one schema as attribute names are among
the values of attributes in another schema [8, 37].

Definition (Composite Domain and Attribute): A composite domain d
of arity k is a set of ordered k-tuples, where the ith component of each
tuple is a value from the ith sub-domain of d, denoted as di. Each di is a
simple domain. The arity of domain d is denoted as rity(d) (= k). An
attribute is composite if its domain is composite.

A composite domain is usually indicated by its values that contained
delimiters of various forms. The delimiters can be punctuation marks (such
as “,”, “-”, “/”, “_”, etc) and white spaces and some special words such as
“to”. To detect a composite domain, we can use these delimiters to split a
composite domain into simple sub-domains. In order to ensure correctness,
we may also want to require that a majority of (composite) values can be
consistently split into the same number of components. For example, the
date can be expressed as a composite domain with MM/DD/YY.

434 10 Information Integration

DI 7 – The similarity of a simple domain and a composite domain is
determined by comparing the simple domain with each sub-domain of
the composite domain. The similarity of composite domains is
established by comparing their component sub-domains.

We note that splitting a composite domain can be quite difficult in the Web
context. For example, without sufficient auxiliary information (e.g.,
information from other sites) it is not easy to split the following: “Dell
desktop PC 1.5GHz 1GB RAM 30GB disk space”

10.5 Combining Similarities

Let us call a program that assesses the similarity of a pair of elements from
two different schemas based on a particular match criterion a matcher. It
is typically the case that the more indicators we have the better results we
can achieve, because different matchers have their own advantages and
also shortcomings. Combining schema-level and instance-level approach
will produce better results than each type of approaches alone. This
combination can be done in various ways.

Given the set of similarity values, sim1(u, v), sim2(u, v), …, simn(u, v), of
a set of n matchers that compared two schema elements u (from S1) and v
(from S2), one of the following strategies can be used to combine their
similarity values.

1. Max: This strategy returns the maximal similarity value of any matcher.
It is thus optimistic. Let the combined similarity be CSim. Then

CSim(u, v) = max{sim1(u, v), sim2(u, v), …, simn(u, v)} (1)

2. Weighted Sum: This strategy computes a weighted sum of similarity
values of the individual matchers. It needs relative weights which
correspond to the expected importance of the matchers:

CSim(u, v) = 1*sim1(u, v) + 2sim2(u, v) + … +n*simn(u, v), (2)

where i is a weight coefficient, and usually determined empirically.
3. Weighted Average: This strategy computes a weighted average of

similarity values of the individual matchers. It also needs relative
weights that correspond to the expected importance of the matchers.

n

vuSimvuSimvuSim
vuCSim nn),(...),(),(),(2211  


,
 (3)

where i is a weight coefficient and is determined experimentally.

10.6 1:m Match 435

4. Machine Learning: This approach uses a classification algorithm, e.g.,
a decision tree, a naïve Bayesian classifier, or SVM, to determine
whether two schema elements match each other. In this case, the user
needs to label a set of training examples, which is described by a set of
attributes and a class. The attributes can be the similarities. Each
training example thus represents the similarity values of a pair of
schema elements. The class of the example is either Yes or No, which
indicates whether the two elements match or not as decided by the user.

There are many other possible approaches. In practice, which method to
use involves a significant amount of experimentation and parameter
tuning. Note that the combination can also be done in stages for different
types of matches. For example, we can combine the instance based
similarities first using one method, e.g., Max, and then combine schema
based similarities using another method, e.g., Weighted Average. After
that, the final combined similarity computation may use Weighted Sum.

10.6 1:m Match

The approaches presented above are for 1:1 matches. For 1:m match, other
techniques are needed [8, 36, 37]. There are mainly two types of 1:m
matches.
Part-of Type: Each relevant schema element on the many side is a part of

the element on the one side. For example, in one schema, we may have
an attribute called “Address”, while in another schema, we may have
three attributes, “Street”, “City” and “State”. In this case, “Street”,
“City” or “State” is a part of “Address”. That is, the combination of
“Street”, “City” or “State” forms “Address”. Thus, it is a 1:m match.

Is-a Type: Each relevant schema element on the many side is a
specialization of the schema element on the one side. The content of the
attribute on the one side is the union or sum of the contents of the
attributes on the many side. For example, “HomePhone” and
“CellPhone” in S2 are specializations of “Phone” in S1. Another
example is the (number of) “Passengers” in Fig. 10.3 (page 397), and
the (number of) “Adults”, the (number of) “Seniors”, and the (number
of) “Children” in Fig. 10.1 in the airline ticket domain.

Identifying Part-of 1:m Matches: For each attribute A in interface S1, we
first check if it is a composite attribute as described above. If A is a
composite attribute, we find a subset of schema elements in S2 that has a
1:1 correspondence with the sub-attributes of A. For a real application, we
may need additional conditions to make the decision (see Sect. 10.8.1).

436 10 Information Integration

Identify Is-a 1:m Matches: In the case of part-of 1:m mappings, the
domains of the sub-attributes are typically different. In contrast, the
identification of is-a 1:m mappings of attributes requires that the domain of
each corresponding sub-attribute be similar to that of the general attribute.
Name matching of schema elements is useful here. For example, in the
case of “Phone” in S1 and “HomePhone” and “CellPhone” in S2, the name
similarity can help decide 1:m mapping. However, this strategy alone is
usually not sufficient, e.g., “Passengers” in S1 and “Adults”, “Seniors”
and “Children” in S2 have no name similarity. Additional information is
needed. We will show an example in Sect. 10.8.1.

Using the auxiliary information provided by the user is also a
possibility. It is not unreasonable to ask the user to provide some
information about the domain. For example, a domain ontology that
includes a set of concepts and their relationships such as the following
(Fig. 10.2) will be of great help:

Part-of(“street”, “address”) Is-a(“home phone”, “phone”)
Part-of(“city”, “address”) Is-a(“cell phone”, “phone”)
Part-of(“state”, “address”) Is-a(“office phone”, “phone”)
Part-of(“country”, “address”) Is-a(“day phone”, “phone”)

Fig. 10.2. Part-of(X, Y)  X is a part of Y, and Is-a(X, Y)  X is a Y.

10.7 Some Other Issues

10.7.1 Reuse of Previous Match Results

We have mentioned in several places that auxiliary information in addition
to the input schemas and data instances, such as dictionaries, thesauri, and
user-provided ontology information are very useful in schema matching.
The past matching results can also be stored and reused for future matches
[25, 30]. Reuse is important because many schemas are very similar to
each other and to previously matched schemas. Given a new schema S to
be matched with a set of existing schemas E, we may not need to match S
with every existing schema in E. There are two slightly different scenarios:

1. Matching of a large number of schemas: If we have a large number of
schemas to match, we may not need to perform all pair-wise matches,
which have n(n+1)/2 of them with n being the number of input
schemas. Since most schemas are very similar, the n(n+1)/2 number of
matches are not necessary.

2. Incremental schema matching: In this scenario, given a set of schemas
that has already been matched, when a new schema S needs to be

10.7 Some Other Issues 437

matched with existing matched schemas E, we may not want to use S to
match every schema in E using pair-wise matching. This is the same
situation as the first case above. If the original match algorithm is not
based on pair-wise match, we may not want to run the original
algorithm on all the schemas to just match this single schema with
them.

For both cases, we want to use old matches to facilitate the discovery of
new matches. The key idea is to exploit the transitive property of
similarity relationship. For example, “Cname” in S1 matches “CustName”
in S2 as they are both customer names. If “CTname” in the new schema S
matches “Cname” in S1, we may conclude that “CTname” matches
“CustName” in S2. The transitive property has also been used to deal with
some difficult matching cases. For example, it may be difficult to map a
schema element A directly to a schema element B, but easy to map both A
and B to the schema element C in another schema. This helps us decide
that A corresponds to B [10, 36, 37].

In the incremental case, we can also use a clustering-based method.
For example, if we already have a large number of matches, we can group
them into clusters and find a centroid to represent each cluster, in term of
schema names and domains. When a new schema needs to be matched, the
schema is compared with the centroid rather than with each individual
schema in the cluster.

10.7.2 Matching a Large Number of Schemas

The techniques discussed so far are mainly for pair-wise matching of
schemas. However, in many cases, we may have a large number of
schemas. This is the case for many Web applications because there are
many Web databases in any domain or application. With a large number of
schemas, new techniques can be applied. We do not need to depend solely
on pair-wise matches. Instead, we can use statistical approaches such as
data mining to find patterns, correlations and clusters to match the
schemas. In the next section, we will see two examples in which clustering
and correlation methods are applied.

10.7.3 Schema Match Results

In pair-wise matching, for each element v in S2, the set of matching
elements in S1 can be decided by one of the following methods [10].

438 10 Information Integration

1. Top N candidates: The top N elements of S1 that have the highest
similarities are chosen as match candidates. In most cases, N = 1 is the
natural choice for 1:1 correspondences. Generally, N > 1 is useful in
interactive mode, i.e., the user can select among several match
candidates.

2. MaxDelta: The S1 element with the maximal similarity is determined as
match candidate plus all S1 elements with a similarity differing at most
by a tolerance value t, which can be specified either as an absolute or
relative value. The idea is to return multiple match candidates when
there are several S1 elements with almost the same similarity values.

3. Threshold: All S1 elements with the final combined similarity values
exceeding a given threshold t are selected.

10.7.4 User Interactions

Due to the difficulty of schema matching, extensive user interaction is
often needed in building an accurate matching system for both parameter
tuning and resolving uncertainties

Building the Match System: There are typically many parameters and
thresholds in an integration system, e.g., similarity values, weight
coefficients, and decision thresholds, which are usually domain-specific or
even attribute specific. Before the system is used to match other schemas,
interactive experiments are needed to tune the parameters by trial-and-
errors.

After Matching: Although the parameters are fixed in the system
building, their values may not be perfect. Matching mistakes and failures
will still occur: (1) some matched attributes may be wrong (false positive);
(2) some true matches may not be found (false negative). User interactions
are needed to correct the situations and to confirm the correct matches.

10.8 Integration of Web Query Interfaces

The preceding discussions are generic to database integration and Web
data integration. In this and the next sections, we focus on integration in
the Web context. The Web consists of the surface Web and the deep
Web. The surface Web can be browsed using any Web browser, while the
deep Web consists of databases that can only be accessed through
parameterized query interfaces. With the rapid expansion of the Web, there
are now a huge number of deep web data sources. In almost any domain,

10.8 Integration of Web Query Interfaces 439

one can find a large number of them, which are hosted by e-commerce
sites. Each of such sources usually has a keyword based search engine or a
query interface that allows the user to fill in some information in order to
retrieve the needed data. We have seen two query interfaces in Fig. 10.1
for finding airline tickets. We want to integrate multiple interfaces in order
to provide the user a global query interface [14, 18] so that he/she does
not need to manually query each individual source to obtain more
complete information. Only the global interface needs to be filled with the
required information. The individual interfaces are filled and searched
automatically.

We focus on query interface integration mainly because there is
extensive research in this area, although the returned instance data
integration is also of great importance and perhaps even more important
due to the fact that the number of sites that provide such structured data is
huge and most of them do not have query interfaces but only keyword
search or can only be browsed by users (see Chap. 9).

Since query interfaces are different from traditional database schemas,
we first define a schema model.

Schema Model of Query Interfaces: In each domain, there is a set of
concepts C = {c1, c2, …, cn} that represents the essential information of the
domain. These concepts are used in query interfaces to enable the user to
restrict the search for some specific instances or objects of the domain. A
particular query interface uses a subset of the concepts S  C. A concept i
in S may be represented in the interface with a set of attributes (or fields)
fi1, fi2, ..., fik. In most cases, each concept is only represented with a single
attribute. Each attribute is labeled with a word or phrase, called the label
of the attribute, which is visible to the user. Each attribute may also have a
set of possible values that the user can use in search, which is its domain.

All the attributes with their labels in a query interface are called the
schema of the query interface [18, 40]. Each attribute also has a name in
the HTML code. The name is attached to a TEXTBOX (which takes the
user input). However, this name is not visible to the user. It is attached to
the input value of the attribute and returned to the server as the attribute of
the input value. The name is often an acronym that is less useful than the
label for schema matching. For practical schema integration, we are not
concerned with the set of concepts but only the label and name of each
attribute and its domain.

Most ideas for schema matching in traditional databases are applicable
to Web query interfaces as the schema of a query interface is similar to a
schema in databases. However, there are also some important differences
[3, 5] .

440 10 Information Integration

1. Limited use of acronyms and abbreviations: Data displayed in Web
pages are for the general public to view and must be easy to understand.
Hence, the use of acronyms and abbreviations is limited to those very
obvious ones. Enterprise-specific acronyms and abbreviations seldom
appear. In the case of a company database, abbreviations are frequently
used, which are often hard to understand by human users and difficult to
analyze by automated systems. To a certain extent, this feature makes
information integration on the Web easier.

2. Limited vocabulary: In the same domain, there are usually a limited
number of essential attributes that describe each object. For example, in
the book domain, we have the title, author, publisher, ISBN number, etc.
For each attribute, there is usually limited ways to express the attribute.
The chosen label (describing a data attribute, e.g., “departure city”)
needs to be short, and easily understood by the general public.
Therefore, there are not many ways to express the same attributes.
Limited vocabulary also makes statistical approaches possible.

3. A large number of similar databases: There are often a large number
of sites that offer the same services or sell the same products, which
result in a large number of query interfaces and make it possible to use
statistical methods. This is not the case in a company because the
number of related databases is small. Integration of databases from
multiple companies seldom happens.

4. Additional structure: The attributes of a Web interface are usually
organized in some meaningful ways. For example, related attributes are
grouped and put together physically (e.g., “first name” and “last name”
are usually next to each other), and there may also be a hierarchical
organization of attributes. Such structures also help integration as we
will see later. In the case of databases, attributes usually have no
structure.

Due to these differences, schema matching of query interfaces can exploit
new methods. For example, data mining techniques can be employed as we
will see in the next few sub-sections. Traditional schema matching
approaches in the database context are usually based on pair-wise
matching.

Similar to schema integration, query interface integration also requires
mapping of corresponding attributes of all the query interfaces.

Example 4: For the two query interfaces in Fig. 10.3, the attribute
correspondences are:

Interface 1 (S1) Interface 2 (S2)
 Leaving from From
 Going to To

10.8 Integration of Web Query Interfaces 441

 Departure date Departure date
 Return date Return date
 Passengers: Number of tickets
 Time
 Preferred cabin

The last two attributes from Interface 1 do not have matching attributes in
Interface 2. ▀

Fig. 10.3. Two query interfaces from the domain of airline ticket reservation

The problem of generating the mapping is basically the problem of
identifying synonyms in the application domain. However, it is important
to note that the synonyms here are domain dependent. A general-purpose
semantic lexicon such as WordNet or any thesaurus is not sufficient for the
identification of most domain-specific synonyms. For example, it is
difficult to infer from WordNet or any thesaurus that “Passengers” is
synonymous to “Number of tickets” in the context of airline ticket
reservation. Domain-specific lexicons are not generally available as they
are expensive to build. In this section, we discuss three query interface
matching techniques. We also describe a method for building a global
interface.

10.8.1 A Clustering Based Approach

This technique is a simplified version of the work in [36]. Given a large set
of schemas from query interfaces in the same application domain, this
technique utilizes a data mining method, clustering, to find attribute
matches of all interfaces. Three types of information are employed,
namely, attribute labels, attribute names and value domains. Let the set of
interface schemas be {S1, S2, …, Sn}. The technique works in five steps:

1. Pre-processing the data. It uses the methods given in Sect. 10.2.
2. Computing all pair-wise attribute similarities of u ( Si) and v ( Sj), i 

j. This produces a similarity matrix.
3. Identify initial 1:m matches.

442 10 Information Integration

4. Cluster schema elements based on the similarity matrix. This step
discovers 1:1 matches.

5. Generate the final 1:m matches of attributes.

We now discuss each step in turn except the first step.
Computing all Pair-Wise Attribute Similarities: Let u be an attribute of
Si and v be an attribute of Sj (i  j). This step computes all linguistic
similarities (denoted by LingSim(u, v)) and domain similarities (denoted
DomSim(u, v)). The aggregated similarity (denoted by AS(u, v)) is:

),,(),(),(vuDomSimvuLingSimvuAS dsls   (4)

where ls and ds are weight coefficients reflecting the relative importance
of each component similarity.

The linguistic similarity is based on both attribute labels and attribute
names, which give two similarity values, lSim(u, v) and nSim(u, v),
representing label and name similarities respectively. Both similarities are
computed using the cosine measure as discussed in N5 of Sect. 10.3.1. The
two similarities are then combined through a linear combination method
similar to Equation (4) above.

Domain similarity of two simple domains dv and du is computed based
on the data type similarity (denoted by typeSim(dv, du) and values
similarity (denoted by valueSim(dv, du)). The final DomSim is again a
linear combination of the two values. For the type similarity computation,
if the types of domains dv and du are the same, typeSim(dv, du) = 1 and 0
otherwise. If typeSim(dv, du) = 0, then valueSim(dv, du) = 0.

For two domains dv and du of the same type, the algorithm further
evaluates their value similarity. Let us consider two character string
domains. Let the set of values in dv be {t1, t2, …, tn} and the set of values in
du be {q1, q2, …, qk}. valueSim(dv, du) is computed as follows:

1. Calculate all pair-wise value (i.e., (ti, qj)) similarities using the cosine
measure with one value from each domain.

2. Choose the pair with the maximum similarity among all pairs and delete
the corresponding two values from dv and du. For a pair to be
considered, its similarity must be greater than a threshold value.

3. Repeat step 2 on all remaining values in the domains until no pair of
values has a similarity greater than.

Let the pairs of values chosen be P. valueSim(dv, du) is then computed
using the Dice function [9]:

10.8 Integration of Web Query Interfaces 443

.
||||

||2),(
uv

uv dd

P
ddvalueSim


 (5)

For two numeric domains, their value similarity is the proportion of the
overlapping range of the domains. For an attribute whose domain is
unknown, it is assumed that its domain is dissimilar to the domain of any
other attribute, be it finite or infinite.

Identify a Preliminary Set of 1:m Mappings: To identify 1:m mappings,
the technique exploits the hierarchical organization of the interfaces. The
hierarchical organization is determined using the layout and the proximity
of attributes as they are likely to be physically close to each other.

Part-of type: To identify the initial set of aggregate 1:m mappings of
attributes, it first finds all composite attributes in all interfaces as discussed
in Sect. 10.4. For each composite attribute e in S, in every interface other
than S, denoted by X, it looks for a set of attributes f = {f1, f2, … fr} (r > 1)
with the same parent p, such that the following conditions hold:

1. fi's are siblings, i.e., they share the same parent p. The sibling
information is derived from the physical proximity in the interface.

2. The label of the parent p of fi's is highly similar to the label of e.
3. The domains of fi’s have a 1-to-1 mapping with a subset of the sub-

domains of e based on the high domain similarities.

If there exists such a f in interface X, a 1:m mapping of the part-of type
is identified between e and attributes in f.

Is-a type: The identification of is-a 1:m attribute mappings requires that the
domain of each corresponding sub-attribute on the m side be similar to that
of the general attribute on the one side. More precisely, for each non-
composite attribute h in an interface, we look for a set of attributes f = {f1,
f2, … fr} (r > 1) in another interface X, that meets the following conditions:

1. fi's are siblings of the same parent p, and p does not have any children
other than fi's.

2. The label of the parent p is highly similar to the label of h.
3. The domain of each fi is highly similar to the domain of h.

If the conditions are met, a 1:m mapping of the is-a type is identified
between h and attributes in f.

Cluster the Schema Elements based on the Similarity Matrix: Step 2
produces a similarity matrix M. Let the total number of simple domains in
the set of all given query interfaces S be w. We then have a ww
symmetric similarity matrix. M[i, j] is the aggregated similarity of two

444 10 Information Integration

attributes i and j. For attributes in the same interface, M[i, j] is infinite,
which indicate that they should not be put together into a cluster.

The clustering algorithm used is the hierarchical agglomerative
clustering algorithm. The stopping criterion is a similarity threshold. That
is, when there is no pair of clusters has the similarity greater than the
threshold, the algorithm stops. Each output cluster contains a set of 1:1
attribute mappings from different interfaces.

Obtain Additional 1:m Mapping: The preliminary set of 1:m
correspondences may not have found all such mappings. The clustering
results may suggest additional 1:m mappings. The transitivity property
can be used here. For example, assume that a composite attribute e maps to
two attributes f1 and f2 in another interface in step 3 and the clustering
results suggest that f1 and f2 map to h1 and h2 in yet another interface. Then,
e also matches h1 and h2.

10.8.2 A Correlation Based Approach

This technique also makes use of a large number of interfaces. It is based
on the technique in [19]. For pre-processing, the methods discussed in
Sect. 10.2 are applied. The approach is based on co-occurrences of schema
attributes and the following observations:

1. In an interface, some attributes may be grouped together to form a
bigger concept. For example, “first name” and “last name” compose the
name of a person. This is called the grouping relationship, denoted by
a set, e.g., {first name, last name}. Attributes in such a group often co-
occur in schemas, i.e., they are positively correlated.

2. An attribute group rarely co-occurs in schemas with their synonym
attribute groups. For example, “first name” and “last name” rarely co-
occur with name in the same query interface. Thus, {first name, last
name} and {name} are negatively correlated. They represent 2:1
match. Note that a group may contain only one attribute.

Based on the two observations, a correlation-based method to schema
matching is in order. Negatively correlated groups represent synonym
groups or matching groups.

Given a set of input schemas S = {S1, S2, …, Sn} in the same application
domain, where each schema Si is a transaction of attributes, we want to
find all the matches M = {m1, …, mv}. Each mj is a complex matching gj1 =
gj2 = … = gjw, where each gjk is an positively correlated attribute group and

i
n
ijk Sg 1 ∪ . Each mj represents the synonym relationship of attribute

groups gj1 ,..., gjw. The approach for finding M consists of three steps:

10.8 Integration of Web Query Interfaces 445

1. Group discovery: This step mines co-occurring or positively correlated
attribute groups. It is done by first finding the set of all 2-attribute
groups (i.e., each group contains only two attributes), denoted by L2,
that are positively correlated according to the input schema set S (one
data scan is needed). A 2-attribute group {a, b} is considered positively
correlated if cp(a, b) is greater than a threshold value p, where cp is a
positive correlation measure. The algorithm then extends 2-attribute
groups to 3-attribute groups L3. A 3-attribute group g is considered
positively correlated if every 2-attribute subset of g is in L2. In general, a
k-attribute group g is in Lk if every (k1)-attribute sub-group of g is in
Lk-1. This is similar to candidate generation in the Apriori algorithm for
association rule mining (see Chap. 2). However, the method here does
not scan the data after all 2-attribute groups have been generated.

Example 5: Let L2 = {{a, b}, {b, c}, {a, c}, {c, d}, {d, f}}, which
contains all 2-attribute groups that are discovered from the data. {a, b,
c} is in L3, but {a, c, d} is not because {a, d} is not in L2. ▀

2. Match discovery: This step mines negatively correlated groups
including those singleton groups. Each discovered positively correlated
group is first added into those transactions in S that contain some
attributes of the group. That is, for a schema Si and a group g, if Si  g 
, then Si = Si  {g}. The final augmented transaction set S is then used
to mine negatively correlated groups; which are potential matching
groups. The procedure for finding all negatively correlated groups is
exactly the same as the above procedure for finding positively correlated
groups. The only difference is that a different measure is used to
determine negative correlations, which will be discussed shortly. A 2-
attribute group {a, b} is considered negatively correlated if cn(a, b) is
greater than a threshold value n, where cn is a negative correlation
measure.

3. Matching selection: The discovered negative correlations may contain
conflicts due to the idiosyncrasy of the data. Some correlations may also
subsume others. For instance, in the book domain, the mining result may
contain both {author} = {first name, last name}, denoted by m1 and
{subject} = {first name, last name}, denoted by m2. Clearly, m1 is correct,
but m2 is not. Since {subject} = {author} is not discovered, which should
be due to transitivity of synonyms, m1 and m2 cannot be both correct.
This causes a conflict. A match mj semantically subsumes a match mk,
denoted by mj ; mk, if all the semantic relationships in mk are
contained in mj. For instance, {arrival city} = {destination} = {to} ;
{arrival city} = {destination} because the synonym relationship in the

446 10 Information Integration

second match is subsumed by the first one. Also, {author} = {first name,
last name} ; {author} = {first name} because the second match is part
of the first.

We now present a method to choose the most confident and consistent
matches and to remove possibly false ones. Between conflicting matches,
we want to select the most negatively correlated one because it is more
likely to be a group of genuine synonyms. Thus, a score function is
needed, which is defined as the maximum negative correlation values of
all 2-attribute groups in the match:

score(mj, cn) = max cn(gjr, gjt), gjr, gjt  mj, jr  jt. (6)

Combining the score function and semantic subsumption, the matches
are ranked based on the following rules:

1. If score(mj, cn) > score(mk, cn), mj is ranked higher than mk.
2. If score(mj, cn) = score(mk, cn) and mj ; mk, mj is ranked higher than

mk.
3. Otherwise, mj and mk are ranked arbitrarily.

Fig. 10.4 gives the MatchingSelection() function. After the highest ranked
match mt in an iteration is selected, the inconsistent parts in the remaining
matches are removed (lines 610). The final output is the selected n-ary
complex matches with no conflict. Note that ranking is redone in each
iteration instead of sorting all the matches in the beginning, because after
removing some conflicting parts, the ranking may change.

Function MatchingSelection(M, cn)
1 R   // R stores the selected n-ary complex matches
2 while M   do
4 Let mt be the highest ranked match in M //select the top ranked match
5 R  R  {mt}
6 for each mj  M do
7 mj  mj – mt; // remove the conflicting part
8 if |mj | < 2 then
9 M  M – {mj} // delete mj if it contains no matching
10 endfor
11 endwhile
12 return R

Fig. 10.4. The MatchingSelection function

Correlation Measures: There are many existing correlation tests in
statistic, e.g., 2 test and lift, etc. However, it was found that these methods

10.8 Integration of Web Query Interfaces 447

were not suitable for this application. Hence, a new negative correlation
measure corrn for two attributes Ap and Aq was proposed, which is called
the H-measure. Let us use a contingency table (Fig. 10.5) to define it. fij in
the figure is the co-occurrence frequency count of the corresponding cell:

 Ap Ap
Aq f11 f10 f1+
Aq f01 f00 f0+

 f+1 f+0 f++

Fig. 10.5. Contingency table for test of correlation

.),(),(
11

1001




ff

ff
AAHAAcorr qpqpn (7)

The positive correlation measure corrp is defined as (d is a threshold):






 




otherwise.0

),(1),(
11

dqp
qpp f

f
AAH

AAcorr
 (8)

10.8.3 An Instance Based Approach

This method is based on the technique given in [34]. It matches query
interfaces and also the query results. It assumes that:

1. a global schema (GS) for the application domain is given, which
represents the key attributes of the domain, and

2. a number of sample data instances under the domain global schema are
also available.

This technique only finds 1:1 attribute matches. We use IS to denote the
query interface schema and RS the returned result schema. Let us use an
example to introduce the key observation exploited in this technique. Fig.
10.6 shows an example of an online bookstore. The part labeled Data
Attributes is the global schema with six attributes {Title, Author,
Publisher, ISBN, Publication Date, Format}. The part labeled Interface is
the query interface with five input elements/attributes. When the keyword
query “Harry Potter” is submitted through the Title attribute in the
interface, a result page is returned which contains the answer to the query
(labeled Result Page), which shows three book instances.

448 10 Information Integration

Three types of semantic correspondence represented by different lines
(dotted, dashed and solid) are also shown in Fig. 10.6. They are
respectively, the correspondence between attributes of the global schema
and those of the query interface, the correspondence between the attributes
of the global schema and those of the instance values in the result page,
and the correspondence between attributes in the query interface and those
of the instance values in the result pages.

Observation: When a proper query is submitted to the right element of the
query interface, the query words are very likely to reappear in the
corresponding attribute of the returned results. However, if an improper
query is submitted to the Web database there are often few or no returned
results.

In the example shown in Fig. 10.6, the site retrieves only three matches
for the query “Harry Potter” when submitted through the “Author” attribute,
while it retrieves 228 matches for the same query when submitted to the
Title attribute. If “Harry Potter” is submitted to the “ISBN” attribute, there
is no returned result. Intuitively, the number of times that query words
reappear in the returned results gives us a good indication what attributes
match in the interface schema, the global schema, and the result schema.

Fig. 10.6. An example of a Web database with its query interface and a result page

To obtain the number of reappearing occurrences, each value from the
given instances can be submitted to each interface element while keeping
default values for the other elements. For each TEXTBOX element in the
query interface, all attribute values from the given instances are tried

Refine Search

Your Search:

Harry Potter
Title:

Author:

any
Format:

ISBN:

Search

Query Interface

…

Format

ISBN

Publish Date

Publisher

Author

Title

Data Attributes

Search Results

A Comprehensive Guide to Harry Potter
Paperback | Jan 2001|Carson Dellosa Publishing company,
Incorporated

Beatrix Potter to Harry Potter: Portraits of Children’s
Writers
Julia Eccleshare Hardcover | Sep 2002 | National Portrait Gallery

God, Devil and Harry Potter
John Killinger Hardcover | Dec 2002 | St. Martin’s Press, LLC

Result Page

10.8 Integration of Web Query Interfaces 449

exhaustively. For each SELECT element, its domain values are limited to a
set of fixed options. Then, an option similar to a value in the given
instances is found and submitted. Here, “similar” means that the attribute
value and the option value have at least one common word. Note that this
approach assumes that a data extraction system is available to produce a
table from a returned result page (see Chap. 9). Each column has a hidden
attribute (i.e., of the result schema).

By counting the number of times that the query words re-occur in each
column of the result table, a 3-dimensional occurrence matrix (OM) can
be built. The three dimensions are: global schema (GS) attributes, query
interface schema (IS) attributes and result schema (RS) attributes. Each
cell OM[i, j, k] contains the sum of the occurrence counts obtained from
the kth attribute of RS of all the sample query words from the ith attribute
of GS when the query words are submitted to the jth attribute of IS.

Intra-Site Schema Matching: We now briefly describe how to match
attributes in IS and GS, IS and RS, and GS and RS based on the projected
matrices of OM, i.e., OMIG(M×N), OMIR(M×L), and OMGR(N×L), where N is the
number of attributes in the global schema, M is the number of elements in
the interface schema, and L is the number of columns in the result table.
An example OMIG(5×4) matrix is shown in Fig. 10.7 with the correct
matching highlighted, GS = {TitleGS, AuthorGS, PublisherGS, ISBNGS} and
IS = {AuthorIS, TitleIS, PublisherIS, KeywordIS, ISBNIS}.

We observe from Fig. 10.7 that the highest occurrence count may not
represent a correct match. For example, the cell for AuthorIS and
PublisherGS (534) has the highest value in the matrix but AuthorIS and
PublisherGS do not correspond to each other. In general, for a cell mij, its
value in comparison with those of other cells in its row i and its column j is
more important than its absolute count.

 TitleGS AuthorGS PublisherGS ISBNGS
AuthorIS 93 498 534 0

TitleIS 451 345 501 0
PublisherIS 62 184 468 2
KeywordIS 120 248 143 275

ISBNIS 0 0 0 258

Fig. 10.7. An example of a OMIG(M×N) matrix with all matches highlighted

The algorithm in [34] uses the mutual information measure (MI) to
determine correct matches. The mutual information, which measures the
mutual dependence of two variables, is defined as follows:

450 10 Information Integration

.
)Pr()Pr(

),Pr(log),Pr(),(2 yx

yx
yxyxMI  (9)

In our context, x and y are attributes from IS and GS respectively. The
probabilities, Pr(x, y), Pr(x) and Pr(y), can be easily computed using the
OMIG(M×N) matrix.

The algorithm simply computes the mutual information of every pair of
attributes based on the counts in the matrix such as the one in Fig. 10.7. A
corresponding mutual information matrix (called MI matrix) is then
constructed (not shown here). To find 1-1 matches of the two schemas, the
algorithm chooses each cell in the MI matrix whose value is the largest
among all the values in the same row and the same column. The
corresponding attributes of the cell forms a final match.

The paper also has a similar method for finding matches from multiple
Web databases, which is called inter-site schema matching.

10.9 Constructing a Unified Global Query Interface

Once a set of query interfaces in the same domain is matched, we can
automatically construct a well-designed global query interface that
contains all the (or the most significant) distinct attributes of all source
interfaces. To build a “good” global interface, three requirements are
identified in [15].

1. Structural appropriateness: As noted earlier, elements of query
interfaces are usually organized in groups (logical units) of related
attributes so that semantically related attributes are placed in close
vicinity. For example, “Adults”, “Seniors”, and “Children” of the
interfaces shown in Fig. 10.1 are placed together. In addition, multiple
related groups of attributes are organized as super-groups (e.g., “Where
and when do you want to go?” in Fig. 10.1). This leads to a hierarchical
structure for interfaces (see Fig. 10.8), where a leaf in the tree
corresponds to an attribute in the interface, an internal node corresponds
to a (super)group of attributes and the order among the sibling nodes
within the tree resembles the order of attributes in the interface (from
left to right). The global query interface should reflect this domain
hierarchical structure.

2. Lexical appropriateness: Labels of elements should be chosen so as to
convey the meaning of each individual element and to underline the
hierarchical organization of attributes (e.g., the three attributes together
with the parent attribute “Number of Passengers” in Fig. 10.1).

10.9 Constructing a Unified Global Query Interface 451

3. Instance appropriateness: The domain values for each attribute in the
global interface must contain the values of the source interfaces.

We will give a high level description of the algorithms in [14, 15] that
build the global interface by merging given interfaces based on the above
three requirements. The input to the algorithms consists of (1) a set of
query interfaces and (2) a global mapping of corresponding attributes in
the query interfaces. It is assumed that mapping is organized in clusters as
discussed in Sect. 10.8.1. Each cluster contains all the matched attributes
from different interfaces. We note that the domain model discovery idea in
[18] can be seen as another approach to building global interfaces.

10.9.1 Structural Appropriateness and the Merge Algorithm

Structural appropriateness means to satisfy grouping constraints and
ancestor-descendant relationship constraints of the attributes in individual
interfaces. These constraints guide the merging algorithm to produce the
global interface, which has one attribute for each cluster.

Fig. 10.8. Three input query interfaces (S1, S2, and S3) and the derived global
query interface (GS).

Grouping Constraints: Recall that semantically related attributes within
an interface are usually grouped together. Grouping constraints require that
these attributes should also appear together in the global interface.

S1 S2 GS

Where … travel?
Departing From
Going To

When Do You Want to Go?
Departure Date

depMonth
depDay
depTime

Return Date

Number of Passengers
Adults
Seniors
Children

retMonth
retDay
retTime

From
To

Depart
leaveMonth
leaveDay

Return

Passengers
Adults
Children

retMonth
retDay

From
Depart

To

dep_Month
dep_Day
dep_Year

Return

Travelers
Adult
Child
Infant

ret_Month
ret_Day
ret_Year

Where … travel?
Departing From
Going To

When Do You Want to Go?
Departure Date

depTime

Return Date

Travelers
Adults
Seniors
Children

retMonth
retDay
retTime

Cabin

dep_Year

ret_Year

Cabin

S3

Infant

depMonth
depDay

452 10 Information Integration

As the global interface has an attribute for each cluster, the problem is to
partition all the clusters into semantically meaningful subsets (or groups),
which are employed to organize attributes in the global interface. For
instance, for the example in Fig. 10.8, the following sets of clusters are
produced, {c_deptCity, c_destCity}, {c_deptYear, c_deptTime, c_deptDay,
c_depMonth}, and {c_Senior, c_Adult, c_Child, c_Infant}, where c_X is a
cluster representing X (e.g., c_deptCity and c_destCity are clusters
representing departure cities and destination cities, respectively).

The partition is determined by considering each maximal set of adjacent
sibling leaves in the schema tree of each source interface whose parent is
not the root. The leaves whose parent is the root are not considered because
no reliable information can be derived. These structural constraints are
collected from all source interfaces in order to infer the way that attributes
are organized in the global interface. All those sets (or groups) of clusters
whose intersection is not empty are merged to form the final groups, which
are sequences of attribute clusters that preserve adjacency constraints in all
interfaces. For example, {c_Adult, c_Senior, c_Child}, {c_Adult, c_Child},
{c_Adult, c_Child, c_Infant} are merged to produce the final group,
[c_Senior, c_Adult, c_Child, c_Infant], which preserves all adjacency
constraints. Such a sequence does not always exist. In such a case, a
sequence that accommodates most adjacency constraints is sought.

Ancestor-Descendant Relationships: In hierarchical modeling of data the
same information can be represented in various ways. For instance, the
relationship between “Authors” and “Books” can be captured as
either ”Authors” having “Books”, which makes “Books” a descendant of
“Authors”, or “Books” having “Authors”, which makes “Books” an
ancestor of “Authors”. This, however, was not found to be a problem [14].
No such conflicting cases were found from a study of 300 query interfaces
in eight application domains.

Merge Algorithm: The merge algorithm merges two interfaces at a time
to produce the final global interface schema. One of them is the current
global interface G. At the beginning, the schema tree with the most levels
is chosen as the initial global schema G. Then each other interface is
sequentially merged with G. During each merge, G is refined and
expanded.

The algorithm works in a bottom-up fashion. The merging between leaves
is produced based on the clusters. The mapping between internal nodes is
based on mappings of their children, which may be either leaf nodes or
internal nodes. To meaningfully insert leaves without a match in the
correct position, the algorithm relies on groups computed above to infer
each leaf position. In our example, we start by merging S1 and S3. S1 is the

10.9 Constructing a Unified Global Query Interface 453

initial global interface G. Within each group, it is easy to see the position
of “Infant”, “ret_Year” and “dep_Year” (see Fig. 10.8 on the right).
“Cabin” is inserted at the end since leaf children of the root are discarded
before merging and then added as children of the root of the integrated
schema tree. Additional details can be found in [14].

10.9.2 Lexical Appropriateness

After the interfaces are merged, the attributes in the integrated interface
need to be labeled so that (1) the labels of the attributes within a group are
consistent and (2) the labels of the internal nodes are consistent with
respect to themselves and to the leaf nodes [15].

It can be observed in the query interface of Fig. 10.1 that between the
labels of the attributes grouped together there are certain commonalities.
For instance, “Adults”, “Seniors” and “Children” are all plurals, whereas
“Leaving” and “Returning” are gerunds. Ideally, the groups within the
global interface should have the same uniformity property. Since the
attributes may be from different interfaces, a group of attributes within the
unified interface might not correspond to any group in a single interface,
which makes it hard to assign consistent labels. To deal with the problem,
a strategy called intersect-and-union is used, which finds groups with
non-empty intersection from different interfaces and then unions them.

Example 6: Consider the example of the three interfaces in Fig. 10.8 with
their passenger related groups organized as the table below. It is easy to
see a systematic way of building a consistent solution.

Cluster/Interface c_Adult c_Senior c_Child c_Infant
S1 Adults Seniors Children
S2 Adults Children
S3 Adult Child Infant

Notice that by combining the labels given by S1 and S2 a consistent
naming assignment, namely, “Seniors”, “Adults” and “Children”, can be
achieved because the two sets share labels (i.e., “Adults” and “Children”)
that are consistent with the labels in both sets. This strategy can be
iteratively applied until a label is assigned to each attribute in the group.

To deal with minor variations, more relaxed rules for combining
attribute labels can be used, e.g., requiring that the set of tokens of the
labels to be equal after removal of stopwords (e.g., “Number of Adults” has
the same set of tokens as “Adults Number”, i.e. {Number, Adults}) and
stemming. If a consistent solution for the entire group cannot be found,
consistent solutions for subsets of attributes are constructed.

454 10 Information Integration

The assignment of consistent labels to the internal nodes uses a set of
rules [15] that tries to select a label for each node in such a way that it is
generic enough to semantically cover the set of its descendant leaf nodes.
For example, the label “Travelers” is obtained in the integrated interface in
Fig. 10.8 as follows. First, we know that “Passengers” is more generic
than “Number of Passengers” and thus semantically covers both {Seniors,
Adults, Children} and {Adults, Children}. Then, “Travelers” is found to be
a hypernym of “Passengers“ (using WordNet) and thus semantically
covers the union of {Seniors, Adults, Children} and {Adults, Children,
Infant} which is the desired set {Seniors, Adults, Children, Infant}

10.9.3 Instance Appropriateness

Finally, we discuss how to determine the domain for each attribute in the
global schema (interface). A domain has two aspects: the type and the set
of values. To determine the domain type of a global attribute, compatibility
rules are needed [21]. For instance, if all attributes in a cluster have a finite
(infinite) domain then the global attribute will have a finite (infinite)
domain. If in the cluster there are both finite and infinite domains, then the
domain of the global attribute will be hybrid (i.e., users can either select
from a list of pre-compiled values or fill in a new value). As a case in
point, the “Adults” attribute on the global interface derived from the two
interface in Fig. 10.1 will have a finite domain, whereas the attribute
“Going to” will have a hybrid domain.

The set of domain values of a global attribute is given by the union of
the domains of the attributes in the cluster. Computing the union is not
always easy. For example, the values of the domains may have different
scale/unit (e.g., the price may be in US$ or in Euro). Moreover, the same
value may be specified in various ways (e.g., “Chicago O’Hare” vs.
“ORD”). Currently, the problem is dealt with using user-provided auxiliary
thesauruses [21].

Bibliographic Notes

Schema integration has been studied in the database community since the
early 1980s. The main contributions are described in the surveys by Batini
et al [2], Doan and Halevy [12], Kalfoglou and Schorlemmer [22], Larson
et al. [24], Kashyap and Sheth [23], Rahm and Bernstein [30], Sheth and
Larson [31], and Shvaiko and Euzenat [32]. The database integration
aspects of this chapter are mainly based on the survey paper by Rahm and

Bibliography 455

Bernstein [30]. Many ideas are also taken from Clifton et al. [6], Cohen
[7], Do and Rahm [10], Dhamankar et al. [8], Embley et al. [16],
Madhavan et al. [26], Xu and Embley [37], and Yan et al. [38]. Web data
integration is considerably more recent. Various ideas on Web information
integration in the early part of the chapter are taken from papers by He and
Chang [18, 19], and Wu et al. [36].

On Web query interface integration, which perhaps received the most
attention in the research community, several methods have been studied in
the chapter, which are based on the works of Dragut et al. [14, 15], He and
Chang [18, 19], He et al. [21], Wang et al. [34], and Wu et al. [36]. Before
matching can be performed, the Web interfaces have to be found and
extracted first. This extraction task was investigated by Zhang et al. [40]
and He et al. [20].

Another area of research is the ontology, taxonomy or catalog
integration. Ontologies (taxonomies or catalogs) are tree structured
schemas. They are similar to query interfaces as most interfaces have some
hierarchical structures. More focused works on ontology integration
include those by Agrawal and Srikant [1], Doan et al. [13], Gal et al. [17],
Zhang and Lee [39]. Wache et al. gave a survey of the area in [33].

Bibliography

1. Agrawal, R. and R. Srikant. On integrating catalogs. In Proceedings of
International Conference on World Wide Web (WWW-2001), 2001.

2. Batini, C., M. Lenzerini, and S. Navathe. A comparative analysis of
methodologies for database schema integration. ACM Computing Surveys
(CSUR), 1986, 18(4): p. 323-364.

3. Bergman, M. The deep web: Surfacing hidden value. Journal of Electronic
Publishing, 2001, 7(1): p. 07-01.

4. Bilke, A. and F. Naumann. Schema matching using duplicates. In
Proceedings of IEEE International Conference on Data Engingeering (ICDE-
2005), 2005.

5. Chang, K., B. He, C. Li, M. Patel, and Z. Zhang. Structured databases on the
web: Observations and implications. ACM SIGMOD Record, 2004, 33(3): p.
61-70.

6. Clifton, C., E. Housman, and A. Rosenthal. Experience with a combined
approach to attribute-matching across heterogeneous databases. In
Proceedings of IFIP 2.6 Working Conf. Database Semantics, 1997.

7. Cohen, W. Integration of heterogeneous databases without common domains
using queries based on textual similarity. In Proceedings of ACM SIGMOD
Conference on Management of Data (SIGMOD-1998), 1998.

8. Dhamankar, R., Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP:
discovering complex semantic matches between database schemas. In

456 10 Information Integration

Proceedings of ACM SIGMOD Conference on Management of Data
(SIGMOD-2004), 2004.

9. Dice, L. Measures of the amount of ecologic association between species.
Ecology, 1945, 26(3): p. 297-302.

10. Do, H. and E. Rahm. COMA: a system for flexible combination of schema
matching approaches. In Proceedings of International Conference on Very
Large Data Bases (VLDB-2002), 2002.

11. Doan, A., P. Domingos, and A. Halevy. Reconciling schemas of disparate
data sources: A machine-learning approach. In Proceedings of ACM
SIGMOD Conference on Management of Data (SIGMOD-2001), 2001.

12. Doan, A. and A. Halevy. Semantic integration research in the database
community: A brief survey. AI magazine, 2005, 26(1): p. 83.

13. Doan, A., J. Madhavan, P. Domingos, and A. Halevy. Learning to map
between ontologies on the semantic web. In Proceedings of International
Conference on World Wide Web (WWW-2002), 2002.

14. Dragut, E., W. Wu, P. Sistla, C. Yu, and W. Meng. Merging source query
interfaces onweb databases. In Proceedings of IEEE International Conference
on Data Engineering (ICDE-06), 2006.

15. Dragut, E., C. Yu, and W. Meng. Meaningful labeling of integrated query
interfaces. In Proceedings of International Conference on Very Large Data
Bases (VLDB-2006), 2006.

16. Embley, D., D. Jackman, and L. Xu. Multifaceted exploitation of metadata for
attribute match discovery in information integration. In Proceedings of
Workshop on Information Integration on the Web, 2001.

17. Gal, A., G. Modica, H. Jamil, and A. Eyal. Automatic ontology matching
using application semantics. AI magazine, 2005, 26(1): p. 21.

18. He, B. and K. Chang. Statistical schema matching across web query
interfaces. In Proceedings of ACM SIGMOD Conference on Management of
Data (SIGMOD-2003), 2003.

19. He, B., K. Chang, and J. Han. Discovering complex matchings across web
query interfaces: a correlation mining approach. In Proceedings of ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-2004), 2004.

20. He, H., W. Meng, C. Yu, and Z. Wu. Automatic extraction of web search
interfaces for interface schema integration. In Proceedings of WWW Alternate
Track Papers and Posters, 2004.

21. He, H., W. Meng, C. Yu, and Z. Wu. Wise-integrator: An automatic
integrator of web search interfaces for e-commerce. In Proceedings of
International Conference on Very Large Data Bases (VLDB-2003), 2003.

22. Kalfoglou, Y. and M. Schorlemmer. Ontology mapping: the state of the art.
The knowledge engineering review, 2003, 18(01): p. 1-31.

23. Kashyap, V. and A. Sheth. Semantic and schematic similarities between
database objects: a context-based approach. The VLDB journal, 1996, 5(4): p.
276-304.

Bibliography 457

24. Larson, J., S. Navathe, and R. Elmasri. A theory of attributed equivalence in
databases with application to schema integration. IEEE Transactions on
Software Engineering, 1989: p. 449-463.

25. Madhavan, J., P. Bernstein, A. Doan, and A. Halevy. Corpus-based schema
matching. In Proceedings of IEEE International Conference on Data
Engineering (ICDE-2005), 2005.

26. Madhavan, J., P. Bernstein, and E. Rahm. Generic schema matching with
cupid. In Proceedings of International Conference on Very Large Data Bases
(VLDB-2001), 2001.

27. Miller, G., R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. WordNet: An
on-line lexical database. 1990: Oxford Univ. Press.

28. Milo, T. and S. Zohar. Using schema matching to simplify heterogeneous data
translation. In Proceedings of International Conference on Very Large Data
Bases (VLDB-1998), 1998.

29. Palopoli, L., D. Saccá, and D. Ursino. An automatic technique for detecting
type conflicts in database schemes. In Proceedings of ACM International
Conference on Information and knowledge management (CIKM-1998), 1998.

30. Rahm, E. and P. Bernstein. A survey of approaches to automatic schema
matching. The VLDB journal, 2001, 10(4): p. 334-350.

31. Sheth, A. and J. Larson. Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Computing Surveys (CSUR),
1990, 22(3): p. 183-236.

32. Shvaiko, P. and J. Euzenat. A survey of schema-based matching approaches.
Journal on Data Semantics IV, 2005: p. 146-171.

33. Wache, H., T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster, H.
Neumann, and S. Hübner. Ontology-based integration of information-a survey
of existing approaches. In IJCAI Workshop on Ontologies and Information
Sharing, 2001.

34. Wang, J., J.-R. Wen, B.A. Lochovsky, and W.-Y. Ma. Instance-Based
Schema Matching for Web Databases by Domain-specific Query Probing. In
Proceedings of International Conference on Very Large Data Bases (VLDB-
2004), 2004.

35. Wu, W., A. Doan, and C. Yu. WebIQ: Learning from the web to match deep-
web query interfaces. In Proceedings of IEEE International Conference on
Data Engingeering (ICDE-2006), 2006.

36. Wu, W., C. Yu, A. Doan, and W. Meng. An interactive clustering-based
approach to integrating source query interfaces on the deep web. In
Proceedings of ACM SIGMOD Conference on Management of Data
(SIGMOD-2004), 2004.

37. Xu, L. and D. Embley. Discovering direct and indirect matches for schema
elements. In Proceedings of Intl. Conf. on Database Systems for Advanced
Applications (DASFAA-2003), 2003.

38. Yan, L., R. Miller, L. Haas, and R. Fagin. Data-driven understanding and
refinement of schema mappings. In Proceedings of ACM SIGMOD
Conference on Management of Data (SIGMOD-2001), 2001.

458 10 Information Integration

39. Zhang, D. and W. Lee. Web taxonomy integration using support vector
machines. In Proceedings of International Conference on World Wide Web
(WWW-2004), 2004.

40. Zhang, Z., B. He, and K. Chang. Understanding web query interfaces: Best-
effort parsing with hidden syntax. In Proceedings of ACM SIGMOD
Conference on Management of Data (SIGMOD-2004), 2004.

11 Opinion Mining and Sentiment Analysis

In Chap. 9, we studied the extraction of structured data from Web pages.
The Web also contains a huge amount of information in unstructured texts.
Analyzing these texts is of great importance as well and perhaps even
more important than extracting structured data because of the sheer vol-
ume of valuable information of almost any imaginable type contained in
text. In this chapter, we only focus on mining opinions which indicate
positive or negative sentiments. The task is technically challenging and
practically very useful. For example, businesses always want to find public
or consumer opinions about their products and services. Potential customers
also want to know the opinions of existing users before they use a service
or purchase a product.

This area of study is called opinion mining or sentiment analysis. It
analyzes people’s opinions, appraisals, attitudes, and emotions toward enti-
ties, individuals, issues, events, topics, and their attributes. Opinions are
important because they are key influencers of our behaviors. Our beliefs
and perceptions of reality, and the choices we make, are to a considerable
degree conditioned on how others see and evaluate the world. For this rea-
son, when we need to make a decision we often seek out the opinions of
others. This is true not only for individuals but also for organizations.

With the explosive growth of social media (i.e., reviews, forum discus-
sions, blogs, and social networks) on the Web, individuals and organiza-
tions are increasingly using the content in these media for their decision
making. Nowadays, if one wants to buy a consumer product, one is no
longer limited to asking one’s friends and family for opinions as in the past
because there are many user reviews of products on the Web. For an or-
ganization, it may no longer be necessary to conduct opinion polls, sur-
veys, and focus groups in order to gather public opinions about its products
and services because there is an abundance of such information publicly
available. However, finding and monitoring opinion sites on the Web and
distilling the information contained in them remains a formidable task be-
cause of the proliferation of diverse sites. Each site typically contains a
huge volume of opinionated text that is not always easily deciphered in
long forum postings and blogs. The average human reader will have diffi-
culty identifying relevant sites and accurately summarizing the information

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_11,
© Springer-Verlag Berlin Heidelberg 2011

459

460 11 Opinion Mining and Sentiment Analysis

and opinions contained in them. Moreover, it is also known that human
analysis and evaluation of text information is subject to considerable bi-
ases, e.g., people often pay greater attention to opinions that are consistent
with their own preferences. People also have difficulty, owing to their
mental and physical limitations, producing consistent results when the
amount of information to be processed is large. Automated opinion mining
and summarization systems are thus needed, as subjective biases and men-
tal limitations can be overcome with an objective opinion analysis system.

In the past decade, a considerable amount of research has been done in
academia [70, 91]. There are also numerous commercial companies that
provide opinion mining services. In this chapter, we first define the opin-
ion mining problem. From the definition, we will see the key technical is-
sues that need to be addressed. We then describe various key mining tasks
that have been studied in the research literature and their representative
techniques. After that, we discuss the related issue of opinion spam detec-
tion. Opinion spam refers to dishonest opinions or reviews that try to pro-
mote or demote some target products or services. Detecting such spam
opinions is critical for practical applications of opinion mining.

11.1 The Problem of Opinion Mining

In this first section, we define an abstraction of the opinion mining prob-
lem. It enables us to see a structure from the complex and intimidating un-
structured text. Moreover, for most opinion-based applications, it is essen-
tial to analyze a collection of opinions rather than only one because one
opinion represents only the view of a single person, which is usually not
sufficient for action. This indicates that some form of summary of opin-
ions is needed [37]. The abstraction should facilitate this summarization.

11.1.1 Problem Definitions

We use the following review segment on iPhone to introduce the problem
(an id number is associated with each sentence for easy reference):

“(1) I bought an iPhone a few days ago. (2) It was such a nice phone.
(3) The touch screen was really cool. (4) The voice quality was clear
too. (5) However, my mother was mad with me as I did not tell her be-
fore I bought it. (6) She also thought the phone was too expensive, and
wanted me to return it to the shop. … ”

The question is: what we want to mine or extract from this review? The
first thing that we notice is that there are several opinions in this review.

11.1 The Problem of Opinion Mining 461

Sentences (2), (3), and (4) express some positive opinions, while sentences
(5) and (6) express negative opinions or emotions. Then we also notice that
the opinions all have some targets. The target of the opinion in sentence
(2) is the iPhone as a whole, and the targets of the opinions in sentences
(3) and (4) are “touch screen” and “voice quality” of the iPhone, respec-
tively. The target of the opinion in sentence (6) is the price of the iPhone,
but the target of the opinion/emotion in sentence (5) is “me”, not iPhone.
Finally, we may also notice the holders of opinions. The holder of the
opinions in sentences (2), (3), and (4) is the author of the review (“I”), but
in sentences (5) and (6) it is “my mother.” With this example in mind, we
now formally define the opinion mining problem. We start with the opin-
ion target.

In general, opinions can be expressed about anything, e.g., a product, a
service, an individual, an organization, an event, or a topic, by any person
or organization. We use the term entity to denote the target object that has
been evaluated. An entity can have a set of components (or parts) and a set
of attributes. Each component may have its own sub-components and its
set of attributes, and so on. Thus, an entity can be hierarchically decom-
posed based on the part-of relation. Formally, we have the following:

Definition (entity): An entity e is a product, service, person, event, or-
ganization, or topic. It is associated with a pair, e: (T, W), where T is a
hierarchy of components (or parts), sub-components, and so on, and W
is a set of attributes of e. Each component or sub-component also has
its own set of attributes.

Example 1: A particular brand of cellular phone is an entity, e.g., iPhone.
It has a set of components, e.g., battery and screen, and also a set of attrib-
utes, e.g., voice quality, size, and weight. The battery component also has
its own set of attributes, e.g., battery life and battery size. ▀

Based on this definition, an entity can be represented as a tree or hierar-
chy. The root of the tree is the name of the entity. Each non-root node is a
component or sub-component of the entity. Each link is a part-of relation.
Each node is associated with a set of attributes. An opinion can be ex-
pressed on any node and any attribute of the node.

Example 2: Following Example 1, one can express an opinion on the cel-
lular phone itself (the root node), e.g., “I do not like iPhone,” or on any one
of its attributes, e.g., “The voice quality of iPhone is lousy.” Likewise, one
can also express an opinion on any one of the phone’s components or any
attribute of the component. ▀

In practice, it is often useful to simplify this definition due to two rea-
sons: First, natural language processing is a difficult task. To effectively

462 11 Opinion Mining and Sentiment Analysis

study the text at an arbitrary level of detail as described in the definition is
very hard. Second, for an ordinary user, it is too complex to use a hierar-
chical representation. Thus, we simplify and flatten the tree to two levels
and use the term aspects to denote both components and attributes. In the
simplified tree, the root level node is still the entity itself, while the second
level nodes are the different aspects of the entity.

Definition (aspect): The aspects of an entity e are the components and at-
tributes of e.

Note that in the first edition of this book, we used the term feature to
mean aspect. Using feature is natural for the product domain as people of-
ten say “product features.” However, when entities are events and topics,
the term feature becomes unnatural. Furthermore, the term feature also
confuses with the term feature used in machine learning, where a feature
means a data attribute. To avoid confusion, we adopt the term aspect in
this edition.

Definition (aspect name and aspect expression): An aspect name is the
name of an aspect given by the user, while an aspect expression is an
actual word or phrase that has appeared in text indicating an aspect.

Example 3: In the cellular phone domain, an aspect could be named voice
quality. There are many expressions that can indicate the aspect, e.g.,
“sound,” “voice,” and also “voice quality” itself. ▀

Aspect expressions are usually nouns and noun phrases but can also be
verbs, verb phrases, adjectives, and adverbs. We call aspect expressions in
a sentence that are nouns and noun phrases explicit aspect expressions.
For example, “sound” in “The sound of this phone is clear” is an explicit
aspect expression. We call aspect expressions of the other types, implicit
aspect expressions, as they often imply some aspects. For example,
“large” is an implicit aspect expression in “This phone is too large.” It im-
plies the aspect size. Many implicit aspect expressions are adjectives and
adverbs, which also imply some specific aspects, e.g., expensive (price),
and reliably (reliability). Implicit aspect expressions are not just adjectives
and adverbs. They can be quite complex, e.g., “This phone will not easily fit
in pockets.” Here, “fit in pockets” indicates the aspect size (and/or shape).

Like aspects, an entity also has a name and many expressions that indi-
cate the entity. For example, the brand Motorola (entity name) can be ex-
pressed in several ways, e.g., “Moto,” “Mot,” and “Motorola.”

Definition (entity name and entity expression): An entity name is the
name of an entity given by the user, while an entity expression is an ac-
tual word or phrase that has appeared in text indicating an entity.

11.1 The Problem of Opinion Mining 463

Definition (opinion holder): The holder of an opinion is the person or or-
ganization that expresses the opinion.

For product reviews and blogs, opinion holders are usually the authors
of the postings. Opinion holders are more important in news articles as
they often explicitly state the person or organization that holds an opinion
[4, 13, 55]. Opinion holders are also called opinion sources [128].

We now turn to opinions. There are two main types of opinions: regular
opinions and comparative opinions. Regular opinions are often referred
to simply as opinions in the research literature. A comparative opinion ex-
presses a relation of similarities or differences between two or more enti-
ties and/or a preference of the opinion holder based on some of the shared
aspects of the entities [42, 43]. A comparative opinion is usually expressed
using the comparative or superlative form of an adjective or adverb, al-
though not always. More detailed definitions will be given in Sect. 11.6.
The discussion below focuses only on regular opinions. For simplicity, the
terms regular opinion and opinion are used interchangeably below.

An opinion (or regular opinion) is simply a positive or negative view,
attitude, emotion, or appraisal about an entity or an aspect of the entity
from an opinion holder. Positive, negative, and neutral are called opinion
orientations. Other names for opinion orientation are sentiment orienta-
tion, semantic orientation, or polarity. In practice, neutral is often inter-
preted as no opinion. We are now ready to formally define an opinion [70].

Definition (opinion): An opinion (or regular opinion) is a quintuple,
(ei, aij, ooijkl, hk, tl),

where ei is the name of an entity, aij is an aspect of ei, ooijkl is the orien-
tation of the opinion about aspect aij of entity ei, hk is the opinion hold-
er, and tl is the time when the opinion is expressed by hk. The opinion
orientation ooijkl can be positive, negative, or neutral or be expressed
with different strength/intensity levels. When an opinion is on the entity
itself as a while, we use the special aspect GENERAL to denote it.

Some important remarks about this definition are in order:

1. It should be stressed that the five pieces of information in the quintuple
must correspond to one another. That is, the opinion ooijkl must be given
by opinion holder hk about aspect aij of entity ei at time tl. Otherwise, we
may assign an opinion to a wrong entity or wrong aspect, etc.

2. These five components are essential. Without any of them, it can be
problematic in general. For example, one says “The picture quality is
great,” but if we do not know whose picture quality, the opinion is of
little use. However, we do not mean that every piece of information is

464 11 Opinion Mining and Sentiment Analysis

needed in every application. For example, knowing each opinion holder
is not necessary if we want to summarize opinions from a large number
of people. Similarly, we do not claim that nothing else can be added to
the tuple. For example, in some applications (e.g., marketing), the user
may want to know the sex and age of each opinion holder.

3. This definition provides a basis for transforming unstructured text into
structured data. The quintuple gives us the essential information for a
rich set of qualitative and quantitative analysis of opinions. More spe-
cifically, the quintuple is basically a schema/relation for a database ta-
ble. With a large set of opinion quintuples mined from text, the whole
suite of database management systems (DBMS) and OLAP tools can be
applied to slice and dice the opinions for all kinds of analyses.

4. Opinions (regular opinions) also have sub-types, e.g., direct opinions
and indirect opinions. For direct opinions, opinions are expressed di-
rectly on entities or their aspects, e.g., “The voice quality of this phone
is great.” For indirect opinions, opinions on entities are expressed based
on their effects on some other entities. This sub-type often occurs in the
medical domain. For example, “After taking this drug, my hand felt
much better” describes a desirable effect of the drug on “my hand,”
which indirectly gives a positive opinion to the drug. For simplicity, we
will not distinguish these sub-types in this chapter.

5. In the original definition of an entity, it is a hierarchy/tree of compo-
nents, sub-components, and so on. Every component can have its set of
attributes. Due to simplification by flattening the tree, the quintuple
representation can result in information loss. For example, “battery” is a
component/part of a digital camera. In a camera review, one wrote “The
battery for this camera is expensive.” This does not say that the camera
is expensive (which indicates the aspect price). If one does not care
about any attribute of the battery, this sentence just gives a negative
opinion to the battery, which is an aspect of the camera entity. How-
ever, if one also wants to study opinions about different aspects of the
battery, e.g., battery life, price, etc., the battery needs to be treated as a
separate entity. The quintuple representation still applies, but the part-of
relationship needs to be saved. Of course, conceptually one may also
treat the quintuple as a nested relation rather than a flat relation.

We now put everything together to define a model of entity, a model of
opinionated document, and the mining objective, which are collectively
called the aspect-based opinion mining (or feature-based opinion mining
as it was called earlier and in the first edition of this book) [37, 71].

Model of entity: An entity ei is represented by itself as a whole and a finite
set of aspects, Ai = {ai1, ai2, …, ain}. The entity itself can be expressed

11.1 The Problem of Opinion Mining 465

with any one of a final set of entity expressions OEi = {oei1, oei2, …,
oeis}. Each aspect aij  Ai of the entity can be expressed by any one of a
finite set of aspect expressions AEij = {aeij1, aeij2, …, aeijm}.

Model of opinionated document: An opinionated document d contains
opinions on a set of entities {e1, e2, …, er} from a set of opinion holders
{h1, h2, …, hp}. The opinions on each entity ei are expressed on the en-
tity itself and a subset Aid of its aspects.

Objective of opinion mining: Given a collection of opinionated docu-
ments D, discover all opinion quintuples (ei, aij, ooijkl, hk, tl) in D.

To achieve this objective, one needs to perform the following tasks:

Task 1 (entity extraction and grouping): Extract all entity expressions in
D, and group synonymous entity expressions into entity clusters. Each
entity expression cluster indicates a unique entity ei.

Task 2 (aspect extraction and grouping): Extract all aspect expressions of
the entities, and group aspect expressions into clusters. Each aspect ex-
pression cluster of entity ei indicates a unique aspect aij.

Task 3 (opinion holder and time extraction): Extract these pieces of infor-
mation from the text or structured data.

Task 4 (aspect sentiment classification): Determine whether each opinion
on an aspect is positive, negative or neutral.

Task 5 (opinion quintuple generation): Produce all opinion quintuples (ei,
aij, ooijkl, hk, tl) expressed in D based on the results of the above tasks.

The difficulty of opinion mining lies in the fact that none of the above
problems or tasks is a solved problem. To make matters worse, a sentence
may not explicitly mention some pieces of information, but they are im-
plied due to pronouns, language conventions, and contexts. What is also
challenging is to ensure that the five pieces of information in an opinion
correspond to one another as we discussed earlier. We now use an example
blog to illustrate the tasks (a sentence id is associated with each sentence):
Example 4: Posted by: bigXyz on Nov-4-2010: (1) I bought a Motorola
phone and my girlfriend bought a Nokia phone yesterday. (2) We called
each other when we got home. (3) The voice of my Moto phone was un-
clear, but the camera was good. (4) My girlfriend was quite happy with her
phone, and its sound quality. (5) I want a phone with good voice quality. (6)
So I probably will not keep it. ▀

Task 1 should extract the entity expressions, “Motorola,” “Nokia,” and
“Moto,” and group “Motorola” and “Moto” together as they represent the
same entity. Task 2 should extract aspect expressions “camera,” “voice,”
and “sound” and group “voice” and “sound” together as they are syno-

466 11 Opinion Mining and Sentiment Analysis

nyms representing the same aspect. Task 3 should find the holder of the
opinions in sentence (3) to be bigXyz (the blog author) and the holder of
the opinions in sentence (4) to be bigXyz’s girlfriend. It should also find
the time when the blog was posted, which is Nov-4-2010. Task 4 should
find that sentence (3) gives a negative opinion to the voice quality of the
Motorola phone but a positive opinion to its camera. Sentence (4) gives
positive opinions to the Nokia phone as a whole and also its sound quality.
Sentence (5) seemingly expresses a positive opinion, but it does not. To
generate opinion quintuples for sentence (4), we also need to know what
“her phone” is and what “its” refers to. All these are challenging problems.
Task 5 should finally generate the following four opinion quintuples:

(Motorola, voice_quality, negative, bigXyz, Nov-4-2010)
(Motorola, camera, positive, bigXyz, Nov-4-2010)
(Nokia, GENERAL, positive, bigXyz’s girlfriend, Nov-4-2010)
(Nokia, voice_quality, positive, bigXyz’s girlfriend, Nov-4-2010)

Before going further, let us discuss two other important concepts related
to opinion mining and sentiment analysis, i.e., subjectivity and emotion.

Definition (sentence subjectivity): An objective sentence presents some
factual information about the world, while a subjective sentence ex-
presses some personal feelings, views, or beliefs.
For example, in Example 4, sentences (1) and (2) are objective sen-

tences, while all other sentences are subjective sentences. Subjective ex-
pressions come in many forms, e.g., opinions, allegations, desires, beliefs,
suspicions, and speculations [102, 123]. Thus, a subjective sentence may
not contain an opinion. For example, sentence (5) in Example 4 is subjec-
tive but it does not express a positive or negative opinion about anything.
Interestingly, objective sentences can imply opinions [140]. For example,

“The earphone broke in two days.”
is an objective sentence but it implies a negative opinion. There is some
confusion among researchers to equate subjectivity with opinionated. As
we can see, the concepts of subjective sentences and opinion sentences are
not the same, although they have a large intersection. The task of deter-
mining whether a sentence is subjective or objective is called subjectivity
classification [126], which we will discuss in Sect. 11.3.
Definition (emotion): Emotions are our subjective feelings and thoughts.

Emotions have been studied in many fields, e.g., psychology, philoso-
phy, and sociology. However, there is still not a set of agreed basic emo-
tions of people among researchers. Based on [96], people have six primary
emotions, i.e., love, joy, surprise, anger, sadness, and fear, which can be

11.1 The Problem of Opinion Mining 467

sub-divided into many secondary and tertiary emotions. Each emotion can
also have different intensities. The strengths of opinions are related to the
intensities of certain emotions, e.g., joy and anger. However, the concepts
of emotions and opinions are not equivalent. Many opinion sentences ex-
press no emotion (e.g., “The voice of this phone is clear”), and many emo-
tion sentences express no opinion (e.g., “I am so surprised to see you”).

11.1.2 Aspect-Based Opinion Summary

As mentioned at the beginning of this section, most opinion mining appli-
cations need to study opinions from a large number of opinion holders.
One opinion from a single holder is usually not sufficient for action. This
indicates that some form of summary of opinions is needed. Opinion quin-
tuples defined above provide an excellent source of information for gener-
ating both qualitative and quantitative summaries. A common form of
summary is based on aspects and is called aspect-based opinion sum-
mary (or feature-based opinion summary) [37, 72]. Below, we use an ex-
ample to illustrate this form of summary, which is widely used in industry.

Example 5: Assume we summarize all the reviews of a particular cellular
phone, cellular phone 1. The summary looks like that in Fig. 11.1, which
was proposed in [37] and is called a structured summary. In the figure,
GENERAL represents the phone itself (the entity). 125 reviews expressed
positive opinions about the phone and 7 expressed negative opinions.
Voice quality and size are two product aspects. 120 reviews expressed
positive opinions about the voice quality, and only 8 reviews expressed
negative opinions. The <individual review sentences> link points to the
specific sentences and/or the whole reviews that give the positive or nega-
tive opinions. With such a summary, the user can easily see how existing
customers feel about the phone. If he/she is interested in a particular as-
pect, he/she can drill down by following the <individual review sentences>
link to see why existing customers like it and/or dislike it. ▀

As mentioned earlier, the discovered quintuples can be stored in data-
base tables. Then a whole suite of database and visualization tools can be
applied to see the results in all kinds of ways to gain insights of the opin-
ions in structured forms and displayed as bar charts and/or pie charts. For
example, the aspect-based summary in Fig. 11.1 can be visualized using
the bar chart in Fig. 11.2(A) [72]. In the figure, each bar above the X-axis
shows the number of positive opinions on the aspect given at the top. The
corresponding bar below the X-axis shows the number of negative opin-
ions on the same aspect. Obviously, other visualizations are also possible.
For example, one may only show the percent of positive opinions.

468 11 Opinion Mining and Sentiment Analysis

Comparing opinion summaries of a few competing products is even
more interesting [72]. Fig. 11.2(B) shows the visual opinion comparison of
two competing phones. We can clearly see how consumers view each of
them along different aspect dimensions.

Researchers have also studied opinion summarization in the tradition fa-
shion, e.g., producing a short text summary [3, 10, 61, 106, 109]. Such a

 Cellular phone 1:
 Aspect: GENERAL
 Positive: 125 <individual review sentences>
 Negative: 7 <individual review sentences>
 Aspect: Voice quality
 Positive: 120 <individual review sentences>
 Negative: 8 <individual review sentences>
 Aspect: Battery
 Positive: 80 <individual review sentences>
 Negative: 12 <individual review sentences>
 …

Fig. 11.1. An aspect-based opinion summary.

Fig. 11.2. Visualization of aspect-based summaries of opinions

Voice Battery Size Weight Camera

Negative Cellular Phone 1

Voice Battery Size Weight Camera Positive

Negative Cellular Phone 1 Cellular Phone 2

(A) Visualization of aspect-based summary of opinions on a cellular phone

(B) Visual opinion comparison of two cellular phones

GENERAL

GENERAL

11.2 Document Sentiment Classification 469

summary gives the reader a quick overview of what people think about a
product or service. A weakness of such a text-based summary is that it is
not quantitative but only qualitative, which is usually not suitable for ana-
lytical purposes. For example, a traditional text summary may say “Most
people do not like this product.” However, a quantitative summary may say
that 60% of the people do not like this product and 40% of them like it. In
most opinion mining applications, the quantitative side is crucial just like
in the traditional survey research. In survey research, aspect-based summa-
ries displayed as bar charts or pie charts are commonly used because they
give the user a concise, quantitative and visual view. Instead of generating
a text summary directly from input reviews, it is also possible to generate a
text summary based on the mining results as displayed in Figs. 11.1 and
11.2. For example, one can generate natural language sentences based on
what are shown in the bar charts using some predefined sentence tem-
plates. For instance, the first two bars in Fig. 11.2(B) can be summarized
as “Most people are positive about cellular phone 1 and negative about
cellular phone 2.” Recently, researchers also tried to produce text summa-
ries similar to that in Fig. 11.1 but in a more readable form [89, 97, 113].

11.2 Document Sentiment Classification

We are now ready to discuss some main research topics of opinion mining.
This section focuses on sentiment classification, which has been studied
extensively in the literature (see a survey in [91]). It classifies an opinion
document (e.g., a product review) as expressing a positive or negative opi-
nion or sentiment. The task is also commonly known as the document-
level sentiment classification because it considers the whole document as
the basic information unit.
Problem Definition: Given an opinionated document d evaluating an en-

tity e, determine the opinion orientation oo on e, i.e., determine oo on
aspect GENERAL in the quintuple (e, GENERAL, oo, h, t). e, h, and t
are assumed known or irrelevant.

Assumption: Sentiment classification assumes that the opinion document
d (e.g., a product review) expresses opinions on a single entity e and the
opinions are from a single opinion holder h.

This assumption holds for customer reviews of products and services
because each such review usually focuses on a single product and is writ-
ten by a single reviewer. However, it may not hold for a forum and blog
posting because in such a posting the author may express opinions on mul-
tiple products and compare them using comparative sentences.

470 11 Opinion Mining and Sentiment Analysis

Most existing techniques for document-level sentiment classification are
based on supervised learning, although there are also some unsupervised
methods. We give an introduction to them below.

11.2.1 Classification Based on Supervised Learning

Sentiment classification obviously can be formulated as a supervised learn-
ing problem with three classes, positive, negative, and neutral. Training
and testing data used in the existing research are mostly product reviews,
which is not surprising due to the above assumption. Since each review al-
ready has a reviewer-assigned rating (e.g., 1–5 stars), training and testing
data are readily available. For example, a review with 4 or 5 stars is con-
sidered a positive review, a review with 1 or 2 stars is considered a nega-
tive review and a review with 3 stars is considered a neutral review.

Sentiment classification is similar to but also somewhat different from
classic topic-based text classification, which classifies documents into pre-
defined topic classes, e.g., politics, sciences, sports, etc. In topic-based
classification, topic-related words are important. However, in sentiment
classification, topic-related words are unimportant. Instead, opinion words
(also called sentiment words) that indicate positive or negative opinions
are important, e.g., great, excellent, amazing, horrible, bad, worst, etc.

Any existing supervised learning methods can be applied to sentiment
classification, e.g., naïve Bayesian classification, and support vector ma-
chines (SVM). Pang et al. [94] took this approach to classify movie re-
views into two classes, positive and negative. It was shown that using uni-
grams (a bag of individual words) as features in classification performed
well with either naïve Bayesian or SVM.

Subsequent research used many more features and techniques in learn-
ing [91]. As most machine learning applications, the main task of senti-
ment classification is to engineer an effective set of features. Some of the
example features used in research and possibly in practice are listed below.
Terms and their frequency. These features are individual words or word n-

grams and their frequency counts (they are also commonly used in tra-
ditional topic-based text classification). In some cases, word positions
may also be considered. The TF-IDF weighting scheme from informa-
tion retrieval may be applied too. These features have been shown quite
effective in sentiment classification.

Part of speech. It was found in many researches that adjectives are impor-
tant indicators of opinions. Thus, adjectives have been treated as special
features.

11.2 Document Sentiment Classification 471

Opinion words and phrases. Opinion words are words that are commonly
used to express positive or negative sentiments. For example, beautiful,
wonderful, good, and amazing are positive opinion words, and bad,
poor, and terrible are negative opinion words. Although many opinion
words are adjectives and adverbs, nouns (e.g., rubbish, junk, and crap)
and verbs (e.g., hate and like) can also indicate opinions. Apart from
individual words, there are also opinion phrases and idioms, e.g., cost
someone an arm and a leg. Opinion words and phrases are instrumental
to sentiment analysis for obvious reasons.

Rules of opinions. Although opinion words and phrases are important,
there are also many other expressions that contain no opinion words or
phrases but indicate opinions or sentiments. We will list and discuss
some of such expressions in Sect. 11.5.2.

Negations. Clearly negation words are important because their appearances
often change the opinion orientation. For example, the sentence “I don’t
like this camera” is negative. However, negation words must be handled
with care because not all occurrences of such words mean negation. For
example, “not” in “not only … but also” does not change the orientation
direction (see opinion shifters in Sect. 11.5.1).

Syntactic dependency. Words dependency-based features generated from
parsing or dependency trees are also tried by several researchers.

Instead of using a standard machine learning method, researchers have
also proposed several custom techniques specifically for sentiment classi-
fication, e.g., the score function in [15] based on words in positive and
negative reviews, and the aggregation method in [117] using manually
compiled domain-specific words and phrases.

Apart from classification of positive or negative sentiments, research
has also been done on predicting the rating scores (e.g., 1–5 stars) of re-
views [92]. In this case, the problem is formulated as regression since the
rating scores are ordinal. Another interesting research direction is transfer
learning or domain adaptation, as it has been shown that sentiment classi-
fication is highly sensitive to the domain from which the training data is
extracted. A classifier trained using opinionated documents from one do-
main often performs poorly when it is applied or tested on opinionated
documents from another domain. The reason is that words and even lan-
guage constructs used in different domains for expressing opinions can be
quite different. To make matters worse, the same word in one domain may
mean positive but in another domain may mean negative. Thus, domain
adaptation is needed. Existing research has used labeled data from one
domain and unlabeled data from the target domain and general opinion
words as features for adaptation [2, 6, 90, 133].

472 11 Opinion Mining and Sentiment Analysis

11.2.2 Classification Based on Unsupervised Learning

It is not hard to imagine that opinion words and phrases are the dominating
indicators for sentiment classification. Thus, using unsupervised learning
based on such words and phrases would be quite natural. The method in
[119] is such a technique. It performs classification based on some fixed
syntactic phrases that are likely to be used to express opinions.

The algorithm makes use of a natural language processing technique
called part-of-speech (POS) tagging. The part-of-speech of a word is a
linguistic category that is defined by its syntactic or morphological behav-

Table 11.1. Penn Treebank Part-Of-Speech (POS) tags

Tag Description Tag Description

CC Coordinating conjunction PRP$ Possessive pronoun
CD Cardinal number RB Adverb
DT Determiner RBR Adverb, comparative
EX Existential there RBS Adverb, superlative
FW Foreign word RP Particle
IN Preposition or subordinat-

ing conjunction
SYM Symbol

JJ Adjective TO to
JJR Adjective, comparative UH Interjection
JJS Adjective, superlative VB Verb, base form
LS List item marker VBD Verb, past tense
MD Modal VBG Verb, gerund or present participle
NN Noun, singular or mass VBN Verb, past participle
NNS Noun, plural VBP Verb, non-3rd person singular present
NNP Proper noun, singular VBZ Verb, 3rd person singular present
NNPS Proper noun, plural WDT Wh-determiner
PDT Predeterminer WP Wh-pronoun
POS Possessive ending WP$ Possessive wh-pronoun
PRP Personal pronoun WRB Wh-adverb

Table 11.2. Patterns of tags for extracting two-word phrases

 First word Second word Third word
(not extracted)

1 JJ NN or NNS anything
2 RB, RBR, or RBS JJ not NN nor NNS
3 JJ JJ not NN nor NNS
4 NN or NNS JJ not NN nor NNS
5 RB, RBR, or RBS VB, VBD, VBN, or VBG anything

11.2 Document Sentiment Classification 473

ior. Common POS categories in English grammar are: noun, verb, adjec-
tive, adverb, pronoun, preposition, conjunction, and interjection. Then,
there are many categories which arise from different forms of these catego-
ries. For example, a verb can be a verb in its base form, in its past tense,
etc. In this book, we use the standard Penn Treebank POS Tags as shown
in Table 11.1. POS tagging is the task of labeling (or tagging) each word in
a sentence with its appropriate part of speech. For details on part-of-speech
tagging, please refer to the report by Santorini [104]. The Penn Treebank
site is at http://www.cis.upenn.edu/~treebank/home.html.

The algorithm given in [119] consists of three steps:

Step 1: It extracts phrases containing adjectives or adverbs as adjectives
and adverbs are good indicators of opinions. However, although an iso-
lated adjective may indicate opinion, there may be insufficient context to
determine its opinion orientation (called semantic orientation in [119]).
For example, the adjective “unpredictable” may have a negative orienta-
tion in an automotive review, in a phrase such as “unpredictable steer-
ing,” but it could have a positive orientation in a movie review, in a
phrase such as “unpredictable plot.” Therefore, the algorithm extracts
two consecutive words, where one member of the pair is an adjective or
adverb, and the other is a context word.

Two consecutive words are extracted if their POS tags conform to any
of the patterns in Table 11.2. For example, the pattern in line 2 means
that two consecutive words are extracted if the first word is an adverb
and the second word is an adjective but the third word (which is not ex-
tracted) cannot be a noun. NNP and NNPS are avoided so that the names
of entities in the review cannot influence the classification.

Example 6: In the sentence “This camera produces beautiful pictures”,
“beautiful pictures” will be extracted as it satisfies the first pattern. ▀

Step 2: It estimates the semantic orientation of the extracted phrases using the
pointwise mutual information (PMI) measure given in Equation (1):

.
)Pr()Pr(

)Pr(log),(
21

21
221 







 


termterm

termterm
termtermPMI (1)

Here, Pr(term1  term2) is the co-occurrence probability of term1 and term2,
and Pr(term1)Pr(term2) gives the probability that the two terms co-occur if
they are statistically independent. The ratio between Pr(term1  term2) and
Pr(term1)Pr(term2) is thus a measure of the degree of statistical dependence
between them. The log of this ratio is the amount of information that we
acquire about the presence of one of the words when we observe the other.

474 11 Opinion Mining and Sentiment Analysis

The semantic/opinion orientation (SO) of a phrase is computed based
on its association with the positive reference word “excellent” and its as-
sociation with the negative reference word “poor”:

SO(phrase) = PMI(phrase, “excellent”)  PMI(phrase, “poor”). (2)

The probabilities are calculated by issuing queries to a search engine and
collecting the number of hits. For each search query, a search engine
usually gives the number of relevant documents to the query, which is
the number of hits. Thus, by searching the two terms together and sepa-
rately, we can estimate the probabilities in Equation (1). Turney, the au-
thor of [119], used the AltaVista search engine because it has a NEAR
operator, which constrains the search to documents that contain the
words within ten words of one another in either order. Let hits(query) be
the number of hits returned. Equation (2) can be rewritten as:

.
)excellent""()"poor" phrase(
)poor""()excellent"" phrase(log)(2 









hitsNEARhits

hitsNEARhits
phraseSO (3)

To avoid division by zero, 0.01 is added to the hits.
Step 3: Given a review, the algorithm computes the average SO of all

phrases in the review and classifies the review as recommended if the
average SO is positive, not recommended otherwise.

Final classification accuracies on reviews from various domains range
from 84% for automobile reviews to 66% for movie reviews.

To summarize this section, we can see that the main advantage of doc-
ument level sentiment classification is that it provides a prevailing opinion
on an entity, topic or event. The main shortcomings are:
 It does not give details on what people liked and/or disliked. In a typical

evaluative document such as a review, the author usually writes specific
aspects of an entity that he/she likes or dislikes. The ability to extract
such details is very useful in practice.

 It is not easily applicable to non-reviews, e.g., forum and blog postings,
because many such postings evaluate multiple entities and compare
them. Also, some of them may not be intended to be evaluations of
products but may still contain a few opinion sentences. In such cases,
these opinion sentences need to be identified and analyzed.

11.3 Sentence Subjectivity and Sentiment Classification

Naturally the same document-level sentiment classification techniques can
also be applied to individual sentences. The task of classifying a sentence

11.3 Sentence Subjectivity and Sentiment Classification 475

as subjective or objective is often called subjectivity classification in the
existing literature [36, 102, 103, 127, 130, 131, 136]. The resulting subjec-
tive sentences are also classified as expressing positive or negative opin-
ions, which is called sentence-level sentiment classification.

Problem Definition: Given a sentence s, two sub-tasks are performed:
1. Subjectivity classification. Determine whether s is a subjective sen-

tence or an objective sentence
2. Sentence-level sentiment classification. If s is subjective, determine

whether it expresses a positive, negative, or neutral opinion

Notice that the quintuple (e, a, oo, h, t) is not used in defining the prob-
lem here because sentence-level classification is often an intermediate step.
In most applications, one needs to know what entities or aspects of the en-
tities are the targets of opinions. Knowing that some sentences have posi-
tive or negative opinions, but not about what, is of limited use. However,
the two sub-tasks of the sentence-level classification are still important be-
cause (1) it filters out those sentences which contain no opinions, and (2)
after we know what entities and aspects of the entities are talked about in a
sentence, this step can help us determine whether the opinions about the
entities and their aspects are positive or negative.

Most existing researches study both problems, although some of them
focus only on one. Both problems are classification problems. Thus, tradi-
tional supervised learning methods are again applicable. For example, one
of the early works reported in [124] performed subjectivity classification
using the naïve Bayesian classifier. Subsequent researches also used other
learning algorithms.

One of the bottlenecks in applying supervised learning is the manual ef-
fort involved in annotating a large number of training examples. To save
the manual labeling effort, a bootstrapping approach to label training data
automatically was reported in [103]. The algorithm works by first using
two high precision classifiers (HP-Subj and HP-Obj) to automatically iden-
tify some subjective and objective sentences. The high-precision classifiers
use lists of lexical items (single words or n-grams) that are good subjectiv-
ity clues. HP-Subj classifies a sentence as subjective if it contains two or
more strong subjective clues. HP-Obj classifies a sentence as objective if
there are no strong subjective clues. These classifiers will give very high
precision but low recall. The extracted sentences are then added to the
training data to learn patterns. The patterns (which form the subjectivity
classifiers in the next iteration) are then used to automatically identify
more subjective and objective sentences, which are then added to the train-
ing set, and the next iteration of the algorithm begins.

476 11 Opinion Mining and Sentiment Analysis

For pattern learning, a set of syntactic templates are provided to restrict
the kinds of patterns to be learned. Some example syntactic templates and
example patterns are shown below.

Syntactic template Example pattern
<subj> passive-verb <subj> was satisfied
<subj> active-verb <subj> complained
active-verb <dobj> endorsed <dobj>
noun aux <dobj> fact is <dobj>
passive-verb prep <np> was worried about <np>

Before discussing algorithms which also perform sentiment classifica-
tion of subjective sentences, let us point out an assumption made in much
of the research on the topic.

Assumption of sentence-level sentiment classification: The sentence ex-
presses a single opinion from a single opinion holder.

This assumption is only appropriate for simple sentences with a single opi-
nion, e.g., “The picture quality of this camera is amazing.” However, for
compound and complex sentences, a single sentence may express more
than one opinion. For example, the sentence, “The picture quality of this
camera is amazing and so is the battery life, but the viewfinder is too small
for such a great camera,” expresses both positive and negative opinions (it
has mixed opinions). For “picture quality” and “battery life,” the sentence is
positive, but for “viewfinder,” it is negative. It is also positive for the cam-
era as a whole (i.e., the GENERAL aspect).

In [136], a study was reported that identifies subjective sentences and
also determines their opinion orientations. For subjectivity, it applied su-
pervised learning. For sentiment classification of each subjective sentence,
it used a similar method to that in Sect. 11.2.2 but with many more seed
words, and the score function was log-likelihood ratio. The same problem
was also studied in [36] considering gradable adjectives and in [27] using
semi-supervised learning. In [54, 55, 57], researchers also built models to
identify some specific types of opinions.

As we mentioned earlier, sentence-level classification is not suitable for
compound and complex sentences. It was pointed out in [130] that not only
a single sentence may contain multiple opinions but also both subjective
and factual clauses. It is useful to pinpoint such clauses. It is also important
to identify the strength of opinions. A study of automatic sentiment classi-
fication was presented to classify clauses of every sentence by the strength
of the opinions being expressed in individual clauses, down to four levels
deep (neutral, low, medium, and high). The strength of neutral indicates
the absence of opinion or subjectivity. Strength classification thus sub-

11.4 Opinion Lexicon Expansion 477

sumes the task of classifying a sentence as subjective vs. objective. In
[129], the problem was studied further using supervised learning by con-
sidering contextual sentiment influencers such as negation (e.g., not and
never) and contrary (e.g., but and however). A list of influencers can be
found in [98]. However, in many cases, identifying only clauses are insuf-
ficient because the opinions can be embedded in phrases, e.g., “Apple is
doing very well in this terrible economy.” In this sentence, the opinion on
“Apple” is clearly positive but on “economy” it is negative.

Finally, as pointed out in Sect. 11.1.1, we should bear in mind that not
all subjective sentences have opinions and those that do form only a subset
of opinionated sentences. Many objective sentences can imply opinions
too. Thus, to mine opinions from text, one needs to mine them from both
subjective and objective sentences.

11.4 Opinion Lexicon Expansion

In the preceding sections, we mentioned that opinion words are employed
in many sentiment classification tasks. We now discuss how such words
are generated. In the research literature, opinion words are also known as
polar words, opinion-bearing words, and sentiment words. Positive
opinion words are used to express some desired states while negative opin-
ion words are used to express some undesired states. Examples of positive
opinion words are beautiful, wonderful, good, and amazing. Examples of
negative opinion words are bad, poor, and terrible. Apart from individual
words, there are also opinion phrases and idioms, e.g., cost someone an
arm and a leg. Collectively, they are called the opinion lexicon. They are
instrumental for opinion mining for obvious reasons.

Opinion words can, in fact, be divided into two types, the base type and
the comparative type. All the examples above are of the base type. Opin-
ion words of the comparative type are used to express comparative and su-
perlative opinions. Examples of such words are better, worse, best, worst,
etc., which are comparative and superlative forms of their base adjectives
or adverbs, e.g., good and bad. Unlike opinion words of the base type, the
words of the comparative type do not express a direct opinion on an entity
but a comparative opinion on more than one entity, e.g., “Car-x is better
than Car-y.” This sentence tells us something quite interesting. It does not
express an opinion that any of the two cars is good or bad. It just says that
compared to Car-y, Car-x is better, and compared to Car-x, Car-y is worse.
Thus, although we still can assign a comparative word as positive or nega-
tive based on whether it represents a desirable or undesirable state, we may
not use it in the same way as an opinion word of the base type. We will

478 11 Opinion Mining and Sentiment Analysis

discuss this issue further when we study comparative sentences. This sec-
tion focuses on opinion words of the base type.

To compile or collect the opinion word list, three main approaches have
been investigated: manual approach, dictionary-based approach, and cor-
pus-based approach. The manual approach is very time consuming and
thus not usually used alone, but it is used when combined with automated
approaches as the final check because automated methods make mistakes.
Below, we discuss the two automated approaches.

Dictionary-based approach: One of the simple techniques in this ap-
proach is based on bootstrapping using a small set of seed opinion words
and an online dictionary, e.g., WordNet [81]. The strategy is to first collect
a small set of opinion words manually with known orientations and then to
grow this set by searching in the WordNet for their synonyms and anto-
nyms. The newly found words are added to the seed list. The next iteration
starts. The iterative process stops when no more new words are found.
This approach is used in [37, 55]. After the process completes, manual in-
spection can be carried out to remove and/or correct errors. Researchers
have also used additional information (e.g., glosses) in WordNet and addi-
tional techniques (e.g., machine learning) to generate better lists [1, 21, 22,
50]. Several opinion word lists have been produced [17, 23, 37, 108, 124].

The dictionary-based approach and the opinion words collected from it
have a major shortcoming. The approach is unable to find opinion words
with domain and context-specific orientations, which is quite common. For
example, for a speaker phone, if it is quiet, it is usually negative. However,
for a car, if it is quiet, it is positive. The corpus-based approach can help
deal with this problem.

Corpus-based approach and sentiment consistency: The methods in
the corpus-based approach rely on syntactic or co-occurrence patterns and
also a seed list of opinion words to find other opinion words in a large cor-
pus. One of the key ideas is the one proposed by Hazivassiloglou and
McKeown [35]. The technique starts with a list of seed opinion adjectives,
and uses them and a set of linguistic constraints or conventions on connec-
tives to identify additional adjective opinion words and their orientations.
One of the constraints is about the conjunction AND, which says that con-
joined adjectives usually have the same orientation. For example, in the
sentence, “This car is beautiful and spacious,” if “beautiful” is known to be
positive, it can be inferred that “spacious” is also positive. This is so be-
cause people usually express the same opinion on both sides of a conjunc-
tion. The following sentence is rather unnatural, “This car is beautiful and
difficult to drive.” If it is changed to “This car is beautiful but difficult to
drive,” it becomes acceptable. Rules or constraints are also designed for
other connectives, OR, BUT, EITHER–OR, and NEITHER–NOR. This

11.4 Opinion Lexicon Expansion 479

idea is called sentiment consistency. Of course, in practice, it is not always
consistent. Learning is applied to a large corpus to determine if two conjoined
adjectives are of the same or different orientations. Same- and different-
orientation links between adjectives form a graph. Finally, clustering is per-
formed on the graph to produce two sets of words: positive and negative. In
[51], Kanayama and Nasukawa expanded this approach by introducing the
idea of intra-sentential (within a sentence) and inter-sentential (between
neighboring sentences) sentiment consistency (called coherency in [44]). The
intra-sentential consistency is similar to that in [35]. Inter-sentential consis-
tency applies the idea to neighboring sentences. That is, the same opinion ori-
entation (positive or negative) is usually expressed in a few consecutive sen-
tences. Opinion changes are indicated by adversative expressions such as but
and however. Some criteria to determine whether to add a word to the posi-
tive or negative lexicon are also proposed. This study was based on Japanese
text. In Sect. 11.5.4, a related but also quite different method will be de-
scribed. Other related work includes [48, 49].

In [17], Ding et al. explored the idea of intra-sentential and inter-sentential
sentiment consistency further. Instead of finding domain-dependent opinion
words, they showed that the same word could indicate different orientations
in different contexts even in the same domain. This fact was also clearly de-
picted by the basic rules of opinions in Sect. 11.5.2. For example, in the digi-
tal camera domain, the word “long” expresses opposite opinions in the two
sentences: “The battery life is long” (positive) and “The time taken to focus is
long” (negative). Thus, finding domain-dependent opinion words is insuffi-
cient. They then proposed to consider both possible opinion words and as-
pects together and use the pair (aspect, opinion_word) as the opinion con-
text, e.g., the pair (“battery life”, “long”). Their method thus determines
opinion words and their orientations together with the aspects that they mod-
ify. The above rules about connectives are still applied. The work in [28]
adopted the same context definition but used it for analyzing comparative
sentences. In fact, the method in [112, 119] can also be considered as a
method for finding context-specific opinions, but it does not use the senti-
ment consistency idea. Its opinion context is based on syntactic POS patterns
rather than aspects and opinion words that modify them. All these context
definitions, however, are still insufficient as the basic rules of opinions dis-
cussed in Sect. 11.5.2 show, i.e., many contexts can be more complex, e.g.,
consuming a large amount of resources. In [7], the problem of extracting
opinion expressions with any number of words was studied. The Conditional
Random Fields (CRF) method [62] was used as the sequence learning tech-
nique for extraction.

Using the corpus-based approach alone to identify all opinion words,
however, is not as effective as the dictionary-based approach because it is

480 11 Opinion Mining and Sentiment Analysis

hard to prepare a huge corpus to cover all English words. However, as we
mentioned above, this approach has a major advantage that the dictionary-
based approach does not have. It can help find domain- and context-
specific opinion words and their orientations using a domain corpus.

Finally, we should realize that populating an opinion lexicon (domain
dependent or not) is different from determining whether a word or phrase
is actually expressing an opinion and what its orientation is in a particular
sentence. Just because a word or phrase is listed in an opinion lexicon does
not mean that it actually is expressing an opinion in a sentence. For exam-
ple, in the sentence, “I am looking for a good health insurance,” “good”
does not express either a positive or negative opinion on any particular in-
surance. The same is true for opinion orientation. We should also remem-
ber that opinion words and phrases are not the only expressions that bear
opinions. There are many others as we will see in Sect. 11.5.2.

11.5 Aspect-Based Opinion Mining

Although classifying opinionated texts at the document level or at the sen-
tence level is useful in many cases, it does not provide the necessary detail
needed for many other applications. A positive opinionated document
about a particular entity does not mean that the author has positive opin-
ions on all aspects of the entity. Likewise, a negative opinionated docu-
ment does not mean that the author dislikes everything. In a typical opin-
ionated document, the author writes both positive and negative aspects of
the entity, although the general sentiment on the entity may be positive or
negative. Document and sentence sentiment classification does not provide
such information. To obtain these details, we need to go to the aspect level.
That is, we need the full model of Sect. 11.1.1, i.e., aspect-based opinion
mining (also called feature-based opinion mining). Instead of treating
opinion mining simply as a classification of sentiments, aspect-based opin-
ion mining introduces a suite of problems which require deeper natural
language processing capabilities and also produce a richer set of results.

Recall that, at the aspect level, the mining objective is to discover every
quintuple (ei, aij, ooijkl, hk, tl) in a given document d. To achieve the objec-
tive, five tasks need to be performed. This section mainly focuses on the
following two core tasks and they have also been studied more extensively
by researchers (in Sect. 11.7, we will briefly discuss some other tasks):

1. Aspect extraction: Extract aspects that have been evaluated. For ex-
ample, in the sentence, “The picture quality of this camera is amazing,”
the aspect is “picture quality” of the entity represented by “this camera.”

11.5 Aspect-Based Opinion Mining 481

Note that “this camera” does not indicate the GENERAL aspect be-
cause the evaluation is not about the camera as a whole, but about its
picture quality. However, the sentence “I love this camera” evaluates
the camera as a whole, i.e., the GENERAL aspect of the entity repre-
sented by “this camera.” Bear in mind whenever we talk about an as-
pect, we must know which entity it belongs to. In our discussion below,
we often omit the entity just for simplicity of presentation.

2. Aspect sentiment classification: Determine whether the opinions on
different aspects are positive, negative, or neutral. In the first example
above, the opinion on the “picture quality” aspect is positive, and in the
second example, the opinion on the GENERAL aspect is also positive.

11.5.1 Aspect Sentiment Classification

We study the second task first, determining the orientation of opinions ex-
pressed on each aspect in a sentence. Clearly, the sentence-level and
clause-level sentiment classification methods discussed in Sect. 11.3 are
useful here. That is, they can be applied to each sentence or clause which
contains some aspects. The aspects in it will take the opinion orientation of
the sentence or clause. However, these methods have difficulty dealing
with mixed opinions in a sentence and opinions that need phrase level
analysis, e.g., “Apple is doing very well in this terrible economy.” Clause-
level analysis also needs techniques to identify clauses which itself is a
challenging task, especially with informal text of blogs and forum discus-
sions, which is full of grammatical errors. Here, we describe a lexicon-
based approach to solving the problem [17, 37], which tries to avoid these
problems and has been shown to perform quite well. The extension of this
method to handling comparative sentences is discussed in Sect. 11.6. In the
discussion below, we assume that entities and their aspects are known. Their
extraction will be discussed in Sects. 11.5.3, 11.5.4, and 11.7.
 The lexicon-based approach basically uses an opinion lexicon, i.e., a list
of opinion words and phrases, to determine the orientations of opinions in
a sentence [17, 37]. It also considers opinion shifters and but-clauses.
The approach works as follows:
1. Mark opinion words and phrases: Given a sentence that contains one

or more aspects, this step marks all opinion words and phrases in the
sentence. Each positive word is assigned the opinion score of +1 and
each negative word is assigned the opinion score of 1. For example,
we have the sentence, “The picture quality of this camera is not great,
but the battery life is long.” After this step, the sentence is turned into
“The picture quality of this camera is not great[+1], but the battery life is

482 11 Opinion Mining and Sentiment Analysis

long” because “great” is a positive opinion word. The aspects are itali-
cized. Although “long” indicates positive for “battery life,” we assume
that it is not known. In fact, “long” can be regarded as a context-
dependent opinion word, which we have discussed in Sect. 11.4.

2. Handle opinion shifters: Opinion shifters (also called valence shifters
[98]) are words and phrases that can shift or change opinion orienta-
tions. Negation words like not, never, none, nobody, nowhere, neither,
and cannot are the most common type. In our example, this step turns
the above sentence into “The picture quality of this camera is not great[-
1], but the battery life is long” due to the negation word “not.” Besides
negation words, many other types of words and phrases can also alter
opinion orientations. For example, some modal auxiliary verbs (e.g.,
would, should, could, might, must, and ought) are another type of opin-
ion shifters, e.g., “The brake could be improved.” So are some presup-
positional items. This case is typical for adverbs like barely and hardly
as shown by comparing “It works” with “It hardly works.” “Works” in-
dicates positive, but “hardly works” does not: it presupposes that better
was expected. Words like fail, omit, neglect behave similarly, e.g.,
“This camera fails to impress me.” Additionally, sarcasm changes ori-
entation too, e.g., “What a great car, it failed to start the first day.” Al-
though it is easy to recognize such shifters manually, spotting them and
handling them correctly in actual sentences by an automated system is
by no means easy. Furthermore, not every appearance of an opinion
shifter changes the opinion orientation, e.g., “not only … but also.”
Such cases need to be dealt with carefully.

3. Handle but-clauses: In English, but means contrary. A sentence con-
taining but is handled by applying the following rule: the opinion orien-
tation before but and after but are opposite to each other if the opinion
on one side cannot be determined. After this step, the above sentence is
turned into “The picture quality of this camera is not great[-1], but the
battery life is long[+1]” due to “but” (note that [+1] is added at the end
of the but-clause). Apart from but, phrases such as “with the exception
of,” “except that,” and “except for” behave similarly to but and are han-
dled in the same way. As in the case of negation, not every but means
contrary, e.g., “not only … but also.” Such non-but phrases containing
“but” also need to be considered separately. Finally, we should note that
contrary words and phrases do not always indicate an opinion change,
e.g., “Car-x is great, but Car-y is better.” Such cases need to be identi-
fied and dealt with separately.

4. Aggregating opinions: This step applies an opinion aggregation func-
tion to the resulting opinion scores to determine the final orientation of
the opinion on each aspect in the sentence. Let the sentence be s, which

11.5 Aspect-Based Opinion Mining 483

contains a set of aspects {a1, …, am} and a set of opinion words or
phrases {ow1, …, own} with their opinion scores obtained from steps 1,
2, and 3. The opinion orientation for each aspect ai in s is determined by
the following opinion aggregation function:

 ,
),(

.
),(




sow ij

j
i

j
aowdist

ooow
sascore (5)

where owj is an opinion word/phrase in s, dist(owj, ai) is the distance be-
tween aspect ai and opinion word owj in s. owj.oo is the opinion score of
owi. The multiplicative inverse is used to give lower weights to opinion
words that are far away from aspect ai. If the final score is positive, then
the opinion on aspect ai in s is positive. If the final score is negative,
then the opinion on the aspect is negative. It is neutral otherwise.

This simple algorithm can perform quite well in many cases, but it is not
sufficient in others. One main shortcoming is that opinion words and
phrases do not cover all types of expressions that convey or imply opin-
ions. There are in fact many other possible opinion bearing expressions.
Most of them are also harder to deal with. Below, we list some of them,
which we call the basic rules of opinions.

11.5.2 Basic Rules of Opinions

An opinion rule expresses a concept that implies a positive or negative
opinion. In actual sentences, the concept can be expressed in many differ-
ent ways in natural language. We present these rules using a formalism
similar to the BNF form. The top level rules are as follows:

1. POSITIVE ::= P
2. | PO
3. | orientation shifter N
4 | orientation shifter NE
5. NEGATIVE ::= N
6. | NE
7. | orientation shifter P
8. | orientation shifter PO

The non-terminals P and PO represent two types of positive opinion ex-
pressions. The non-terminal N and NE represent two types of negative
opinion expressions. “opinion shifter N” and ”opinion shifter NE” repre-
sent the negation of N and NE, respectively, and “opinion shifter P” and
“opinion shifter PO” represent the negation of P and PO, respectively. We
can see that these are not expressed in the actual BNF form but a pseudo

484 11 Opinion Mining and Sentiment Analysis

language stating some concepts. The reason is that we are unable to spec-
ify them precisely because for example, in an actual sentence, the opinion
shifter may be in any form and can appear before or after N, NE, P, or PO.
POSITIVE and NEGATIVE are the final orientations used to determine
the opinions on the aspects in a sentence.

We now define N, NE, P, and PO, which contain no opinion shifters.
These opinion expressions are grouped into six conceptual categories
based on their characteristics.

1. Opinion word or phrase: This is the most commonly used category, in
which opinion words or phrases alone can imply positive or negative
opinions on aspects, e.g., “great” in “The picture quality is great.”
These words or phrases are reduced to P and N.

9. P ::= a positive opinion word or phrase
10. N ::= an negative opinion word or phrase

Again, the details of the right-hand sides are not specified (which also
apply to all the subsequent rules). It is assumed that a set of positive and
negative opinion words/phrases exists for an application.

2. Desirable or undesirable fact: In this case, it is a factual statement, and
the description uses no opinion words, but in the context of the entity,
the description implies a positive or negative opinion. For example, the
sentence “After my wife and I slept on it for two weeks, I noticed a
mountain in the middle of the mattress” indicates a negative opinion
about the mattress. However, the word “mountain” itself does not carry
any opinion. Thus, we have the following two rules:

11. P ::= desirable fact
12. N ::= undesirable fact

3. High, low, increased and decreased quantity of a positive or negative
potential item: For some aspects, a small value/quantity of them is neg-
ative, and a large value/quantity of them is positive, e.g., “The battery
life is short” and “The battery life is long.” We call such aspects positive
potential items (PPI). Here “battery life” is a positive potential item.
For some other aspects, a small value/quantity of them is positive, and a
large value/quantity of them is negative, e.g., “This phone costs a lot”
and “Sony reduced the price of the camera.” We call such aspects neg-
ative potential items (NPI). “cost” and “price” are negative potential
items. Both positive and negative potential items themselves express no
opinions, i.e., “battery life” and “cost”, but when they are modified by
quantity adjectives or quantity change words or phrases, positive or
negative opinions are implied. The following rules cover these cases:

11.5 Aspect-Based Opinion Mining 485

13. PO ::= no, low, less or decreased quantity of NPI
14. | large, larger, or increased quantity of PPI
15. NE ::= no, low, less, or decreased quantity of PPI
16. | large, larger, or increased quantity of NPI
17. NPI ::= a negative potential item
18. PPI ::= a positive potential item

4. Decreased and increased quantity of an opinionated item (N and P):
This set of rules is similar to the negation rules 3, 4, 7, and 8 above.
Decreasing or increasing the quantity associated with an opinionated
item (often nouns and noun phrases) can change the orientation of the
opinion. For example, in the sentence “This drug reduced my pain sig-
nificantly,” “pain” is a negative opinion word, and the reduction of
“pain” indicates a desirable effect of the drug. Hence, decreased pain
implies a positive opinion on the drug. The concept of decreasing also
extends to removal and disappearance, e.g., “My pain has disappeared
after taking the drug.” We then have the following rules:

19. PO ::= less or decreased N
20. | more or increased P
21. NE ::= less or decreased P
22. | more or increased N

Rules 20 and 22 may not be needed as there is no change of opinion
orientation, but they can change the opinion intensity. The key differ-
ence between this set of rules and the rules in the previous category is
that no opinion words or phrases are involved in the previous category.

5. Deviation from the norm or some desired value range: In some applica-
tion domains, the value of an aspect may have a desired range or norm.
If it is above or below the normal range, it is negative, e.g., “This drug
causes low (or high) blood pressure” and “This drug causes my blood
pressure to reach 200.” Notice that no opinion word appeared in these
sentences. We have the following rules:

23. PO ::= within the desired value range
24. NE ::= above or below the desired value range

6. Producing and consuming resources and wastes: If an entity produces a
lot of resources, it is positive. If it consumes a lot of resources, it is neg-
ative. For example, water is a resource. The sentence, “This washer
uses a lot of water” gives a negative opinion about the washer. Like-
wise, if an entity produces a lot of wastes, it is negative. If it consumes
a lot of wastes, it is positive. These give us the following rules:

486 11 Opinion Mining and Sentiment Analysis

25. PO ::= produce a large quantity of or more resource
26. | produce no, little or less waste
27. | consume no, little or less resource
28. | consume a large quantity of or more waste
29. NE ::= produce no, little or less resource
30. | produce some or more waste
31. | consume a large quantity of or more resource
32. | consume no, little or less waste

It should be stressed again that these are conceptual rules. They can be
expressed in many ways using different words or phrases in actual sen-
tences, and in different domains they may also manifest in different forms.
These rules also show the difficulty of opinion mining because recognizing
them in different domains are highly challenging.

We should also note that these rules may not be the only rules that gov-
ern expressions of positive and negative opinions. With further research,
additional new rules may be discovered and the existing rules may be re-
vised. It is also important to know that any manifestation of such rules in
text does not always imply opinions. In other words, just because a rule is
satisfied in a sentence does not mean that it actually expresses an opinion.
For example, “I want a reliable car” does not express an opinion on any
specific car, although the positive opinion word “reliable” appeared.

11.5.3 Aspect Extraction

Existing research on aspect extraction (more precisely, aspect expression
extraction) is mainly carried out in online reviews. We thus focus on re-
views here. There are two common review formats on the Web.

Format 1  Pros, Cons, and the detailed review: The reviewer is asked to
describe some brief pros and cons separately and also write a de-
tailed/full review. An example of such a review is given in Fig. 11.3.

Format 2  Free format: The reviewer can write freely, i.e., no separation
of pros and cons. An example of such a review is given in Fig. 11.4.

To extract aspects from Pros and Cons in reviews of Format 1 (not the de-
tailed review, which is the same as that in Format 2), many information ex-
traction techniques can be applied, e.g., Conditional Random Fields (CRF)
[62], and Hidden Markov Models (HMM) [25], and mining sequential
rules [72]. An important observation about Pros and Cons is that they are
usually very brief, consisting of short phrases or sentence segments. Each
sentence segment typically contains only one aspect, and sentence seg-
ments are separated by commas, periods, semi-colons, hyphens, &, and,

11.5 Aspect-Based Opinion Mining 487

but, etc. This observation helps the extraction algorithm to perform more
accurately, see [72]. Since aspect extraction from Pros and Cons is rela-
tively simple, we will not discuss it further.

We now focus on the more general case, i.e., extracting aspects from re-
views of Format 2, which usually consist of complete sentences. The
above algorithm can also be applied. However, experiments have shown
that it is not as effective because complete sentences are more complex and
contain a large amount of noise. Below, we describe some unsupervised
methods for finding explicit aspect expressions that are nouns and noun
phrases. The first method is due to [37]. The method requires a large num-
ber of reviews and consists of two steps:
1. Find frequent nouns and noun phrases: Nouns and noun phrases (or

groups) are identified by a POS tagger. Their occurrence frequencies
are counted, and only the frequent ones are kept. A frequency threshold
can be decided experimentally. The reason for using this approach is
that when people comment on different aspects of a product, the vo-
cabulary that they use usually converges. Thus, those nouns that are fre-
quently talked about are usually genuine and important aspects. Irrele-
vant contents in reviews are often diverse, i.e., they are quite different
in different reviews. Hence, those infrequent nouns are likely to be non-
aspects or less important aspects.

2. Find infrequent aspects by exploiting the relationships between aspects
and opinion words: The above step can miss many genuine aspect ex-

My SLR is on the shelf
by camerafun4. Aug 09 ‘04
Pros: Great photos, easy to use, very small
Cons: Battery usage; included memory is stingy.
I had never used a digital camera prior to purchasing this Canon A70. I
have always used a SLR … Read the full review

Fig. 11.3. An example of a review of format 1.

GREAT Camera., Jun 3, 2004
Reviewer: jprice174 from Atlanta, Ga.
I did a lot of research last year before I bought this camera... It kinda hurt
to leave behind my beloved nikon 35mm SLR, but I was going to Italy, and
I needed something smaller, and digital.
The pictures coming out of this camera are amazing. The 'auto' feature
takes great pictures most of the time. And with digital, you're not wasting
film if the picture doesn't come out. …

Fig. 11.4. An example of a review of format 2.

488 11 Opinion Mining and Sentiment Analysis

pressions which are infrequent. This step tries to find some of them.
The idea is as follows: The same opinion word can be used to describe
or modify different aspects. Opinion words that modify frequent aspects
can also modify infrequent aspects and thus can be used to extract in-
frequent aspects. For example, “picture” has been found to be a frequent
aspect, and we have the sentence,

“The pictures are absolutely amazing.”
If we know that “amazing” is an opinion word, then “software” can also
be extracted as an aspect from the following sentence,

“The software is amazing.”
because the two sentences follow the same dependency pattern and
“software” in the sentence is also a noun.

This idea of using the modifying relationship of opinion words and
aspects to extract aspects was later generalized to using dependency re-
lations [146], which was further developed into the double-propagation
method for simultaneously extracting both opinion words and aspects
[101]. The double-propagation method will be described in Sect. 11.5.4.
The precision of step 1 of the above algorithm was improved in [99].

Their algorithm tries to remove those noun phrases that may not be prod-
uct aspects/features. It evaluates each noun phrase by computing a point-
wise mutual information (PMI) score between the phrase and some mero-
nymy discriminators associated with the product class, e.g., a scanner
class. The meronymy discriminators for the scanner class are, “of scan-
ner,” “scanner has,” “scanner comes with,” etc., which are used to find
components or parts of scanners by searching on the Web. The PMI meas-
ure is a simplified version of that in Sect. 11.2.2.

,
)()(

)(),(
dhitsahits

dahits
daPMI


 (4)

where a is a candidate aspect identified in step 1 and d is a discriminator.
Web search is used to find the number of hits of individual terms and also
their co-occurrences. The idea of this approach is clear. If the PMI value of
a candidate aspect is too low, it may not be a component of the product be-
cause a and d do not co-occur frequently. The algorithm also distinguishes
components/parts from attributes using WordNet’s is-a hierarchy (which
enumerates different kinds of properties) and morphological cues (e.g., “-
iness,” “-ity” suffixes).

Other related works on aspect extraction use existing knowledge, super-
vised learning, semi-supervised learning, topic modeling, and clustering.
Several researchers also explored the idea of jointly modeling both aspects

11.5 Aspect-Based Opinion Mining 489

and opinions. Lu et al. [75] exploited an ontology (Freebase: http://www
.freebase.com) to obtain aspects to a topic and used them to organize scat-
tered opinions to generate structured summaries. Su et al. [111] proposed a
clustering method with mutual reinforcement to identify implicit aspects.
In [30], semi-supervised learning and domain knowledge are employed.

If reviews with manually annotated aspects and opinion expressions are
available, standard supervised learning methods can be applied. Jin and Ho
[41] applied a lexicalized hidden Markov model to learn patterns to extract
aspects and opinion expressions. Jakob and Gurevych [39] used condi-
tional random fields. Wu et al. [132] used dependency tree kernels.

Topic modeling methods have been attempted as an unsupervised and
knowledge-lean approach. Titov and McDonald [116] showed that global
topic models such as LDA (Latent Dirichlet allocation [5]) might not be
suitable for detecting rateable aspects. They proposed multigrain topic
models to discover local rateable aspects. Here, each discovered aspect is a
unigram language model, i.e., a multinomial distribution over words. Such
a representation is thus not as easy to interpret as aspects extracted by pre-
vious methods, but its advantage is that different words expressing the
same or related aspects (more precisely aspect expressions) can usually be
automatically grouped together under the same aspect. However, Titov and
McDonald [116] did not separate aspects and opinion words in the discov-
ery. Lin and He [69] proposed a joint topic-sentiment model also by ex-
tending LDA, where aspect words and opinion words were still not explic-
itly separated. To separate aspects and opinion words using topic models,
Mei et al. [80] proposed to use a positive sentiment model and a negative
sentiment model in additional to aspect models. Brody and Elhadad [8]
proposed to first identify aspects using topic models and then identify as-
pect-specific opinion words by considering adjectives only. Zhao et al.
[145] proposed a MaxEnt-LDA hybrid model to jointly discover both as-
pect words and aspect-specific opinion words, which can leverage syntac-
tic features to help separate aspects and opinion words. Topic modeling-
based approaches were also used by Liu et al. [74] and Lu et al. [76].

Another line of work is to associate aspects with opinion/sentiment rat-
ings. It aims to predict ratings based on learned aspects or jointly model
aspects and ratings. Titov and McDonald [115] proposed a statistical mod-
el that is able to discover aspects from text and to extract textual evidence
from reviews supporting each aspect rating. Lu et al. [77] defined a prob-
lem of rated aspect summarization. They proposed to use the structured
probabilistic latent semantic analysis method to learn aspects from a bag of
phrases and a local/global method to predict aspect ratings. Wang et al.
[121] proposed to infer both aspect ratings and aspect weights at the level
of individual reviews based on learned latent aspects.

490 11 Opinion Mining and Sentiment Analysis

11.5.4 Simultaneous Opinion Lexicon Expansion and Aspect
Extraction

In [100, 101], a method was proposed to extract both opinion words and
aspects simultaneously by exploiting certain syntactic relations of opinion
words and aspects. Although it was originally designed to work with prod-
uct reviews, a reimplementation and extension of it has been applied on
Twitter data, forum discussions, and blog postings. It has also been suc-
cessfully used to analyze Chinese online discussions [139]. The method
needs only an initial set of opinion word seeds as the input and no seed as-
pects are required. It is based on the observation that opinions almost al-
ways have targets, and there are natural relations connecting opinion words
and targets in a sentence due to the fact that opinion words are used to
modify targets. Furthermore, it was found that opinion words have rela-
tions among themselves and so do targets. The opinion targets are usually
aspects. Thus, opinion words can be recognized by identified aspects, and
aspects can be identified by known opinion words. The extracted opinion
words and aspects are utilized to identify new opinion words and new as-
pects, which are used again to extract more opinion words and aspects.
This propagation process ends when no more opinion words or aspects can
be found. As the process involves propagation through both opinion words
and aspects, the method is called double propagation. Extraction rules are
designed based on different relations between opinion words and aspects
and also opinion words and aspects themselves. Dependency grammar
[114] was adopted to describe these relations.

The algorithm uses only a simple type of dependencies called direct
dependencies to model useful relations. A direct dependency indicates
that one word depends on the other word without any additional words in
their dependency path or they both depend on a third word directly. Some
constraints are also imposed. Opinion words are considered to be adjec-
tives and aspects nouns or noun phrases. Thus, the potential POS tags for
opinion words are JJ (adjectives), JJR (comparative adjectives), and JJS
(superlative adjectives), while those for aspects are NN (singular nouns)
and NNS (plural nouns). The dependency relations describing relations be-
tween opinion words and aspects include mod, pnmod, subj, s, obj, obj2,
and desc, while the relations for opinion words and aspects themselves
contain only the conjunction relation conj. We use OA-Rel to denote the
relations between opinion words and aspects, OO-Rel between opinion
words themselves, and AA-Rel between aspects. Each relation in OA-Rel,
OO-Rel, or AA-Rel can be formulated as a triple POS(wi), R, POS(wj),
where POS(wi) is the POS tag of word wi and R is the relation. The values
of POS(wi) and R were listed above.

11.5 Aspect-Based Opinion Mining 491

 The extraction process uses a rule-based approach with the relations de-
fined above. For example, in an opinion sentence “Canon G3 produces
great pictures,” the adjective “great” is parsed as directly depending on the
noun “pictures” through mod, formulated as an OA-Rel JJ, mod, NNS. If
we know “great” is an opinion word and are given the rule “a noun on
which an opinion word directly depends through mod is taken as an as-
pect,” we can extract “pictures” as an aspect. Similarly, if we know “pic-
tures” is an aspect, we can extract “great” as an opinion word using a simi-
lar rule. The propagation performs four subtasks:

 Observations Output Examples

R11
(OA-Rel)

OO-DepA
s.t. O{O}, O-Dep{MR},

POS(A){NN}

a = A The phone has a good “screen”.

goodmodscreen

R12
(OA-Rel)

OO-DepHA-DepA
s.t. O{O}, O/A-Dep{MR},

POS(A){NN}

a = A “iPod” is the best mp3 player.

bestmodplayersubjiPod

R21
(OA-Rel)

OO-DepA
s.t. A{A}, O-Dep{MR},

POS(O){JJ}

o = O same as R11 with screen as the known
word and good as the extracted word

R22
(OA-Rel)

OO-DepHA-DepA
s.t. A{A}, O/A-Dep{MR},

POS(O){JJ}

o = O same as R12 with iPod is the known
word and best as the extract word.

R31
(AA-Rel)

Ai(j)Ai(j)-DepAj(i)
s.t. Aj(i) {A}, Ai(j)-Dep{CONJ},

POS(Ai(j)){NN}

a = Ai(j) Does the player play dvd with audio
and “video”?

videoconjaudio

R32
(AA-Rel)

AiAi-DepHAj-DepAj
s.t. Ai{A}, Ai-Dep=Aj-Dep OR

(Ai-Dep = subj AND Aj-Dep = obj),
POS(Aj){NN}

a = Aj Canon “G3” has a great len.

lenobjhassubjG3

R41
(OO-Rel)

Oi(j)Oi(j)-DepOj(i)
s.t. Oj(i){O}, Oi(j)-Dep{CONJ},

POS(Oi(j)){JJ}

o = Oi(j) The camera is amazing and “easy” to
use.

easyconjamazing

R42
(OO-Rel)

OiOi-DepHOj-DepOj
s.t. Oi{O}, Oi-Dep=Oj-Dep OR

(Oi /Oj-Dep {pnmod, mod}),
POS(Oj){JJ}

o = Oj If you want to buy a sexy, “cool”, ac-
cessory-available mp3 player, you can

choose iPod.
sexymodplayermodcool

Table 11.3. Rules for aspect and opinion word extraction.
Column 1 is the rule ID, column 2 is the observed relation (line 1) and the con-
straints that it must satisfy (lines 2 – 4), column 3 is the output, and column 4 is
an example. In each example, the underlined word is the known word and the
word with double quotes is the extracted word. The corresponding instantiated
relation is given right below the example.

492 11 Opinion Mining and Sentiment Analysis

1. extracting aspects using opinion words
2. extracting aspects using the extracted aspects
3. extracting opinion words using the extracted aspects
4. extracting opinion words using both the given and the extracted opin-

ion words
OA-Rels are used for tasks (1) and (3), AA-Rels are used for task (2),

and OO-Rels are used for task (4). Four types of rules are defined, respec-
tively, for these four subtasks and the details are given in Table 11.3. In the
table, o (or a) stands for the output (or extracted) opinion word (or aspect).
{O} (or {A}) is the set of known opinion words (or the set of aspects) ei-
ther given or extracted. H means any word. POS(O(or A)) and O(or A)-
Dep stand for the POS tag and dependency relation of the word O (or A)
respectively. {JJ} and {NN} are sets of POS tags of potential opinion
words and aspects respectively. {JJ} contains JJ, JJR and JJS; {NN} con-
tains NN and NNS. {MR} consists of dependency relations describing rela-
tions between opinion words and aspects (mod, pnmod, subj, s, obj, obj2,
and desc). {CONJ} contains conj only.

The arrows mean dependency. For example, O  O-Dep  A means O
depends on A through a syntactic relation O-Dep. Specifically, we employ
R1i to extract aspects (a) using opinion words (O), R2i to extract opinion
words (o) using aspects (A), R3i to extract aspects (a) using extracted as-
pects (Ai) and R4i to extract opinion words (o) using known opinion words
(Oi). Take R11 as an example. Given the opinion word O, the word with
the POS tag NN and satisfying the relation O-Dep is extracted as an aspect.
For example, we have the sentence “The phone has good screen” whose
corresponding dependency tree is in Fig. 11.5. If we know that “good” is
an opinion word, and it depends on “screen” through mod which is con-
tained in {MR} and “screen” is tagged as NN, R11 can be applied to extract
“screen” as an aspect.

It should be noted that although this method only finds noun aspect
words and adjective opinion words, it can be extended to aspects and opin-
ion words of other parts-of-speech by adding more dependency relations. It
also has a method to join words to form aspect phrases and a method to de-
termine the opinion orientations of the extracted opinion words.

Fig. 11.5: The dependency tree for “The phone has good screen”

 subj obj

 det mod

 The good

 phone screen

has

11.6 Mining Comparative Opinions 493

11.6 Mining Comparative Opinions

Directly or indirectly expressing positive or negative opinions about an en-
tity and its aspects is only one form of evaluation. Comparing the entity
with some other similar entities is another. Comparisons are related to but
are also quite different from regular opinions. They not only have different
semantic meanings but also different syntactic forms. For example, a typi-
cal regular opinion sentence is “The picture quality of this camera is
great,” and a typical comparative sentence is “The picture quality of Cam-
era-x is better than that of Camera-y.” This section first defines the prob-
lem and then presents some existing methods to solve it [18, 28, 42, 43].

11.6.1 Problem Definitions

In general, a comparative sentence expresses a relation based on similari-
ties or differences of more than one entity. The comparison is usually con-
veyed using the comparative or superlative form of an adjective or adverb.
A comparative sentence typically states that one entity has more or less of
a certain attribute than another entity. A superlative sentence typically
states that one entity has the most or least of a certain attribute among a set
of similar entities. In general, a comparison can be between two or more
entities, groups of entities, and one entity and the rest of the entities. It can
also be between an entity and its previous versions.

Two types of comparatives: In English, comparatives are usually
formed by adding the suffix -er and superlatives are formed by adding the
suffix -est to their base adjectives and adverbs. For example, in “The bat-
tery life of Camera-x is longer than that of Camera-y,” “longer” is the com-
parative form of the adjective “long.” In “The battery life of this camera is
the longest,” “longest” is the superlative form of the adjective “long”. We
call this type of comparatives and superlatives Type 1 comparatives and
superlatives. Note that for simplicity, we often use comparative to mean
both comparative and superlative if superlative is not explicitly stated.

Adjectives and adverbs with two syllables or more and not ending in y
do not form comparatives or superlatives by adding -er or -est. Instead,
more, most, less, and least are used before such words, e.g., more beauti-
ful. We call this type of comparatives and superlatives Type 2 compara-
tives and Type 2 superlatives. Both Type 1 and Type 2 are called regular
comparatives and superlatives.

In English, there are also irregular comparatives and superlatives, i.e.,
more, most, less, least, better, best, worse, worst, further/farther and fur-
thest/farthest, which do not follow the above rules. However, they behave
similarly to Type 1 comparatives and are thus grouped under Type 1.

494 11 Opinion Mining and Sentiment Analysis

Apart from these standard comparatives and superlatives, many other
words or phrases can also be used to express comparisons, e.g., prefer and
superior. For example, the sentence, “Camera-x’s quality is superior to
Camera-y,” says that “Camera-x” is better or preferred. In [42], Jindal and
Liu identified a list of such words. Since these words behave similarly to
Type 1 comparatives, they are also grouped under Type 1.

Types of comparative relations: Comparative relations or comparisons
can be grouped into four main types. The first three types are called the
gradable comparisons and the last one the non-gradable comparisons.
1. Non-equal gradable comparisons: Relations of the type greater or less

than that express an ordering of some entities with regard to some of
their shared aspects, e.g., “The Intel chip is faster than that of AMD”.
This type also includes user preferences, e.g., “I prefer Intel to AMD.”

2. Equative comparisons: Relations of the type equal to that state two or
more entities are equal with regard to some of their shared aspects, e.g.,
“The performance of Car-x is about the same as that of Car-y.”

3. Superlative comparisons: Relations of the type greater or less than all
others that rank one entity over all others, e.g., “The Intel chip is the
fastest.”

4. Non-gradable comparisons: Relations that compare aspects of two or
more entities, but do not grade them. There are three main sub-types:
 Entity A is similar to or different from entity B with regard to some

of their shared aspects, e.g., “Coke tastes differently from Pepsi.”
 Entity A has aspect a1, and entity B has aspect a2 (a1 and a2 are usu-

ally substitutable), e.g., “Desktop PCs use external speakers but
laptops use internal speakers.”

 Entity A has aspect a, but entity B does not have, e.g., “Phone-x has
an earphone, but Phone-y does not have.”

Comparative words used in non-equal gradable comparisons can be fur-
ther categorized into two groups according to whether they express in-
creased or decreased quantities, which are useful in opinion analysis.

 Increasing comparatives: Such a comparative expresses an increased
quantity, e.g., more and longer.

 Decreasing comparatives: Such a comparative expresses a decreased
quantity, e.g., less and fewer.

Objective of mining comparative opinions: Given a collection of opin-
ionated documents D, discover in D all comparative opinion sextuples
of the form:

 (E1, E2, A, PE, h, t),

11.6 Mining Comparative Opinions 495

where E1 and E2 are the entity sets being compared based on their
shared aspects A (entities in E1 appear before entities in E2 in the sen-
tence), PE ( {E1, E2}) is the preferred entity set of the opinion holder
h, and t is the time when the comparative opinion is expressed.

Example 7: Consider the comparative sentence “Canon’s optics is better
than those of Sony and Nikon,” written by John in 2010. The extracted
comparative opinion is:

 ({Canon}, {Sony, Nikon}, {optics}, preferred:{Canon}, John, 2010)

The entity set E1 is {Canon}, the entity set E2 is {Sony, Nikon}, their
shared aspect set A being compared is {optics}, the preferred entity set is
{Canon}, the opinion holder h is John, and the time t when this compara-
tive opinion was written is 2010. ▀

To mine comparative opinions, the tasks of extracting entities, aspects,
opinion holders, and times are the same as those for mining regular opin-
ions. In [43], a method based on label sequential rules (LSR) is proposed
to extract entities and aspects that are compared. A similar approach is de-
scribed in [66] for extracting the compared entities. Clearly, the ap-
proaches discussed in previous sections are applicable as well, and so are
many other information extraction methods. Below, we only focus on
studying two comparative opinion mining specific problems, i.e., identify-
ing comparative sentences and identifying the preferred entity set.

11.6.2 Identification of Comparative Sentences

Although most comparative sentences contain comparative adjectives and
comparative adverbs, e.g., better, and longer, many sentences that contain
such words are not comparative sentences, e.g., “I cannot agree with you
more.” Similarly, many sentences that do not contain such indicators are
comparative sentences (usually non-gradable), e.g., “Cellphone-x has
Bluetooth, but Cellphone-y does not have.”

It was shown in [42] that almost every comparative sentence has a key-
word or a key phrase indicating comparison. Using a set of 83 keywords
and key phrases, 98% of the comparative sentences (recall = 98%) were
identified with a precision of 32% using the authors’ data set. The key-
words and key phrases are:

1. Comparative adjectives (JJR) and comparative adverbs (RBR), e.g.,
more, less, better, and words ending with -er.

2. Superlative adjectives (JJS) and superlative adverbs (RBS), e.g., most,
least, best, and words ending with -est.

496 11 Opinion Mining and Sentiment Analysis

3. Other indicative words and phrases such as same, similar, differ, as well
as, favor, beat, win, exceed, outperform, prefer, ahead, than, superior,
inferior, number one, up against, etc.

Since keywords and key phrases alone are able to achieve a high recall,
the set of keywords and key phrases can be used to filter out those sen-
tences that are unlikely to be comparative sentences. We can then improve
the precision of the remaining set of sentences.

It was also observed in [42] that comparative sentences have strong pat-
terns involving comparative keywords, which is not surprising. These pat-
terns can be used as features in machine learning. To discover these pat-
terns, class sequential rule (CSR) mining was used in [42]. Class
sequential rule mining is a sequential pattern mining method (see Sect.
2.9.3). Each training example used for mining CSRs is a pair (si, yi), where
si is a sequence and yi is a class, e.g., yi  {comparative, non-
comparative}. The sequence is generated from a sentence. Instead of using
each full sentence, only words near a comparative keyword are used to
generate each sequence. Each sequence is also labeled with a class indicat-
ing whether the sentence is a comparative sentence or not. Using the train-
ing data, CSRs can be generated. The detailed mining algorithm can be
found in Sect. 2.9.3.

For classification model building, the left-hand side sequence patterns of
the CSR rules with high conditional probabilities were used as features in
[42]. Each sentence produces a vector. If the sentence matches a pattern,
the feature value for the pattern of the vector is set to 1, and otherwise it is
set to 0. Bayesian classification was employed for model building.
Classifying comparative sentences into four types: After comparative
sentences are identified, we also want to classify them into the four types
or classes, non-equal gradable, equative, superlative, and non-gradable.
For this task, [42] showed that keywords and key phrases were already suf-
ficient, i.e., the set of keywords and key phrases were used as features for
machine learning. SVM was shown to give the best results.

11.6.3 Identification of Preferred Entities

Similar to opinion mining of normal sentences, opinion mining of com-
parative sentences also needs to determine whether a comparative sentence
is opinionated or not. However, unlike normal sentences, it does not make
much sense to apply sentiment classification to a comparative sentence as
a whole because an opinionated comparative sentence does not express a
direct positive or negative opinion. Instead, it compares multiple entities
by ranking the entities based on their shared aspects to give a comparative

11.6 Mining Comparative Opinions 497

opinion. In other words, it presents a preference order of the entities based
on the comparison of some of their shared aspects. Since most comparative
sentences compare two sets of entities, analysis of an opinionated com-
parative sentence means identifying the preferred entity set. However, for
application purposes, one may assign positive opinions to the aspects of
the entities in the preferred set, and negative opinions to the aspects of the
entities in the not preferred set. Since little research has been done on clas-
sifying whether a comparative sentence is opinionated or not, below we
only describe a method for identifying the preferred entity set [28].

The approach bears some resemblance to the lexicon-based approach to
identifying opinion orientations on aspects. Thus, it needs opinion words
used for comparisons. Similar to opinion words of the base type, these opi-
nion words of comparative type can be divided into two categories.

1. Comparative opinion words: For Type 1 comparatives, this category in-
cludes words like better, worse, etc., which have explicit opinions. In
sentences involving such words, it is usually easy to determine which
entity set is the preferred one of the sentence author.

In the case of Type 2 comparatives, formed by adding more, less,
most, and least before adjectives/adverbs, the preferred entity set is de-
termined by both words. The following rules are applicable:

Comparative Negative ::= increasing comparative N
 | decreasing comparative P
Comparative Positive ::= increasing comparative P
 | decreasing comparative N

 An increasing comparative expresses an increased value of a quantity,
e.g., “more,” and “longer,” and a decreasing comparative expresses a
decreased value of a quantity, e.g., “less,” and “fewer.” The first rule
above says that the combination of an increasing comparative (e.g.,
more) and a negative opinion word (e.g., awful) implies a Type 2 com-
parative negative opinion (on the left). The other rules have similar
meanings. P (respectively N) denotes a positive (negative) opinion
word or phrase of the base type. In fact, the above four rules are already
covered by the basic rules of opinions in Sect. 11.5.2.

2. Context-dependent comparative opinion words: In the case of Type 1
comparatives, such words include higher, lower, etc. For example,
“Car-x has higher mileage per gallon than Car-y” carries a positive sen-
timent on “Car-x” and a negative sentiment on “Car-y” comparatively,
i.e., “Car-x” is preferred. However, without domain knowledge it is
hard to know whether “higher” is positive or negative. The combination
of “higher” and “mileage” with the domain knowledge tells us that
“higher mileage” is desirable. Again, these cases are already included in

498 11 Opinion Mining and Sentiment Analysis

the basic rules of opinions in Sect. 11.5.2. In this case, “mileage” is a
positive potential item.

In the case of Type 2 comparatives, the situation is similar. However,
in this case, the comparative word (more, most, less or least), the adjec-
tive/adverb, and the aspect are all important in determining the opinion
or preference. If we know whether the comparative word is increasing
or decreasing (which is easy since there are only four of them), then the
opinion can be determined by applying the four rules in (1).

As discussed in Sect. 11.4, the pair (aspect, opinion_word) forms an
opinion context. To determine whether a pair is positive or negative, the
algorithm in [28] resorts to the external information, i.e., a large corpus
of Pros and Cons from product reviews. It basically determines whether
the aspect and opinion_word are more associated with each other in
Pros or in Cons. If they are more associated in Pros, opinion_word is
positive. Otherwise, it is negative. Using Pros and Cons is natural be-
cause they are short phrases and thus have little noise, and their opinion
orientations are also known.

Due to the observation below, we can obtain comparative opinion words
by simply converting opinion adjectives/adverbs of the base form to their
comparative forms, which can be done automatically based on the English
comparative formation rules described earlier and the WordNet.

Observation: If an adjective or adverb of the base form is positive (or neg-
ative), then its comparative or superlative form is also positive (or nega-
tive), e.g., good, better, and best.

After the conversion, these words are manually categorized into increas-
ing and decreasing comparatives.

Once all the information is available, determining which entity set is
preferred is relatively simple. Without negation, if the comparative is posi-
tive (or negative), then the entities before (or after) than is preferred. Oth-
erwise, the entities after (or before) than are preferred. Additional details
can be found in [28]. In [24], Fiszman et al. also studied the problem of
identifying which entity has more of certain aspects in comparative sen-
tences in biomedical texts, but it does not analyze opinions.

11.7 Some Other Problems

Besides the problems discussed in previous sections, there are still many
other challenges in opinion mining. This section gives an introduction to
some of them. As we will see, most of these problems are related to their

11.7 Some Other Problems 499

general problems that have been studied before but the opinion text pro-
vides more clues for their solutions and also has additional requirements.

Entity, opinion holder, and time extraction: In some applications, it is
useful to identify and extract opinion holders and the times when opinions
are given. As we mentioned earlier, opinion holders are more useful for
news articles or other types of formal documents in which the persons or
organizations who expressed opinions are stated explicitly in the text. Such
holders need to be identified by the system, and so do the dates and times
when opinions are expressed. These extraction tasks are collectively called
Named Entity Recognition (NER). They have been studied extensively in
the literature. See a comprehensive survey of information extraction tasks
and algorithms in [105].

In the case of social media on the Web, the opinion holders are often the
authors of the discussion postings, bloggers, or reviewers, whose login ids
are known although their true identities in the real world may be unknown.
The date and time when an opinion is submitted are also known and dis-
played on the page, so their extraction is easy (see Chap. 9 on how to ex-
tract them).

Entity name extraction is also a NER problem, but there is a difference
here. In a typical opinion mining application, the user wants to find opin-
ions on some competing entities, e.g., competing products or brands. How-
ever, he/she often can only provide a few names because there are so many
different brands and models. Furthermore, Web users also write names of
the same product brands in many ways. For example, “Motorola” may be
written as “Moto” or “Mot,” and “Samsung” may be written as “Sammy.”
Product model names have even more variations. It is thus important for a
system to automatically discover them from a relevant corpus (e.g., blogs
and forum discussions). The key requirement of this discovery is that the
discovered entities must be of the same class/type as entities provided by
the user (e.g., phone brands and models).

In [67], this problem was modeled a set expansion problem [29, 95],
which expands a set of given seed entities (e.g., product names). Formally,
the problem is stated as follows: Given a set Q of seed entities of a particu-
lar class C, and a set D of candidate entities, we wish to determine which
of the entities in D belong to C. That is, we “grow” the class C based on
the set of seed examples Q. Although this is a classification problem, in
practice, the problem is often solved as a ranking problem, i.e., to rank the
entities in D based on their likelihoods of belonging to C.

The classic methods for solving this problem in NLP are based on dis-
tributional similarity [63, 95]. The approach works by comparing the simi-
larity of the surround words distributions of each candidate entity with the

500 11 Opinion Mining and Sentiment Analysis

seed entities and then ranking the candidate entities based on the similarity
values. However, it was shown in [67] that this approach is inaccurate, and
PU learning based on S-EM (Chap. 5) performed considerably better based
on the results from 10 corpora. To apply PU learning, the given seeds are
used to automatically extract some positive examples, which are sentence
segments that contain one of the seed product names. The rest of the sen-
tences are treated as unlabeled examples. Additionally, it was also shown
that S-EM outperforms the machine learning technique Bayesian Sets [29],
which was designed specifically for set expansion.

Grouping aspect expressions indicating the same aspects: It is common
that people use different words or phrases (which are called aspect expres-
sions in Sect. 11.1) to describe the same aspect. For example, photo and
picture refer to the same aspect in digital camera reviews. Identifying and
grouping aspect expressions indicating the same aspect are essential for
applications. Although WordNet [81] and other thesaurus dictionaries help
to some extent, they are far from sufficient due to the fact that many syno-
nyms are domain dependent. For example, picture and movie are syno-
nyms in movie reviews, but they are not synonyms in digital camera re-
views as picture is more related to photo while movie refers to video. It is
also important to note that although most aspect expressions of an aspect
are domain synonyms, they are not always synonyms. For example, “ex-
pensive” and “cheap” can both indicate the aspect price but they are not
synonyms of price.

Carenini et al. [11] proposed the first method to solve this problem in
the context of opinion mining. Their method is based on several similarity
metrics defined using string similarity, synonyms, and distances measured
using WordNet (they are similar to those for information integration in
Chap. 10). It requires a taxonomy of aspects to be given for a particular
domain. The algorithm merges each discovered aspect expression to an as-
pect node in the taxonomy. Experiments based on digital camera and DVD
reviews showed promising results.

In [138], Zhai et al. proposed a semi-supervised learning method to
group aspect expressions into the user-specified aspect groups. Each group
represents a specific aspect. To reflect the user needs, he/she first manually
labels a small number of seeds for each group. The system then assigns the
rest of the discovered aspect expressions to suitable groups using semi-
supervised learning (LU learning) based on labeled seeds and unlabeled
examples. The method used the Expectation-Maximization (EM) algo-
rithm, specifically, the naïve Bayesian EM formulation (see Sect. 5.1.1).
When the algorithm ends, each unlabeled aspect expression is assigned to
a suitable group.

11.7 Some Other Problems 501

The method in [138] uses two pieces of prior knowledge to provide a
better initialization for EM. The two pieces of prior knowledge are (1) as-
pect expressions sharing some common words are likely to belong to the
same group, e.g., “battery life” and “battery power,” and (2) aspect expres-
sions that are synonyms in a dictionary are likely to belong to the same
group, e.g., “movie” and “picture.” These two pieces of knowledge help
EM produce better classification results.

Mapping implicit aspect expressions to aspects: There are many types
of implicit aspect expressions. Adjectives are perhaps the most common
type. Many adjectives modify or describe some specific attributes or prop-
erties of entities. For example, the adjective “heavy” usually describes the
aspect weight of an entity. “Beautiful” is normally used to describe (posi-
tively) the aspect look or appearance of an entity. By no means, however,
does this say that these adjectives only describe such aspects. Their exact
meanings can be domain dependent. For example, “heavy” in the sentence
“the traffic is heavy” does not describe the weight of the traffic. One way to
map implicit aspect expressions to aspects is to manually compile a list of
such mappings during training data annotation, which can then be used in
the same domain in the future. However, we should note that some implicit
aspect expressions are very difficult to extract and to map, e.g., “fit in
pockets” in the sentence “This phone will not easily fit in pockets.”

Coreference resolution: This problem has been extensively studied in the
NLP community. We use the following example blog to illustrate the
problem: “I bought a Canon S500 camera yesterday. It looked beautiful. I
took a few photos last night. They were amazing”. “It” in the second
sentence refers to “Canon S500 camera,” which is an entity. “They” in the
fourth sentence refers to “photos,” which is an aspect of “Canon S500
camera”. Recognizing these coreference relationships is called coreference
resolution. Its usefulness in this case is clear. Without resolving them, we
lose recall. That is, although we know that the second and fourth sentences
express opinions, we do not know about what. Without knowing the
opinion target, the opinion is of limited use.

In [16], the problem of entity and aspect coreference resolution was
proposed. It determines which mentions of entities and/or aspects refer to
the same entities. Here entities refer to both entities and aspects. Like most
coreference resolution techniques, this paper took the supervised learning
approach. The key interesting points were the design and testing of two
opinion-related features to help classification. The first feature is based on
opinion analysis of regular sentences (non-comparative sentences) and
comparative sentences, and the idea of sentiment consistency. For exam-
ple, we have the sentences, “The Sony camera is better than the Canon

502 11 Opinion Mining and Sentiment Analysis

camera. It is cheap too.” It is clear that “It” means “Sony” because in the
first sentence, the opinion about “Sony” is positive (comparative positive),
but it is negative (comparative negative) about “Canon,” and the second
sentence is positive. Thus, we can conclude that “It” refers to “Sony” be-
cause people usually express sentiments in a consistent way. It is unlikely
that “It” refers to “Canon.” As we can see, to obtain this feature, the sys-
tem needs to have the ability to determine positive and negative opinions
expressed in regular and comparative sentences.

The second feature considers what entities and aspects are modified by
what opinion words. Consider these sentences, “The picture quality of the
Canon camera is very good. It is not expensive either.” The question is
what “It” refers to, “Canon camera” or “picture quality.” Clearly, we know
that “It” refers to “Canon camera” because “picture quality” cannot be ex-
pensive. To obtain this feature, the system needs to identify what opinion
words are usually associated with what entities or aspects, which means
that the system needs to discover such relationships from the corpus. These
two features can boost the coreference resolution accuracy.

Other NLP problems: The preceding problems are just some of the
problems. In fact, there are many other NLP problems that need to be
solved in order to produce accurate regular opinion quintuples (Sect. 11.1)
and comparative opinion sextuples (Sect. 11.6.1). However, little research
has been done to solve these problems. We use seven example sentences to
illustrate some of them.

(1) Trying out Google chrome because Firefox keeps crashing.
(2) I am so happy because my new iPhone is nothing like my old ugly

Nokia phone.
(3) After my wife and I slept on the mattress for only a week, I found a

hill in the middle.
(4) Since I had a lot of pain on my back my doctor put me on the drug,

and only two weeks after I have no more pain.
(5) Anyone knows a good Sony camera?
(6) If I can find a good Sony camera, I will buy it.
(7) What a great car, it stopped working in the second day.

For sentence (1), the opinion about Firefox is clearly negative, but for
Google chrome, there is no opinion. We need to segment the sentence into
clauses to decide that “crashing” only applies to Firefox. “Trying out” also
indicates that there is no opinion yet. For sentence (2), it is easy to know
that the opinion on the Nokia phone is negative, but it is not so easy to
know whether the opinion on iPhone is positive or negative unless we real-
ize that this is a comparative sentence. For sentence (3), the difficulty is

11.8 Opinion Search and Retrieval 503

that there is no adjective or adverb opinion word. In fact, this is an objec-
tive sentence rather than a subjective sentence. However, “hill”, which is a
noun, does imply a negative opinion for the mattress although “hill” itself
bears no opinion. The issue is how to detect such cases. Some initial work
has been done in [140] but the accuracy is still low. Sentence (4) shows an
indirect opinion. This sentence has two conflict opinion expressions “a lot
of pain” and “no more pain.” The question is whether the drug is effective
or not. Sentence (5) is a question and expresses no opinion, although the
opinion word “good” is there. However, in some cases, question sentences
can express opinions, e.g., “Any idea how to repair this lousy Sony cam-
era?” Sentence (6) is a conditional sentence, which again has no opinion.
However, conditional sentences can express opinions in many cases too,
e.g., “If you are looking for a good camera, get this Sony” [85]. The first
part of sentence (7) is sarcastic. Sarcasm is difficult to deal with. Some ini-
tial work has been done in [118].

In summary, to handle all these sentences and their associated problems,
we need deeper sentence analysis and in many cases even at the semantic
level. So far, not much research has been done.

11.8 Opinion Search and Retrieval

As Web search has proven to be valuable, it is not hard to imagine that
opinion search will also be of great use. Two typical kinds of opinion
search queries are as follows:

1. Find public opinions on a particular entity or an aspect of the entity,
e.g., find customer opinions on a digital camera or the picture quality
of the camera, and find public opinions on a political topic.

2. Find opinions of a person or organization (i.e., opinion holder) on a
particular entity or an aspect of the entity, e.g., find Barack Obama’s
opinion on abortion. This type of search is particularly relevant to
news articles, where individuals or organizations who express opinions
are explicitly stated.

For the first type of queries, the user may simply give the name of the
entity or the name of the aspect together with the name of the entity. For
the second type of queries, the user may give the name of the opinion
holder and the name of the entity.

Similar to traditional Web search, opinion search also has two major
tasks: 1) retrieving relevant documents/sentences to the user query and 2)
ranking the retrieved documents/sentences. However, there are also major
differences. On retrieval, opinion search needs to perform two sub-tasks:

504 11 Opinion Mining and Sentiment Analysis

1. Find documents or sentences that are relevant to the query topic. This
is the only task performed in the traditional Web search or retrieval.

2. Determine whether the documents or sentences express opinions and
whether the opinions are positive or negative. This is the task of sen-
timent analysis. Traditional search does not perform this sub-task.

As for ranking, traditional Web search engines rank Web pages based
on authority and relevance scores (Chap. 6). The basic premise is that the
top ranked pages (ideally the first page) contain sufficient information to
satisfy the user’s information need. This paradigm is adequate for factual
information search because one fact equals to any number of the same fact.
That is, if the first page contains the required information, there is no need
to see the rest of the relevant pages. For opinion search, this paradigm is
fine for the second type of queries because the opinion holder usually has
only one opinion on a particular entity or topic, and the opinion is con-
tained in a single document or page. However, for the first type of opinion
queries, this paradigm needs to be modified because ranking in opinion
search has two objectives. First, it needs to rank those opinionated docu-
ments or sentences with high utilities or information contents at the top
(see Sect. 11.10). Second, it needs to reflect the natural distribution of
positive and negative opinions. This second objective is important because
in most applications the actual proportions of positive and negative opin-
ions are the most important pieces of information. Only reading the top
ranked results as in the traditional search is problematic because the top re-
sult only represents the opinion of a single opinion holder. Thus, ranking
in opinion search needs to capture the natural distribution of positive and
negative sentiments of the whole population. One simple solution is to
produce two rankings, one for positive opinions and one for negative opin-
ions, and also display the numbers of positive and negative opinions.

Providing an aspect-based summary for each opinion search will be
even better. However, it is an extremely challenging problem because as-
pect extraction, aspect grouping, and associating entities to its aspects are
all very difficult problems. Without effective solution for them, such sum-
mary will not be possible.

To give a favor of opinion search, we present an example system [143],
which is the winner of the blog track in the 2007 TREC evaluation
(http://trec.nist.gov/). The task is exactly opinion search (or retrieval). This
system has two components. The first component is for retrieving relevant
documents for each query. The second component is for classifying the re-
trieved documents as opinionated or not-opinionated (subjectivity classifi-
cation). The opinionated documents are further classified into positive,
negative, or mixed (containing both positive and negative opinions).

11.8 Opinion Search and Retrieval 505

Retrieval component: This component performs the traditional informa-
tion retrieval (IR) task. This component considers both keywords and con-
cepts. Concepts are named entities (e.g., names of people or organizations) or
various types of phrases from dictionaries and other sources (e.g., Wikipedia
entries). The strategy for processing a user query is as follows [142, 143]: It
first recognizes and disambiguates the concepts within the user query. It then
broadens the search query with its synonyms. After that, it recognizes con-
cepts in the retrieved documents and also performs pseudo-feedback to auto-
matically extract relevant words from the top-ranked documents to expand the
query. Finally, it computes a similarity (or relevance score) of each document
with the expanded query using both concepts and keywords.

Opinion classification component: This component performs two tasks:
(1) classifying each document into one of the two categories, opinionated and
not-opinionated, and (2) classifying each opinionated document as expressing
a positive, negative, or mixed opinion. For both tasks, the system uses super-
vised learning. For the first task, it obtains a large amount of opinionated (sub-
jective) training data from review sites such as rateitall.com and epinion.com.
The data are also collected from different domains involving consumer goods
and services as well as government policies and political viewpoints. The not-
opinionated training data are obtained from sites that give objective information
such as Wikipedia. From these training data, a SVM classifier is constructed.

This classifier is then applied to each retrieved document as follows:
The document is first partitioned into sentences. The SVM classifier then
classifies each sentence as opinionated or not-opinionated. If a sentence is
classified to be opinionated, its strength as determined by SVM is also
noted. A document is regarded opinionated if there is at least one sentence
that is classified as opinionated. To ensure that the opinion of the sentence
is directed to the query topic, the system requires that enough query con-
cepts/words are found in its vicinity. The totality of the opinionated sen-
tences and their strengths in a document together with the document’s si-
milarity with the query is used to rank the document.

To determine whether an opinionated document expresses a positive,
negative or mixed opinion, the second classifier is constructed. The train-
ing data are reviews from review sites containing review ratings (e.g., ra-
teitall.com). A low rating indicates a negative opinion while a high rating
indicates a positive opinion. Using positive and negative reviews as train-
ing data, a sentiment classifier is built to classify each document as ex-
pressing positive, negative, or mixed opinion.

There are many other approaches for opinion retrieval. The readers are
encouraged to read the papers at the TREC site (http://trec.nist.gov/
pubs/trec16/t16_proceedings.html) and the overview paper of 2007 TREC
blog track [78].

506 11 Opinion Mining and Sentiment Analysis

11.9 Opinion Spam Detection

In Sect. 6.10, we discussed Web spam, which refers to the use of
“illegitimate means” to boost the search rank position of some target Web
pages. The reason for spamming is because of the economic and/or
publicity value of the rank position of a page returned by a search engine.
In the context of opinions, the problem is similar but also quite different.

It has become a common practice for people to find and to read opinions
on the Web for many purposes. For example, if one wants to buy a prod-
uct, one typically goes to a merchant or review site (e.g., amazon.com) to
read some reviews of existing users of the product. If one sees many posi-
tive reviews of the product, one is very likely to buy the product. However,
if one sees many negative reviews, he/she will most likely choose another
product. Positive opinions can result in significant financial gains and/or
fames for organizations and individuals. This, unfortunately, gives good
incentives for opinion spam, which refers to human activities (e.g., write
spam reviews) that try to deliberately mislead readers or automated opin-
ion mining systems by giving undeserving positive opinions to some target
entities in order to promote the entities and/or by giving unjust or false
negative opinions to some other entities in order to damage their reputa-
tion. Such opinions are also called fake opinions, bogus opinions, or fake
reviews. We can predict that as opinions on the Web are increasingly used
in practice by consumers and organizations, the problem of detecting spam
opinions will become more and more critical.

Opinion spam is very different from Web spam because the two main
types of Web spam, i.e., content spam and link spam, seldom occur in opi-
nion documents such as product reviews. Recall that link spam is spam on
hyperlinks, which almost does not exist in reviews as there is usually no
links among reviews. Content spam tries to add irrelevant or remotely re-
levant words in target Web pages in order to fool search engines, which
again hardly occurs in reviews. This section uses consumer reviews of
products as an example to study opinion spam.

11.9.1 Types of Spam and Spammers

There are generally three types of spam reviews as identified in [44, 45]:

Type 1 (fake review): These are reviews that deliberately mislead readers
or opinion mining systems by giving undeserving positive opinions to
some target entities in order to promote the entities and/or by giving un-
just or malicious negative opinions to some other entities in order to
damage their reputation.

11.9 Opinion Spam Detection 507

Type 2 (review on brand only): These reviews do not comment on the
specific products that they are supposed to review, but only comment
on the brands, the manufacturers, or the sellers of the products. Al-
though they may be useful, they are considered as spam because they
are not targeted at the specific products and are often biased. For exam-
ple, in a review for a HP printer, the reviewer only wrote “I hate HP. I
never buy any of their products”.

Type 3 (non-review): These are not reviews or opinionated although they
appear as reviews. There are two main sub-types: (1) advertisements
and (2) other irrelevant texts containing no opinions (e.g., questions,
answers, and random texts).

Harmful Fake Reviews: According to [44], types 2 and 3 spam reviews
are rare and also easy to detect. We thus focus on type 1 fake reviews. In
order to detect such reviews, let us first discuss what kinds of fake reviews
are harmful. Table 11.4 gives a simple view of type 1 spam. The goal of
spam reviews in regions 1, 3 and 5 is to promote the product. Although
opinions expressed in region 1 may be true, the reviewers do not announce
their conflict of interests. Note that good, bad, and average products can be
defined based on the average rating given to the product (this definition
can be dangerous if there are spammer groups that work together, see be-
low). The goal of spam reviews in regions 2, 4, and 6 is to damage the rep-
utation of some entities. Although opinions in reviews of region 4 may be
true, the reviewers do not announce their conflict of interests and have bad
intensions. Clearly, spam reviews in regions 1 and 4 are not so damaging,
while spam reviews in regions 2, 3, 5, and 6 are very harmful. Thus, spam
detection techniques should focus on identifying reviews in these regions.

Individual Spammers and Group Spammers: A spammer may act indi-
vidually (e.g., the author of a book) or as a member of a group (e.g., a
group of employees of a company).
Individual spammers: In this case, a spammer, who does not work with

anyone else, writes spam reviews. The spammer may register at a review
site as a single user, or as many fake users using different user-ids.
He/she can also register at multiple review sites and write spam reviews.

Table 11.4. Spam reviews vs. product quality

 Positive spam review Negative spam review
Good quality product 1 2

Bad quality product 3 4
Average quality product 5 6

508 11 Opinion Mining and Sentiment Analysis

Group spammers: A group of spammers works together to promote a tar-
get entity and/or to damage the reputation of another. They may also reg-
ister at multiple sites and spam on these sites. Group spam can be very
damaging because they may take control of the sentiment on a product
and completely mislead potential customers.

11.9.2 Hiding Techniques

In order to avoid being detected, spammers may take a variety of precau-
tions. We study individual and group spammers separately. The lists are by
no means exhaustive and should be considered as just examples.

An Individual Spammer

1. The spammer builds up reputation by reviewing other products in the
same or different categories/brands that he/she does not care about and
give them agreeable ratings and reasonable reviews. Then, he/she be-
comes a trustworthy reviewer. However, he/she may write spam re-
views on the products that he/she really cares about. This hiding
method is useful because some sites rank reviewers based on their re-
views that are found helpful by readers, e.g., amazon.com. Some sites
also have trust systems that allow readers to assign trust scores to re-
viewers.

2. The spammer registers multiple times at a site using different user-ids
and write multiple spam reviews under these user-ids so that their re-
views or ratings will not appear as outliers. The spammer may even use
different machines to avoid being detected by server log-based detec-
tion methods that can compare IP addresses of reviewers.

3. Spammers write either only positive reviews on his/her own products or
only negative reviews on the products of his/her competitors, but not
both. This is to hide from spam detection methods that compare one’s
reviews on competing products from different brands.

4. The spammer gives a reasonably high rating but write a critical (nega-
tive) review. This may fool detection methods that find outliers based
on ratings alone. Yet, automated review mining systems will pick up all
the negative sentiments in the actual review content.

A Group of Spammers

1. Every member of the group reviews the same product to lower the rat-
ing deviation.

2. Every member of the group writes a review roughly at the time when
the product is launched in order to take control of sentiment on the

11.9 Opinion Spam Detection 509

product. It is generally not a good idea to write many spam reviews at
the same time after many reviews have been written by others because a
spike will appear, which can be easily detected.

3. Members of the group write reviews at random intervals to hide spikes.
4. If the group is sufficiently large, it may be divided into sub-groups so

that each sub-group can spam at different Web sites (instead of only
spam at the same site) to avoid being detected by methods that compare
average ratings and content similarities of reviews from different sites.

11.9.3 Spam Detection Based on Supervised Learning

In general, spam detection can be formulated as a classification problem
with two classes, spam and non-spam. Due to the specific nature of differ-
ent types of spam, they need to be dealt with differently. For spam reviews
of type 2 and type 3, they can be detected based on traditional classifica-
tion learning using manually labeled spam and non-spam reviews because
these two types of spam reviews are easily recognizable manually. The
main task is to find a set of effective features for model building. In [44,
45], three sets of features were identified for learning:

Review centric features: These are features about the content of reviews.
Example features include actual words in a review, the number of times
that brand names are mentioned, the percentage of opinion words, the

Reviewer centric features: These are features about each reviewer.
Example features include the average rating given by the reviewer, the
standard deviation in rating, the ratio of the number of reviews that the
reviewer wrote which were the first reviews of the products to the total
number of reviews that he/she wrote, and the ratio of the number of
cases in which he/she was the only reviewer.

Product centric features: These are features about each product. Example
features include the price of the product, the sales rank of the product
(amazon.com assigns sales rank to ‘now selling products’ according to
their sales volumes), the average review rating of the product, and the
standard deviation in ratings of the reviews for the product.
Logistic regression was used in learning. Experimental results based on

a large number of amazon.com reviews showed that type 2 and type 3
spam reviews are fairly easy to detect.

However, this cannot be said about type 1 spam, i.e., fake opinions or
reviews. In fact, it is very difficult to detect such reviews because manual
labeling training data is very hard, if not impossible. The problem is that
identifying spam reviews by simply reading the reviews is extremely diffi-

review length, and the number of helpful feedbacks.

510 11 Opinion Mining and Sentiment Analysis

cult because a spammer can carefully craft a spam review that is just like
any innocent review.

Since manually labeling training data is hard, other ways have to be ex-
plored in order to find training examples for detecting possible fake re-
views. In [44], it exploited duplicate reviews. In their study of 5.8 million
reviews, 2.14 million reviewers and 6.7 million products from ama-
zon.com, they found a large number of duplicate and near-duplicate re-
views, which indicates that review spam is widespread. These duplicates
(which include near-duplicates) can be divided into four groups:

1. Duplicates from the same userid on the same product
2. Duplicates from different userids on the same product
3. Duplicates from the same userid on different products
4. Duplicates from different userids on different products

The first type of duplicates can be the results of reviewers mistakenly
clicking the submit button multiple times (which of course can be detected
based on the submission dates and times), or the same reviewers coming
back to write updated reviews after using the product for some time. How-
ever, the last three kinds of duplicates are almost certainly fake reviews.
Further sanity check was performed on these duplicate reviews because
amazon.com cross-posts reviews to different formats of the same product,
e.g., hardcover and paperback of the same book. Such duplicates were re-
moved. These three types of duplicates and near duplicates were treated as
type 1 spam reviews, and the rest of the reviews were treated as non-spam
reviews. Logistic regression was used to build a classification model. The
experiments showed some tentative but interesting results.

 Negative outlier reviews (ratings with significant negative deviations
from the average rating) tend to be heavily spammed. This is quite in-
tuitive. Positive outlier reviews are not badly spammed.

 Those reviews that are the only reviews of some products are likely to
be spammed. This can be explained by the tendency of promoting an
unpopular product by writing a spam review.

 Top-ranked reviewers are more likely to be spammers. Amazon.com
gives a rank to each member/reviewer based on the frequency that
he/she gets helpful feedback on his/her reviews. Additional analysis
showed that top-ranked reviewers generally wrote a large number of re-
views. People who wrote a large number of reviews are natural sus-
pects. Some top reviewers wrote thousands or even tens of thousands of
reviews, which is unlikely for an ordinary consumer.

 Spam reviews can get good helpful feedbacks and non-spam reviews
can get bad feedbacks. This is important as it shows that if usefulness or

11.9 Opinion Spam Detection 511

quality of a review is defined based on the helpful feedbacks that the
review gets, people can be readily fooled by spam reviews. Note that
the number of helpful feedbacks can be spammed too.

 Products of lower sale ranks are more likely to be spammed. This is
good news because spam activities seem to be limited to low selling
products, which is actually quite intuitive as it is difficult to damage the
reputation of a popular product by writing a spam review.

Finally, it should be noted again that these results are only tentative be-
cause (1) it is not confirmed that the three types of duplicates are abso-
lutely spam reviews, and (2) many spam reviews are not duplicated and
they are not considered as spam in model building but as non-spam due to
the difficulty of manual labeling. For additional analysis and more spam
detection strategies, please refer to [44, 45].

11.9.4 Spam Detection Based on Abnormal Behaviors

Due to the difficulty of manually labeling training data, treating opinion
spam detection as a supervised learning problem is problematic. This
section describes two techniques that try to identify atypical behaviors of
reviewers for detecting spammers. For example, if a reviewer wrote all
negative reviews for a brand but other reviewers were all positive about
the brand, then this reviewer is naturally a spam suspect.

The first technique, which is due to [68], identifies several unusual
reviewer behavior models based on different review patterns that suggest
spamming. Each model assigns a numeric spamming behavior score to a
reviewer by measuring the extent to which the reviewer practices
spamming behavior of the type. All the scores are then combined to
produce the final spam score. The spamming behavior models are:
(a) Targeting products: To game an online review system, it is hypothe-

sized that a spammer will direct most of his efforts on promoting or
victimizing a few products which are collectively called the targeted
products. He is expected to monitor the targeted products closely and
mitigate the ratings by writing fake reviews when time is appropriate.

(b) Targeting groups: This spam behavior model defines the pattern of
spammers manipulating ratings of a set of products sharing some at-
tribute(s) within a short span of time. For example, a spammer may
target several products of a brand within a few hours. This pattern of
ratings saves the spammers’ time as they do not need to log on to the
review system many times. To achieve maximum impact, the ratings
given to these target groups of products are either very high or low.

512 11 Opinion Mining and Sentiment Analysis

(c) General rating deviation: A reasonable reviewer is expected to give
ratings similar to other raters of the same product. As spammers at-
tempt to promote or demote products, their ratings could be quite dif-
ferent from other reviewers.

(d) Early rating deviation: Early deviation captures the behavior of a
spammer contributing a spam review soon after product is launched.
Such spam reviews are likely to attract attention from other reviewers,
allowing spammers to manipulate the views of subsequent reviewers.

The second technique, which is due to [46], identifies unusual reviewer
behavior patterns through unexpected rule discovery. For example, if a
reviewer wrote all negative reviews on products of a brand but other
reviewers are generally positive about the brand, this reviewer is a spam
suspect. To find unusual behaviors, the conventional approach is to write
an application-specific heuristic program to find such behaviors as the first
technique above. However, this is undesirable. It is much better to propose
a general framework for solving this class of problems so that the resulting
system can also be applied to other domains. Such a general approach is
proposed in [46], which shows that the problem can be formulated as
finding unexpected class association rules/patterns from data (Sect. 2.5).

Recall that the data for mining class association rules (CAR) consists of
a set of data records, which are described by a set of normal attributes A =
{A1, , An}, and a class attribute C = {c1, , cm} of m discrete values,
called classes (Sect. 2.5). A CAR rule is of the form: X  ci, where X is a
set of conditions from the attributes in A and ci is a class in C. Such a rule
gives the conditional probability of Pr(ci | X) (called the confidence) and
the joint probability Pr(X, ci) (called the support).

For the spam detection application, the data for mining is produced as fol-
lows: Each review forms a data record with a set of attributes, e.g., reviewer-
id, brand-id, product-id, and a class. The class represents the sentiment of the
reviewer on the product, positive, negative, or neutral based on the review rat-
ing. In most review sites (e.g., amazon.com), each review has a rating between
1 (lowest) and 5 (highest) assigned by its reviewer. We can assign the rating of
4 or 5 as positive, 3 as neutral, and 1 or 2 as negative. A rule could be that a re-
viewer gives all positive ratings to a particular brand of products. The method
in [46] finds four types of unexpected rules based on four unexpectedness
definitions. The unexpected rules represent atypical behaviors of reviewers.
Below, an example behavior is given for each type of unexpectedness defini-
tion. Their detailed definitions, which can be found in [46], are quite involved.

 Confidence unexpectedness: Using this measure, we can find review-
ers who give all high ratings to products of a brand, but most other re-
viewers are generally negative about the brand.

11.9 Opinion Spam Detection 513

 Support unexpectedness: Using this measure, we can find reviewers
who write multiple reviews for a single product, while other reviewers
only write one review.

 Attribute distribution unexpectedness: Using this measure, we can
find that most positive reviews for a brand of products are from only
one reviewer although there are a large number of reviewers who have
reviewed the products of the brand.

 Attribute unexpectedness: Using this measure, we can find reviewers
who write only positive reviews to one brand and only negative reviews
to another brand.

The advantage of this approach is that all the measures are defined based
on CARs rules, and are not specific to any application domain, and thus
can be used in other domains to find unexpected rules. The weakness is
that some behaviors cannot be detected, e.g., time-related behaviors, be-
cause class association rules do not consider time.

Experimental results of both papers [46, 68] using amazon.com reviews
showed that many spammers can be detected based on their behaviors.

11.9.5 Group Spam Detection

A group spam detection algorithm was reported in [84]. It finds groups of
spammers who work together to promote or demote some products. The
method works in two steps:

1. Frequent pattern mining: First, it pre-processes the review data to
produce a set of transactions. Each transaction represents a unique
product and consists of all the reviewers (their ids) who have reviewed
that product. Using all the transactions, it performs frequent pattern
mining. The patterns give us a set of candidate groups who might have
spammed together. The reason for using frequent pattern mining is as
follows: If a group of reviewers who only worked together once to
promote or to demote a single product, it can be hard to detect based on
their collective or group behavior. However, these fake reviewers (es-
pecially those who get paid to write) cannot be just writing one review
for a single product because they would not make enough money that
way. Instead, they work on many products, i.e., write many reviews
about many products, which unfortunately also give them away. Fre-
quent pattern mining can be used to find them working together on mul-
tiple products.

2. Rank groups based on a set of group spam indicators: The groups
discovered in step 1 may not all be spammer groups. Many of the re-

514 11 Opinion Mining and Sentiment Analysis

viewers are grouped together in pattern mining simply due to chance.
Then, this step first uses a set of indicators to catch different types of
unusual group behaviors. These indicators include writing reviews to-
gether in a short time window, writing reviews right after the product
launch, group content similarity, group rating deviation, etc. (see [84]
for details). It then ranks the discovered groups from step 1 based on
their indicator values using SVM rank (also called Ranking SVM) [47].

11.10 Utility of Reviews

A related problem that has also been studied in the past few years is the
determination of the usefulness, helpfulness, or utility of each review [31,
57, 73, 144]. This is a meaningful task as it is desirable to rank reviews
based on utilities or qualities when showing reviews to the user, with the
most useful reviews first. In fact, many review aggregation sites have been
practicing this for years. They obtain the helpfulness or utility score of
each review by asking readers to provide helpfulness feedbacks to each
review. For example, in amazon.com, the reader can indicate whether
he/she finds a review helpful by responding to the question “Was the
review helpful to you?” just below each review. The feedback results from
all those responded are then aggregated and displayed right before each
review, e.g., “15 of 16 people found the following review helpful.”
Although most review sites already provide the service, automatically
determining the quality of a review is still useful because many reviews
have few or no feedbacks. This is especially true for new reviews.

Determining the utility of reviews is usually formulated as a regression
problem. The learned model assigns a utility value to each review, which
can be used in review ranking. In this area of research, the ground truth
data used for both training and testing are usually the user-helpfulness
feedback given to each review, which as we discussed above is provided
for each review at many review sites. So unlike fake review detection, the
training and testing data here is not an issue.

Researchers have used many types of features for model building.
Example features include review length, review rating (the number of
stars), counts of some specific POS tags, opinion words, tf-idf weighting
scores, wh-words, product attribute mentions, comparison with product
specifications, comparison with editorial reviews, and many more.
Subjectivity classification was also applied in [31]. In [73], Liu et al.
formulated the problem slightly differently. They made it a binary
classification problem. Instead of using the original helpfulness feedback
as the target or dependent variable, they performed manual annotation

Bibliographic Notes 515

based on whether the review evaluates many product aspects or not.
Finally, we should note that review utility regression/classification and

review spam detections are different concepts. Not-helpful or low quality re-
views are not necessarily fake reviews or spam, and helpful reviews may not
be non-spam. A user often determines whether a review is helpful or not
based on whether the review expresses opinions on many aspects of the
product. A spammer can satisfy this requirement by carefully crafting a re-
view that is just like a normal helpful review. Using the number of helpful
feedbacks to define review quality is also problematic because user feed-
backs can be spammed too. Feedback spam is a sub-problem of click fraud
in search advertising, where a person or robot clicks on some online adver-
tisements to give the impression of real customer clicks. Here, a robot or a
human spammer can also click on helpfulness feedback button to increase
the helpfulness of a review. Another important point is that a low quality re-
view is still a valid review and should not be discarded, but a spam review is
untruthful and/or malicious and should be removed once detected.

Bibliographic Notes

An attempt to define the opinion mining and sentiment analysis problem
was made in the first edition of this book. Improvements were made in my
book chapter “Sentiment Analysis and Subjectivity” [70] for the second
edition of Handbook of Natural Language Processing [38]. The purpose
was to provide a common framework for different research directions and
to abstract a structure from the intimidating unstructured text. Needless to
say, the definitions were influenced by many early researches. The main
idea was from the aspect-based opinion mining model proposed in [37],
which was then called feature-based opinion mining. The improvements in
[70] and in Sect. 11.1 of this chapter were also shaped by my 1.5 years of
involvement in a startup company on opinion mining and hands-on experi-
ences in serving industry clients and understanding their diverse needs.

Much of the early research on opinion mining focused on sentiment
classification at the document and sentence levels. Representative works
on classification at the document level in the early years include those by
Turney [119] and Pang et al. [94]. They have been discussed in this chap-
ter. Representative works on classification at the sentence level include
those by Hatzivassiloglou and Wiebe [36] and Riloff and Wiebe [103]
among others, which determines whether a sentence is subjective or objec-
tive. Sentence level sentiment or opinion classification (positive, negative
and neutral) was studied by Kim and Hovy [55], Wiebe and Riloff [126],
among others. Some of these methods have been discussed in Sect. 11.3.3.

516 11 Opinion Mining and Sentiment Analysis

Other related works at both the document and sentence levels include those
by Dave et al [15], Tong [117], Das and Chen [14], Morinaga et al. [83],
Beineke et al. [3], Nasukawa and Yi [86], Nigam and Hurst [88], Gamon
[26], Gamon et al. [27], Pang and Lee [92, 93], Ng et al. [87], McDonald
et al. [79], Wilson et al. [129-131], Yessenalina et al. [134], Li et al. [65],
and many others. A survey on this literature can be found in [91].

The model of aspect-based opinion mining and summarization was in-
troduced by Hu and Liu [37] and Liu et al. [72] (originally called feature-
based opinion mining and summarization). Some initial methods for per-
forming the task were also proposed. Popescu and Etzioni [99], Carenini et
al [11], Ku et al. [60, 61], Ding et al. [17], Jin and Ho [41], and Lu et al.
[75] explored the problem further. These works typically find aspects first
and then determine their associated opinions, e.g., [17, 37, 99]. Recently,
researchers also proposed many statistical models to find aspects and their
associated opinions at the same time, e.g., those by Titov and McDonald
[115, 116], Brody and Elhadad [8], Wang et al. [121], Lin and He [69],
Mei et al. [80], Zhao et al. [145], Lu et al. [77], etc. We have briefly dis-
cussed these ideas in Sect. 11.5.3. The work of Qiu et al. [100, 101] deals
with the same problem but by exploiting some syntactic relations between
opinion words and their target aspects to extract both. Other related works
include [9, 12, 16, 18, 20, 33, 34, 39, 40, 48, 49, 53, 56, 58, 59, 64, 87, 89,
97, 107, 110, 113, 122, 125, 131, 135, 137, 138, 141, 146]

Most document level, sentence level, and aspect level techniques need a
list of opinion words or phrases, which is called the opinion lexicon. There
are two types of approaches to compiling and expanding an opinion lexi-
con: (1) corpus-based approaches and (2) dictionary-based. approaches.
Corpus-based approaches find co-occurrence patterns of words to deter-
mine their opinion orientations, which have been studied by Turney [119],
Riloff and Wiebe [103], Hatzivassiloglou and McKeown [35], Yu and
Hatzivassiloglou [136], Grefenstette et al. [32], Kanayama and Nasukawa
[51], Ding et al. [17], Murthy and Liu [28], and Kaji and Kitsuregawa [48,
49]. Qiu et al. [100, 101] proposed a double-propagation method, which
discovers aspects and expands a given opinion lexicon simultaneously.
Dictionary-based approaches use synonyms, antonyms, hierarchies, and
gloss in WordNet to determine word opinions, e.g., Hu and Liu [37],
Kamps et al. [50], Valitutti et al. [120], Kim and Hovy [55], Esuli and Se-
bastiani [21, 22], Andreevskaia and Bergler [1], and Dragut et al. [19].

On mining comparative sentences, Jindal and Liu [42, 43] defined the
problem and proposed some initial techniques, which were improved by
Ganapathibhotla and Liu [28] and Ding et al. [18]. Li et al. [66] further
studied the extraction of compared entities. Research in linguistics on syn-
tax and semantics of comparatives can be found in [52, 82].

Bibliography 517

The problem of opinion spam was introduced by Jindal and Liu in [44,
45]. They also proposed a supervised approach to detect fake reviews. De-
tecting spammers (or reviewers who write fake reviews) by studying their
atypical behaviors were investigated by Lim et al. [68] and Jindal et al.
[46]. Group spam detection was studied by Mukherjee et al. in [84].

Bibliography

1. Andreevskaia, A. and S. Bergler. Mining WordNet for fuzzy sentiment:
Sentiment tag extraction from WordNet glosses. In Proceedings of
Conference of the European Chapter of the Association for Computational
Linguistics (EACL-06), 2006.

2. Aue, A. and M. Gamon. Customizing sentiment classifiers to new domains: a
case study. In Proceedings of Recent Advances in Natural Language
Processing (RANLP-2005), 2005.

3. Beineke, P., T. Hastie, C. Manning, and S. Vaithyanathan. An exploration of
sentiment summarization. In Proceedings of AAAI Spring Symposium on
Exploring Attitude and Affect in Text: Theories and Applications, 2003.

4. Bethard, S., H. Yu, A. Thornton, V. Hatzivassiloglou, and D. Jurafsky.
Automatic extraction of opinion propositions and their holders. In
Proceedings of the AAAI Spring Symposium on Exploring Attitude and Affect
in Text, 2004.

5. Blei, D., A. Ng, and M. Jordan. Latent dirichlet allocation. The Journal of
Machine Learning Research, 2003, 3: p. 993-1022.

6. Blitzer, J., M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes
and blenders: Domain adaptation for sentiment classification. In Proceedings
of Annual Meeting of the Association for Computational Linguistics (ACL-
2007), 2007.

7. Breck, E., Y. Choi, and C. Cardie. Identifying expressions of opinion in
context. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI-2007), 2007.

8. Brody, S. and S. Elhadad. An Unsupervised Aspect-Sentiment Model for
Online Reviews. In Proceedings of The 2010 Annual Conference of the
North American Chapter of the ACL, 2010.

9. Carenini, G., R. Ng, and A. Pauls. Interactive multimedia summaries of
evaluative text. In Proceedings of 10th Intl. Conf. on Intelligent User
Interfaces (IUI-2006), 2006.

10. Carenini, G., R. Ng, and A. Pauls. Multi-document summarization of
evaluative text. In Proceedings of the European Chapter of the Association
for Computational Linguistics (EACL-2006), 2006.

11. Carenini, G., R. Ng, and E. Zwart. Extracting knowledge from evaluative
text. In Proceedings of Third Intl. Conf. on Knowledge Capture (K-CAP-05),
2005.

518 11 Opinion Mining and Sentiment Analysis

12. Choi, Y. and C. Cardie. Hierarchical sequential learning for extracting
opinions and their attributes. In Proceedings of Annual Meeting of the
Association for Computational Linguistics (ACL-2010), 2010.

13. Choi, Y., C. Cardie, E. Riloff, and S. Patwardhan. Identifying sources of
opinions with conditional random fields and extraction patterns. In
Proceedings of the Human Language Technology Conference and the
Conference on Empirical Methods in Natural Language Processing
(HLT/EMNLP-2005), 2005.

14. Das, S. and M. Chen. Yahoo! for Amazon: Extracting market sentiment from
stock message boards. In Proceedings of APFA-2001, 2001.

15. Dave, K., S. Lawrence, and D. Pennock. Mining the peanut gallery: Opinion
extraction and semantic classification of product reviews. In Proceedings of
International Conference on World Wide Web (WWW-2003), 2003.

16. Ding, X. and B. Liu. Resolving Object and Attribute Coreference in Opinion
Mining. In Proceedings of International Conference on Computational
Linguistics (COLING-2010), 2010.

17. Ding, X., B. Liu, and P. Yu. A holistic lexicon-based approach to opinion
mining. In Proceedings of the Conference on Web Search and Web Data
Mining (WSDM-2008), 2008.

18. Ding, X., B. Liu, and L. Zhang. Entity discovery and assignment for opinion
mining applications. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-2009), 2009.

19. Dragut, E., C. Yu, P. Sistla, and W. Meng. Construction of a sentimental
word dictionary. In Proceedings of ACM International Conference on
Information and Knowledge Management (CIKM-2010), 2010.

20. Eguchi, K. and V. Lavrenko. Sentiment retrieval using generative models. In
Proceedings of Conference on Empirical Methods in Natural Language
Processing (EMNLP-2006), 2006.

21. Esuli, A. and F. Sebastiani. Determining term subjectivity and term
orientation for opinion mining. In Proceedings of Conf. of the European
Chapter of the Association for Computational Linguistics (EACL-2006),
2006.

22. Esuli, A. and F. Sebastiani. Determining the semantic orientation of terms
through gloss classification. In Proceedings of ACM International
Conference on Information and Knowledge Management (CIKM-2005),
2005.

23. Esuli, A. and F. Sebastiani. SentiWordNet: A publicly available lexical
resource for opinion mining. In Proceedings of Language Resources and
Evaluation (LREC-2006), 2006.

24. Fiszman, M., D. Demner-Fushman, F. Lang, P. Goetz, and T. Rindflesch.
Interpreting comparative constructions in biomedical text. In Proceedings of
BioNLP, 2007.

25. Freitag, D. and A. McCallum. Information extraction with HMM structures
learned by stochastic optimization. In Proceedings of National Conf. on
Artificial Intelligence (AAAI-2000), 2000.

Bibliography 519

26. Gamon, M. Sentiment classification on customer feedback data: noisy data,
large feature vectors, and the role of linguistic analysis. In Proceedings of
Intl. Conf. on Computational Linguistics, 2004.

27. Gamon, M., A. Aue, S. Corston-Oliver, and E. Ringger. Pulse: Mining
customer opinions from free text. Advances in Intelligent Data Analysis VI,
2005: p. 121-132.

28. Ganapathibhotla, M. and B. Liu. Mining opinions in comparative sentences.
In Proceedings of International Conference on Computational Linguistics
(Coling-2008), 2008.

29. Ghahramani, Z. and K. Heller. Bayesian sets. Advances in Neural
Information Processing Systems, 2006, 18: p. 435.

30. Ghani, R., K. Probst, Y. Liu, M. Krema, and A. Fano. Text mining for
product attribute extraction. ACM SIGKDD Explorations Newsletter, 2006,
8(1): p. 41-48.

31. Ghose, A. and P. Ipeirotis. Designing novel review ranking systems:
predicting the usefulness and impact of reviews. In Proceedings of the
International Conference on Electronic Commerce 2007.

32. Grefenstette, G., Y. Qu, D. Evans, and J. Shanahan. Validating the coverage
of lexical resources for affect analysis and automatically classifying new
words along semantic axes. In Proceedings of AAAI Spring Symposium on
Exploring Attitude and Affect in Text: Theories and Applications, 2004.

33. Guo, H., H. Zhu, Z. Guo, X. Zhang, and Z. Su. Product feature categorization
with multilevel latent semantic association. In Proceedings of ACM
International Conference on Information and Knowledge Management
(CIKM-2009), 2009.

34. Hassan, A. and D. Radev. Identifying text polarity using random walks. In
Proceedings of Annual Meeting of the Association for Computational
Linguistics (ACL-2010), 2010.

35. Hatzivassiloglou, V. and K. McKeown. Predicting the semantic orientation
of adjectives. In Proceedings of Annual Meeting of the Association for
Computational Linguistics (ACL-1997), 1997.

36. Hatzivassiloglou, V. and J. Wiebe. Effects of adjective orientation and
gradability on sentence subjectivity. In Proceedings of Interntional
Conference on Computational Linguistics (COLING-2000), 2000.

37. Hu, M. and B. Liu. Mining and summarizing customer reviews. In
Proceedings of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2004), 2004.

38. Indurkhya, N. and F. Damerau. Handbook of Natural Language Processing.
Chapman & Hall/Crc Machine Learning & Pattern Recognition, 2010.

39. Jakob, N. and I. Gurevych. Extracting Opinion Targets in a Single-and
Cross-Domain Setting with Conditional Random Fields. In Proceedings of
Conference on Empirical Methods in Natural Language Processing
(EMNLP-2010), 2010.

40. Jijkoun, V., M.d. Rijke, and W. Weerkamp. Generating Focused Topic-
Specific Sentiment Lexicons. In Proceedings of Annual Meeting of the
Association for Computational Linguistics (ACL-2010), 2010.

520 11 Opinion Mining and Sentiment Analysis

41. Jin, W. and H. Ho. A novel lexicalized HMM-based learning framework for
web opinion mining. In Proceedings of International Conference on Machine
Learning (ICML-2009), 2009.

42. Jindal, N. and B. Liu. Identifying comparative sentences in text documents.
In Proceedings of ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR-2006), 2006.

43. Jindal, N. and B. Liu. Mining comparative sentences and relations. In
Proceedings of National Conf. on Artificial Intelligence (AAAI-2006), 2006.

44. Jindal, N. and B. Liu. Opinion spam and analysis. In Proceedings of the
Conference on Web Search and Web Data Mining (WSDM-2008), 2008.

45. Jindal, N. and B. Liu. Review spam detection. In Proceedings of WWW
(Poster paper), 2007.

46. Jindal, N., B. Liu, and E. Lim. Finding Unusual Review Patterns Using
Unexpected Rules. In Proceedings of ACM International Conference on
Information and Knowledge Management (CIKM-2010), 2010.

47. Joachims, T. Optimizing search engines using clickthrough data. In
Proceedings of the ACM Conference on Knowledge Discovery and Data
Mining (KDD-2002), 2002.

48. Kaji, N. and M. Kitsuregawa. Automatic construction of polarity-tagged
corpus from HTML documents. In Proceedings of COLING/ACL 2006 Main
Conference Poster Sessions (COLING-ACL-2006), 2006.

49. Kaji, N. and M. Kitsuregawa. Building lexicon for sentiment analysis from
massive collection of HTML documents. In Proceedings of the Joint
Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-2007), 2007.

50. Kamps, J., M. Marx, R. Mokken, and M. De Rijke. Using WordNet to
measure semantic orientation of adjectives. In Proc. of LREC-2004, 2004.

51. Kanayama, H. and T. Nasukawa. Fully automatic lexicon expansion for
domain-oriented sentiment analysis. In Proceedings of Conference on
Empirical Methods in Natural Language Processing (EMNLP-2006), 2006.

52. Kennedy, C. Comparatives, Semantics of. In Encyclopedia of Language and
Linguistics, Second Edition. 2005, Elsevier.

53. Kim, S. and E. Hovy. Automatic identification of pro and con reasons in
online reviews. In Proceedings of COLING/ACL 2006 Main Conference
Poster Sessions (ACL-2006), 2006.

54. Kim, S. and E. Hovy. Crystal: Analyzing predictive opinions on the web. In
Proceedings of the Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning
(EMNLP/CoNLL-2007), 2007.

55. Kim, S. and E. Hovy. Determining the sentiment of opinions. In Proceedings
of Interntional Conference on Computational Linguistics (COLING-2004),
2004.

56. Kim, S. and E. Hovy. Identifying and analyzing judgment opinions. In
Proceedings of Human Language Technology Conference of the North
American Chapter of the ACL, 2006.

Bibliography 521

57. Kim, S., P. Pantel, T. Chklovski, and M. Pennacchiotti. Automatically
assessing review helpfulness. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP-2006), 2006: Association
for Computational Linguistics.

58. Kobayashi, N., R. Iida, K. Inui, and Y. Matsumoto. Opinion mining on the
Web by extracting subject-attribute-value relations. In Proceedings of AAAI-
CAAW'06, 2006.

59. Kobayashi, N., K. Inui, and Y. Matsumoto. Extracting aspect-evaluation and
aspect-of relations in opinion mining. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, 2007.

60. Ku, L., H. Ho, and H. Chen. Novel relationship discovery using opinions
mined from the web. In Proceedings of National Conf. on Artificial
Intelligence (AAAI-2006), 2006.

61. Ku, L., Y. Liang, and H. Chen. Opinion extraction, summarization and
tracking in news and blog corpora. In Proceedings of AAAI-CAAW'06, 2006.

62. Lafferty, J., A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In
Proceedings of International Conference on Machine Learning (ICML-
2001), 2001.

63. Lee, L. Measures of distributional similarity. In Proceedings of Annual
Meeting of the Association for Computational Linguistics (ACL-1999), 1999.

64. Li, B., L. Zhou, S. Feng, and K.-F. Wong. A Unified Graph Model for
Sentence-Based Opinion Retrieval. In Proceedings of Annual Meeting of the
Association for Computational Linguistics (ACL-2010), 2010.

65. Li, S., C.-R. Huang, G. Zhou, and S.Y.M. Lee. Employing
Personal/Impersonal Views in Supervised and Semi-Supervised Sentiment
Classification. In Proceedings of Annual Meeting of the Association for
Computational Linguistics (ACL-2010), 2010.

66. Li, S., C. Lin, Y. Song, and Z. Li. Comparable entity mining from
comparative questions. In Proceedings of Annual Meeting of the Association
for Computational Linguistics (ACL-2010), 2010.

67. Li, X., L. Zhang, B. Liu, and S. Ng. Distributional similarity vs. PU learning
for entity set expansion. In Proceedings of Annual Meeting of the Association
for Computational Linguistics (ACL-2010), 2010.

68. Lim, E., V. Nguyen, N. Jindal, B. Liu, and H. Lauw. Detecting Product
Review Spammers using Rating Behaviors. In Proceedings of ACM
International Conference on Information and Knowledge Management
(CIKM-2010), 2010.

69. Lin, C. and Y. He. Joint sentiment/topic model for sentiment analysis. In
Proceedings of ACM International Conference on Information and
Knowledge Management (CIKM-2009), 2009.

70. Liu, B. Sentiment analysis and subjectivity. In Handbook of Natural
Language Processing, Second Edition, N. Indurkhya and F.J. Damerau,
Editors. 2010.

522 11 Opinion Mining and Sentiment Analysis

71. Liu, B. Web data mining: Exploring Hyperlinks, Contents, and Usage Data,
The First Edition. 2006: Springer.

72. Liu, B., M. Hu, and J. Cheng. Opinion observer: Analyzing and comparing
opinions on the web. In Proceedings of International Conference on World
Wide Web (WWW-2005), 2005.

73. Liu, J., Y. Cao, C. Lin, Y. Huang, and M. Zhou. Low-quality product review
detection in opinion summarization. In Proceedings of the Joint Conference
on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL-2007), 2007.

74. Liu, Y., X. Huang, A. An, and X. Yu. ARSA: a sentiment-aware model for
predicting sales performance using blogs. In Proceedings of ACM SIGIR
Conf. on Research and Development in Information Retrieval (SIGIR-2007),
2007.

75. Lu, Y., H. Duan, H. Wang, and C. Zhai. Exploiting Structured Ontology to
Organize Scattered Online Opinions. In Proceedings of Interntional
Conference on Computational Linguistics (COLING-2010), 2010.

76. Lu, Y. and C. Zhai. Opinion integration through semi-supervised topic
modeling. In Proceedings of International Conference on World Wide Web
(WWW-2008), 2008.

77. Lu, Y., C. Zhai, and N. Sundaresan. Rated aspect summarization of short
comments. In Proceedings of International Conference on World Wide Web
(WWW-2009), 2009.

78. Macdonald, C., I. Ounis, and I. Soboroff. Overview of the TREC 2007 blog
track, 2007.

79. McDonald, R., K. Hannan, T. Neylon, M. Wells, and J. Reynar. Structured
models for fine-to-coarse sentiment analysis. In Proceedings of Annual
Meeting of the Association for Computational Linguistics (ACL-2007), 2007.

80. Mei, Q., X. Ling, M. Wondra, H. Su, and C. Zhai. Topic sentiment mixture:
modeling facets and opinions in weblogs. In Proceedings of International
Conference on World Wide Web (WWW-2007), 2007.

81. Miller, G., R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. WordNet: An
on-line lexical database. 1990: Oxford Univ. Press.

82. Moltmann, F. Coordination and Comparatives, PhD thesis. 1987, MIT:
Cambridge.

83. Morinaga, S., K. Yamanishi, K. Tateishi, and T. Fukushima. Mining product
reputations on the web. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-2002), 2002.

84. Mukherjee, A., B. Liu, J. Wang, N. Glance, and N. Jindal. Detecting Group
Review Spam. In Proceedings of International Conference on World Wide
Web (WWW-2011, poster paper), 2011.

85. Narayanan, R., B. Liu, and A. Choudhary. Sentiment analysis of conditional
sentences. In Proceedings of Conference on Empirical Methods in Natural
Language Processing (EMNLP-2009), 2009.

86. Nasukawa, T. and J. Yi. Sentiment analysis: Capturing favorability using
natural language processing. In Proceedings of the K-CAP-03, 2nd Intl. Conf.
on Knowledge Capture, 2003.

Bibliography 523

87. Ng, V., S. Dasgupta, and S. Arifin. Examining the role of linguistic
knowledge sources in the automatic identification and classification of
reviews. In Proceedings of COLING/ACL 2006 Main Conference Poster
Sessions (COLING/ACL-2006), 2006.

88. Nigam, K. and M. Hurst. Towards a robust metric of opinion. In Proceedings
of AAAI Spring Symp. on Exploring Attitude and Affect in Text, 2004.

89. Nishikawa, H., T. Hasegawa, Y. Matsuo, and G. Kikui. Optimizing
informativeness and readability for sentiment summarization. In Proceedings
of Annual Meeting of the Association for Computational Linguistics (ACL-
2010), 2010.

90. Pan, S., X. Ni, J. Sun, Q. Yang, and Z. Chen. Cross-domain sentiment
classification via spectral feature alignment. In Proceedings of International
Conference on World Wide Web (WWW-2010), 2010.

91. Pang, B. and L. Lee. Opinion mining and sentiment analysis. Foundations
and Trends in Information Retrieval, 2008, 2(1-2): p. 1-135.

92. Pang, B. and L. Lee. Seeing stars: Exploiting class relationships for
sentiment categorization with respect to rating scales. In Proceedings of
Meeting of the Association for Computational Linguistics (ACL-2005), 2005.

93. Pang, B. and L. Lee. A sentimental education: Sentiment analysis using
subjectivity summarization based on minimum cuts. In Proceedings of
Meeting of the Association for Computational Linguistics (ACL-2004), 2004.

94. Pang, B., L. Lee, and S. Vaithyanathan. Thumbs up?: sentiment classification
using machine learning techniques. In Proceedings of Conference on
Empirical Methods in Natural Language Processing (EMNLP-2002), 2002.

95. Pantel, P., E. Crestan, A. Borkovsky, A. Popescu, and V. Vyas. Web-scale
distributional similarity and entity set expansion. In Proceedings of
Conference on Empirical Methods in Natural Language Processing
(EMNLP-2009), 2009.

96. Parrott, W. Emotions in social psychology: Essential readings. 2001:
Psychology Pr.

97. Paul, M., C. Zhai, and R. Girju. Summarizing Contrastive Viewpoints in
Opinionated Text. In Proceedings of Conference on Empirical Methods in
Natural Language Processing (EMNLP-2010), 2010.

98. Polanyi, L. and A. Zaenen. Contextual valence shifters. In Proceedings of the
AAAI Spring Symposium on Exploring Attitude and Affect in Text, 2004.

99. Popescu, A. and O. Etzioni. Extracting product features and opinions from
reviews. In Proceedings of Conference on Empirical Methods in Natural
Language Processing (EMNLP-2005), 2005.

100. Qiu, G., B. Liu, J. Bu, and C. Chen. Expanding domain sentiment lexicon
through double propagation. In Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI-2009), 2009.

101. Qiu, G., B. Liu, J. Bu, and C. Chen. Opinion Word Expansion and Target
Extraction through Double Propagation. To appear in Computational
Linguistics, 2010.

524 11 Opinion Mining and Sentiment Analysis

102. Riloff, E., S. Patwardhan, and J. Wiebe. Feature subsumption for opinion
analysis. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP-2006), 2006.

103. Riloff, E. and J. Wiebe. Learning extraction patterns for subjective
expressions. In Proceedings of Conference on Empirical Methods in Natural
Language Processing (EMNLP-2003), 2003.

104. Santorini, B. Part-of-speech tagging guidelines for the Penn Treebank
Project. 1990: University of Pennsylvania, School of Engineering and
Applied Science, Dept. of Computer and Information Science.

105. Sarawagi, S. Information extraction. Foundations and Trends in Databases,
2008, 1(3): p. 261-377.

106. Seki, Y., K. Eguchi, N. Kando, and M. Aono. Opinion-focused
summarization and its analysis at DUC 2006. In Proceedings of the
Document Understanding Conference (DUC), 2006.

107. Shanahan, J., Y. Qu, and J. Wiebe. Computing attitude and affect in text:
theory and applications. 2006: Springer-Verlag.

108. Stone, P. The general inquirer: A computer approach to content analysis.
Journal of Regional Science, 1968, 8(1).

109. Stoyanov, V. and C. Cardie. Partially supervised coreference resolution for
opinion summarization through structured rule learning. In Proceedings of
Conference on Empirical Methods in Natural Language Processing
(EMNLP-2006), 2006.

110. Stoyanov, V. and C. Cardie. Toward opinion summarization: Linking the
sources. In Proceedings of Workshop on Sentiment and Subjectivity in Text,
2006.

111. Su, Q., X. Xu, H. Guo, Z. Guo, X. Wu, X. Zhang, B. Swen, and Z. Su.
Hidden sentiment association in chinese web opinion mining. In Proceedings
of International Conference on World Wide Web (WWW-2008), 2008.

112. Takamura, H., T. Inui, and M. Okumura. Extracting semantic orientations of
phrases from dictionary. In Proceedings of the Joint Human Language
Technology/North American Chapter of the ACL Conference (HLT-NAACL-
2007), 2007.

113. Tata, S. and B. Di Eugenio. Generating fine-grained reviews of songs from
album reviews. In Proceedings of Annual Meeting of the Association for
Computational Linguistics (ACL-2010), 2010.

114. Tesniere, L. Élements de syntaxe structurale: Préf. de Jean Fourquet. 1959:
C. Klincksieck.

115. Titov, I. and R. McDonald. A joint model of text and aspect ratings for
sentiment summarization. In Proceedings of Annual Meeting of the
Association for Computational Linguistics (ACL-2008), 2008.

116. Titov, I. and R. McDonald. Modeling online reviews with multi-grain topic
models. In Proceedings of International Conference on World Wide Web
(WWW-2008), 2008.

117. Tong, R. An operational system for detecting and tracking opinions in on-
line discussion. In Proceedings of SIGIR Workshop on Operational Text
Classification, 2001.

Bibliography 525

118. Tsur, O., D. Davidov, and A. Rappoport. In Proceedings of the Fourth
International AAAI Conference on Weblogs and Social Media (ICWSM-
2010). 2010.

119. Turney, P. Thumbs up or thumbs down?: semantic orientation applied to
unsupervised classification of reviews. In Proceedings of Annual Meeting of
the Association for Computational Linguistics (ACL-2002), 2002.

120. Valitutti, A., C. Strapparava, and O. Stock. Developing affective lexical
resources. PsychNology Journal, 2004, 2(1): p. 61-83.

121. Wang, H., Y. Lu, and C. Zhai. Latent aspect rating analysis on review text
data: a rating regression approach. In Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD-
2010), 2010.

122. Wei, W. and J. Gulla. Sentiment learning on product reviews via sentiment
ontology tree. In Proceedings of Annual Meeting of the Association for
Computational Linguistics (ACL-2010), 2010.

123. Wiebe, J. Learning subjective adjectives from corpora. In Proceedings of
National Conf. on Artificial Intelligence (AAAI-2000), 2000.

124. Wiebe, J., R. Bruce, and T. O'Hara. Development and use of a gold-standard
data set for subjectivity classifications. In Proceedings of the Association for
Computational Linguistics (ACL-1999), 1999.

125. Wiebe, J. and R. Mihalcea. Word sense and subjectivity. In Proceedings of
Intl. Conf. on Computational Linguistics and 44th Annual Meeting of the
ACL (COLING/ACL-2006), 2006.

126. Wiebe, J. and E. Riloff. Creating subjective and objective sentence classifiers
from unannotated texts. Computational Linguistics and Intelligent Text
Processing, 2005: p. 486-497.

127. Wiebe, J., T. Wilson, R. Bruce, M. Bell, and M. Martin. Learning subjective
language. Computational Linguistics, 2004, 30(3): p. 277-308.

128. Wiebe, J., T. Wilson, and C. Cardie. Annotating expressions of opinions and
emotions in language. Language Resources and Evaluation, 2005, 39(2): p.
165-210.

129. Wilson, T., J. Wiebe, and P. Hoffmann. Recognizing contextual polarity in
phrase-level sentiment analysis. In Proceedings of the Human Language
Technology Conference and the Conference on Empirical Methods in
Natural Language Processing (HLT/EMNLP-2005), 2005.

130. Wilson, T., J. Wiebe, and R. Hwa. Just how mad are you? Finding strong and
weak opinion clauses. In Proceedings of National Conference on Artificial
Intelligence (AAAI-2004), 2004.

131. Wilson, T., J. Wiebe, and R. Hwa. Recognizing strong and weak opinion
clauses. Computational Intelligence, 2006, 22(2): p. 73-99.

132. Wu, Y., Q. Zhang, X. Huang, and L. Wu. Phrase dependency parsing for
opinion mining. In Proceedings of Conference on Empirical Methods in
Natural Language Processing (EMNLP-2009), 2009.

133. Yang, H., L. Si, and J. Callan. Knowledge transfer and opinion detection in
the TREC2006 blog track. In Proceedings of TREC, 2006.

526 11 Opinion Mining and Sentiment Analysis

134. Yessenalina, A., Y. Yue, and C. Cardie. Multi-level Structured Models for
Document-level Sentiment Classification. In Proceedings of Conference on
Empirical Methods in Natural Language Processing (EMNLP-2010), 2010.

135. Yi, J., T. Nasukawa, R. Bunescu, and W. Niblack. Sentiment analyzer:
Extracting sentiments about a given topic using natural language processing
techniques. In Proceedings of IEEE International Conference on Data
Mining (ICDM-2003), 2003.

136. Yu, H. and V. Hatzivassiloglou. Towards answering opinion questions:
Separating facts from opinions and identifying the polarity of opinion
sentences. In Proceedings of Conference on Empirical Methods in Natural
Language Processing (EMNLP-2003), 2003.

137. Zhai, Z., B. Liu, H. Xu, and P. Jia. Clustering Product Features for Opinion
Mining. In Proceedings of ACM International Conference on Web Search
and Data Mining (WSDM-2011), 2011.

138. Zhai, Z., B. Liu, H. Xu, and P. Jia. Grouping Product Features Using Semi-
Supervised Learning with Soft-Constraints. In Proceedings of International
Conference on Computational Linguistics (COLING-2010), 2010.

139. Zhai, Z., B. Liu, L. Zhang, H. Xu, and P. Jia. Identifying evaluative opinions
in online discussions. In Proceedings of AAAI. 2011.

140. Zhang, L. and B. Liu. Identifying noun product features that imply opinions.
In Proceedings of ACL (short paper),. 2011.

141. Zhang, L., B. Liu, S. Lim, and E. O’Brien-Strain. Extracting and Ranking
Product Features in Opinion Documents. In Proceedings of International
Conference on Computational Linguistics (COLING-2010), 2010.

142. Zhang, W., L. Jia, C. Yu, and W. Meng. Improve the effectiveness of the
opinion retrieval and opinion polarity classification. In Proceedings of ACM
International Conference on Information and Knowledge Management
(CIKM-2008), 2008.

143. Zhang, W. and C. Yu. UIC at TREC 2007 Blog Report. 2007.
144. Zhang, Z. and B. Varadarajan. Utility scoring of product reviews. In

Proceedings of ACM International Conference on Information and
Knowledge Management (CIKM-2006), 2006.

145. Zhao, W., J. Jiang, H. Yan, and X. Li. Jointly modeling aspects and opinions
with a MaxEnt-LDA hybrid. In Proceedings of Conference on Empirical
Methods in Natural Language Processing (EMNLP-2010), 2010.

146. Zhuang, L., F. Jing, and X. Zhu. Movie review mining and summarization. In
Proceedings of ACM International Conference on Information and
Knowledge Management (CIKM-2006), 2006.

12 Web Usage Mining

With the continued growth and proliferation of e-commerce, Web services,
and Web-based information systems, the volumes of clickstream,
transaction data, and user profile data collected by Web-based
organizations in their daily operations has reached astronomical
proportions. Analyzing such data can help these organizations determine
the life-time value of clients, design cross-marketing strategies across
products and services, evaluate the effectiveness of promotional
campaigns, optimize the functionality of Web-based applications, provide
more personalized content to visitors, and find the most effective logical
structure for their Web space. This type of analysis involves the automatic
discovery of meaningful patterns and relationships from a large collection
of primarily semi-structured data, often stored in Web and applications
server access logs, as well as in related operational data sources.

Web usage mining refers to the automatic discovery and analysis of
patterns in clickstreams, user transactions and other associated data
collected or generated as a result of user interactions with Web resources
on one or more Web sites [28, 82, 118]. The goal is to capture, model, and
analyze the behavioral patterns and profiles of users interacting with a
Web site. The discovered patterns are usually represented as collections of
pages, objects, or resources that are frequently accessed or used by groups
of users with common needs or interests.

Following the standard data mining process [38], the overall Web usage
mining process can be divided into three inter-dependent stages: data
collection and pre-processing, pattern discovery, and pattern analysis. In
the pre-processing stage, the clickstream data is cleaned and partitioned
into a set of user transactions representing the activities of each user during
different visits to the site. Other sources of knowledge such as the site
content or structure, as well as semantic domain knowledge from site
ontologies (such as product catalogs or concept hierarchies), may also be
used in pre-processing or to enhance user transaction data. In the pattern
discovery stage, statistical, database, and machine learning operations are
performed to obtain hidden patterns reflecting the typical behavior of
users, as well as summary statistics on Web resources, sessions, and users.
In the final stage of the process, the discovered patterns and statistics are

With Bamshad Mobasher and Olfa Nasraoui

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_12,
© Springer-Verlag Berlin Heidelberg 2011

527

528 12 Web Usage Mining

further processed, filtered, possibly resulting in aggregate user models that
can be used as input to applications such as recommendation engines,
visualization tools, and Web analytics and report generation tools. The
overall process is depicted in Fig. 12.1.

In the remainder of this chapter, we first provide a detailed examination of
Web usage mining as a process, and discuss the relevant concepts and
techniques commonly used in all the stages mentioned above. We then focus
on the important problem of recommendation. It is followed by another
special case of Web usage mining targeting search query logs, and known as
query log mining (QLM). To complete our discussion of mining Web usage
data, we finally introduce the new field of Ad click mining.

12.1 Data Collection and Pre-Processing

An important task in any data mining application is the creation of a
suitable target data set to which data mining and statistical algorithms can
be applied. This is particularly important in Web usage mining due to the
characteristics of clickstream data and its relationship to other related data
collected from multiple sources and across multiple channels. The data

Fig. 12.1. The Web usage mining process

12.1 Data Collection and Pre-Processing 529

preparation process is often the most time consuming and computationally
intensive step in the Web usage mining process, and often requires the use
of special algorithms and heuristics not commonly employed in other
domains. This process is critical to the successful extraction of useful
patterns from the data. The process may involve pre-processing the
original data, integrating data from multiple sources, and transforming the
integrated data into a form suitable for input into specific data mining
operations. Collectively, we refer to this process as data preparation.

Much of the research and practice in usage data preparation has been
focused on pre-processing and integrating these data sources for different
analysis. Usage data preparation presents a number of unique challenges
which have led to a variety of algorithms and heuristic techniques for pre-

Fig. 12.2. Steps in data preparation for Web usage mining.

530 12 Web Usage Mining

processing tasks such as data fusion and cleaning, user and session
identification, pageview identification [27]. The successful application of
data mining techniques to Web usage data is highly dependent on the
correct application of the pre-processing tasks. Furthermore, in the context
of e-commerce data analysis, these techniques have been extended to allow
for the discovery of important and insightful user and site metrics [64].

Figure 12.2 provides a summary of the primary tasks and elements in
usage data pre-processing. We begin by providing a summary of data types
commonly used in Web usage mining and then provide a brief discussion
of some of the primary data preparation tasks.

12.1.1 Sources and Types of Data

The primary data sources used in Web usage mining are the server log
files, which include Web server access logs and application server logs.
Additional data sources that are also essential for both data preparation and
pattern discovery include the site files and meta-data, operational databases,
application templates, and domain knowledge. In some cases and for some
users, additional data may be available due to client-side or proxy-level
(Internet Service Provider) data collection, as well as from external
clickstream or demographic data sources such as those provided by data
aggregation services from ComScore (www.comscore.com), NetRatings
(www.nielsen-netratings.com), and Acxiom (www.acxiom.com).

The data obtained through various sources can be categorized into four
primary groups [27, 118].

Usage Data: The log data collected automatically by the Web and
application servers represents the fine-grained navigational behavior of
visitors. It is the primary source of data in Web usage mining. Each hit
against the server, corresponding to an HTTP request, generates a single
entry in the server access logs. Each log entry (depending on the log
format) may contain fields identifying the time and date of the request, the
IP address of the client, the resource requested, possible parameters used in
invoking a Web application, status of the request, HTTP method used, the
user agent (browser and operating system type and version), the referring
Web resource, and, if available, client-side cookies which uniquely
identify a repeat visitor. A typical example of a server access log is
depicted in Fig. 12.3, in which six partial log entries are shown. The user
IP addresses in the log entries have been changed to protect privacy.

For example, log entry 1 shows a user with IP address “1.2.3.4”
accessing a resource: “/classes/cs589/papers.html” on the server (maya.cs.
depaul.edu). The browser type and version, as well as operating system

12.1 Data Collection and Pre-Processing 531

information on the client machine are captured in the agent field of the
entry. Finally, the referrer field indicates that the user came to this location
from an outside source: “http://dataminingresources.blogspot.com/”. The
next log entry shows that this user has navigated from “papers.html” (as
reflected in the referrer field of entry 2) to access another resource:
“/classes/cs589/papers/cms-tai.pdf”. Log entry 3 shows a user who has
arrived at the resource “/classes/ds575/papers/hyperlink.pdf” by doing a
search on Google using keyword query: “hyperlink analysis for the web
survey”. Finally, entries 46 all correspond to a single click-through by a
user who has accessed the resource “/classes/cs480/announce.html”.
Entries 5 and 6 are images embedded in the file “announce.html” and thus
two additional HTTP request are registered as hits in the server log
corresponding to these images.

Depending on the goals of the analysis, this data needs to be
transformed and aggregated at different levels of abstraction. In Web usage
mining, the most basic level of data abstraction is that of a pageview. A
pageview is an aggregate representation of a collection of Web objects
contributing to the display on a user’s browser resulting from a single user
action (such as a click-through). Conceptually, each pageview can be
viewed as a collection of Web objects or resources representing a specific

1 2006-02-01 00:08:43 1.2.3.4 - GET /classes/cs589/papers.html - 200 9221
HTTP/1.1 maya.cs.depaul.edu
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1;+.NET+CLR+2.0.50727)
http://dataminingresources.blogspot.com/

2 2006-02-01 00:08:46 1.2.3.4 - GET /classes/cs589/papers/cms-tai.pdf - 200 4096
HTTP/1.1 maya.cs.depaul.edu
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1;+.NET+CLR+2.0.50727)
http://maya.cs.depaul.edu/~classes/cs589/papers.html

3 2006-02-01 08:01:28 2.3.4.5 - GET /classes/ds575/papers/hyperlink.pdf - 200
318814 HTTP/1.1 maya.cs.depaul.edu
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1)
http://www.google.com/search?hl=en&lr=&q=hyperlink+analysis+for+the+web+survey

4 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/announce.html - 200 3794
HTTP/1.1 maya.cs.depaul.edu
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1)
http://maya.cs.depaul.edu/~classes/cs480/

5 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/styles2.css - 200 1636
HTTP/1.1 maya.cs.depaul.edu
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1)
http://maya.cs.depaul.edu/~classes/cs480/announce.html

6 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/header.gif - 200 6027
HTTP/1.1 maya.cs.depaul.edu
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1)
http://maya.cs.depaul.edu/~classes/cs480/announce.html

Fig. 12.3. Portion of a typical server log

532 12 Web Usage Mining

“user event,” e.g., reading an article, viewing a product page, or adding a
product to the shopping cart. At the user level, the most basic level of
behavioral abstraction is that of a session. A session is a sequence of
pageviews by a single user during a single visit. The notion of a session
can be further abstracted by selecting a subset of pageviews in the session
that are significant or relevant for the analysis tasks at hand.

Content Data: The content data in a site is the collection of objects and
relationships that is conveyed to the user. For the most part, this data is
comprised of combinations of textual materials and images. The data
sources used to deliver or generate this data include static HTML/XML
pages, multimedia files, dynamically generated page segments from
scripts, and collections of records from the operational databases. The site
content data also includes semantic or structural meta-data embedded
within the site or individual pages, such as descriptive keywords,
document attributes, semantic tags, or HTTP variables. The underlying
domain ontology for the site is also considered part of the content data.
Domain ontologies may include conceptual hierarchies over page contents,
such as product categories, explicit representations of semantic content and
relationships via an ontology language such as RDF, or a database schema
over the data contained in the operational databases.

Structure Data: The structure data represents the designer’s view of the
content organization within the site. This organization is captured via the
inter-page linkage structure among pages, as reflected through hyperlinks.
The structure data also includes the intra-page structure of the content
within a page. For example, both HTML and XML documents can be
represented as tree structures over the space of tags in the page. The
hyperlink structure for a site is normally captured by an automatically
generated “site map.” A site mapping tool must have the capability to capture
and represent the inter- and intra-pageview relationships. For dynamically
generated pages, the site mapping tools must either incorporate intrinsic
knowledge of the underlying applications and scripts that generate HTML
content, or must have the ability to generate content segments using a
sampling of parameters passed to such applications or scripts.

User Data: The operational database(s) for the site may include additional
user profile information. Such data may include demographic information
about registered users, user ratings on various objects such as products or
movies, past purchases or visit histories of users, as well as other explicit
or implicit representations of users’ interests. Some of this data can be
captured anonymously as long as it is possible to distinguish among
different users. For example, anonymous information contained in client-
side cookies can be considered a part of the users’ profile information, and

12.1 Data Collection and Pre-Processing 533

used to identify repeat visitors to a site. Many personalization applications
require the storage of prior user profile information.

12.1.2 Key Elements of Web Usage Data Pre-Processing

As noted in Fig. 12.2, the required high-level tasks in usage data pre-
processing include the fusion and synchronization of data from multiple
log files, data cleaning, pageview identification, user identification, session
identification (or sessionization), episode identification, and the integration
of clickstream data with other data sources such as content or semantic
information, as well as user and product information from operational
databases. We now examine some of the essential tasks in pre-processing.

Data Fusion and Cleaning

In large-scale Web sites, it is typical that the content served to users comes
from multiple Web or application servers. In some cases, multiple servers
with redundant content are used to reduce the load on any particular server.
Data fusion refers to the merging of log files from several Web and
application servers. This may require global synchronization across these
servers. In the absence of shared embedded session ids, heuristic methods
based on the “referrer” field in server logs along with various sessionization
and user identification methods (see below) can be used to perform the
merging. This step is essential in “inter-site” Web usage mining where the
analysis of user behavior is performed over the log files of multiple related
Web sites [121].

Data cleaning is usually site-specific, and involves tasks such as,
removing extraneous references to embedded objects that may not be
important for the purpose of analysis, including references to style files,
graphics, or sound files. The cleaning process also may involve the
removal of at least some of the data fields (e.g., number of bytes
transferred or version of HTTP protocol used, etc.) that may not provide
useful information in analysis or data mining tasks.

Data cleaning also entails the removal of references due to crawler
navigations. It is not uncommon for a typical log file to contain a significant
(sometimes as high as 50%) percentage of references resulting from search
engine or other crawlers (or spiders). Well-known search engine crawlers can
usually be identified and removed by maintaining a list of known crawlers.
Other “well-behaved” crawlers which abide by standard robot exclusion
protocols, begin their site crawl by first attempting to access to exclusion file
“robots.txt” in the server root directory. Such crawlers, can therefore, be
identified by locating all sessions that begin with an (attempted) access to this

534 12 Web Usage Mining

file. However, a significant portion of crawlers references are from those that
either do not identify themselves explicitly (e.g., in the “agent” field) or
implicitly; or from those crawlers that deliberately masquerade as legitimate
users. In this case, identification of crawler references may require the use of
heuristic methods that distinguish typical behavior of Web crawlers from
those of actual users. Some work has been done on using classification
algorithms to build models of crawlers and Web robot navigations [120], but
such approaches have so far been met with only limited success and more
work in this area is required.

Pageview Identification

Identification of pageviews is heavily dependent on the intra-page
structure of the site, as well as on the page contents and the underlying site
domain knowledge. Recall that, conceptually, each pageview can be
viewed as a collection of Web objects or resources representing a specific
“user event,” e.g., clicking on a link, viewing a product page, adding a
product to the shopping cart. For a static single frame site, each HTML file
may have a one-to-one correspondence with a pageview. However, for
multi-framed sites, several files make up a given pageview. For dynamic
sites, a pageview may represent a combination of static templates and
content generated by application servers based on a set of parameters.

In addition, it may be desirable to consider pageviews at a higher level of
aggregation, where each pageview represents a collection of pages or objects,
for examples, pages related to the same concept category. In e-commerce Web
sites, pageviews may correspond to various product-oriented events, such as
product views, registration, shopping cart changes, purchases, etc. In this case,
identification of pageviews may require a priori specification of an “event
model” based on which various user actions can be categorized.

In order to provide a flexible framework for a variety of data mining
activities a number of attributes must be recorded with each pageview.
These attributes include the pageview id (normally a URL uniquely
representing the pageview), static pageview type (e.g., information page,
product view, category view, or index page), and other metadata, such as
content attributes (e.g., keywords or product attributes).

User Identification

The analysis of Web usage does not require knowledge about a user’s
identity. However, it is necessary to distinguish among different users.
Since a user may visit a site more than once, the server logs record
multiple sessions for each user. We use the phrase user activity record to

12.1 Data Collection and Pre-Processing 535

refer to the sequence of logged activities belonging to the same user.
In the absence of authentication mechanisms, the most widespread

approach to distinguishing among unique visitors is the use of client-side
cookies. Not all sites, however, employ cookies, and due to privacy concerns,
client-side cookies are sometimes disabled by users. IP addresses, alone, are
not generally sufficient for mapping log entries onto the set of unique visitors.
This is mainly due to the proliferation of ISP proxy servers which assign
rotating IP addresses to clients as they browse the Web. It is not uncommon
to find many log entries corresponding to a limited number of proxy server IP
addresses from large Internet Service Providers such as America Online.
Therefore, two occurrences of the same IP address (separated by a sufficient
amount of time), in fact, might correspond to two different users. Without
user authentication or client-side cookies, it is still possible to accurately
identify unique users through a combination of IP addresses and other
information such as user agents and referrers [27].

Consider, for instance, the example of Fig. 12.4. On the left, the figure
depicts a portion of a partly preprocessed log file (the time stamps are
given as hours and minutes only). Using a combination of IP and Agent
fields in the log file, we are able to partition the log into activity records
for three separate users (depicted on the right).

Time IP URL Ref Agent
0:01 1.2.3.4 A - IE5;Win2k
0:09 1.2.3.4 B A IE5;Win2k
0:10 2.3.4.5 C - IE6;WinXP;SP1
0:12 2.3.4.5 B C IE6;WinXP;SP1
0:15 2.3.4.5 E C IE6;WinXP;SP1
0:19 1.2.3.4 C A IE5;Win2k
0:22 2.3.4.5 D B IE6;WinXP;SP1
0:22 1.2.3.4 A - IE6;WinXP;SP2
0:25 1.2.3.4 E C IE5;Win2k
0:25 1.2.3.4 C A IE6;WinXP;SP2
0:33 1.2.3.4 B C IE6;WinXP;SP2
0:58 1.2.3.4 D B IE6;WinXP;SP2
1:10 1.2.3.4 E D IE6;WinXP;SP2
1:15 1.2.3.4 A - IE5;Win2k
1:16 1.2.3.4 C A IE5;Win2k
1:17 1.2.3.4 F C IE6;WinXP;SP2
1:26 1.2.3.4 F C IE5;Win2k
1:30 1.2.3.4 B A IE5;Win2k
1:36 1.2.3.4 D B IE5;Win2k

0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C
1:15 1.2.3.4 A -
1:26 1.2.3.4 F C
1:30 1.2.3.4 B A
1:36 1.2.3.4 D B

User 1

0:22 1.2.3.4 A -
0:25 1.2.3.4 C A
0:33 1.2.3.4 B C
0:58 1.2.3.4 D B
1:10 1.2.3.4 E D
1:17 1.2.3.4 F C

User 3

0:10 2.3.4.5 C -
0:12 2.3.4.5 B C
0:15 2.3.4.5 E C
0:22 2.3.4.5 D B

User 2

Fig. 12.4. Example of user identification using IP + Agent

536 12 Web Usage Mining

Sessionization

Sessionization is the process of segmenting the user activity record of each
user into sessions, each representing a single visit to the site. Web sites
without the benefit of additional authentication information from users and
without mechanisms such as embedded session ids must rely on heuristics
methods for sessionization. The goal of a sessionization heuristic is to
reconstruct, from the clickstream data, the actual sequence of actions
performed by one user during one visit to the site.

We denote the “conceptual” set of real sessions by R, representing the
real activity of the user on the Web site. A sessionization heuristic h
attempts to map R into a set of constructed sessions, denoted by Ch. For the
ideal heuristic, h*, we have Ch* = R. In other words, the ideal heuristic can
re-construct the exact sequence of user navigation during a session.
Generally, sessionization heuristics fall into two basic categories: time-
oriented or structure-oriented. Time-oriented heuristics apply either global
or local time-out estimates to distinguish between consecutive sessions,
while structure-oriented heuristics use either the static site structure or the
implicit linkage structure captured in the referrer fields of the server logs.
Various heuristics for sessionization have been identified and studied [27].
More recently, a formal framework for measuring the effectiveness of such
heuristics has been proposed [115], and the impact of different heuristics
on various Web usage mining tasks has been analyzed [13].

As an example, two variations of time-oriented heuristics and a basic
navigation-oriented heuristic are given below. Each heuristic h scans the
user activity logs to which the Web server log is partitioned after user
identification, and outputs a set of constructed sessions:

 h1: Total session duration may not exceed a threshold . Given t0, the
timestamp for the first request in a constructed session S, the request
with a timestamp t is assigned to S, iff t  t0  .

 h2: Total time spent on a page may not exceed a threshold . Given t1,
the timestamp for request assigned to constructed session S, the next
request with timestamp t2 is assigned to S, iff t2  t1 .

 h-ref: A request q is added to constructed session S if the referrer for q
was previously invoked in S. Otherwise, q is used as the start of a new
constructed session. Note that with this heuristic it is possible that a
request q may potentially belong to more than one “open” constructed
session, since q may have been accessed previously in multiple sessions.
In this case, additional information can be used for disambiguation. For
example, q could be added to the most recently opened session
satisfying the above condition.

12.1 Data Collection and Pre-Processing 537

An example of the application of sessionization heuristics is given in
Fig. 12.5 and Fig. 12.6. In Fig. 12.5, the heuristic h1, described above, with
 = 30 minutes has been used to partition a user activity record (from the
example of Fig. 12.4) into two separate sessions.

If we were to apply h2 with a threshold of 10 minutes, the user record
would be seen as three sessions, namely, ABCE, A, and FBD.
On the other hand, Fig. 12.6 depicts an example of using h-ref heuristic on
the same user activity record. In this case, once the request for F (with time
stamp 1:26) is reached, there are two open sessions, namely, ABCE
and A. But F is added to the first because its referrer, C, was invoked in
session 1. The request for B (with time stamp 1:30) may potentially belong
to both open sessions, since its referrer, A, is invoked both in session 1 and
in session 2. In this case, it is added to the second session, since it is the
most recently opened session.

Episode identification can be performed as a final step in pre-processing
of the clickstream data in order to focus on the relevant subsets of
pageviews in each user session. An episode is a subset or subsequence of a
session comprised of semantically or functionally related pageviews. This
task may require the automatic or semi-automatic classification of

Time IP URL Ref
0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C
1:15 1.2.3.4 A -
1:26 1.2.3.4 F C
1:30 1.2.3.4 B A
1:36 1.2.3.4 D B

User 1

0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C

Session 1

1:15 1.2.3.4 A -
1:26 1.2.3.4 F C
1:30 1.2.3.4 B A
1:36 1.2.3.4 D B

Session 2

Fig. 12.5. Example of sessionization with a time-oriented heuristic

Time IP URL Ref
0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C
1:15 1.2.3.4 A -
1:26 1.2.3.4 F C
1:30 1.2.3.4 B A
1:36 1.2.3.4 D B

User 1

0:01 1.2.3.4 A -
0:09 1.2.3.4 B A
0:19 1.2.3.4 C A
0:25 1.2.3.4 E C
1:26 1.2.3.4 F C

Session 1

1:15 1.2.3.4 A -
1:30 1.2.3.4 B A
1:36 1.2.3.4 D B

Session 2

Fig. 12.6. Example of sessionization with the h-ref heuristic

538 12 Web Usage Mining

pageviews into different functional types or into concept classes according
to a domain ontology or concept hierarchy. In highly dynamic sites, it may
also be necessary to map pageviews within each session into “service-
based” classes according to a concept hierarchy over the space of possible
parameters passed to script or database queries [14]. For example, the
analysis may ignore the quantity and attributes of an item added to the
shopping cart, and focus only on the action of adding the item to the cart.

Path Completion

Another potentially important pre-processing task which is usually
performed after sessionization is path completion. Client- or proxy-side
caching can often result in missing access references to those pages or
objects that have been cached. For instance, if a user returns to a page A
during the same session, the second access to A will likely result in
viewing the previously downloaded version of A that was cached on the
client-side, and therefore, no request is made to the server. This results in
the second reference to A not being recorded on the server logs. Missing
references due to caching can be heuristically inferred through path
completion which relies on the knowledge of site structure and referrer
information from server logs [27]. In the case of dynamically generated
pages, form-based applications using the HTTP POST method result in all
or part of the user input parameter not being appended to the URL
accessed by the user (though, in the latter case, it is possible to recapture
the user input through packet sniffers which listen to all incoming and
outgoing TCP/IP network traffic on the server side).

A simple example of missing references is given in Fig. 12.7. On the
left, a graph representing the linkage structure of the site is given. The
dotted arrows represent the navigational path followed by a hypothetical
user. After reaching page E, the user has backtracked (e.g., using the
browser’s “back” button) to page D and then B from which she has
navigated to page C. The back references to D and B do not appear in the
log file because these pages where cached on the client-side (thus no
explicit server request was made for these pages). The log file shows that
after a request for E, the next request by the user is for page C with a
referrer B. In other words, there is a gap in the activity record
corresponding to user’s navigation from page E to page B. Given the site
graph, it is possible to infer the two missing references (i.e., E  D and D
 B) from the site structure and the referrer information given above. It
should be noted that there are, in general, many (possibly infinite),
candidate completions (for example, consider the sequence E  D, D 
B, B  A, A  B). A simple heuristic that can be used for disambiguating

12.1 Data Collection and Pre-Processing 539

among candidate paths is to select the one requiring the fewest number of
“back” references.

Data Integration

The above pre-processing tasks ultimately result in a set of user sessions
(or episodes), each corresponding to a delimited sequence of pageviews.
However, in order to provide the most effective framework for pattern
discovery, data from a variety of other sources must be integrated with the
preprocessed clickstream data. This is particularly the case in e-commerce
applications where the integration of both user data (e.g., demographics,
ratings, and purchase histories) and product attributes and categories from
operational databases is critical. Such data, used in conjunction with usage
data, in the mining process can allow for the discovery of important
business intelligence metrics such as customer conversion ratios and
lifetime values [64].

In addition to user and product data, e-commerce data includes various
product-oriented events such as shopping cart changes, order and shipping
information, impressions (when the user visits a page containing an item
of interest), click-throughs (when the user actually clicks on an item of
interest in the current page), and other basic metrics primarily used for data
analysis. The successful integration of these types of data requires the
creation of a site-specific “event model” based on which subsets of a user’s
clickstream are aggregated and mapped to specific events such as the addition
of a product to the shopping cart. Generally, the integrated e-commerce data
is stored in the final transaction database. To enable full-featured Web
analytics applications, this data is usually stored in a data warehouse called an
e-commerce data mart. The e-commerce data mart is a multi-dimensional

A

B C

D E F

User’s actual navigation path:

A B  D  E  D  B  C

What the server log shows:

URL Referrer
 A --
 B A
 D B
 E D
 C B

Fig. 12.7. Missing references due to caching.

540 12 Web Usage Mining

database integrating data from various sources, and at different levels of
aggregation. It can provide pre-computed e-metrics along multiple
dimensions, and is used as the primary data source for OLAP (Online
Analytical Processing), for data visualization, and in data selection for a
variety of data mining tasks [18, 63] . Some examples of such metrics include
frequency or monetary value of purchases, average size of market baskets,
the number of different items purchased, the number of different item
categories purchased, the amount of time spent on pages or sections of the
site, day of week and time of day when a certain activity occurred, response
to recommendations and online specials, etc.

12.2 Data Modeling for Web Usage Mining

Usage data pre-processing results in a set of n pageviews, P = {p1, p2, ···, pn},
and a set of m user transactions, T = {t1,t2,···,tm}, where each ti in T is a subset
of P. Pageviews are semantically meaningful entities to which mining tasks
are applied (such as pages or products). Conceptually, we view each
transaction t as an l-length sequence of ordered pairs:

,))(,(,)),(,()),(,(2211
t
l

t
l

tttt pwppwppwpt 

where each pt
i = pj for some j in {1, 2, ···, n}, and w(pt

i) is the weight
associated with pageview pt

i in transaction t, representing its significance.
The weights can be determined in a number of ways, in part based on the
type of analysis or the intended personalization framework. For example,
in collaborative filtering applications which rely on the profiles of similar
users to make recommendations to the current user, weights may be based
on user ratings of items. In most Web usage mining tasks the weights are
either binary, representing the existence or non-existence of a pageview in the
transaction; or they can be a function of the duration of the pageview in the
user’s session. In the case of time durations, it should be noted that usually
the time spent by a user on the last pageview in the session is not available.
One commonly used option is to set the weight for the last pageview to be the
mean time duration for the page taken across all sessions in which the
pageview does not occur as the last one. In practice, it is common to use a
normalized value of page duration instead of raw time duration in order to
account for user variances. In some applications, the log of pageview
duration is used as the weight to reduce the noise in the data.

For many data mining tasks, such as clustering and association rule
mining, where the ordering of pageviews in a transaction is not relevant,
we can represent each user transaction as a vector over the n-dimensional

12.2 Data Modeling for Web Usage Mining 541

space of pageviews. Given the transaction t above, the transaction vector t
(we use a bold face lower case letter to represent a vector) is given by:

  t
p

t
p

t
p n

www ,,,
21

t ,

where each wt
pi = w(pt

j), for some j in {1, 2, ···, n}, if pj appears in the
transaction t, and wt

pi = 0 otherwise. Thus, conceptually, the set of all user
transactions can be viewed as an m×n user-pageview matrix (also called
the transaction matrix), denoted by UPM.

An example of a hypothetical user-pageview matrix is depicted in Fig.
12.8. In this example, the weights for each pageview is the amount of time
(e.g., in seconds) that a particular user spent on the pageview. In practice,
these weights must be normalized to account for variances in viewing
times by different users. It should also be noted that the weights may be
composite or aggregate values in cases where the pageview represents a
collection or sequence of pages and not a single page.

Given a set of transactions in the user-pageview matrix as described
above, a variety of unsupervised learning techniques can be applied to
obtain patterns. These techniques such as clustering of transactions (or
sessions) can lead to the discovery of important user or visitor segments.
Other techniques such as item (e.g., pageview) clustering and association
or sequential pattern mining can find important relationships among
items based on the navigational patterns of users in the site.

As noted earlier, it is also possible to integrate other sources of
knowledge, such as semantic information from the content of Web pages
with the Web usage mining process. Generally, the textual features from
the content of Web pages represent the underlying semantics of the site.

A B C D E F
user0 15 5 0 0 0 185
user1 0 0 32 4 0 0
user2 12 0 0 56 236 0
user3 9 47 0 0 0 134
user4 0 0 23 15 0 0
user5 17 0 0 157 69 0
user6 24 89 0 0 0 354
user7 0 0 78 27 0 0
user8 7 0 45 20 127 0
user9 0 38 57 0 0 15

Sessions /
users

Pageviews

Fig. 12.8. An example of a user-pageview matrix (or transaction matrix)

542 12 Web Usage Mining

Each pageview p can be represented as a r-dimensional feature vector,
where r is the total number of extracted features (words or concepts) from
the site in a global dictionary. This vector, denoted by p, can be given by:

 )(),...,(),(21 r
ppp ffwffwffwp

where fwp(fj) is the weight of the jth feature (i.e., fj) in pageview p, for 1 ≤
j ≤ r. For the whole collection of pageviews in the site, we then have an
n×r pageview-feature matrix PFM = {p1, p2, …, pn}. The integration
process may, for example, involve the transformation of user transactions
(in user-pageview matrix) into “content-enhanced” transactions containing
the semantic features of the pageviews. The goal of such a transformation
is to represent each user session (or more generally, each user profile) as a
vector of semantic features (i.e., textual features or concept labels) rather
than as a vector over pageviews. In this way, a user’s session reflects not
only the pages visited, but also the significance of various concepts or
context features that are relevant to the user’s interaction.

While, in practice, there are several ways to accomplish this
transformation, the most direct approach involves mapping each pageview
in a transaction to one or more content features. The range of this mapping
can be the full feature space, or feature sets (composite features) which in
turn may represent concepts and concept categories. Conceptually, the
transformation can be viewed as the multiplication of the user-pageview
matrix UPM, defined earlier, with the pageview-feature matrix PFM. The
result is a new matrix, TFM = {t1, t2, …, tm}, where each ti is a r-
dimensional vector over the feature space. Thus, a user transaction can be
represented as a content feature vector, reflecting that user’s interests in
particular concepts or topics.

As an example of content-enhanced transactions, consider Fig. 12.9
which shows a hypothetical matrix of user sessions (user-pageview
matrix) as well as a document index for the corresponding Web site
conceptually represented as a term-pageview matrix. Note that the
transpose of this term-pageview matrix is the pageview-feature matrix.
The user-pageview matrix simply reflects the pages visited by users in
various sessions. On the other hand, the term-pageview matrix represents
the concepts that appear in each page. For simplicity we have assumed
that all the weights are binary (however, note that in practice weights in
the user transaction data are usually not binary and represent some
measure of significance of the page in that transaction; and the weights in
the term-pageview matrix are usually a function of term frequencies).

In this case, the corresponding content-enhanced transaction matrix
(derived by multiplying the user-pageview matrix and the transpose of
the term-pageview matrix) is depicted in Fig. 12.10. The resulting matrix

12.2 Data Modeling for Web Usage Mining 543

shows, for example, that users 4 and 6 are more interested in Web
information retrieval, while user 3 is more interested in data mining.

Various data mining tasks can now be performed on the content-enhanced
transaction data. For example, clustering the enhanced transaction matrix of
Fig. 12.10 may reveal segments of users that have common interests in
different concepts as indicated from their navigational behaviors.

If the content features include relational attributes associated with items
on the Web site, then the discovered patterns may reveal user interests at
the deeper semantic level reflected in the underlying properties of the
items that are accessed by the users on the Web site. As an example,
consider a site containing information about movies. The site may contain
pages related to the movies themselves, as well as attributes describing the
properties of each movie, such as actors, directors, and genres. The mining
process may, for instance, generate an association rule such as: {“British”,

 A.html B.html C.html D.html E.html
user1 1 0 1 0 1
user2 1 1 0 0 1
user3 0 1 1 1 0
user4 1 0 1 1 1
user5 1 1 0 0 1
user6 1 0 1 1 1

 A.html B.html C.html D.html E.html
web 0 0 1 1 1
data 0 1 1 1 0
mining 0 1 1 1 0
business 1 1 0 0 0
intelligence 1 1 0 0 1
marketing 1 1 0 0 1
ecommerce 0 1 1 0 0
search 1 0 1 0 0
information 1 0 1 1 1
retrieval 1 0 1 1 1

Fig. 12.9. Examples of a user-pageview matrix (top) and a term-pageview matrix
(bottom)

 web data mining business intelligence marketing ecommerce search information retrieval
user1 2 1 1 1 2 2 1 2 3 3
user2 1 1 1 2 3 3 1 1 2 2
user3 2 3 3 1 1 1 2 1 2 2
user4 3 2 2 1 2 2 1 2 4 4
user5 1 1 1 2 3 3 1 1 2 2
user6 3 2 2 1 2 2 1 2 4 4

Fig. 12.10. The content-enhanced transaction matrix from matrices of Fig. 12.9

544 12 Web Usage Mining

“Romance”, “Comedy”  “Hugh Grant”}, suggesting that users who are
interested in British romantic comedies may also like the actor Hugh Grant
(with a certain degree of confidence). Therefore, the integration of
semantic content with Web usage mining can potentially provide a better
understanding of the underlying relationships among objects.

12.3 Discovery and Analysis of Web Usage Patterns

The types and levels of analysis, performed on the integrated usage data,
depend on the ultimate goals of the analyst and the desired outcomes. In
this section we describe some of the most common types of pattern
discovery and analysis techniques employed in the Web usage mining
domain and discuss some of their applications.

12.3.1 Session and Visitor Analysis

The statistical analysis of pre-processed session data constitutes the most
common form of analysis. In this case, data is aggregated by predetermined
units such as days, sessions, visitors, or domains. Standard statistical
techniques can be used on this data to gain knowledge about visitor
behavior. This is the approach taken by most commercial tools available
for Web log analysis. Reports based on this type of analysis may include
information about most frequently accessed pages, average view time of a
page, average length of a path through a site, common entry and exit
points, and other aggregate measures. Despite a lack of depth in this type
of analysis, the resulting knowledge can be potentially useful for
improving the system performance, and providing support for marketing
decisions. Furthermore, commercial Web analytics tools are increasingly
incorporating a variety of data mining algorithms resulting in more
sophisticated site and customer metrics.

Another form of analysis on integrated usage data is Online Analytical
Processing (OLAP). OLAP provides a more integrated framework for analysis
with a higher degree of flexibility. The data source for OLAP analysis is
usually a multidimensional data warehouse which integrates usage, content,
and e-commerce data at different levels of aggregation for each dimension.
OLAP tools allow changes in aggregation levels along each dimension during
the analysis. Analysis dimensions in such a structure can be based on various
fields available in the log files, and may include time duration, domain,
requested resource, user agent, and referrers. This allows the analysis to be
performed on portions of the log related to a specific time interval, or at a

12.3 Discovery and Analysis of Web Usage Patterns 545

higher level of abstraction with respect to the URL path structure. The
integration of e-commerce data in the data warehouse can further enhance the
ability of OLAP tools to derive important business intelligence metrics [18].
The output from OLAP queries can also be used as the input for a variety of
data mining or data visualization tools.

12.3.2 Cluster Analysis and Visitor Segmentation

Clustering is a data mining technique that groups together a set of items
having similar characteristics. In the usage domain, there are two kinds of
interesting clusters that can be discovered: user clusters and page clusters.

Clustering of user records (sessions or transactions) is one of the most
commonly used analysis tasks in Web usage mining and Web analytics.
Clustering of users tends to establish groups of users exhibiting similar
browsing patterns. Such knowledge is especially useful for inferring user
demographics in order to perform market segmentation in e-commerce
applications or provide personalized Web content to the users with similar
interests. Further analysis of user groups based on their demographic attributes
(e.g., age, gender, income level, etc.) may lead to the discovery of valuable
business intelligence. Usage-based clustering has also been used to create
Web-based “user communities” reflecting similar interests of groups of users

Given the mapping of user transactions into a multi-dimensional space

as vectors of pageviews (see Fig. 12.8), standard clustering algorithms,
such as k-means, can partition this space into groups of transactions that
are close to each other based on a measure of distance or similarity among
the vectors (see Chap. 4). Transaction clusters obtained in this way can
represent user or visitor segments based on their navigational behavior or
other attributes that have been captured in the transaction file. However,
transaction clusters by themselves are not an effective means of capturing
the aggregated view of common user patterns. Each transaction cluster
may potentially contain thousands of user transactions involving hundreds
of pageview references. The ultimate goal in clustering user transactions is
to provide the ability to analyze each segment for deriving business
intelligence, or to use them for tasks such as personalization.

One straightforward approach in creating an aggregate view of each
cluster is to compute the centroid (or the mean vector) of each cluster. The
dimension value for each pageview in the mean vector is computed by
finding the ratio of the sum of the pageview weights across transactions to
the total number of transactions in the cluster. If pageview weights in the

[91], and to learn user models that can be used to provide dynamic
recommendations in Web personalization application [85].

546 12 Web Usage Mining

original transactions are binary, then the dimension value of a pageview p
in a cluster centroid represents the percentage of transactions in the cluster
in which p occurs. Thus, the centroid dimension value of p provides a
measure of its significance in the cluster. Pageviews in the centroid can be
sorted according to these weights and lower weight pageviews can be
filtered out. The resulting set of pageview-weight pairs can be viewed as
an “aggregate usage profile” representing the interests or behavior of a
significant group of users.

More formally, given a transaction cluster cl, we can construct the
aggregate profile prcl as a set of pageview-weight pairs by computing the
centroid of cl:

},),(|)),(,{( clclcl prpweightprpweightppr (1)

where:
 the significance weight, weight(p, prcl), of the page p within the

aggregate profile prcl is given by

);,(
||

1),(s
s

pw
cl

prpweight
cl

cl 


 (2)

 | cl | is the number of transactions in cluster cl;
 w(p,s) is the weight of page p in transaction vector s of cluster cl; and
 the threshold µ is used to focus only on those pages in the cluster that

appear in a sufficient number of vectors in that cluster.

Each such profile, in turn, can be represented as a vector in the original
n -dimensional space of pageviews. This aggregate representation can be
used directly for predictive modeling and in applications such as
recommender systems: given a new user, u , who has accessed a set of
pages, Pu, so far, we can measure the similarity of Pu to the discovered
profiles, and recommend to the user those pages in matching profiles
which have not yet been accessed by the user.

As an example, consider the transaction data depicted in Fig. 12.11
(left). For simplicity we assume that feature (pageview) weights in each
transaction vector are binary (in contrast to weights based on a function of
pageview duration). We assume that the data has already been clustered
using a standard clustering algorithm such as k-means, resulting in three
clusters of user transactions. The table on the right of Fig. 12.11 shows the
aggregate profile corresponding to cluster 1. As indicated by the pageview
weights, pageviews B and F are the most significant pages characterizing
the common interests of users in this segment. Pageview C, however, only
appears in one transaction and might be removed given a filtering
threshold greater than 0.25. Such patterns are useful for characterizing user

12.3 Discovery and Analysis of Web Usage Patterns 547

or customer segments. This example, for instance, indicates that the
resulting user segment is clearly interested in items B and F and to a lesser
degree in item A. Given a new user who shows interest in items A and B,
this pattern may be used to infer that the user might belong to this segment
and, therefore, we might recommend item F to that user. Other clustering
approaches discover user profiles by optimizing objective functions that
avoid the known limitations of the k-means algorithm. For instance,
Nasraoui et al. presented clustering algorithms that are not only less
sensitive to initialization, but also can resist noise and outliers in the data,
and can automatically determine the number of clusters [87].

Clustering of pages (or items) can be performed based on the usage data
(i.e., starting from the user sessions or transaction data), or based on the
content features associated with pages or items (keywords or product
attributes). In the case of content-based clustering, the result may be
collections of pages or products related to the same topic or category. In
usage-based clustering, items that are commonly accessed or purchased
together can be automatically organized into groups. It can also be used to
provide permanent or dynamic HTML pages that suggest related hyperlinks to
the users according to their past history of navigational or purchase activities.

A variety of stochastic methods have also been proposed recently for
clustering of user transactions, and more generally for user modeling. For
example, recent work in this area has shown that mixture models are able
to capture more complex, dynamic user behavior. This is, in part, because
the observation data (i.e., the user-item space) in some applications (such
as large and very dynamic Web sites) may be too complex to be modeled
by basic probability distributions such as a normal or a multinomial

Fig. 12.11. Derivation of aggregate profiles from Web transaction clusters

 A B C D E F
user 1 0 0 1 1 0 0
user 4 0 0 1 1 0 0
user 7 0 0 1 1 0 0
user 0 1 1 0 0 0 1
user 3 1 1 0 0 0 1
user 6 1 1 0 0 0 1
user 9 0 1 1 0 0 1
user 2 1 0 0 1 1 0
user 5 1 0 0 1 1 0
user 8 1 0 1 1 1 0

Aggregated Profile
for Cluster 1

Weight Pageview
1.00 B
1.00 F
0.75 A
0.25 C

Cluster 0

Cluster 1

Cluster 2

548 12 Web Usage Mining

distribution. In particular, each user may exhibit different “types” of
behavior corresponding to different tasks, and common behaviors may
each be reflected in a different distribution within the data.

The general idea behind mixture models (such as a mixture of Markov
models) is as follow. We assume that there exist k types of user behavior (or k
user clusters) within the data, and each user session is assumed to be generated
via a generative process which models the probability distributions of the
observed variables and hidden variables. First, a user cluster is chosen with
some probability. Then, the user session is generated from a Markov model
with parameters specific to that user cluster. The probabilities of each user
cluster is estimated, usually via the EM [35] algorithm, as well as the
parameters of each mixture component. Mixture-based user models can
provide a great deal of flexibility. For example, a mixture of first-order
Markov models [19] not only can probabilistically cluster user sessions based
on similarities in navigation behavior, but also characterize each type of user
behavior using a first-order Markov model, thus capturing popular navigation
paths or characteristics of each user cluster. A mixture of hidden Markov
models was proposed in [128] for modeling clickstream of Web surfers. In
addition to user-based clustering, this approach can also be used for automatic
page classification. Incidentally, mixture models have been discussed in Sect.
3.7 in the context of naïve Bayesian classification. The EM algorithm is used
in the same context in Sect. 5.1.

Mixture models tend to have their own shortcomings. From the data
generation perspective, each individual observation (such as a user session) is
generated from one and only one component model. The probability
assignment to each component only measures the uncertainty about this
assignment. This assumption limits this model’s ability of capturing complex
user behavior, and more seriously, may result in overfitting.

Probabilistic Latent Semantic Analysis (PLSA) provides a reasonable
solution to the above problem [52]. In the context of Web user navigation,
each observation (a user visiting a page) is assumed to be generated based
on a set of unobserved (hidden) variables which “explain” the user-page
observations. The data generation process is as follows: a user is selected
with a certain probability, next conditioned on the user, a hidden variable
is selected, and then the page to visit is selected conditioned on the chosen
hidden variable. Since each user usually visits multiple pages, this data
generation process ensures that each user is explicitly associated with
multiple hidden variables, thus reducing the overfitting problems
associated with the above mixture models. The PLSA model also uses the
EM algorithm to estimate the parameters which probabilistically
characterize the hidden variables underlying the co-occurrence observation
data, and measure the relationship among hidden and observed variables.

12.3 Discovery and Analysis of Web Usage Patterns 549

This approach provides a great deal of flexibility since it provides a
single framework for quantifying the relationships between users, between
items, between users and items, and between users or items and hidden
variables that “explain” the observed relationships [59]. Given a set of n
user profiles (or transaction vectors), UP = {u1, u2, … , un}, and a set of m
items (e.g., pages or products), I = {i1, i2, … , im}, the PLSA model
associates a set of unobserved factor variables Z = {z1, z2, …, zq} with
observations in the data (q is specified by the user). Each observation
corresponds to a weight wuk(ij) for an item ij in the user profile for a user uk.
This weight may, for example, correspond to the significance of the page
in the user transaction or the user rating associated with the item. For a
given user u and a given item i, the following joint probability can be
derived (see [59] for details of the derivation):





q

k
kkk zizuziu

1
)|Pr()|Pr()Pr(),Pr(. (3)

In order to explain the observations in (UP, I), we need to estimate the
parameters Pr(zk), Pr(u|zk), and Pr(i|zk), while maximizing the following
likelihood L(UP, I) of the observation data:

(,) () log Pr(,)u
u UP i I

L UP I w i u i
 

   . (4)

The ExpectationMaximization (EM) algorithm is used to perform maximum
likelihood parameter estimation. Based on initial values of Pr(zk), Pr(u|zk),
and Pr(i|zk), the algorithm alternates between an expectation step and
maximization step. In the expectation step, posterior probabilities are
computed for latent variables based on current estimates, and in the
maximization step the re-estimated parameters are obtained. Iterating the
expectation and maximization steps monotonically increases the total
likelihood of the observed data L(UP, I), until a local optimal solution is
reached. Details of this approach can be found in [59].

Again, one of the main advantages of PLSA model in Web usage
mining is that using probabilistic inference with the above estimated
parameters, we can derive relationships among users, among pages, and
between users and pages. Thus this framework provides a flexible
approach to model a variety of types of usage patterns.

12.3.3 Association and Correlation Analysis

Association rule discovery and statistical correlation analysis can find
groups of items or pages that are commonly accessed or purchased

550 12 Web Usage Mining

together. This, in turn, enables Web sites to organize the site content more
efficiently, or to provide effective cross-sale product recommendations.

Most common approaches to association discovery are based on the
Apriori algorithm (see Sect. 2.2). This algorithm finds groups of items
(pageviews appearing in the preprocessed log) occurring frequently
together in many transactions (i.e., satisfying a user specified minimum
support threshold). Such groups of items are referred to as frequent
itemsets. Association rules which satisfy a minimum confidence threshold
are then generated from the frequent itemsets.

Recall an association rule is an expression of the form XY [sup, conf],
where X and Y are itemsets, sup is the support of the itemset X  Y
representing the probability that X and Y occur together in a transaction,
and conf is the confidence of the rule, defined by sup(XY) / sup(X),
representing the conditional probability that Y occurs in a transaction given
that X has occurred in that transaction. More details on association rule
discovery can be found in Chap. 2.

The mining of association rules in Web transaction data has many
advantages. For example, a high-confidence rule such as

special-offers/, /products/software/  shopping-cart/

might provide some indication that a promotional campaign on software
products is positively affecting online sales. Such rules can also be used to
optimize the structure of the site. For example, if a site does not provide
direct linkage between two pages A and B, the discovery of a rule, A  B,
would indicates that providing a direct hyperlink from A to B might aid
users in finding the intended information. Both association analysis
(among products or pageviews) and statistical correlation analysis
(generally among customers or visitors) have been used successfully in
Web personalization and recommender systems [48, 86]. In fact, the main
applications of association rule mining based on Web usage data or e-
commerce data are in recommendations, which we will discuss in detail in
Section 12.4.4.

12.3.4 Analysis of Sequential and Navigational Patterns

The technique of sequential pattern mining attempts to find inter-session
patterns such that the presence of a set of items is followed by another item
in a time-ordered set of sessions or episodes. By using this approach, Web
marketers can predict future visit patterns which will be helpful in placing
advertisements aimed at certain user groups. Other types of temporal
analysis that can be performed on sequential patterns include trend

12.3 Discovery and Analysis of Web Usage Patterns 551

analysis, change point detection, or similarity analysis. In the context of
Web usage data, sequential pattern mining can be used to capture
frequent navigational paths among user trails.

Sequential patterns (SPs) in Web usage data capture the Web page trails
that are often visited by users, in the order that they were visited.
Sequential patterns are those sequences of items that frequently occur in a
sufficiently large proportion of (sequence) transactions. A sequence
s1s2…sn occurs in a transaction t = p1, p2, . . . , pm (where n ≤ m) if there
exist n positive integers 1 ≤ a1 < a2 < . . . < an ≤ m, and si = pai for all i.
We say that cs1 cs2…csn is a contiguous sequence in t if there exists an
integer 0 ≤ b ≤ m − n, and csi = pb+i for all i = 1 to n. In a contiguous
sequential pattern (CSP), each pair of adjacent items, si and si+1, must
appear consecutively in a transaction t which supports the pattern. A
normal sequential pattern can represent non-contiguous frequent sequences
in the underlying set of sequence transactions.

Given a sequence transaction set T, the support (denoted by sup(S)) of a
sequential (respectively, contiguous sequential) pattern S in T is the
fraction of transactions in T that contain S. The confidence of the rule X 
Y, where X and Y are (contiguous) sequential patterns, is defined as:

conf(X  Y) = sup(X ° Y) / sup(X) ,

where ° denotes the concatenation operator.
In the context of Web usage data, CSPs can be used to capture frequent

navigational paths among user trails [114]. In contrast, items appearing in
SPs, while preserving the underlying ordering, need not be adjacent, and
thus they represent more general navigational patterns within the site. Note
that sequences and sequential patterns or rules discussed here are special
cases of those defined in Sect. 2.9.

The view of Web transactions as sequences of pageviews allows for a
number of useful and well-studied models to be used in discovering or
analyzing user navigation patterns. One such approach is to model the
navigational activities in the Web site as a Markov model: each pageview
(or a category) can be represented as a state and the transition probability
between two states can represent the likelihood that a user will navigate
from one state to the other. This representation allows for the computation
of a number of useful user or site metrics. For example, one might
compute the probability that a user will make a purchase, given that she
has performed a search in an online catalog. Markov models have been
proposed as the underlying modeling machinery for link prediction as well
as for Web prefetching to minimize system latencies [36, 104]. The goal of
such approaches is to predict the next user action based on a user’s
previous surfing behavior. They have also been used to discover high

552 12 Web Usage Mining

probability user navigational trails in a Web site [15]. More sophisticated
statistical learning techniques, such as mixtures of Markov models, have
also been used to cluster navigational sequences and perform exploratory
analysis of users’ navigational behavior in a site [19].

More formally, a Markov model is characterized by a set of states {s1,
s2, ..., sn} and a transition probability matrix, [Pri,j]nn, where Pri,j
represents the probability of a transition from state si to state sj. Markov
models are especially suited for predictive modeling based on contiguous
sequences of events. Each state represents a contiguous subsequence of
prior events. The order of the Markov model corresponds to the number of
prior events used in predicting a future event. So, a kth-order Markov
model predicts the probability of next event by looking the past k events.
Given a set of all paths R, the probability of reaching a state sj from a state
si via a (non-cyclic) path r  R is the product of all the transition
probabilities along the path and is given by Pr(r) = Prm,m+1, where m
ranges from i to j − 1. The probability of reaching sj from si is the sum of
these path probabilities over all paths: Pr(j|i) = rR Pr(r).

As an example of how Web transactions can be modeled as a Markov
model, consider the set of Web transaction given in Fig. 12.12 (left). The
Web transactions involve pageviews A, B, C, D, and E. For each
transaction the frequency of occurrences of that transaction in the data is
given in the table’s second column (thus there are a total of 50 transactions
in the data set). The (absorbing) Markov model for this data is also given
in Fig. 12.12 (right). The transitions from the “start” state represent the
prior probabilities for transactions starting with pageviews A and B. The
transitions into the “final” state represent the probabilities that the paths
end with the specified originating pageviews. For example, the transition
probability from the state A to B is 16/28 = 0.57 since out of the 28
occurrences of A in transactions, in 16 cases, B occurs immediately after A.

Higher-order Markov models generally provide a higher prediction
accuracy. However, this is usually at the cost of lower coverage (or recall)
and much higher model complexity due to the larger number of states. In
order to remedy the coverage and space complexity problems, Pitkow and
Pirolli [98] proposed all-kth-order Markov models (for coverage
improvement) and a new state reduction technique, called longest
repeating subsequences (LRS) (for reducing model size). The use of all-
kth-order Markov models generally requires the generation of separate
models for each of the k orders: if the model cannot make a prediction
using the kth order, it will attempt to make a prediction by incrementally
decreasing the model order. This scheme can easily lead to even higher
space complexity since it requires the representation of all possible states
for each k. Deshpande and Karypis [36] proposed selective Markov

12.3 Discovery and Analysis of Web Usage Patterns 553

models, introducing several schemes in order to tackle the model
complexity problems with all-kth-order Markov models. The proposed
schemes involve pruning the model based on criteria such as support,
confidence, and error rate. In particular, the support-pruned Markov
models eliminate all states with low support determined by a minimum
frequency threshold.

Another way of efficiently representing contiguous navigational trails is
by inserting each trail into a trie structure. A good example of this
approach is the notion of aggregate tree introduced as part of the WUM
(Web Utilization Miner) system [114]. The aggregation service of WUM
extracts the transactions from a collection of Web logs, transforms them
into sequences, and merges those sequences with the same prefix into the
aggregate tree (a trie structure). Each node in the tree represents a
navigational subsequence from the root (an empty node) to a page and is
annotated by the frequency of occurrences of that subsequence in the
transaction data (and possibly other information such as markers to
distinguish among repeat occurrences of the corresponding page in the
subsequence). WUM uses a mining query language, called MINT, to
discover generalized navigational patterns from this trie structure. MINT
includes mechanisms to specify sophisticated constraints on pattern
templates, such as wildcards with user-specified boundaries, as well as
other statistical thresholds such as support and confidence. This approach
and its extensions have proved useful in evaluating the navigational design
of a Web site [113].

As an example, again consider the set of Web transactions given in the
previous example. Fig. 12.13 shows a simplified version of WUM’s

Transaction Frequen
cy

A, B, E 10
B, D, B, C 4

B, C, E 10
A, B, E, F 6
A, D, B 12

B, D, B, E 8

6/34

F

28/34

6/6

28/50

22/50

16/28 12/62
24/24

12/62 4/14

14/62

24/62

10/14

12/28
A

B

C

E

start

final

D

Fig. 12.12. An example of modeling navigational trails as a Markov chain

554 12 Web Usage Mining

aggregate tree structure derived from these transactions. Each node in the
tree represents a navigational subsequence from the root (an empty node)
to a page and is annotated by the frequency of occurrences of that
subsequence in the session data. The advantage of this approach is that the
search for navigational patterns can be performed very efficiently and the
confidence and support for the navigational patterns can be readily
obtained from the node annotations in the tree. For example, consider the
contiguous navigational sequence <A, B, E, F>. The support for this
sequence can be computed as the support of the last page in the sequence,
F, divided by the support of the root node: 6/50 = 0.12, and the confidence
of the sequence is the support of F divided by the support of its
predecessor, E, or 6/16 = 0.375. If there are multiple branches in the tree
containing the same navigational sequence, then the support for the
sequence is the sum of the supports for all occurrences of the sequence in
the tree and the confidence is updated accordingly. For example, the
support of the sequence <D, B> is (12+12)/50 = 0.48, while the confidence
is the aggregate support for B divided by the aggregate support for D, i.e.,
24/24 = 1.0. The disadvantage of this approach is the possibly high space
complexity, especially in a site with many dynamically generated pages.

12.3.5 Classification and Prediction based on Web User
Transactions

Classification is the task of mapping a data item into one of several
predefined classes (Chap. 2). In the Web domain, one is interested in
developing a profile of users belonging to a particular class or category.
This requires extraction and selection of features that best describe the

50

S

A

B

D

D

C

B

B

E

E

B

F

C

E

28

22
12

10

12

16

12

10

16

12

6

4

8

Fig. 12.13. An example of modeling navigational trails in an aggregate tree

12.4 Recommender Systems and Collaborative Filtering 555

properties of given the class or category. Classification can be done by
using supervised learning algorithms such as decision trees, naive
Bayesian classifiers, k-nearest neighbor classifiers, and Support Vector
Machines (Chap. 3). It is also possible to use previously discovered
clusters and association rules for classification of new users (Sect. 3.5).

Classification techniques play an important role in Web analytics
applications for modeling the users according to various predefined
metrics. For example, given a set of user transactions, the sum of
purchases made by each user within a specified period of time can be
computed. A classification model can then be built based on this enriched
data in order to classify users into those who have a high propensity to buy
and those who do not, taking into account features such as users’
demographic attributes, as well their navigational activities.

There are also a large number of other classification problems that are
based the Web usage data. The problem of solving any classification
problem is basically the same, i.e., (1) model the problem as a
classification learning problem, (2) identify and/or construct a set of
relevant features for learning, and (3) apply a supervised learning method
or regression method. We will not discuss it further here.

However, there is a special kind of classification and prediction systems
on the Web called recommender systems that warrant much further
studies because it has a wide range of applications and has also been
investigated extensively by researchers. We study this topic next.

12.4 Recommender Systems and Collaborative Filtering

Recommender systems are widely used on the Web for recommending
products and services to users. Most e-commerce Web sites have such
systems. These systems serve two important functions. First, they help
users deal with the information overload by giving them personalized
recommendations. For example, given thousands of movies, a
recommender system selects and recommends some movies to each user
that he/she will most likely enjoy watching. Second, they help businesses
make more profits. Due to the problem rich nature and abundance of
applications, numerous research papers have been published on
recommender systems in the fields of computer science, information
systems, marketing, and management science (see [1] for a survey of the
field). We use the movie recommendation as an example to explain what a
recommender system does.

Movie recommendation is a well-known application of recommender
systems and has been investigated extensively (including a highly

556 12 Web Usage Mining

publicized contest, which we will describe later). There are different
variations of the application. The most common one goes like this. A set of
users has initially rated some subset of movies (e.g., on the scale of 1 to 5)
that they have already seen. These ratings serve as the input. The
recommendation system uses these known ratings to predict the ratings
that each user would give to those not rated movies by him/her.
Recommendations of movies are then made to each user based on the
predicted ratings. In some applications, there is no rating information
while in some others there are also additional attributes about each user
(e.g., age, gender, income, marital status, etc.) and/or about each movie
(e.g., title, genre, director, leading actors or actresses, etc.). When there is
no rating information, the system will not predict ratings but predict the
likelihood that a user will enjoy watching a movie. With this example in
mind, we can formally define the recommendation problem.

12.4.1 The Recommendation Problem

We have a set of users U and a set of items S to be recommended to the
users. Each user u in U is defined with a user profile that includes various
user characteristics or features, such as age, gender, income, marital status,
tastes, preferences, needs, etc. In the simplest case, the profile contains
only a single (unique) element, such as User ID. Similarly, each item in S
is also defined with a set of characteristics or features. For example, in a
movie recommendation application, where S is a collection of movies,
each movie can be represented by its ID, title, genre, director, year of
release, leading actors, etc. Again, in the simplest case, a movie may be
represented only by a unique Movie ID. In most applications, the spaces of
both U and S can be very large.

Let p be an utility function that measures the usefulness of item s to user
u, i.e., p:U×S  R, where R is a totally ordered set (e.g., non-negative
integers or real numbers within a certain range). The task of a recommender
system is twofold:

1. Learn the utility function p. The objective function for learning p can
be arbitrary (e.g., user satisfaction or seller profitability) depending
on applications.

2. Use p to predict the utility value of each item s ( S) to each user u
( U), except those items that already have utility values for u from
the input data, and then recommend the top k items to user u.

From a prediction point of view, a recommender system typically performs
one of the following two prediction tasks:

12.4 Recommender Systems and Collaborative Filtering 557

1. Rating prediction, i.e., predict the rating score that a user is likely to
give to an item that s/he has not seen or used before, e.g., rating on an
unseen movie. In this case, the utility of item s to user u is the rating
given to s by u.

2. Item prediction, i.e., predict a ranked list of items that a user is likely
to buy or use. In such applications, the interactions between users and
items are typically binary (e.g., purchased or not purchased) or multi-
scaled (e.g., with ratings given by users) but the concrete values are
not of concern. The utility of item s to user u is typically expressed as
the probability that user u will buy or use item s.

There are two basic approaches to recommendations [1, 11]:

 Content-based recommendations: The user will be recommended
items similar to the ones the user preferred in the past.

 Collaborative filtering (or collaborative recommendations): The
user will be recommended items that people with similar tastes and
preferences liked in the past.

There are also many approaches that combine collaborative and content-
based methods. These methods are called the hybrid methods. They
typically work in one of the following ways [1, 11]:

1. Implementing collaborative filtering and content-based methods
separately and combining their predictions just like ensemble
techniques in classification learning (Sect. 3.10)

2. Incorporating some content-based characteristics into a collaborative
approach

3. Incorporating some collaborative characteristics into a content-based
approach

4. Constructing a general unifying model that incorporates both content-
based and collaborative characteristics

All of these approaches have been employed by researchers. See a survey
in [1]. Here, we only focus on the two basic approaches.

12.4.2 Content-Based Recommendation

Content-based recommendation methods perform item recommendations
by predicting the utility of items for a particular user based on how
“similar” the items are to those that he/she liked in the past. In this
approach, an item is usually represented by a set of features. For example,
in a movie recommendation application, a movie may be represented by
such features as specific actors, director, genre, subject matter, etc. The

558 12 Web Usage Mining

user’s interest or preference is also represented by the same set of features
called the user profile. The profile can be elicited from the user explicitly,
e.g., through questionnaires, or implicitly learned from his/her transactional
behavior over time. The recommendations are made by comparing the user
profile with candidate items expressed in the same set of features. The top-k
best matched or most similar items are recommended to the user.

The simplest approach to content-based recommendation is to compute
the similarity of the user profile with each item. The similarity measures
discussed in Chaps. 4 and 6 are all applicable depending on application
needs. Most of the applications of content-based recommendations are in
the domain of text documents recommendation, e.g., recommending news
articles, Web pages, and blogs. We now use the text domain to give some
details of this type of recommendation.

In the text domain, the input for recommendation consists of a set of
documents that the user liked in the past and a large set of candidate
documents (i.e., items) to be considered for recommendation. Most of the
existing techniques are based on those in information retrieval (Chap. 5). For
example, the documents are represented as vectors of keywords using the TF-
IDF scheme in the vector space model. The cosine similarity is typically the
similarity measure. The user profile is also represented by such a vector and
is computed based on the set of relevant documents provided by the user.
One common way to produce a user profile is to compute an average (or
prototype) vector of the relevant documents using techniques such as the
Rocchio method (Sect. 6.3). The system then compares the similarity of this
average vector with the candidate document vectors.

It is also possible not to compute a user profile as an average vector
explicitly, but just use the user-given relevant documents as they are in the
context of machine learning. In such cases, PU learning is applicable. We
can simply treat the user-given documents as the positive class documents
and the set of candidate documents as the unlabeled documents. Then we
can employ any one of the PU learning methods discussed in Chap. 5.

If the user can provide both relevant documents (which he/she liked in the
past) and irrelevant documents, then all the supervised learning methods
discussed in Chap. 3 can be used. If the set of relevant and irrelevant
documents is small, semi-supervised learning (LU learning) in Chap. 5 may
be applied.

One key weakness of the content-based recommendation approach is
that it is unable to recommend items that are dissimilar to the items that the
user liked in the past. This is bad for the user because he/she will never see
anything that is completely new or novel but could be of interest. It is also
bad for the business because it will make less profit from the user. For
example, a user has never eaten in a Chinese restaurant. Then, he will

12.4 Recommender Systems and Collaborative Filtering 559

never be recommended a Chinese restaurant (even if he may like the
Chinese food if he/she ever tries it). This shortcoming is overcome by
collaborative filtering, which we discuss in the next three sub-sections.

12.4.3 Collaborative Filtering: K-Nearest Neighbor (kNN)

Collaborative filtering (CF) [49, 100, 107] is perhaps the most studied and
also the most widely used recommendation approach in practice. The key
characteristic of CF is that it predicts the utility of items for a particular
user based on the items previously rated or purchased by other like-minded
users. It often utilizes only consumer–product interaction data and ignores
consumer and product attributes [1]. Below, we discuss some popular
collaborative filtering algorithms, i.e., k-nearest neighbor, association
rules based prediction, and matrix factorization. This sub-section
focuses on k-nearest neighbor, which is widely used in industry.

kNN (which is also called the memory-based approach) utilizes the entire
user-item database to generate predictions directly, i.e., there is no model
building. This approach includes both the user-based [16, 93] and item-
based [77, 105] algorithms. In essence, such an algorithm explicitly finds
similar users or items (which are called neighbors) and uses them to predict
the preference of the target user. Specially, it uses k-nearest neighbor
classifiers to predict user ratings or purchase propensity by measuring the
correlation between the profile of the target user (which may be a set of item
ratings or a set of items visited or purchased) and the profiles of other users in
order to find users in the database with similar characteristics or preferences
[48]. Once the k nearest “neighbors” are found, predictions are made based
on some kind of aggregation of the values from these neighbors. Below, we
describe a user-based kNN algorithm first.

A typical user-based kNN collaborative filtering method consists of two
primary phrases: the neighborhood formation phase and the recommendation
phase. In the first phrase, it compares the activity record of a target user (also
called a visitor) with the historical records T of other users in order to find the
top k users who have similar tastes or interests. The mapping of a visitor
record to its neighborhood could be based on similarity in ratings of items,
access to similar content or pages, or purchase of similar items. In most
typical collaborative filtering applications, the user records or profiles are a
set of ratings for a subset of items. Let the record (or profile) of the target user
be u (represented as a vector) and the record of another user be v (v  T). The
top k most similar records to u are considered to be the neighborhood of u.
For simplicity, we will also use u and v to denote the two users. The
similarity between the target user, u, and a neighbor, v, can be calculated
using the Pearson’s correlation coefficient:

560 12 Web Usage Mining

 ,
)()(

))((
),(

2
,

2
,

,,













Ci iCi i

Ci ii

rrrr

rrrr
sim

vvuu

vvuu
vu (5)

where C is the set of items that are co-rated by users u and v (i.e., items
that have been rated by both of them), ru,i and rv,i are the ratings (or
weights) given to item i by the target user u and a possible neighbor v
respectively, and ur and vr are the average ratings (or weights) of u and v
respectively. Once similarities are calculated, the most similar users are
selected. It is also common to filter out neighbors with a similarity of less
than a specific threshold to prevent predictions being based on very distant
or negative correlations.

Once the most similar user transactions (neighbors) are identified, the
recommendation phase can use the following formula to compute the
rating prediction of item i for target user u (see [1] for other possible
formulas for this purpose):










V

V i

sim

rrsim
rip

v

v vv
u vu

vu
u

),(
)(),(

),(, , (6)

where V is the set of k similar users, rv,i is the rating of user v given to
item i, ur and vr are the average ratings of user u and v respectively, and
sim(u, v) is the Pearson correlation described above. The formula basically
computes the preference of all the neighbors weighted by their similarity
and then adds this to the target user’s average rating. The idea is that
different users may have different “baselines” around which their ratings
are distributed. Once the ratings are predicted, we simply choose those
highly rated items to recommend to the user.

The problem with the user-based formulation of the collaborative
filtering problem is the lack of scalability: it requires the real-time
comparison of the target user to all user records in order to generate
predictions. A variation of this approach that remedies this problem is
called item-based collaborative filtering [105], which can pre-compute
all pairwise item to item similarity values. The item-based approach works
by comparing items based on their pattern of ratings across users. Again, a
nearest-neighbor approach can be applied, which attempts to find k similar
items that are co-rated by different users similarly. The similarity measure
typically used is the adjusted cosine similarity given below:













U jU i

U ji

rrrr

rrrr
jisim

u uuu uu

u uuuu

2
,

2
,

,,

)()(

))((
),(, (7)

12.4 Recommender Systems and Collaborative Filtering 561

where U is the set of all users, i and j are items, ru,i is the rating of user u 
U on item i, and ur is the average of the user u’s ratings as before. Note
that in this case, we are computing the pairwise similarities among items
(not users) based on the ratings for these items across all users. After
computing the similarity between items, we select a set of k most similar
items to the target item (i.e., the item for which we are interested in
predicting a rating value) and generate a predicted value of user u’s rating
by using the following formula:










Jj

Jj j

jisim

jisimr
ip

),(

),(
)(

,u
 u, , (8)

where J is the set of k similar items, ru,j is the rating of user u on item j,
and sim(i, j) is the similarity between items i and j as defined above. It is
also common to ignore items with negative similarity to the target item.
The idea here is to use the user’s own ratings for the similar items to
extrapolate the prediction for the target item.

The problem with the straightforward user-based or item-based kNN
approach is that the high dimensionality of item or user often makes the
computation of pairwise user or item similarities practically infeasible. In
response to this problem, a number of dimensionality reduction methods
[45, 106] have been proposed to downsize the scale of user and item
profile. These methods either project the user–item matrix into a lower
dimensional space using technique like Principal Component Analysis or
factorize the user–item matrix to obtain lower-rank representation of users
(items) using techniques like Singular Value Decomposition, and then
identify similar users (items) in the subspace.

12.4.4 Collaborative Filtering: Using Association Rules

Using association rules for recommendation is quite natural as the items
purchased by each user can naturally be treated as a transaction.
Association rules can then be mined from the transactions of all users for
prediction or classification as we studied in Sect. 3.5.3 (ratings are usually
not used). In particular, the left-hand side of a rule can be used to predict
the right-hand-side of the rule. The approach has been used by several
researchers and also commonly used in industry. For example, in the
collaborative filtering context, Sarwar et al. [105] used association rules in
the context of a top-N recommender system for e-commerce. The
preferences of the target user are matched against the items on the left-
hand side (or antecedent) X of each rule (e.g., X  Y), and the items on the

562 12 Web Usage Mining

right-hand side of the matching rules are sorted according to the
confidence values. Then the top N items from this list are recommended to
the target user (see also Sect. 3.5.3). Note that in most applications, the set
X contains one or more items, but the set Y contains only a single predicted
item [recall that in general Y can contain any number of items as in the
case of association rule mining (see Chap. 2)].

One problem for association rule recommendation systems is that a
system has difficulty to give recommendations when the dataset is sparse,
which is often the case in collaborative filtering applications. The reason
for this sparsity is that any given user visits (or rates) only a very small
fraction of the available items, and thus, it is often difficult to find a
sufficient number of common items in multiple user profiles. Sarwar et al.
[106] relied on some standard dimensionality reduction techniques to
alleviate this problem. One deficiency of this and other dimensionality
reduction approaches is that some of the useful or interesting items may be
removed and, therefore, may not appear in the final patterns. Fu et al. [43]
proposed two potential solutions to this problem. The first solution is to
rank all the discovered rules based on the degree of intersection between
the left-hand side of each rule and the user’s active session and then to
generate the top k recommendations. This approach will relax the
constraint of having to obtain a complete match with the left-hand side of
the rules. The second solution is to utilize collaborative filtering: the
system finds “close neighbors” who have similar interest to a target user
and makes recommendations based on the close neighbors’ histories.

Lin et al. [76] proposed a collaborative recommendation system using
association rules that finds an appropriate number of rules for each target
user by automatically selecting a minimum support. The system generates
association rules among users (user associations), as well as among items
(item associations). If a user minimum support is greater than a threshold,
the system generates recommendations based on user associations, else it
uses item associations.

Because it is difficult to find a matching rule antecedent with a full user
profile (e.g., a full user session or transaction), association-based
recommendation algorithms typically use a sliding window w over the
target user’s active profile or session. The window represents the portion
of user’s history that will be used to predict future user actions (based on
matches with the left-hand sides of the discovered rules). The size of this
window is iteratively decreased until an exact match with the antecedent of
a rule is found. A problem with the naive approach to this algorithm is that
it requires repeated search through the rule-base. However, efficient trie-
based data structure can be used to store the discovered itemsets and allow
for efficient generation of recommendations without the need to generate

12.4 Recommender Systems and Collaborative Filtering 563

all association rules from frequent itemsets [86]. Such data structures are
commonly used for string or sequence searching applications. In the
context of association rule mining, the frequent itemsets are stored in a
directed acyclic graph. This frequent itemset graph is an extension of the
lexicographic tree used in the tree projection mining algorithm of Agarwal
et al. [4]. The graph is organized into levels from 0 to k, where k is the
maximum size among all frequent itemsets. Each node at depth d in the
graph corresponds to an itemset, X, of size d and is linked to itemsets of
size d + 1 that contain X at level d + 1. The single root node at level 0
corresponds to the empty itemset. To be able to search for different
orderings of an itemset, all itemsets are sorted in lexicographic order
before being inserted into the graph. If the graph is used to recommend
items to a new target user, that user’s active session is also sorted in the
same manner before matching with itemsets.

As an example, suppose that in a hypothetical Web site with user
transaction data depicted in the left table of Fig. 12.14. Using a minimum
support (minsup) threshold of 4 (i.e., 80%), the Apriori algorithm
discovers the frequent itemsets given in the right table. For each itemset,
the support is also given. The corresponding frequent itemset graph is
depicted in Fig. 12.15.

A recommendation engine based on this framework matches the current
user session window with the previously discovered frequent itemsets to
find candidate items (pages) for recommendation. Given an active session
window w and a group of frequent itemsets, the algorithm considers all the
frequent itemsets of size |w| + 1 containing the current session window by
performing a depth-first search of the Frequent Itemset Graph to level |w|.
The recommendation value of each candidate is based on the confidence of
the corresponding association rule whose consequent is the singleton
containing the page to be recommended. If a match is found, then the
children of the matching node n containing w are used to generate

Fig. 12.14. Web transactions and resulting frequent itemsets (minsup = 4)

564 12 Web Usage Mining

candidate recommendations. In practice, the window w can be incrementally
decreased until a match is found with an itemset. For example, given user
active session window <B, E>, the recommendation algorithm, using the
graph of Fig. 12.15, finds items A and C as candidate recommendations. The
recommendation scores of item A and C are 1 and 4/5, corresponding to the
confidences of the rules, B, E  A and B, E  C, respectively.

A problem with using a single global minimum support threshold in
association rule mining is that the discovered patterns will not include
“rare” but important items which may not occur frequently in the
transaction data. This is particularly important when dealing with Web
usage data, it is often the case that references to deeper content or product-
oriented pages occur far less frequently than those of top level navigation-
oriented pages. Yet, for effective Web personalization, it is important to
capture patterns and generate recommendations that contain these items. A
mining method based on multiple minimum supports is proposed in [78]
that allows users to specify different support values for different items. In
this method, the support of an itemset is defined as the minimum support
of all items contained in the itemset. For more details on mining using
multiple minimum supports, see Sect. 2.4. The specification of multiple
minimum supports thus allows frequent itemsets to potentially contain rare
items which are deemed important. It has been shown that the use of
multiple support association rules in the context of Web personalization
can dramatically increase the coverage (or recall) of recommendations
while maintaining a reasonable precision [86].

A(5) B(5) C(4)



E(5)

AB (5) AC (4) AE (5) BC (4) CE (4)BE (5)

ABC (4)

ABCE (4)

ACE (4)ABE (5) BCE (4)

Fig. 12.15. A frequent itemset graph

12.4 Recommender Systems and Collaborative Filtering 565

12.4.5 Collaborative Filtering: Matrix Factorization

In general, the idea of matrix factorization is to decompose a matrix M
into the product of several factor matrices, i.e., M = F1F2Fn, where n can
be any number, but it is usually 2 or 3. Matrix factorization has been
gaining popularity for collaborative filtering in recent years due to its
superior performance both in terms of recommendation quality and
scalability [67]. Part of its success is due to the Netflix Prize contest for
movie recommendation, which popularized a Singular Value
Decomposition (SVD) based matrix factorization algorithm. Since then
various matrix factorization methods have been studied for collaborative
filtering, including Nonnegative Matrix Factorization [75, 94], Maximum
Margin Matrix Factorization [57], and Probabilistic Matrix Factorization
[102]. The prize winning method of the Netflix Prize contest employed an
adapted version of SVD called timeSVD++ [68].

For collaborative filtering, matrix factorization belongs to a class of
latent factor models [51, 58]. In such models, latent variables (also
called features, aspects, or factors) are introduced to account for the
underlying reasons of a user purchasing/using a product. When the
connections between the latent variables and observed variables (user,
product, rating, etc.) are estimated during the training phase,
recommendations can be made to users by computing their possible
interactions with each product through the latent variables.

In this sub-section, we study a SVD method used by many contestants
in the Netflix Prize contest. Before discussing the method, let us first
briefly describe the contest itself (see http://www.netflixprize.com/).

In 2006, the online DVD rental company Netflix announced the Netflix
Prize contest with a $1 million reward to the first team who can improve
its recommender system’s root mean square error (RMSE) performance
by 10% or more. Contestants were allowed to build models based on a
released training set consisting of about 100 million movie ratings, on a
scale of 1 – 5 stars, submitted by 500,000 anonymous users on more than
17,000 movies. The participating teams need to submit their predicted
ratings for a test set consisting of approximately 3 million ratings, and
Netflix calculated the RMSE based on a held-out truth set. This large size
of publicly available data created a perfect setting for standardized
benchmarking experiments and attracted significant attention to the field of
recommender systems, and in particular collaborative filtering.

The data given were quadruples, i.e., (user, movie, rating, time), which
means that the user gives the movie a particular rating at the specific time.
For our purpose here, we only use triplets, i.e., (user, movie, rating) (the
time has also been used by some algorithms, e.g., timeSVD++, to account

566 12 Web Usage Mining

for the temporal effects of ratings). For example, one entry might be
(132456, 13546, 4), which means that the user with ID 132456 gave the
movie with ID 13546 a rating of 4 (out of 5). The Netflix task is to predict
the rating of each triplet (user, movie, ?) in the test data set, i.e., to predict
how the given user would rate the given movie.

The technique discussed here is based on the SVD method given by
Simon Funk at his blog site [44], the derivation of Funk’s method
described by Wagman in the Netflix forums [123], and the paper by
Takacs et al. [119]. The method was later improved by Koren et al. [67],
Paterek [92], and several other researchers, and combined with many other
prediction methods (or predictors). It was widely considered as the key
component to winning the Netflix Prize contest.

This SVD method factors the user–movie–rating matrix into two smaller
matrices which capture the latent aspects of movies and user preferences
on these aspects. These latent aspects are then used for rating prediction.

Let us, for a moment, forget about matrix factorization. We can imagine
that there might be some latent or hidden aspects (or variables) that people
use to give their ratings to movies. For instance, any given movie may be
described in terms of such basic attributes as overall quality, whether it is
an action movie or a comedy, what stars are in it, and so on. And, every
user’s preferences can likewise be described in terms of whether they
prefer action movies or comedies, what stars they like, and so on. If these
basic assumptions are true, then most ratings, if not all, should be
explainable by these aspects or attributes. We can then use a linear
combination of them to produce rating predictions. That is, we simply
multiply each user preference by the corresponding movie aspect, and then
sum them up to give a rating indicating how much that user likes the
movie. In short, if we can use the training data with ratings to discover
such latent aspects, and user–aspects and movie–aspects relationships, we
can use them to predict user ratings of movies that they have not rated. In
fact, that is exactly what the SVD method below does.

The SVD here is slightly different from the SVD that we studied in Sect.
6.7 as the diagonal scaling matrix is not used here, which is included into
the two side matrices. Let us represent the given user–movie–rating data as
a matrix R, which has 17,000×500,000 = 8.5 billion cells or entries. Each
non-empty cell rij of R represents a known rating of user i on movie j. Our
SVD will decompose R into two matrices, i.e., user–aspect U (= [u1, u2,
…, uI]) and movie–aspect M (= [m1, m2, …, mJ]) matrices, where ui and
mj are K × 1 vectors and K is the number of aspects. That is, we want to
use UTM to approximate R,

MUR T  . (9)

12.4 Recommender Systems and Collaborative Filtering 567

Let us use K = 90 latent aspects (K needs to be set experimentally). Then,
each movie will be described by only 90 aspect values indicating how
much that movie exemplifies each aspect. Correspondingly, each user is
also described by 90 aspect values indicating how much he/she prefers
each aspect. As suggested above, to combine these together into a rating,
we multiply each user preference by the corresponding movie aspect and
then sum them up to give a rating to indicate how much that user likes that
movie. Using SVD, we can perform this task:





K

k
kjkijiij mur

1

Tmu , (10)

where ui and mj are K × 1 column vectors for user i and movie j respectively;
k is the index of the singular vectors 1, …, K (which also represent the
aspects); uki is the kth aspect value for user i, and mkj is the kth aspect value
for movie j. Incidentally, the size of the movie–aspect matrix M is
90×17,000, and the size of the user–aspect matrix U is 90 × 500,000. SVD is
a mathematical way to find these two smaller matrices which minimizes the
resulting approximation error, the mean square error (MSE), which happens
to be the evaluation criterion of the Netflix Prize competition (RMSE is
monotonically related to MSE). Thus, SVD is supposed to find us the “best”
solution! We can use the resulting matrices U and M to predict the ratings in
the test set. Let pij be the predicted rating of user i on movie j. The SVD
formulation says that the prediction is computed by:





K

k
kjkiij mup

1

. (11)

However, the problem is that matrix R does not have 8.5 billion entries,
but only 100 million entries and 8.4 billion empty cells. Thus, the
traditional factorization methods for SVD will not work. Simon Funk
proposed a simple incremental solution based on gradient descent by
taking derivatives of the approximation error. In training, it trains one
aspect at a time to approximate R with the current U and M matrices. That
is, it starts by training a single singular vector for U and M, and then one
by one more singular vectors are added until the user provided number K
(e.g., 90) is reached. A major advantage of this method is that it can ignore
the errors on the 8.4 billion empty cells. We now give the derivation.

Let eij be the error in the prediction of rating rij. We have:

ijijij pre  . (12)

For gradient descent, we take the partial derivative of the square error with
respect to each parameter, i.e., with respect to each uki and mkj. So, let us

568 12 Web Usage Mining

take the partial derivative for one particular rating of user i on movie j, and
one singular vector k, with respect to the user aspect value. We have

ki

ij
ij

ki

ij

u

e
e

u

e









2

)(2

. (13)

Note that gradient descent using this way of computing the gradient is called
the stochastic gradient descent, i.e., taking the gradient at each single
example, which is an approximation of the standard (or batch) gradient
descent method, for which we take partial derivatives of the sum of all the
squared errors. We will work out a derivation for the batch method later.

Since rij in Equation (12) is given in the training data and is a constant,
then we have

ki

ij

ki

ij

u

p

u

e









. (14)

Now since pij is just a sum over K terms (one for each singular vector), and
only one of them is a function of uki, namely the term uki×mkj. Its derivative
with respect to uki is just mkj, and the derivatives of all the other terms are zero.
Thus, for the single rating by user i for item j, and one singular vector k, we
have

kjijijkjij
ki

ij mprme
u

e
)(2)(2

)(2





. (15)

If you follow the same procedure to take the partial derivative with respect
to mkj, we get

kiijijkiij
kj

ij uprue
m

e
)(2)(2

)(2





. (16)

When using gradient descent, one uses a parameter  called the learning
rate as a multiplier on the gradient to use as the step to add to the
parameter, so we get the following gradient descent update rule (from
iteration t to t+1):

t
kjijij

t
ki

ki

ijt
ki

t
ki mpru

u

e
uu)(2

)(2
1 




  . (17)

 is an arbitrary constant, and Funk used 0.0005 for the Netflix Prize
contest data. By the same reasoning, we can also compute the update rule
for mkj. Finally, we have both rules

12.4 Recommender Systems and Collaborative Filtering 569

t
kjijij

t
ki

t
ki mpruu)(21   , (18)

t
kiijij

t
kj

t
kj uprmm)(21   . (19)

After adding regularization to deal with overfitting, we have the final
regularized update rules:

))(2(1 t
ki

t
kjijij

t
ki

t
ki umpruu   , (20)

))(2(1 t
kj

t
kiijij

t
kj

t
kj muprmm   . (21)

where  is the regularization constant. These rules are used in training when
each (user, movie, rating) triplet is presented to the system. In Funk’s original
method, aspects are trained one by one incrementally. That is, when an aspect
is done training, it moves on to the next aspect. The whole training process
thus has three main loops, the outer most (top-level) loop is the incremental
addition of aspects (or features), the second level loop is the training of each
aspect using the stochastic gradient descent method, and the inner most loop
runs through all the given rating triplets: user (i), movie (j) and rating (rij),
using the update rules (20) and (21). For the gradient descent, we need to
choose some initial values for the two row vectors uk and mk, e.g., they were
assigned all 0.1’s in [44]. One can also use some small random numbers with
0 mean. As for the stopping criterion for the gradient descent, there are many
possibilities, e.g., the sum of the squared errors has little change, or just a fixed
number of iterations, see [67, 92, 119]. However, in actual applications, one
needs to be careful about the choices of the initialization vector and the
stopping criterion as they can greatly affect the generalization and the
accuracy result on the unseen test data. The stopping criterion can be critical in
preventing overfitting as the experiences of the contestants showed. One often
needs to stop before hitting the bottom of the gradient, which tends to overfit.

Regarding the training process, instead of training the aspects incre-
mentally, it is also possible to train all aspects at once. That is, given a user
and a movie, the algorithm makes a gradient step on all their respective
aspects before moving on to the next training example [69]. Of course,
these two methods can generate different results. The incremental method
has the nice property that each new aspect to be trained is the most
significant one among the remaining aspects.

The final rating prediction of the test data can be made using Equation
(11). However, this can be improved by considering some priors or biases,
e.g., the overall rating mean, the individual movie rating mean (some are
good movies and get higher average ratings), and also the user rating mean
(some users tend to give higher or lower ratings). These pieces of prior

570 12 Web Usage Mining

information should be factored into the prediction. Indeed, they have been
used by Netflix Prize contestants [69, 92]. Even after these enhancements, we
still only see a very basic algorithm. A great deal of refinements and
additions to the algorithm have been made by several Netflix Prize competing
teams in order to achieve better results, see [44, 67-70, 92] for details.
Additionally, the top ranked teams all employed multiple techniques (tens
and even hundreds of them) in combination to stay competitive.

Yet another consideration is the temporal dimension. Since the interest
of users is usually dynamic and tends to change with time, some
recommendation methods [73, 127] have been proposed to deal with the
long-term and short-term interest of users. In fact, the temporal factor is a
very important aspect of the earlier mentioned timeSVD++ method [68]
used by the Netflix Prize winning team (BellKor’s Pragmatic Chaos).
When the temporal factor is taken into consideration, the traditional matrix
factorization methods are often extended to tensor decomposition methods
[65] to deal with the new dimension.

Finally, we note that a similar line of research is based on latent
clustering models. In an early work, two alternative probabilistic models
were proposed: clustering and a Bayesian network model [16]. A
limitation of this work is that every user is forced into a single class while
in reality users tend to have diverse interests. More recent algorithms were
designed to capture multiple interests of users by classifying them into
multiple clusters. Examples include the personality diagnosis model [33],
the flexible mixture model [110], the Probabilistic Latent Semantic
Analysis Model (PLSA) [51], the nonparametric model [129], and the
Latent Dirichlet Allocation model [3]. These probabilistic models
constitute another mainstream research for collaborative filtering in
addition to matrix factorization approaches. Clearly, there are also other
types of methods, e.g., graph-based methods [54, 55].

Recently, the widely deployed social tagging systems have triggered a
new stream of research, i.e., tag-aware information item recommendation.
In social tagging systems, a data record is a tuple typically consisting of
three fields in the form of <user, item, tag>, with the tags (a user–item
interaction can be annotated by multiple tags) explaining why the user is
interested in the target item. Tagging data presents interesting opportunities
as well as challenges to collaborative filtering as the meta-level tags are
available in addition to typical bipartite information concerning users and
products. A number of methods have been proposed for tag-based
collaborative filtering [95, 96, 122, 125, 132].
Batch Gradient Descent: To end this sub-section, let us have a look at the
standard (or batch) gradient descent for SVD. Again, let the user–aspect
matrix be U = [u1, u2, …, uI] and the movie–aspect matrix be M = [m1, m2,

12.5 Query Log Mining 571

…, mJ], where ui and mj are K×1 vectors and K is the number of aspects
(or dimensions). Let W be an indicator matrix, wij = 1 if user i rated movie
j, otherwise 0. The symbol “°” after W represents entry-wise product or
Hadamard product. The sum of squared errors is

2

1 1

T2T)()()(j

I

i

J

j
iijijF

rw, f mu
 

 MURWMU . (22)

We then take the partial derivatives of f with respect to ui and mj:






 J

j
jjiijij

i

rw
f

1

T)(2 mmu
u

, (23)






 I

i
ijiijij

j

rw
f

1

T)(2 umu
m

. (24)

The final update rules are:

t
j

J

j

t
j

t

iijij
t
i

t
i rw mmuuu 



 
1

T1)(2 , (25)

t
i

I

i

t
j

t

iijij
t
j

t
j rw umumm 



 
1

T1)(2 .

(26)

We can see that these update rules are similar but also different from
Equations (18) and (19). Using these rules, the optimization process is slower.

12.5 Query Log Mining

Finding information on the Web has become a critical ingredient of
everyday personal, educational, and business life. An information seeker
communicates with a search engine by typing a query, which in its
simplest form, consists of a few keywords or terms, with the aim of finding
Web pages whose content matches these terms. Search query logs are files
that record queries submitted by users along with the results returned by
the search engine and the results that have been clicked by the user. The
formulation of a query is very important since it must convey the exact
need of the user, meaning that the words in the query should match all and
only the documents being sought. However, studies that have analyzed
search logs found that users’ queries suffered from two limitations. First,
queries tend to be short, in fact too short to correctly convey the user’s
intent. Second, the distribution of the content of the queries does not

572 12 Web Usage Mining

correspond to that of the documents, which means that it is difficult for
users to express their information needs in such a way that it could
describe the documents that they are seeking. This gap between queries
and document contents is due to many reasons, including the ambiguity of
some terms that have multiple meanings, as well as the existence of
different words that possess the same meaning. Thus it has become
imperative to go beyond the single query submitted by the user in order to
discover the true intention of the user, also known as the information
need, with the final aim of providing the accurate information being
sought. Recent research on search query log mining has addressed this
problem by using data mining techniques that bridge the three areas of
Web usage mining, text mining, and, in some cases, Web structure mining.

Search engines would not survive without a suitable source of revenue.
This revenue has mainly come from the sponsored search business model.
For this reason, recent research has also addressed the problem of discovering
the user’s intent, for an aim that is different from serving only the correct
results during search. Instead, their aim has been to target sponsored search
advertisements (often called Ads in short) more accurately to the right user at
the right time. Thus, the accurate identification of the user’s information need
is a prerequisite to both aims: (1) providing the user with the correct list of
results to their query and (2) displaying the sponsored Ads that most
accurately match the user’s preferences.

Query logs contain a historic record of the activities of the users of a
search engine and, as such, contain a trove of hidden knowledge about the
wisdom of the crowds. Query log data is considered a kind of Web usage
data, thus making Query Log Mining (QLM) fall under the umbrella of Web
usage mining. However, we will see that it is common to complement the
query usage data with content and structure data, making some techniques
from this emerging field embrace more than one aspect of Web mining, i.e.,
usage (queries, search results, and clicked documents), content (actual text
contents of the queries, search results, and clicked documents), and structure
(hyperlinks between search results and clicked documents).

A typical QLM endeavor starts with the data preparation (including data
cleaning), then selects an appropriate input data model (e.g., a query
graph), and extracts features (e.g., degree of a query node in the graph) that
can be exploited by the particular QLM methods that follow. Next, a
particular machine learning or data mining task (e.g., clustering) is applied
resulting in knowledge models that are suitable to be used by the ultimate
application of QLM (e.g., query suggestions).

QLM can serve applications that target various aims. One important aim is
to improve the search engine’s information retrieval efficacy (ranking) and
efficiency (better indexing for faster retrieval), typically via personalized

12.5 Query Log Mining 573

query suggestions and automated query reformulations, improved spam
filtering, and effective handling of the ambiguity of polysemous queries.
Some other important aims address the source of revenue that fuels search
engines, i.e., maximizing Ad revenue in sponsored search, as well as
improved Web site organization. Finally, QLM can go beyond the scope of
user-driven information retrieval to such applications as detecting and
tracking health epidemics (e.g., flu trends), as well as monitoring and tracking
public preferences and interests in domains varying from consumer brands
and socio-political topics to news events.

In the following sections, we will describe the sources, formats, and
characteristics of query logs and then present several models that can be
used to represent this data. Next, we introduce several applications of
QLM, and common techniques used for QLM.

12.5.1 Data Sources, Characteristics, and Challenges

The main source of data for query log mining is the search engine query
logs, which are files collected either on the server side, the client side
(typically through search engine toolbars), or occasionally on the Internet
Service Provider (ISP) side (via proxy loggers). Query data can also be
collected as part of Web site access logs in case a Web site has its own
internal search engine, or even from the conventional Web site access log
REFERRER fields, in case users land on a Web site after clicking on one
of the results returned by an external search engine [88]. Other sources of
data include packet sniffers, typically located midway between the client
machine and the server or proxy that collect all packets of the network
data, not limited to search queries. Except for when the network data is
encrypted, the packets can be pre-processed and analyzed by such tools as
wireshark or tcpdump, in order to yield the information pertinent to QLM.

A typical search engine query log file consists of requests submitted by
users, with one request per line, typically in the order of their arrival, as in
the case of most Web server access logs. Hence, requests by the same user
may end up dispersed among requests by other users. A typical request
contains the following fields [130]:

• Timestamp: It indicates when the query is submitted.
• IP address: This is usually the IP address of the client computer from

which the query has originated. However, this is not the case for users
who connect through ISPs or other proxies. In this case, the IP address
will be that of the proxy server, or one of a set of dynamically assigned
IP addresses in case of an ISP. For these reasons, proxies may be
insufficient for identifying some users.

574 12 Web Usage Mining

• User agent: It identifies the type and version number of the client browser.
• CookieID: This is a unique string that can identify a user more

accurately than simply using the IP address since it can avoid the proxy
and dynamic IP problems.

• Query: This is the text string submitted by the user, which consists of
one or more query terms (also called keywords).

• Result list (also called ranking): the URLs returned by the search
engine as the answer to the submitted query.

• Clicked URL: A subset of the above URLs that have been clicked by the
user.

Like terms in documents, search queries and the terms in these queries
tend to follow a biased Zipf law, which means that queries tend to contain
a few words that are extremely common, while the majority of words
occur in queries rarely, constituting the long tail of the distribution [103].
The frequency of query words follow a Zipf’s law with parameter α,
meaning that the ith most frequent query has O(i−α) occurrences. The value
of α ranges from 0.6 to 1.4 perhaps due to language and cultural
differences [6]. Compared to the Web text, with α close to 2, queries have
a less biased distribution. Most queries are short with one or two terms
each [111], which makes it very challenging for a search engine to infer
the intent of the searcher. Also, studies have found that searchers rarely
look beyond the first two pages of results. This rarity of clicks and terms in
queries makes query log data very sparse, and as in the case of other Web
usage data, this will have profound effects on any subsequent mining
efforts. Even with such a small number of clicks, however, a more recent
study [72] found that these “search initiated” clicks lead to 21.4% of all
page views of the Internet. Studies also found that user query refinement,
by adding and removing words in consecutive queries, was quite common
[56, 74]. There is also evidence that search trends have evolved from
leisure to e-commerce over the years [116, 117] with product-related
searches amounting to approximately one-fifth of all searches [72].
Another challenge to search engines comes from the low correlation (0.15)
between the frequency of words in the Web pages and queries [9]. This
means that what people seek on search engines is different from what
people publish on the Web [6].

12.5.2 Query Log Data Preparation

As in the case of most Web usage mining endeavors, the data preparation
phase is critical to the success of the subsequent mining effort. Below, we
present the steps within this first stage of QLM [131].

12.5 Query Log Mining 575

Step 1 - Extracting query sessions: Most Web search engine servers have
used the IP address of the client machine to identify unique visitors.
However users who connect through Internet Service Providers (ISP) get
assigned dynamic IP addresses that change throughout the same visit or
session, thus a single IP address may not always correspond to a unique
visitor. For this reason, using the IP address in combination with the user
agent has become a more reliable way to distinguish different users, and
piece together sessions. An even more reliable way is using cookies for
user identification. Yet even after the user identification problem is
resolved, all the above heuristics are not sufficient to construct an accurate
model of a search session which should correspond to a single search
episode by one user, targeting a single information need or request, as
opposed to say, several visits during the same or several days targeting
different needs (such as searching for a digital camera to buy and
performing literature search on the subject of nanotechnology).

In [56], three methods to delineate query sessions were compared: (1) IP
address and cookie; (2) IP address, cookie, and a time window cut-off; and
(3) IP address, cookie, and context changes (as estimated from change in
the query content).

Method 1 defined the session as the period, lasting from the first
interaction by the searcher to the last interaction as recorded in the
transaction log. The searcher’s IP address and the browser cookie were
used to determine the initial query and all subsequent queries to establish
the session length, which was defined as the period from the time of the
initial query to the time of the last interaction with the search engine. A
change in either IP address or cookie always identified a new session.

Method 2 used the searcher’s IP address and the browser cookie to
determine the initial query and subsequent queries. However, a maximal
period of 30-min between consecutive interactions was used to delineate
the boundary of each session. The 30-min period was chosen based on the
industry standard view of a session (OneClick.com and Nielsen
Netranking), which is most likely based on Catledge and Pitkow’s study
on browsing activities, which reported that the typical Web session
duration was 25.5 minutes on average [24].

Method 3 used a contextual method to identify sessions, in addition to
using the searcher’s IP address and the browser cookie to determine the
initial query and subsequent queries in a session. The contextual
delineation of sessions is based on changes in the content of the user
queries instead of a temporal cut-off in order to delineate the boundary of a
session. Each query was assigned into a mutually exclusive group based on
the IP address, cookie, query content, use of the feedback feature, and
query length. The classifications are [56]:

576 12 Web Usage Mining

 Assistance: the current query was generated by the searcher’s selection
of a special feature on the dogpile search engine called an Are You
Looking For? query.

 Content change: the current query is identical but executed on another
content collection.

 Generalization: the current query is on the same topic as the previous
query (there is overlap between the current and previous queries) but
targets more general information. This happens when the new query
length is shorter (in number of words).

 New: the query is on a new topic (no overlap between the current and
previous queries).

 Reformulation: the current query is on the same topic as the searcher’s
previous query (there is overlap between the current and previous
queries), and they are of the length.

 Specialization: the current query is on the same topic as the previous
query (there is overlap between the current and previous queries), but
targets more specific information. This happens when the new query
length is longer (in number of words).

The empirical study in [56] concluded that Method 3 (IP address,
cookie, and query content) provided the best session identification,
resulting in the most accurate identification of search context.

Step 2 - Filtering robot and abnormal visits: Search engine servers may
receive many daily abnormal and robot/crawler visits that need to be
filtered during the data preparation phase. To recognize such abnormal
visits, most systems (e.g., [131]) rely on a set of heuristics to flag them,
e.g., repeated identical queries, too many queries by a single user in a fixed
time period, queries in regular intervals, etc. However, solely using such
heuristics does not guarantee detecting all abnormal visits and may result
in labeling some normal visits as abnormal. Recently, researchers have
also experimented with machine learning approaches, e.g., [62]. Despite
these efforts, the problem remains to be difficult as robots or crawlers are
increasingly using sophisticated strategies to hide themselves.

Step 3 - Query text preprocessing: It is common to precede any text
mining effort by eliminating stopwords from the collection of documents
and then stemming the words in them. Both these preprocessing steps can
have a profound impact on the later mining, e.g., in assessing the similarity
between different queries. For example, if string-based text similarity such
as the Edit distance is used to compare queries, then stemming may harm
this assessment. Also, certain words such as “who” and “where” are
considered stopwords and are typically eliminated in text mining.

12.5 Query Log Mining 577

However, these words are very important when comparing two queries
because they tell us what kind of information the searcher is seeking (a
person or a location). Thus, one needs to decide whether to do text
preprocessing and how much to do according to the goals and to the
specific mining techniques that will be used subsequently [124].

12.5.3 Query Log Data Models

The most basic model in QLM is that of a query, which is typically
represented as a bag of words in a similar way to a document, defined for a
query containing m words.

Definition 1: The basic bag of words model for a query is

 qw = {w1, w2, , wm}.
An extension that takes into account the set D of top-ranked documents

viewed by a searcher after the query is given by the following definition:

Definition 2: The extended bag of words and viewed documents model for
a query is

 qw+D = {w1, w2, , wm}, D.
An even richer extension, that also takes into account the set C of

documents clicked by a searcher after the query, is defined as follows:

Definition 3: The extended bag of words and clicked documents model for
a query is

 qw+C = {w1, w2, , wm}, C = {w1, w2, , wm}, {d1, d2, d|C|}.
One may also simply represent a query by the clicked documents.

Definition 4: The clicked document model for a query represents a query
solely by the documents that a user clicked on in response to the query.
It is given by

 qC = C = {d1, d2, d|C|}.

The next more advanced data model is that of a session, which in the
query log context is defined as a series of queries submitted by a user
during one episode of interaction between the user and the Web search
engine [56]. Additional constraints that may modify the definition of a
session include whether to include the viewing of Web pages [47] and
temporal cut-offs between query submissions [111]. We have explained
how to identify sessions in Sect. 12.5.2. We now define a session formally
and in a more comprehensive manner.

578 12 Web Usage Mining

Definition 5: A user session si of user i is a set (if the order of queries is
not considered important) or a sequence (if the order of queries is
important depending on the QLM’s goal) of tuples Ki, q1, t1, D1, C1,
Ki, q2, t2, D2, C2, …, Ki, qn, tn, Dn, Cn, such that tj+1  tj < Tmax for all
j = 1 to n  1. Ki is a unique cookieID (or alternatively IP
address+agent) for a visit, qj is the submitted query, tj is the timestamp
of arrival of the query, Dj is the set of top document URLs returned as a
result to the query by the search engine, Cj is the set of document URLs
clicked by user i after submitting query qj, often referred to as the
clickthrough data, and Tmax is a time window threshold value for the
cut-off between different sessions.

Notice that depending on applications and the subsequent data mining
needs, one may use fewer components in each tuple or even simplify it.
Also, of importance is the special case of the set of consecutive queries
submitted in a session s: Qs = {q1, q2, , qn} which was used in [130].

Definition 6: A search log L is the collection of all N sessions of all search
engine users:

 L = {s1, s2, , sN}.

In addition to the query session model, clickthrough data models have
also been prominently used in QLM. Beeferman and Berger defined a
click graph as follows [12], using the notation of [22] to be consistent for
the subsequent graph models that extend the click graph.
Definition 7: A click graph C = (VQ, VD, E) is an undirected bipartite graph

consisting of a node set VQ  VD and an edge set E. Nodes in VQ
represent the set of distinct queries occurring in a query log, while
nodes in VD represent a set of distinct documents, and an edge (q, d) 
E means that a user clicked on the document d  VD after submitting
the query q  VQ.

There are also other clickthrough data models, e.g., the triplet model in
[60].

Definition 8: The clickthrough data is a set of triplets (q, r, c) consisting
of the query q, the ranking r presented to the user (the results and their
positions), and the set c of URLs that the user clicked on.

This clickthrough data (q, r, c) is rich in information, as can be inferred
from the strong dependencies therein [60]. The presented ranked results r
depends on query q as determined by the search engine retrieval function.
The set c of clicked-on links depends on both the query q and the
presented ranked results r. First, a user is more likely to click on a link, if it

12.5 Query Log Mining 579

is relevant to q. However, the clicks also depend on the presented ranking
r. Obviously, a user is less likely to click on a link that is very low in the
ranking, regardless of how relevant it is. Therefore, in order to get
interpretable and meaningful results from the clickthrough data, it is
necessary to consider and model the dependencies of c on q and r
appropriately [60].

Zhang and Nasraoui [130] represented queries using a consecutive
query similarity graph for each session, to allow the computation of the
contextual similarity between any two queries in a query log data set.

Definition 9 [130]: A consecutive query similarity graph, (VQ, E), is an
undirected, weighted graph with a node set VQ and an edge set E. Nodes
in VQ represent the set of distinct queries occurring in a session, while
an edge (qi, qj)  E means that a user submitted the two queries qi and qj
one immediately after the other (in any order). Every edge (qi, qj)  E
has an associated weight (qi, qj) =  (a damping factor used to define
the similarity between consecutive queries in the same session).

In this way, the similarity between any two queries that are not
neighbors in the same session is calculated by multiplying the weights of
the edges on the path that connects them. For example, in Fig. 12.16, the
similarity between query1 and query3 would be (1, 3) = · = 2. Thus,
the longer the distance between two queries (in terms of the number of
hops on the path joining them), the smaller the similarity. The overall
similarity between two queries is an accumulation of the above measures
for all the sessions in the query log, in which the query pair is present.

Fig. 12.16: A consecutive query similarity graph

In [22], six types of graphs are defined, with the most basic one being an
extension of the bipartite click graph defined by [12].

Definition 10 [12]: An extended click graph C = (VQ, VD, E) is an
undirected, weighted, and labeled bipartite graph consisting of a node
set VQ  VD and an edge set E. Nodes in VQ represent the set of distinct
queries occurring in a query log, while nodes in VD represent a set of

(1,3) = 2

(1,2) = 

(2,3) = 

Query1

Query2

Query3

580 12 Web Usage Mining

distinct documents, and an edge (q, d)  E represents that a user clicked
on document d  VD after submitting the query q  VQ. Every edge (q,
d)  E has an associated weight w(q, d), which can be (i) the number of
times a user clicked on document d after submitting query q; or (ii) the
number of distinct search-sessions in which, after query q, the searcher
clicked on d.

Furthermore, Castillo et al. [22] defined two concepts of neighborhood
of a node in a click graph as follows:

Definition 11: The k-neighborhood Nk(x) of a node x in a click graph G is
the set of nodes in G that are at distance exactly k from node x.

Definition 12: The within-k-neighborhood N≤k(x) relative to node x is
N≤k(x) = i=1, , k Ni(x), i.e., it is the set of nodes in G that are at distance
at most k from node x.

Click graphs contain a trove of knowledge that can be extracted, e.g.,

 The edge weight from q to d can be considered as a vote from query q
for document d.

 High degree document nodes are documents that are reachable by many
different queries. These documents could be portals or auction sites.
High degree query nodes correspond to queries that are not precise, for
instance polysemous queries.

Click graphs present several challenges for mining because of the
following characteristics:

 Click graphs tend to be sparse because many relevant documents are
possibly not clicked due to many reasons, ranging from bias in ranking
that places them in unfavorable locations away from the top of the list,
to having poor representative content or snippets.

 Click graphs tend to be noisy because many non-relevant documents
may have been clicked, again possibly due to favorable placements in
ranking (closer to the top) or misleading text descriptions or snippets.

Definition 13 [22]: A view graph V is defined by considering as edges (q,
d) all the documents d in the results set of query q.

The view graph is a generalization of the click graph since each click is
also a view. Moreover, a query could produce no clicks and so be not
present in the click graph, but be present in the view graph. The view
graph is noisier than the click graph because it does not contain any user
feedback. Nonetheless it was found in [22] that the view graph could still

12.5 Query Log Mining 581

be useful to detect spam sites, since spam sites try to be in the answer lists
of many different queries, while users do not necessarily click on them.

Definition 14 [22]: An anti-click graph Ak is defined by considering an
edge (q, d) whenever all the following conditions are met: (i) the
document d appears in the top-k positions of the ranked list of results
for query q, (ii) the user who submitted q did not click on d, but (iii)
that user clicked on another document ranked below d.

The anti-click graph intends to capture the negative judgment that
users give implicitly with their clicks. Castillo et al. [22] used small values
for k (k = 3), considering that most users look only at the first few results.
To reduce the sparsity of the data, the above graphs (click, view and anti-
click) can be defined on hosts rather than URLs [22], by replacing the set
of document nodes with their hosts (denoted by VH). Therefore, in total, six
types of graphs ({Click, View, Anti-click}×{documents, hosts}) were
defined [22]. These graphs are called Cd and Ch, Vd and Vh, Ad and Ah,
respectively. Additionally, for every node x  VQ  VD  VH, a string ℓ(x)
is used to describe the node: if x  VQ, ℓ(x) is the query string, otherwise x
 VD or x  VH, in which case, ℓ(x) is the document URL/host string.

Finally, Baeza-Yates et al. [8] model queries using a term-weight vector
defined on a vocabulary consisting of the set of all different words in the
clicked URLs, except for stopwords. Each term is weighted based on the
number of occurrences and the number of clicks of the documents in
which the term appears.

Definition 15 [8]: The semantic vector space query model is defined as
follows: Given a query q, and a URL u, let Pop(q, u) be the popularity
of u (defined as the fraction of clicks) in the answers of q, and Tf(t, u)
the number of occurrences of term t in URL u. The query model is a
vector representation q for query q, where the ith component of the
vector qi is associated to the ith term of the vocabulary, as follows:

 


u t

i
i utTf

utTfuqPop

),(max
),(),(qqqq . (27)

The sum ranges over all clicked URLs, and the click popularity plays
the role of the inverse document frequency in the tf-idf scheme.

The reason for using this model is that it allows for a more complete
assessment of the similarity between different queries that suffer from
being sparse. In fact, although semantically similar queries may not share
query terms, they do share terms in the documents clicked by the users.

582 12 Web Usage Mining

12.5.4 Query Log Feature Extraction

Features are important in many data mining methods, in particular in
clustering and classification. In some models [e.g., the semantic vector
space model for queries (Definition 15)], the features are explicit. They are
the individual query vector components corresponding to each term from
the clicked documents’ vocabulary. However, in other cases (e.g., graph
models), features may need to be defined and extracted prior to applying
data mining algorithms. For example, in [22], both syntactic and semantic
query-graph features are defined and extracted. Syntactic features are
defined for document nodes. They capture the query attractiveness of a
document, i.e., to what extent it attracts distinct queries. This attractiveness
can be an indication of a spam page. Semantic features are defined for
both document and query nodes. They capture the semantic diversity of
queries and documents using an entropy measure defined on the
distributions of topics that are inferred from the graph. The topics are
inferred by using a small set of documents that are labeled by human
editors (e.g., DMOZ) as seeds and then propagating the topic labels to the
unlabeled documents in the graph.

Syntactic features: For a document d, the degree of a node |N(d)| is the
number of queries adjacent to d. Note that the set N(d) provides a good
description of the content of document d. A similar definition is used for
a query q by considering its degree |N(q)|, i.e., the number of distinct
documents clicked for q. This feature can be further refined by
concentrating on popular queries, thus defining for each document d,
topQx(d) as the set of queries adjacent to d in graph G that happen to be
among the fraction x of the most frequent queries in the query log. The
cardinality |topQx(u)| is used as a feature. The authors of [22] found x =
0.01 to work well for their query polysemy and query spam detection
applications. This definition can also be extended to work at the
individual query term level (instead of the query level).

Semantic features: Semantic features are extracted to deal with the lack of
robustness of the syntactic features in estimating the semantic coverage
of a document [22]. For instance, a site serving movie reviews can be
reached by many distinct queries (e.g., the titles of many movies) but
still be topically coherent. The semantic coverage may be a useful
measure to detect spam hosts effectively. For instance, cloaked hosts are
returned as results to queries that are semantically diverse. They thus
propose some new measures of semantic coverage of a document or
query node, by combining the information in the click graphs with
information in Web directories, such as the Open Directory Project
(DMOZ.org). The feature extraction occurs in two phases:

12.5 Query Log Mining 583

1. Categorization of the subset of documents in VD that can be found in
DMOZ,

2. Propagation of the category labels assigned to the (few) documents/
hosts nodes in G to other document/host nodes, in order to amplify
the DMOZ coverage. At the end, a node may end up being labeled by
many categories, indicating that it is polysemous, if it is a query node,
or multi-topical, if it is a document/host node. Furthermore, each
category will have an assignment strength denoting the relation
between the node content and the category label. This weighting,
along with multi-category information, is used to calculate three
dispersion measures that capture the semantic spread of every node
(either document/host or query) in the click graph [22].

12.5.5 Query Log Mining Applications

Query log mining has found its use in a variety of applications [7, 8, 10,
12, 21-23, 26, 30-32, 53, 88, 99, 108, 109, 124, 126, 130, 131]. Below, we
give some examples.

Query Modification and Recommendation

Because searchers often submit queries that are short and ambiguous, it is
challenging to infer their intent. The following approaches are commonly
used to address this problem:

Query suggestion or recommendation: The goal of query recommendation
or suggestion is to improve user queries by suggesting or recommending
modified queries, in order to retrieve more relevant documents
corresponding to the user intent. QLM efforts that achieve this goal
include [8, 12, 21, 53, 124, 130, 131]. For example, in [8], Baeza-Yates et
al. presented several methods to obtain query recommendations by using
the clickthrough data.

Query expansion and refinement: In query expansion, queries are
expanded by adding terms to them, while in query refinement or
modification, the queries are transformed (gradually or in several
iterations) to yield new related but improved queries that are suggested or
recommended to the user. Query expansion and refinement are quite
similar to query recommendation. In [30, 31], Cui et al. developed a query
expansion technique based mainly on the user’s clickthrough data. Wen et
al. [124] mined query clusters to identify Frequently Asked Queries
(FAQ). FAQs are then used to map the user’s new query to suggest a new
query or even to return previous verified answers. In [90], an enhanced k-

584 12 Web Usage Mining

means method was used to cluster the query logs of the Internet yellow
page services for query expansion. In [60] and [41], support vector
machines (SVM) classification and anchor text mining were used for
query modification and for query refinement, respectively.

Discovering Semantically Related Queries

Fonseca et al. [42] discovered related queries by mining association rules.
Chien and Immorlica [25] discovered semantically related search queries
based on their temporal correlation. Two queries are considered related if
their popularities behave similarly over time. To this end, they defined a
new measure of the temporal correlation of two queries based on the
correlation coefficient of their frequency functions. Davison et al. [34]
discovered queries that are related to the queries typically leading to a
specific Web site being highly ranked. The goal of this QLM is to improve
the ranking of a specific Web site, which is also known as search engine
optimization (SEO).

Detecting Query Polysemy, Spam Queries, and Spam Hosts

Finding ambiguous or polysemous queries: Most early efforts addressed
the ambiguity of queries and their relations in information retrieval
using natural language processing techniques, such as language models,
WordNet, thesauri [42, 71, 111]. Vivisimo.com or Clusty.com clustered
the search results at the query time and presented the page clusters to
the searcher to cope with polysemous queries. That is, the searcher is
expected to judge the query polysemy for him/herself. Later efforts
such as [7, 112] and [22] relied on user feedback in query log mining to
detect polysemous queries.

Web and host-spam detection: Web spam [22, 46] has been discussed in
Sect. 6.10. However, most early techniques for addressing the problem
were based on content analysis or link analysis [23, 40, 46, 89, 126].
Usage data has recently started serving as a vital source of information
for spam detection [22, 80]. For example, in [80], browse logs from a
tool-bar were used to detect spam pages, with a set of query
independent features. In [22], syntactic and semantic features from the
query click-graphs were extracted to detect those “query-attracting”
hosts and to improve known (host-) spam detection algorithms.

Query spam detection: Spam queries generate a high number of spam
pages placed in the top positions of their results. They are therefore
called spam-attracting queries. Detecting such queries can help improve
the search quality, since such queries can be used to design sophisticated

12.5 Query Log Mining 585

spam-detection algorithms. The problem of detecting spam-attracting
queries was studied in [22].

Sponsored Search Advertising Click Prediction

Commercial search engines collect their revenue from Ads (also called
sponsored results) that they display at the top of or to the right of the
organic search results in response to user queries. The sponsored results
provide revenue based on a “cost-per-click” billing model. Advertisers bid
to have their Ads shown on the search result page, then the search engine
determines which Ads to show and their positions on the results page, by
maximizing Ad revenue. Ad revenue is estimated based on the probability
that an Ad will be clicked (the Ad click rate or clickthrough rate) and the
cost of the Ad [101]. While Ad revenue seems to depend only on the click
rate and cost of the Ads, thus suggesting that displaying more Ads with
high click rate and low cost is optimal. Displaying Ads that are not
relevant to the query can turn off users of a search engine. Thus, Ad
relevance has recently become a central issue [50].

Despite being related, the Ad relevance and clickthrough rate have
several important differences. Relevance captures how related an Ad is to
a query, while the clickthrough rate (CTR) captures the attractiveness of
the Ad. Suppose that a searcher types the query “coca cola.” Then an Ad
to “Buy Coke Online” would be highly related. However, its CTR would
be low because few people are interested in buying Coke online [50]. On
the other hand, an Ad for “Coca Cola Company Jobs” might be more
attractive to more searchers, and thus attract more clicks, even though it
seems to be less related to the query.

This challenging problem of estimating the relevance of an Ad to a
search query was addressed in [50] with an approach for determining the
relevance and ranking of Ads, in a similar way to ranking in information
retrieval (IR). Their experiments showed that historical click features
extracted from the previous usage data did improve precision compared to
a baseline Ad relevance model (that is based on text overlap features only).
The predicted relevance score was used to filter out low quality Ads, to
produce more accurate rankings for Ads, and to optimize page placements
of Ads to reduce prominent placements of low relevance Ads.

Early Influenza Epidemic Detection (Google Trends)

Google developed a method to monitor health-seeking behavior in the
form of queries to online search engines, which are submitted by millions
of users around the world each day (http://www.google.org/flutrends/).

586 12 Web Usage Mining

Their method is based on analyzing large numbers of Google search queries
to track influenza-like illness in a population because the relative frequency of
certain queries is highly correlated with the percentage of physician visits
in which a patient presents with influenza-like symptoms. Their method
accurately estimates the current level of weekly influenza activity in each
region of the United States, with a reporting lag of about 1 day.

12.5.6 Query Log Mining Methods

Researchers have used all kinds of data mining methods for query log
mining based on application needs. Supervised methods basically try to
provide, based on the past and current query activities, a prediction in the
form of a numerical score, a probability or a prediction in the form of a
label out of a finite set of possibilities, e.g., whether an Ad is relevant to a
search query or not [50], to which topic a given query belongs [108],
whether a Web page is spam or not [22], or whether a given result page is
more relevant than another result page [60].

On the other hand, unsupervised methods do not have the requirement
of available prior labels. They rely solely on the hidden or latent
information within the past query activity data to discover clusters of query
activities or to assess semantic relatedness between different queries or
different Web pages based on past searching activities.

Supervised Learning Techniques

Since supervised QLM methods have a predictive or labeling aim, they
have used a variety of supervised learning methods, e.g., query
classification, and a new type of learning, called learning to rank [60].
Below, we briefly introduce these methods.

Query classification: Query classification aims to categorize queries
according to a set of predefined topics/classes. Since queries contain very
few terms, snippets and other meta-information are needed [108]. In [22],
features that were computed based on the propagation of DMOZ
categories were introduced. The method started by propagating the DMOZ
categories of a few labeled nodes in the graph in order to label other query
and document nodes in the graph using a distribution over a set of
categories. These labels were later used for computing an entropy measure
to be used in generating features for spam detection.

Propagation-based methods: One can use the link structure of the Web
graph or the click graph to propagate meta-information (query content,

12.5 Query Log Mining 587

document content, topics, etc.) to find similar queries [22] or to derive
metrics for query classification [29, 108]. Category-based taxonomies are
propagated on the extended click graph, the view graph, and the anti-click
graph, defined in Definitions 10, 13, and 14. At the end of propagation,
after assigning labels to queries or document nodes in the graph, these
queries and documents are judged based on the number of labels that get
assigned to them. Thus the higher the number of assigned labels, the
higher the diversity of the query, sending a cue that it is polysemous.
Similarly, the higher the number of assigned labels to a document, the
more likely that the document is a spam document.

Learning to rank using SVM rank: Joachims [60] pioneered the use of
clickthrough data. The goal was to automatically optimize the retrieval
quality of a search engine using clickthrough data for training. First, the
problem is defined as learning improved retrieval functions by analyzing
which links the users clicked on in the presented search results, referred to
as ranking. This leads to a new type of machine learning, i.e., learning
with preference examples such as “for query q, document da should be
ranked higher than document db.” This is essentially the Information
Retrieval (IR) problem. Thus, IR is regarded as a learning problem, and
learning is done using examples with “rankings” instead of class labels.
An SVM-based approach is formulated using as input, a query log training
data that is modeled using the clickthrough model from Definition 8,
consisting of triplets (q, r, c). This model associates the query q, the
ranking r presented to the user (the results and their position order), and
the set c of URLs that the user has clicked on. See [60] for more details on
this new model of learning, i.e., learning to rank. This model of learning
has been studied extensively by many researchers subsequently. A survey
of the field can be found in [79].

Unsupervised Learning Techniques

In general unsupervised methods have found their use for finding related
queries, frequently asked queries, or query clusters. Most of these methods
can be used to provide query recommendation or modification. Due to the
rich data types, various sophisticated similarity or distance measures have
been proposed for clustering and other methods. In general, these methods
can be distinguished in many ways, for instance based on the data model
that they use, and in particular the following characteristics:

 Whether a single query (Definitions 14) or an entire query session (the
search context as in Definition 5) forms the basic entity for mining

 Whether the query content is used

588 12 Web Usage Mining

 Whether clickthrough data is used, and if so, whether the clicked
document content is considered in addition to queries

The first categorization leads us to divide the existing methods into
those that treat queries separately (non-contextual query models) and
those that treat entire sessions of queries (contextual query models).

Modeling only the queries but not the query sessions: Most earlier work
focused on clustering similar queries in search logs, and used queries in the
same cluster as suggestions for each other [8, 12, 124]. For example, in
[12], bipartite graphs of queries and URLs are constructed: a query and a
URL are connected if a user clicked on a URL displayed in the result list
of the query (See Definition 7). This algorithm clusters queries according
to the co-occurrences of URLs within their clickthrough data and ignored
the content of queries and URLs. In [81], two bipartite graphs (user-query
and query-URL) are proposed to recommend semantically relevant queries
by mining these graphs. In [124], FAQs are mined by query clustering
which combines the query content and the clickthrough data. They use
both the bag-of-words query content data model from Definition 1 and the
extended bag-of-words and clicked document data model from Definition
3. They also proposed four query distance functions for clustering.

Modeling entire query sessions: The above approaches focus only on
individual queries when relating or clustering queries. However, in most
cases, the information need or intent of the user may be embedded in the
entire session and cannot be inferred from only one (the current) query.
This has motivated context-aware methods that model the entire query
session, including previous queries, and not only the current query [21, 42,
53, 61, 130]. For example, Zhang and Nasraoui [130] used the consecutive
query graph model (see Definition 9) to assess the similarity between queries
based on their co-occurrences within the same sessions. In addition to the
consecutive search behavior-based query similarity, a content-based
similarity is also defined based on the cosine similarity. Finally, the
consecutive search behavior-based query similarity and the content-based
similarity are combined linearly to obtain the final query similarity, and this
forms the basis for recommending the most similar queries. However, those
most frequent queries (such as weather) may bias the assessment of query
similarity because they tend to co-occur with too many unrelated queries.
Therefore, they should be pruned from the consecutive query similarity
computation, and only their content-based similarity is considered.

A different approach was proposed by Cao et al. [21], which consists of
the following steps: (1) summarize the queries into concepts by clustering the
clickthrough bipartite graph, (2) map a new session into an ordered concept

12.6 Computational Advertising and Ad Mining 589

sequence, and (3) choose candidate query suggestions from the sequences
that had similar order to that of the current user sequence. Further work in
[20] modeled sessions using Hidden Markov Models (HMM).

Association rule-based techniques: Fonseca et al. used association rule
mining to discover rules that relate queries based on their co-occurrence in
query sessions [42]. They discovered frequent query pairs which were
often adjacent in the same query sessions and treated these query pairs as
related queries. This method is similar to the method used in association
rule-based recommendation and classification (see Sects. 3.5 and 12.4.3).

12.6 Computational Advertising

Section 12.5.5 introduced the application of QLM to Ad click prediction in
sponsored search. Below, we first introduce the more general problem of
online advertising, which encompasses all Internet advertising activities,
not just the sponsored search. After that, we focus only on how the
sponsored search has been handled, in particular from a QLM viewpoint.
Online advertising is a multi-billion dollar industry with big financial
stakes and advanced computational challenges, thus making it sit at the
crossroads between the fields of economics and computational sciences,
attracting efforts from economics, marketing, statistical modeling,
information retrieval, data mining, and machine learning. The key to
successful online advertising is to monetize (or make profits) more and
better by learning from the data, which has given rise to a new discipline,
called computational advertising [2].

Online advertising typically operates in the following steps:

1. A browser requests a Web page from a content provider.
2. Ads are picked by an Ad Network (e.g., Yahoo, Google, or Bing).
3. Ads are displayed on the requested Web page.

The Ad network draws its revenue from advertisers who in turn pay for
each Ad [2]. The Ad network, in its turn, rewards the content providers
with an amount that is commensurate with the displayed Ad. Thus, money
flows from advertisers to Ad networks and from Ad networks to content
providers. Online advertising occurs in three main settings:

Display advertising: Ads are displayed on a Web page, in the form of
graphical banners or other visual or multimedia components, typically to
increase brand awareness and without considering the content of the Web
page. They are usually shown on Web sites with high visit rates, such as
Web portals and popular news sites. Also, these Ads are typically targeted

590 12 Web Usage Mining

at particular user demographics, such as “females between 35 and 45
years old.” The computational problem typically reduces to estimating the
optimal allocation of Ads to demographics subject to supply (number of
available impressions) and demand (desirability of each demographic
segment for the advertiser) constraints.

Content match-based advertising: Ads whose content matches the
content of the requested Web page are selected by the Ad network and
displayed on the page. Typically the Ads are of a textual type or have
associated text descriptions to enable the content matching. An example
of this model is the Google AdSense. Clearly, this setting allows
targeted advertising. The matching algorithm can be based on
information retrieval methods or text classification methods.

Sponsored search advertising: A searcher submits a query to a search
engine. The search engine picks the Ads to display by matching the
query and/or the search results to a set of sponsored Ads and then
displays these Ads on top of and/or to the right of the non-sponsored
(organic) results. Again, the matching algorithm can be based on
information retrieval methods or text classification methods.

The above three Ad settings are based on different revenue models that
depend on the goals of the advertising campaign [2]. Display advertising
aims at raising brand awareness, and draws its revenue from a “Pay-Per-
Impression” or “Cost-Per-Impression” model (CPM), that charges the
advertiser each time that the Ad is displayed to a user (called an
impression). Content Match and Sponsored Search Ads, on the other
hand, aim at attracting Web surfers to click on the Ads. They are typically
based on a “Cost-Per-Click” model (CPC) that pays only when the user
clicks on an Ad, or a “Cost-Per-Action” (CPA) model, that requires not
only that the user clicks on an Ad, but also that the user completes a
purchasing transaction (called a conversion) on the Web site that they land
on as a result of clicking on the Ad.

Suppose we show an Ad N times on the same spot, then the revenue, R,
under each revenue model would be as follows [2]:

Under CPM: R = N * CPM
Under CPC: R = N * CTR * CPC
Under CPA: R = N * CTR * Conv.Rate * CPA,

where the clickthrough rate, CTR, is the probability of a click given an
impression and the conversion rate, Conv.Rate, is the probability of a user
conversion on the advertiser’s landing page, given a click. Thus, we see
that an accurate estimation of CTR is paramount to estimating Ad revenue.

The prevalent revenue model for sponsored search Ad listings is “Cost-
Per-Click” (CPC) where the advertiser pays only if the Ad is clicked. The

12.6 Computational Advertising and Ad Mining 591

advertiser targets special keyword markets by bidding on search queries
[50]. An advertising campaign usually consists of many Ad groups. Each
Ad group consists of a set of phrases or keywords that the advertiser bids
on. Each Ad group is also associated with a creative made up of a short
title, a longer description, and a display URL. The URL points to the
landing page where the user ends up after clicking the Ad. To show Ads,
an advertiser can choose to use exact matching between search queries and
the Ad group keywords, or advanced matching which, in addition to exact
match, also matches Ads to related queries. A bid is associated with each
keyword and the second price auction model determines how much the
advertiser pays the search engine for each click [37]. The second price
auction model means that bidders (advertisers) submit bids without
knowing the bids of the other people in the auction, and the highest bidder
wins, but the price paid is the second-highest bid. Given a search query,
most search engines take a three-step approach to sponsored search:

Step 1: Finding relevant Ads for a query
Step 2: Estimating the click through rate (CTR) for the retrieved Ads

and ranking them
Step 3: Displaying a subset of the top ranked Ads on the search page

Step 1, finding relevant Ads to a query, looks like an information retrieval
(IR) problem. However, the collection of Web documents indexed by a
search engine is much larger than the collection of Ad groups. Also,
matching Ads to queries is much more flexible than matching documents
to queries. This is because the way that Ads may be related to queries is
much broader and subtle than how documents relate to queries. Moreover,
determining relevant candidate Ads for infrequent queries is very
important for sponsored search because the power law of queries makes it
so that infrequent queries together make up the bulk of all submitted
queries (the long tail), and there is consequently a tremendous financial
stake in benefiting from this long tail. Despite these differences, IR-based
Ad relevance estimation methods exist. However, machine learning or data
mining based methods that take into account click-feedbacks are gaining
more attention. They typically perform the tasks in step 1 and step 2
simultaneously by directly estimating the CTR value for each Ad. Below,
we briefly explain each family of methods.

IR-based methods: An information retrieval (IR) based method typically
uses one of the three different approaches [2]:

Vector space models: Match a query to an Ad using the cosine similarity
between their vector space representations.

Probabilistic models: Predict, for each (ad, query) pair, the probability that

592 12 Web Usage Mining

the ad is relevant to the query, e.g., using the Okapi BM25 model.
Language models: Assume that Ads and queries are generated by

statistical models (e.g., multinomial models) of how words are used in
the language, and based on the models, translate query and Ad
generation probabilities into relevance scores.

The main problem with the IR approach is that it is solely based on
word matches, which might not always work. For example, they work well
for frequent words, but cannot handle rare words that make up the bulk of
the queries, i.e., the long tail. Another problem is that IR-based methods do
not capture the dynamic effect of external factors, which can be captured
by user click-feedbacks. Finally, relevance scores may not correspond to
CTR and do not provide estimates of the expected revenue. Typically
some simple heuristics are used to estimate CTR for each retrieved Ad
(step 2). To a great extent, these shortcomings are analogous to the
weaknesses of content-based recommendations discussed in Sect. 12.4.2.
The click mining-based methods discussed below are analogous to
collaborative filtering methods in recommender systems.

Click mining-based methods: Taking into account the past click history
presents enormous advantages because it can adapt to dynamic settings
and because the click history data is available at low cost and in large
quantities. The task of this family of methods is to estimate the CTR, i.e.,

CTR = Pr(click| query, ad, user)
Below, we briefly explain three approaches for click mining-based
methods [2]:

 Feature-based modeling: It represents both the queries and the Ads
using features such as bag of words, phrases, or topics, and for the Ad,
optional additional presentation features such as size, etc. Then the
CTR of an Ad can be estimated using machine learning methods, for
instance logistic regression as in [101].

 Similarity-based collaborative filtering: It predicts the CTR of an Ad
i in response to a new query q based on the past CTRs for past Ads, as
observed in the click history data, and on the similarity between the
new Ad and the past Ads. The k-nearest neighbor method discussed in
Sect. 12.4.3 or one of its variations can be applied.

 Matrix factorization: It predicts the CTR of an Ad i in response to a
new query q based on a factorization model of the past CTRs for past
Ads, as observed in the click history data. In this case, the method
discussed in Sect. 12.4.5 or one of its variations can be used.

Bibliographic Notes 593

12.7 Discussion and Outlook

Web usage mining has emerged as the essential tool for realizing more
personalized, user-friendly, and business-optimal Web services. Advances
in data pre-processing, modeling, and mining techniques, applied to the
Web data, have already resulted in many successful applications in
adaptive information systems, personalization services, Web analytics
tools, and content management systems. As the complexity of Web
applications and user’s interaction with these applications increases, the
need for intelligent analysis of the Web usage data will continue to grow.

Usage patterns discovered through Web usage mining are effective in
capturing item-to-item and user-to-user relationships and similarities at the
level of user sessions. However, without the benefit of deeper domain
knowledge, such patterns provide little insight into the underlying reasons
for which such items or users are grouped together. Furthermore, the
inherent and increasing heterogeneity of the Web has required Web-based
applications to more effectively integrate a variety of types of data across
multiple channels and from different sources.

Thus, a focus on techniques and architectures for more effective
integration and mining of content, usage, and structure data from different
sources is likely to lead to the next generation of more useful and more
intelligent applications, and more sophisticated tools that can derive
intelligence from user transactions on the Web, not limited to their clicks
during sessions on regular Web sites, but also their queries and entire
interactions with search engines, and even online Ads that they encounter.

Bibliographic Notes

Web usage mining as a complete process, integrating various stages of
data mining cycle, including data preparation, pattern discovery, and
interpretation, was initially introduced by Cooley et al. [28]. This initial
work was later extended by Srivastava et al. [118].

Proper data preparation is an essential activity that enables the discovery
of actionable knowledge from usage data. A complete discussion of the
stages and tasks in data preparation for Web usage mining can be found in
the paper by Cooley et al. [27]. One of these tasks is that of sessionization
of the user activity records in the log data which is generally accomplished
through the use of various heuristics [27]. Berendt et al. [13] and
Spiliopoulou et al. [115] introduced several additional sessionization
heuristics and developed a comprehensive framework for the evaluation of

594 12 Web Usage Mining

these heuristics in the context of various applications in Web usage
mining. Much of the discussion of Sect. 12.1 is based on these sources.

One of the primary applications of Web usage mining has been in Web
personalization and predictive user modeling. Initially, Web usage mining
as a tool for personalization was introduced by Mobasher et al. [84]. A
comprehensive framework for Web Usage Mining to discover evolving
user profiles, while automatically taking into account the semantics of
dynamic web pages, as well as the characterization of profile evolution and
a validation methodology for the discovered user profiles was presented in
[88]. More recent surveys of issues and techniques related to personalization
based on Web usage mining can be found in the papers by Pierrakos et al.
[97], Mobasher [83], and Anand and Mobasher [5].

Another important application of Web usage mining is the analysis of
customer and visitor behavior in e-commerce for Web marketing. Web
usage mining applied to e-commerce data enables the discovery of
important business intelligence metrics such as customer conversion ratios
and lifetime values. A good discussion of lessons and challenges in e-
business data analysis can be found in the paper by Kohavi et al. [64].

On recommendation systems, the survey article [1] by Adomavicius and
Tuzhilin, the book [17] by Brusilovsky et al., and two journal special
issues [39, 66] give great information about the field. There is also an
annual ACM conference on recommender systems. These highlight the
massive amount of work that has been done and the sustained interest in
the area. There are also some nice algorithm papers presented at the KDD
Cup and Workshop 2007 by some top teams of the Netflix Prize contest
(http://www.cs.uic.edu/~liub/KDD-cup-2007/proceedings.html). After the
workshop, major improvements were made by many teams. The popularity
of matrix factorization is largely attributed to the contest and the SVD
algorithm given by Simon Funk at his blog site: http://sifter.org/~simon/
journal/20061211.html. This method was improved by several researchers,
e.g., Paterek [92] and Koren et al. [67, 69, 70].

Finally, query log mining has been studied by many researchers and it is
important for all types of search related activities [7, 8, 10, 12, 21-23, 26,
30-32, 53, 88, 99, 108, 109, 124, 126, 130, 131]. A good introduction of
computational advertising can be found in [2].

Bibliography

1. Adomavicius, G. and A. Tuzhilin. Towards the Next Generation of
Recommender Systems: A Survey of the State-of-the-art and Possible

Bibliography 595

Extensions. IEEE Transactions on Knowledge and Data Engineering, 2005,
17(6): p. 734-749.

2. Agarwal, D. Statistical Challenges in Online Advertising. In Tutorial given
at ACM KDD-2009 conference, 2009.

3. Agarwal, D. and B.-C. Chen. fLDA: matrix factorization through latent
dirichlet allocation. In Proceedings of the third ACM international
conference on Web search and data mining. 2010, ACM: New York, New
York, USA. p. 91-100.

4. Agarwal, R., C. Aggarwal, and V. Prasad. A tree projection algorithm for
generation of frequent item sets. Journal of Parallel and Distributed
Computing, 2001, 61(3): p. 350-371.

5. Anand, S. and B. Mobasher. Intelligent techniques for web personalization.
Intelligent Techniques for Web Personalization, 2005: p. 1-36.

6. Baeza-Yates, R. Applications of web query mining. Advances in Information
Retrieval, 2005: p. 7-22.

7. Baeza-Yates, R. Graphs from search engine queries. SOFSEM 2007: Theory
and Practice of Computer Science, 2007: p. 1-8.

8. Baeza-Yates, R., C. Hurtado, and M. Mendoza. Query recommendation
using query logs in search engines. In Proceedings of International
Workshop on Clustering Information over the Web, 2004.

9. Baeza-Yates, R. and F. Saint-Jean. A three level search engine index based in
query log distribution. In Proceedings of SPIRE 2003, 2003.

10. Baeza-Yates, R. and A. Tiberi. Extracting semantic relations from query
logs. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2007), 2007.

11. Balabanovi , M. and Y. Shoham. Fab: content-based, collaborative
recommendation. Communications of the ACM, 1997, 40(3): p. 66-72.

12. Beeferman, D. and A. Berger. Agglomerative clustering of a search engine
query log. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-, 2000.

13. Berendt, B., B. Mobasher, M. Nakagawa, and M. Spiliopoulou. The impact
of site structure and user environment on session reconstruction in web usage
analysis. WEBKDD 2002, 2003: p. 159-179.

14. Berendt, B. and M. Spiliopoulou. Analysis of navigation behaviour in web
sites integrating multiple information systems. The VLDB Journal, 2000,
9(1): p. 56-75.

15. Borges, J. and M. Levene. Data mining of user navigation patterns. Web
usage analysis and user profiling, 2000: p. 92-112.

16. Breese, J.S., D. Heckerman, and C. Kadie. Empirical Analysis of Predictive
Algorithms for Collaborative Filtering. In Proceedings of the 14th
Conference on Uncertainty in Artificial Intelligence, 1998.

17. Brusilovsky, P., A. Kobsa, and W. Nejdl. Adaptive Web: Methods and
Strategies of Web Personalization. 2007, Berlin: Springer.

18. Büchner, A. and M. Mulvenna. Discovering internet marketing intelligence
through online analytical web usage mining. ACM SIGMOD Record, 1998,
27(4): p. 54-61.

596 12 Web Usage Mining

19. Cadez, I., D. Heckerman, C. Meek, P. Smyth, and S. White. Model-based
clustering and visualization of navigation patterns on a web site. Data
Mining and Knowledge Discovery, 2003, 7(4): p. 399-424.

20. Cao, H., D. Jiang, J. Pei, E. Chen, and H. Li. Towards context-aware search
by learning a very large variable length hidden markov model from search
logs. In Proceedings of International Conference on World Wide Web
(WWW-2009), 2009.

21. Cao, H., D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li. Context-aware
query suggestion by mining click-through and session data. In Proceedings
of ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD-2008), 2008.

22. Castillo, C., C. Corsi, D. Donato, P. Ferragina, and A. Gionis. Query-log
mining for detecting polysemy and spam. In Proceedings of the WebKDD
2008: 10 years of Knowledge Discovery on the Web, 2008.

23. Castillo, C., D. Donato, A. Gionis, V. Murdock, and F. Silvestri. Know your
neighbors: Web spam detection using the web topology. In Proceedings of
ACM SIGIR Conf. on Research and Development in Information Retrieval
(SIGIR-2007), 2007: ACM.

24. Catledge, L. and J. Pitkow. Characterizing browsing strategies in the World-
Wide Web. Computer Networks and ISDN Systems, 1995, 27(6): p. 1065-
1073.

25. Chien, S. and N. Immorlica. Semantic similarity between search engine
queries using temporal correlation. In Proceedings of International
Conference on World Wide Web (WWW-2005), 2005.

26. Chuang, S. and L. Chien. Enriching web taxonomies through subject
categorization of query terms from search engine logs. Decision Support
Systems, 2003, 35(1): p. 113-127.

27. Cooley, R., B. Mobasher, and J. Srivastava. Data preparation for mining
world wide web browsing patterns. Knowledge and Information systems,
1999, 1(1): p. 5-32.

28. Cooley, R., B. Mobasher, and J. Srivastava. Web mining: Information and
pattern discovery on the world wide web. In Proceedings of Intl. Conf. on
Tools With Artificial Intelligence (ICTAI-1997), 1997.

29. Craswell, N. and M. Szummer. Random walks on the click graph. In
Proceedings of ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR-2007), 2007.

30. Cui, H., J. Wen, J. Nie, and W. Ma. Probabilistic query expansion using
query logs. In Proceedings of International Conference on World Wide Web
(WWW-2002), 2002.

31. Cui, H., J. Wen, J. Nie, and W. Ma. Query expansion by mining user logs.
IEEE Transactions on Knowledge and Data Engineering, 2003: p. 829-839.

32. Dai, W., Y. Yu, C. Zhang, J. Han, and G. Xue. A Novel Web Page
Categorization Algorithm Based on Block Propagation Using Query-Log
Information. Advances in Web-Age Information Management, 2006: p. 435-
446.

Bibliography 597

33. David, M.P., H. Eric, L. Steve, and C.L. Giles. Collaborative Filtering by
Personality Diagnosis: A Hybrid Memory and Model-Based Approach. In
Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence.
2000, Morgan Kaufmann Publishers Inc.

34. Davison, B., D. Deschenes, and D. Lewanda. Finding relevant website
queries. In Proceedings of International Conference on World Wide Web
(WWW-2003), 2003.

35. Dempster, A., N. Laird, and D. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 1977, 39(1): p. 1-38.

36. Deshpande, M. and G. Karypis. Selective Markov models for predicting Web
page accesses. ACM Transactions on Internet Technology (TOIT), 2004,
4(2): p. 163-184.

37. Edelman, B., M. Ostrovsky, and M. Schwarz. Internet advertising and the
generalized second-price auction: Selling billions of dollars worth of
keywords. The American Economic Review, 2007, 97(1): p. 242-259.

38. Fayyad, U., G. Piatetsky-Shapiro, and P. Smyth. eds. From data mining to
knowledge discovery: An overview. In Advances in Knowledge Discovery
and Data Mining. 1996, AAAI/MIT Press. 1-34.

39. Felfernig, A., G. Friedrich, and L. Schmidt-Thieme. Guest Editors'
Introduction: Recommender Systems. IEEE Intelligent Systems, 2007, 22(3):
p. 18-21.

40. Fetterly, D. Adversarial information retrieval: The manipulation of web
content. ACM Computing Reviews, 2007.

41. Flake, G., E. Glover, S. Lawrence, and C. Giles. Extracting query
modifications from nonlinear SVMs. In Proceedings of International
Conference on World Wide Web (WWW-2002), 2002.

42. Fonseca, B., P. Golgher, E. De Moura, and N. Ziviani. Using association
rules to discover search engines related queries. In LA-WEB-2003, 2003.

43. Fu, X., J. Budzik, and K. Hammond. Mining navigation history for
recommendation. In Proceedings of Intl. Conf. on Intelligent User Interfaces,
2000.

44. Funk, S. Netflix Update: Try This At Home. 2006; Available from:
http://sifter.org/~simon/journal/20061211.html.

45. Goldberg, K.E.N. Eigentaste: A Constant Time Collaborative Filtering
Algorithm. Information Retrieval, 2001.

46. Gyöngyi, Z. and H. Garcia-Molina. Link spam alliances. In Proceedings of
International Conference on Very Large Data Bases (VLDB-2005), 2005:
VLDB Endowment.

47. Hansen, M. and E. Shriver. Using navigation data to improve IR functions in
the context of web search. In Proceedings of ACM International Conference
on Information and Knowledge Management (CIKM-2001), 2001.

48. Herlocker, J., J. Konstan, L. Terveen, and J. Riedl. Evaluating collaborative
filtering recommender systems. ACM Transactions on Information Systems
(TOIS), 2004, 22(1): p. 5-53.

598 12 Web Usage Mining

49. Hill, W., L. Stead, M. Rosenstein, and G. Furnas. Recommending and
evaluating choices in a virtual community of use. In ACM Conference on
Human Factors in Computing Systems, CHI'95, 1995.

50. Hillard, D., S. Schroedl, E. Manavoglu, H. Raghavan, and C. Leggetter.
Improving ad relevance in sponsored search. In Proceedings of ACM
International Conference on Web Search and Data Mining (WSDM-2010),
2010.

51. Hofmann, T. Latent semantic models for collaborative filtering. ACM
Transactions on Information Systems, 2004, 22(1): p. 89-115.

52. Hofmann, T. Unsupervised learning by probabilistic latent semantic analysis.
Machine Learning, 2001, 42(1): p. 177-196.

53. Huang, C., L. Chien, and Y. Oyang. Relevant term suggestion in interactive
web search based on contextual information in query session logs. Journal of
the American Society for Information Science and Technology, 2003, 54(7):
p. 638-649.

54. Huang, Z., H. Chen, and D. Zeng. Applying Associative Retrieval
Techniques to Alleviate the Sparsity Problem in Collaborative Filtering.
ACM Transactions on Information Systems (TOIS), 2004, 22(1): p. 116-142.

55. Huang, Z., D.D. Zeng, and H. Chen. Analyzing Consumer-Product Graphs:
Empirical Findings and Applications in Recommender Systems.
Management Science, 2007, 53(7): p. 1146-1164.

56. Jansen, B., A. Spink, and V. Kathuria. How to define searching sessions on
web search engines. Advances in Web Mining and Web Usage Analysis,
2007: p. 92-109.

57. Jasson, D.M.R. and S. Nathan. Fast maximum margin matrix factorization
for collaborative prediction. In Proceedings of International Conference on
Machine Learning (ICML-2005). 2005.

58. Jin, R., L. Si, and C. Zhai. A Study of Mixture Models for Collaborative
Filtering. Information Retrieval, 2006, 9(3): p. 357-382.

59. Jin, X., Y. Zhou, and B. Mobasher. Web usage mining based on probabilistic
latent semantic analysis. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-2004), 2004.

60. Joachims, T. Optimizing search engines using clickthrough data. In
Proceedings of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2002), 2002.

61. Jones, R., B. Rey, O. Madani, and W. Greiner. Generating query
substitutions. In Proceedings of International Conference on World Wide
Web (WWW-2006), 2006.

62. Kang, H., K. Wang, D. Soukal, F. Behr, and Z. Zheng. Large-scale bot
detection for search engines. In Proceedings of International Conference on
World Wide Web (WWW-2010), 2010.

63. Kimball, R., R. Merz, and I. Books24x7. The data webhouse toolkit: building
the web-enabled data warehouse. 2000: Wiley New York.

64. Kohavi, R., L. Mason, R. Parekh, and Z. Zheng. Lessons and challenges
from mining retail e-commerce data. Machine Learning, 2004, 57(1): p. 83-
113.

Bibliography 599

65. Kolda, T.G. and B.W. Bader. Tensor Decompositions and Applications.
SIAM Rev., 2009, 51(3): p. 455-500.

66. Konstan, J.A. Introduction to Recommender Systems: Algorithms and
Evaluation. ACM Transactions on Information Systems, 2004, 22(1): p. 1-4.

67. Koren, Y. The BellKor Solution to the Netflix Grand Prize. In
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf,
2009.

68. Koren, Y. Collaborative filtering with temporal dynamics. In Proceedings of
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-2009), 2009.

69. Koren, Y. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceedings of ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-2008), 2008.

70. Koren, Y., R. Bell, and C. Volinsky. Matrix Facorization Techniques for
Recommender Systems. IEEE Computer, 2009, 42(8): p. 30-37.

71. Kraft, R. and J. Zien. Mining anchor text for query refinement. In
Proceedings of International Conference on World Wide Web (WWW-2004),
2004.

72. Kumar, R. and A. Tomkins. A characterization of online search behavior.
IEEE Data Eng. Bull., 2009, 32(2): p. 3-11.

73. Lathia, N., S. Hailes, L. Capra, and X. Amatriain. Temporal diversity in
recommender systems. In Proceeding of the 33rd international ACM SIGIR
conference on Research and development in information retrieval. 2010,
ACM: Geneva, Switzerland. p. 210-217.

74. Lau, T. and E. Horvitz. Patterns of search: analyzing and modeling Web
query refinement. In Proceedings of the Seventh International Conference on
User Modeling, 1999.

75. Lee, D.D. and H.S. Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 1999, 401(6755): p. 788-791.

76. Lin, W., S. Alvarez, and C. Ruiz. Efficient adaptive-support association rule
mining for recommender systems. Data Mining and Knowledge Discovery,
2002, 6(1): p. 83-105.

77. Linden, G., B. Smith, and J. York. Amazon.com recommendations: item-to-
item collaborative filtering. IEEE Internet Computing, 2003, 7(1): p. 76-80.

78. Liu, B., W. Hsu, and Y. Ma. Mining association rules with multiple
minimum supports. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-1999), 1999.

79. Liu, T. Learning to rank for information retrieval. Foundations and Trends in
Information Retrieval, 2009, 3(3): p. 225-331.

80. Liu, Y., R. Cen, M. Zhang, S. Ma, and L. Ru. Identifying web spam with
user behavior analysis. In Proceedings of 5th Workshop on Adversarial
Information Retrieval on the Web (AIRWeb), 2008.

81. Ma, H., H. Yang, I. King, and M. Lyu. Learning latent semantic relations
from clickthrough data for query suggestion. In Proceedings of ACM
International Conference on Information and Knowledge Management
(CIKM-2008), 2008.

600 12 Web Usage Mining

82. Mobasher, B. Web usage mining. John Wang (eds.), Encyclopedia of Data
Warehousing and Mining, Idea Group, 2006: p. 449-483.

83. Mobasher, B. Web Usage Mining and Personalization. Munindar P. Singh
(ed.), Practical Handbook of Internet Computing. CRC Press, 2005.

84. Mobasher, B., R. Cooley, and J. Srivastava. Automatic personalization based
on Web usage mining. Communications of the ACM, 2000, 43(8): p. 142-
151.

85. Mobasher, B., H. Dai, T. Luo, and M. Nakagawa. Discovery and evaluation
of aggregate usage profiles for web personalization. Data Mining and
Knowledge Discovery, 2002, 6(1): p. 61-82.

86. Mobasher, B., H. Dai, T. Luo, and M. Nakagawa. Effective personalization
based on association rule discovery from web usage data. In Proceedings of
ACM Workshop on Web Information and Data Management, 2001.

87. Nasraoui, O., R. Krishnapuram, and A. Joshi. Mining web access logs using
a fuzzy relational clustering algorithm based on a robust estimator. In
Proceedings of International Conference on World Wide Web (WWW-1999),
1999.

88. Nasraoui, O., M. Soliman, E. Saka, A. Badia, and R. Germain. A web usage
mining framework for mining evolving user profiles in dynamic web sites.
IEEE Transactions on Knowledge and Data Engineering, 2007: p. 202-215.

89. Ntoulas, A., M. Najork, M. Manasse, and D. Fetterly. Detecting spam web
pages through content analysis. In Proceedings of International Conference
on World Wide Web (WWW-2006), 2006.

90. Ohura, Y., K. Takahashi, I. Pramudiono, and M. Kitsuregawa. Experiments
on query expansion for internet yellow page services using web log mining.
In Proceedings of International Conference on Very Large Data Bases
(VLDB-2002), 2002.

91. Paliouras, G., C. Papatheodorou, V. Karkaletsis, and C. Spyropoulos.
Discovering user communities on the Internet using unsupervised machine
learning techniques. Interacting with Computers, 2002, 14(6): p. 761-791.

92. Paterek, A. Improving regularized singular value decomposition for
collaborative filtering. In Proceedings of KDD Cup and Workshop 2007,
2007.

93. Paul, R., I. Neophytos, S. Mitesh, B. Peter, and R. John. GroupLens: an open
architecture for collaborative filtering of netnews. In Proceedings of the
1994 ACM conference on Computer supported cooperative work. 1994.

94. Peng, J. and D. Zeng. Exploring Information Hidden in Tags: A Subject-
based Item Recommendation Approach. In Proceedings of 19th Workshop on
Information Technologies and Systems, 2009. Phoenix, USA.

95. Peng, J., D. Zeng, B. Liu, and H. Zhao. CFUI: Collaborative Filtering with
Unlabeled Items. In Proceedings of 20th Workshop on Information
Technologies and Systems, 2010. St. Louis, Missouri, USA.

96. Peng, J., D. Zeng, H. Zhao, and F.-Y. Wang. Collaborative Filtering in
Social Tagging Systems Based on Joint Item-Tag Recommendations. In
Proceedings of the 19th ACM International Conference on Information and
Knowledge Management. 2010, ACM: Toronto, Canada.

Bibliography 601

97. Pierrakos, D., G. Paliouras, C. Papatheodorou, and C. Spyropoulos. Web
usage mining as a tool for personalization: A survey. User Modeling and
User-Adapted Interaction, 2003, 13(4): p. 311-372.

98. Pitkow, J. and P. Pirolli. Mining longest repeating subsequences to predict
world wide web surfing. In Proceedings of USENIX Symposium on Internet
Technologies and Systems, 1999: USENIX Association.

99. Puppin, D. and F. Silvestri. The query-vector document model. In
Proceedings of ACM International Conference on Information and
Knowledge Management (CIKM-2006), 2006.

100. Resnick, P., N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl. GroupLens:
An Open Architecture for Collaborative Filtering of Netnews. In ACM
Conference on Computer-Supported Cooperative Work, 1994.

101. Richardson, M., E. Dominowska, and R. Ragno. Predicting clicks: estimating
the click-through rate for new ads. In Proceedings of International
Conference on World Wide Web (WWW-2007), 2007: ACM.

102. Salakhutdinov, R. and A. Mnih. Probabilistic Matrix Factorization. Advances
in Neural Information Processing Systems, 2008, 20: p. 1257–1264.

103. Saraiva, P., E. Silva de Moura, N. Ziviani, W. Meira, R. Fonseca, and B.
Riberio-Neto. Rank-preserving two-level caching for scalable search
engines. In Proceedings of ACM SIGIR Conf. on Research and Development
in Information Retrieval (SIGIR-2001), 2001.

104. Sarukkai, R. Link prediction and path analysis using Markov chains1.
Computer Networks, 2000, 33(1-6): p. 377-386.

105. Sarwar, B., G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of International
Conference on World Wide Web (WWW-2001), 2001.

106. Sarwar, B., G. Karypis, J. Konstan, and J. Riedl. Application of
Dimensionality Reduction in Recommender Systems: a case study. In
Proceedings of WebKDD Workshop at the ACM SIGKKD, 2000.

107. Shardanand, U. and P. Maes. Social Information Filtering: Algorithms for
Automating Word of Mouth. In ACM Conference on Human Factors in
Computing Systems, 1995. Denver, CO.

108. Shen, D., J. Sun, Q. Yang, and Z. Chen. Building bridges for web query
classification. In Proceedings of ACM SIGIR Conf. on Research and
Development in Information Retrieval (SIGIR-2006), 2006.

109. Shen, D., J. Sun, Q. Yang, and Z. Chen. A comparison of implicit and
explicit links for web page classification. In Proceedings of International
Conference on World Wide Web (WWW-2006), 2006.

110. Si, L. and R. Jin. Flexible mixture model for collaborative filtering. In
Proceedings of the 20th International Conference on Machine Learning.
2003.

111. Silverstein, C., H. Marais, M. Henzinger, and M. Moricz. Analysis of a very
large web search engine query log. SIGIR Forum, 1999.

112. Song, R., Z. Luo, J. Wen, Y. Yu, and H. Hon. Identifying ambiguous queries
in web search. In Proceedings of International Conference on World Wide
Web (WWW-2007), 2007.

602 12 Web Usage Mining

113. Spiliopoulou, M. Web usage mining for web site evaluation.
Communications of the ACM, 2000, 43(8): p. 127-134.

114. Spiliopoulou, M. and L. Faulstich. WUM: a tool for web utilization analysis.
The World Wide Web and Databases, 1999: p. 184-203.

115. Spiliopoulou, M., B. Mobasher, B. Berendt, and M. Nakagawa. A framework
for the evaluation of session reconstruction heuristics in web-usage analysis.
INFORMS Journal on Computing, 2003, 15(2): p. 171-190.

116. Spink, A., B. Jansen, D. Wolfram, and T. Saracevic. From e-sex to e-
commerce: Web search changes. Computer, 2002, 35(3): p. 107-109.

117. Spink, A., D. Wolfram, M. Jansen, and T. Saracevic. Searching the web: The
public and their queries. Journal of the American Society for Information
Science and Technology, 2001, 52(3): p. 226-234.

118. Srivastava, J., R. Cooley, M. Deshpande, and P. Tan. Web usage mining:
Discovery and applications of usage patterns from web data. ACM SIGKDD
Explorations Newsletter, 2000, 1(2): p. 12-23.

119. Takacs, G., I. Pilaszy, G. Nemeth, and D. Tikk. On the Gravity
Recommendation System. In Processings of KDD Cup and Workshop 2007,
2007.

120. Tan, P. and V. Kumar. Discovery of web robot sessions based on their
navigational patterns. Data Mining and Knowledge Discovery, 2002, 6(1): p.
9-35.

121. Tanasa, D. and B. Trousse. Advanced data preprocessing for intersites web
usage mining. Intelligent Systems, IEEE, 2005, 19(2): p. 59-65.

122. Tso-Sutter, K.H.L., L.B. Marinho, and L. Schmidt-Thieme. Tag-aware
Recommender Systems by Fusion of Collaborative Filtering Algorithms. In
Proceedings of the ACM symposium on Applied computing. 2008, ACM:
Fortaleza, Ceara, Brazil. p. 1995-1999.

123. Wagman, A. Netflix SVD Derivation. 2007; Available from:
http://sifter.org/~simon/journal/20070815.html.

124. Wen, J., J. Nie, and H. Zhang. Clustering user queries of a search engine. In
Proceedings of International Conference on World Wide Web (WWW-2001),
2001.

125. Wetzker, R., W. Umbrath, and A. Said. A Hybrid Approach to Item
Recommendation in Folksonomies. In Proceedings of the WSDM'09
Workshop on Exploiting Semantic Annotations in Information Retrieval.
2009, ACM: Barcelona, Spain. p. 25-29.

126. Wu, B. and B. Davison. Detecting semantic cloaking on the web. In
Proceedings of International Conference on World Wide Web (WWW-2006),
2006.

127. Xiang, L., Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, and J. Sun.
Temporal recommendation on graphs via long- and short-term preference
fusion. In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining. 2010, ACM: Washington, DC,
USA. p. 723-732.

128. Ypma, A. and T. Heskes. Automatic categorization of web pages and user
clustering with mixtures of hidden Markov models. In Proceedings of

Bibliography 603

Mining Web Data for Discovering Usage Patterns and Profiles (WEBKDD-
2002), 2003.

129. Yu, K., J. Lafferty, S. Zhu, and Y. Gong. Large-scale collaborative
prediction using a nonparametric random effects model. In Proceedings of
the 26th Annual International Conference on Machine Learning. 2009,
ACM: Montreal, Quebec, Canada. p. 1185-1192.

130. Zhang, Z. and O. Nasraoui. Mining search engine query logs for query
recommendation. In Proceedings of International Conference on World Wide
Web (WWW-2006), 2006.

131. Zhang, Z. and O. Nasraoui. Mining search engine query logs for social
filtering-based query recommendation. Applied Soft Computing, 2008, 8(4):
p. 1326-1334.

132. Zhen, Y., W. Li, and D. Yeung. TagiCoFi: Tag Informed Collaborative
Filtering. In Proceedings of the 3rd ACM conference on Recommender
systems. 2009. p. 69-76.

Subject Index

1:1 match, 429
1:m match, 429, 435–436

A
abnormal behavior, 511–513
absolute URL, 319
access log, 573
accuracy, 65, 79
active learning, 377
actor, 270
ad click rate, 585
ad relevance, 585
adaBoost, 126
adaptive topical crawler, 341
adjusted cosine similarity, 560
ads, 585

ad click rate, 585
ad relevance, 585
sponsored Ads, 572
cost-per-impression, 590
cost-per-click, 585, 590
cost-per-action, 590

agglomerative clustering, 148–150
algorithm, 148
average-link method, 150
centroid method, 150
chain effect, 149
complete-link method, 149–150
dendrogram, 147
single-link method, 149
Ward’s method, 150

anchor text, 211, 229, 259
anti-click graph, 581
aperiodic, 281, 283
application server logs, 530

apriori algorithm, 20–26
algorithm, 20–26
candidate generation, 22

join step, 22
pruning step, 22

downward closure, 20
interestingness, 23
lexicographic order, 20
rule generation, 24

apriori property, 20
area under the ROC curve, 84–85
ARPANET, 3
aspect, 462

aspect expression, 462
aspect extraction, 480, 486–492
aspect name, 462
explicit aspect expression, 462
implicit aspect expression, 462

aspect sentiment classification, 481
aspect-based opinion mining, 464, 480
aspect-based opinion summary,

467– 469
association rule, 6, 17–41, 98

confidence, 18
minimum confidence, 19
minimum support, 19
support, 18,
support count, 18
transaction, 18

association rules based
recommendations, 559, 561–564

associative classification, 93–99
asymmetric attribute, 154
AUC, see area under the ROC curve
authority, 5, 288–294
authority ranking , 288, 294

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3,
© Springer-Verlag Berlin Heidelberg 2011

605

606 Subject Index

automatic data extraction, 363–364
automatic wrapper generation,

381–383
average precision, 225
average-link method, 150

B
back-crawl, 350
backward rule, 377
bag of words, 215
bagging, 126
base type, 477
base URL, 319
batch gradient descent, 567, 570–571
Bayesian Sets, 187
beam search, 90
behavioral pattern, 11
best-first crawler, 315
best-N-first, 330, 340
betweenness centrality, 272–273, 301
Biased-SVM, 197–199
biases, 569
bibliographic coupling, 275–276, 277,

292–293
binary attribute, 152, 157
binary split, 75
bipartite core community, 296–298
bipartite sub-graph, 288
bitwise, 237
bogus opinions, 506
Boolean query, 213, 216
boosting, 126–127
bootstrap replicate, 126
Borda ranking, 255–256
breadth-first crawler, 313–314
breakeven point, 227
browser, 1
but-clause, 482

C
candidate itemset, 21
cannot-link, 166
canonicalization, 319
CAR, see class association rule

CAR-Apriori, 38–39
case of letter, 229
categorical, 26
CBA, 94
center, 136, 297
center star method, 390–391
central actor, 271
centrality, 270

betweenness, 272–273, 301
closeness, 272
degree, 271

centroid, 136, 545
Chebychev distance, 152
citation analysis, 275–277

co-citation, 276
bibliographic coupling, 277

class association rule, 36–41, 57,
94– 99
algorithm, 38– 40
class label, 36
condset, 38
condsupCount, 38
confidence, 37, 38
confident, 38
frequent ruleitems, 38
multiple class supports, 41
multiple item supports, 41
ruleitems, 38
rulesupCount, 38
support, 37, 38

class prior probability, 105
class sequential rule, 55–56, 94
classification, 63–128
classification based on association,

94–98
association rule, 6, 17–41, 98
CAR, see class association rule
CBA, 94–98
class association rule, 94–98
CMAR, 98
classifier building, 97
rules as feature, 98
strongest rule, 97

classification model, 64
classifier, 64
classifier evaluation, 79–87

 607

click graph, 578
clicked documents, 577
clickstream, 17, 527
clickthrough data, 539, 578, 583
clickthrough rate, 585, 590–591
client-server, 1
cloaking, 261, 354
close tag, 368
closeness centrality, 272
cluster evaluation, 159–162

confusion matrix, 160
entropy, 160
ground truth, 160
indirect evaluation, 162
inter-cluster separation, 162
intra-cluster cohesion, 162
purity, 160
user inspection, 160

cluster of arbitrary shape, 146
cluster, representation of, 144–146
clustering, 6, 8, 133–165
CMAR, 98
co-citation, 275, 276, 292–293
co-citation matrix, 276
co-clustering, 166
collaborative filtering, 540, 555–571

k-nearest neighbor, 559–561
association rule based

recommendation, 561–564
matrix factorization, 565–571
singular value decomposition,

565–571
collapse, 407
CombANZ, 255
combating spam, 262–263
CombMAX, 254
CombMIN, 254
CombMNZ, 255
CombSUM, 254
community discovery, 270, 292,

294–303
bipartite core, 296–298
manifestation, 296
email, 301–302
maximum flow, 298–301
overlapping, 302–303

sub-community, 295
sub-theme, 295
super-community, 295
theme, 295

comparative, 493
gradable comparison, 494
equative, 494
non-equal gradable, 494
non-gradable comparison, 494
superlative, 494

comparative opinions, 463
comparative relations, 494
comparative type, 477
complementarity condition, 114, 115,

119
complete-link method, 149–150
composite attribute, 433
composite domain, 433
computational advertising, 589–593

content match-based advertising,
590

cost-per-impression, 590
cost-per-click, 585, 590
cost-per-action, 590
online advertising, 589
pay per impression, 590
sponsored search advertising, 585,

590
targeted advertising, 590

concurrency, 322
conditional independence assumption,

100–101, 177
Condorcet ranking, 255, 256
confidence, 18, 54, 69
conflict resolution, 405
confusion matrix, 81, 152, 161
connectionist reinforcement learning,

345
consecutive query similarity graph,

579
constrained optimization problem, 189
constraint based match, 430–431
content data, 532
content hiding, 261
content match-based advertising, 590
content spamming, 258–259

 Subject Index

608 Subject Index

content-based recommendations, 557
content-enhanced transaction matrix,

542
context-focused crawler, 329–330
contextual query models, 588
contiguous sequence, 551
contiguous sequential pattern, 551
conversion rate, 591
co-occurrence, 17
cookies, 530, 535, 575, 578
coreference resolution, 501–502
corpus-based approach, 478–479
correlation, 337
cosine similarity, 154, 218
cosine-rocchio, 192–194
cost-per-impression, 590
cost-per-click, 585, 590
cost-per-action, 590
co-testing, 377
co-training, 176–178
covariate shift, 187
coverage, 99, 326
crawl history, 314
crawler, 10, 311–358

concurrency, 322–323
crawl history, 314
evaluation, 348–353
fetching, 315
focused crawler, 311, 327–330
freshness, 326
frontier, 312
live crawling, 356
page repository, 321–322
parsing, 316–318
preferential crawler, 311, 314–315
robot, 311
robots.txt, 353
scalability, 324–326
spider, 311
spider trap, 320
topic crawler, 298, 330
universal crawler, 311, 314,

323–327
crawler ethics, 353–355
crawler etiquette, 353
crawler evaluation, 348–353

cross-validation, 80
CSR, see class sequential rules
customer conversion ratios, 539

D
damping factor, 285
dangling page, 281
data fusion, 533–534
data integration, 418
data mining process, 6
data pre-processing, 66
data record, 363, 366, 368, 404–405
data region, 163, 364, 398, 400
data sequences, 42
data standardization, 155–157

asymmetric binary attribute, 157
interval-scaled attribute, 155
mean absolute deviation, 156
nominal attribute, 152, 157
ordinal attribute, 157
range, 155
ratio-scaled attribute, 157
symmetric binary attribute, 157
z-score, 155, 156

data value match, 418
decision boundary, 110
decision list, 87
decision surface, 110
decision tree, 67–79

algorithm, 70
binary split, 75
C4.5, 67
continuous attribute, 75, 76
decision nodes, 67
divide-and-conquer, 70
entropy, 72
impurity function, 71–75
information gain, 72, 73
information gain ratio, 72, 74–75
leaf nodes, 67
missing value, 78–79
overfitting, 76–77
post-pruning, 77
pre-pruning, 77
rule pruning, 78

 609

skewed class distribution, 79
split info, 75
stopping criteria, 70
tree pruning, 76

decreasing comparative, 497
deep Web, 319, 425, 438
default class, 78, 88, 97
degree centrality, 271
degree prestige, 274
DeLa, 420
demographic data, 530
dendrogram, 147
denial of service, 321
dense region, 163
dependency, 471
dependency grammar, 490
DEPTA, 420
description match, 430
detail page, 364, 413
Dice function, 442
dictionary based approach, 477
direct dependency, 490
direct opinions, 464
directory cloning, 260
discretization, 102
discriminative model, 201
disk version of k-means, 139
distance function, 124, 135, 151–155

Chebychev distance, 152
cosine similarity, 218
Euclidean distance, 151, 152
Jaccard coefficient, 154
Manhattan distance, 152
Minkowski distance, 151
simple matching distance, 153
squared Euclidean distance, 152
weighted Euclidean distance, 152

distributed hypertext system, 2
distributional similarity, 187
divide-and-conquer, 93
divisive clustering, 148
document collection, 213
document index, 215
Document Object Model, 294, 384,

396

document-level sentiment
classification, 469

DOM tree, 294, 384, 396–397
DOM, see Document Object Model
domain matching, 426, 431–434,

441–442
domain similarity, 441
double propagation, 490
downward closure property, 20, 29
dual, 116
dual variable, 116
duplicate detection, 231–232
duplicate page, 231
duplicate removal, 254

E
eager learning, 124
e-commerce data mart, 539
edit distance, 384–385
eigensystem, 275, 279
eigenvalue, 279, 281
eigenvector, 279
Elias Delta coding, 237, 239
Elias Gamma coding, 237, 238
EM algorithm, see Expectation–

Maximization Algorithm
email community , 301
emotion, 466
empty cluster, 138
empty region, 163
end rule, 371–372
ensemble of classifiers, 125

bagging, 126
boosting, 126–127
bootstrap replicate, 126

entity, 461, 464
entity expression, 462
entity extraction, 499
entity name, 462

entropy, 72, 160
episode identification, 537
equative comparisons, 494
error rate, 79
ethical issue, 311

 Subject Index

610 Subject Index

Euclidean distance, 152
exact match, 216
exclusion operator, 216
Expectation–Maximization (EM),

173, 194, 202–204, 548
explicit aspect expression, 462
extraction problem, 382

F
fake opinions, 506
fake reviews, 506
false negative, 81
false positive, 81
false positive rate, 83
feature, 462
feature space, 120
feature-based opinion mining, 464
feature-based opinion summary, 467
flat data record, 368
flat relation, 367
flat set type, 367–368
flat tuple type, 367
focused crawler, 327–330

classification, 327
context graph, 329
context-focused crawler, 329
distiller, 329
Open Directory Project, 327

forward rule, 377
frequent itemset, 20, 550
frequent itemset graph, 563
frequent sequence, 42
freshness, 326
frontier, 312
F-score, 82, 227
full document query, 214
fundamental assumption of machine

learning, 66

G
gap, 237
Gaussian fields, 181–182
Gaussian RBF kernel, 123

generalized node, 400–402
generative model, 104
global query interface, 425, 439,

450–453
grouping constraint, 451
instance appropriateness, 453–454
lexical appropriateness, 452–453
structure appropriateness, 450–452

Golomb coding, 240
Golomb–Rice coding, 241
gradable comparisons, 494
grammar induction, 409
group spammers, 507–508
group spamming detection, 513
GSP algorithm, 43, 44

H
harvest rate, 349
head-item problem, 35
hidden Web, 319
hiding technique, 261, 507–508
Hierarchical clustering, 135, 147
hit, 473
HITS, 288–294

authority, 5, 288–294
community, 292
hub, 288–291
Hypertext Induced Topic Search,

288
relation with co-citation and bib-

liographic coupling, 292–293
holdout set, 79
hole, 163
homonym, 431
HTML, 2
HTTP, 2
hub, 277, 288, 294
hub ranking, 288–289
hybrid methods, 557
hyperlink, 2, 6, 211, 278
hypermedia, 2
hypernym, 430
hypertext, 2
Hypertext Induced Topic Search, 288

 611

I
IEPAD, 406
implicit aspect, 501
implicit aspect expression, 462
implicit feedback , 222
impressions, 539, 590
impurity function, 71
inclusion operator, 216
increasing comparative, 497
index compression, 237–242

Elias Delta coding, 237, 239
Elias Gamma coding, 237–238
fixed prefix code, 240
Golomb coding, 237, 240
Golomb-Rice coding, 241
integer compression, 237
unary coding, 238
variable-bit, 237
variable-byte, 237, 242

index construction, 235–236
indexer, 213, 214
indexing, 250
indirect opinions, 464
individual spammer, 507–508
inductive learning, 63
influence domain, 274
information gain, 72–74, 92
information gain ratio, 72, 74
information integration, 425

conflict, 445
domain similarity, 442
global interface, 439
grouping relationship, 444
h-measure, 446
homonym, 431
intersect-and-union, 453
matcher, 434
matching group, 444, 445
mutual information measure, 449
name as value, 433
negatively correlated, 444
occurrence matrix, 448
positively correlated, 444
synonym group, 444
transitivity, 444

information need, 572
information retrieval, 9, 237–264
information retrieval evaluation,

223–226
average precision, 225
breakeven point, 227
F-score, 227
precision, 224
precision-recall curve, 225
recall, 224
rank precision, 227

information retrieval query, 213–214
Boolean query, 213
full document query, 214
keyword query, 213
multi-word query, 252
natural language question, 214
phrase query, 213–214
proximity query, 214
single word query, 252

information theory, 72
informative example, 377, 379
InfoSpiders, 330, 344
infrequent class, 86
in-link, 251, 271
in-link spamming, 260
input space, 120
input vector, 109
instance-based wrapper learning, 378
instance-level matching, 426, 431
integer compression, 237
inter-cluster separation, 162
interestingness, 23, 57
Internet, 1, 3
inter-site schema matching, 449
interval-scaled attribute, 155
intra-cluster cohesion, 162
intra-site schema matching, 449
inverse document frequency, 217
inverted index, 215, 232
inverted list, 233
IR score, 252
irreducible, 281, 283, 284
irregular comparatives, 493
irregular superlatives, 493
is-a type, 429, 435

 Subject Index

612 Subject Index

item prediction, 557
item-based collaborative filtering, 560
item-based recommendations, 559
itemset, 18
iterative SVM, 195

J
Jaccard coefficient, 154, 232, 300
Jaccard distance, 154

K
KDD, see knowledge discovery in

database
kernel function, 111, 120–123
kernel trick, 123
keyword query, 211, 213
keywords, 9, 237
k-means clustering, 136–139

center, 136
centroid, 136
data space, 136
Euclidean space, 137
seed, 136
mean, 137
outlier, 140

k-modes, 140
k-nearest neighbor, 124
k-nearest neighbor recommendations,

559
k-neighborhood, 580
knowledge discovery in database, 6
k-sequence, 42
Kuhn–Tucker conditions, 114, 118

L
label sequential rule, 54
landmark, 371
language model, 219, 223
language pattern, 17
Laplace smoothing, 103, 107, 220
latent factor models, 565
latent semantic indexing, 243–249

k-concept space, 245

left singular vector, 244
query and retrieval, 236–237
right singular vector, 244
singular value decomposition, 243,

246–247
latent variables, 565
lazy learning, 124
learning algorithm, 65
learning from labeled and unlabeled

examples, 171–184, 222
learning from positive and unlabeled

examples, 171, 184–202, 222
learning rate, 567
learning to rank, 587
learn-one-rule, 90–93
least commitment approach, 392
leave-one-out cross-validation, 80
level-wise search, 20
lexicographic order, 20, 42
lexicon-based approach, 481
Lidstone smoothing, 103, 107, 220
lifetime values, 539
lift chart, 86
lift curve, 86
likely positive set, 190
linear learning system, 109
linear SVM: non-separable case,

117–120
linear SVM: separable case, 111–116
linguistic pattern, 17
linguistic similarity, 442
link analysis, 269
link canonicalization, 318
link extraction, 318
link spamming, 259–260
link topology, 333
linkage locality, 336
link-cluster conjecture, 333
link-content conjecture, 333
list iteration rule, 370
list page, 360, 413
live crawling, 356
longest common subsequence, 406
longest repeating subsequences, 552
LSI query and retrieval, 246
LSI, see latent semantic indexing

 613

LSR, see label sequential rule
LU learning, 171–184, 558

co-training, 176–178
combinatorial Laplacian, 182
constrained optimization, 189
EM-based algorithm, 173–174,

202–204
evaluation, 184
Gaussian fields, 182
mincut, 181
self-training, 178–179
spectral graph transducer, 182–183
theoretical foundation, 187–189
transductive SVM, 179–180
transduction, 179
weighting the unlabeled data, 175

M
m:n, 429
main content block, 5
Manhattan distance, 151, 152
MAP, see maximum a posteriori
margin, 111, 112
margin hyperplane, 112
market basket analysis, 17
Markov chain, 279
Markov models, 551
match cardinality, 429
matcher, 434
matching group, 444, 445
matrix factorization for

recommendations, 559, 565–571
MaxDelta, 438
maximal margin hyperplane, 111
maximum a posteriori, 100
maximum flow community, 298–301
maximum likelihood estimation, 202
maximum matching, 387
maximum support difference, 30
MDR, 402
mean absolute deviation, 156
Mercer’s theorem, 123
meta-search, 253–257

Borda ranking, 255–256
CombANZ, 255

combine similarity scores, 254
CombMAX, 254
CombMIN, 254
CombMNZ, 255
CombSUM, 254
Condorcet ranking, 255–256
duplicate removal, 253
fuse, 253
merge, 253
reciprocal ranking, 256

minconf, 19
mincut, 181
minimum class support, 41, 96
minimum confidence, 19
minimum item support, 28, 29, 41
minimum support, 19, 29, 42, 45
mining comparative opinions,

493–498
Minkowski distance, 151
minsup, 19
mirror site, 231
mirroring, 231
MIS, see minimum item support
Missing references, 538
missing value, 78–79, 103
mixture component, 104
mixture model, 104
mixture models, 547
mixture of Markov models, 548
mixture probability, 104
mixture weight, 104
Mosaic, 3
MS-Apriori, 30
MS-GSP, 46
MS-PS, 52
multinomial distribution, 106, 108
multinomial trial, 106
multiple alignment, 390–396

center star method, 390–391
partial tree alignment, 391–396

multiple minimum class supports, 41,
96

multiple minimum item supports, 41
multiple minimum supports, 26–36,

45–49, 52, 54
algorithm, 32

 Subject Index

614 Subject Index

downward closure, 29
extended model, 28–30
head-item, 35
join step, 33
minimum item support, 29
prune step, 33
rare item, 27, 28
rule generation, 35–36

multiple minimum supports, 564
multiple random sampling , 80
multivariate Bernoulli distribution,

108
multi-word query, 252
must-link, 166
mutual information measure, 449
mutual reinforcement, 288

N
naïve Bayesian classification, 99–103

assumption, 100
Laplace’s law of succession, 103
Lidstone’s law of succession, 103
maximum a posteriori (MAP), 100
missing value, 103
numeric attribute, 102
posterior probability, 100
prior probability, 100
zero count, 102–103

naïve Bayesian text classification,
103–109
assumption, 106
generative model, 104
hidden parameter, 104
mixture model, 104–105
mixture component, 104
mixture probability, 104
mixture weight, 104
multinomial distribution, 106–107
multivariate Bernoulli distribution,

108
naïve best-first, 339
name match, 429–430
named entity community, 302
navigational pattern, 550
nearest neighbor learning, 180

negative potential items, 484
negatively correlated, 444
nested data record, 407
nested relation, 366
NET, 407–408
Netflix Prize contest, 565
Netscape, 3
neutral, 411
n-fold cross-validation, 80
n-gram, 232
nominal attribute, 152, 154, 156
non-contextual query models, 588
non-gradable comparisons, 494
nonlinear SVM, 120
normal vector, 111
normalized edit distance, 386
normalized term frequency, 217
normalized tree match, 389

O
occurrence type, 251–252
ODP, see Open Directory Project
Okapi, 218
online advertising, 589
Open Directory Project, 327, 583
open tag, 368
opinion context, 479
opinion definition, 463
opinion holder, 462
opinion holder extraction, 498
opinion idioms, 471
opinion lexicon, 477, 481
opinion mining, 459–514
opinion orientations, 463
opinion phrases, 470
opinion retrieval, 503–506
opinion search, 503–506
opinion shifters, 482
opinion sources, 463
opinion spam, 506–514
opinion spam types, 506
opinion spam detection, 509–514
opinion target, 461
opinion words, 470, 477
opinionated text, 459

 615

opinion-bearing words, 470, 477
optimal cover, 346
ordinal attribute, 157
orthogonal iteration, 292
outlier, 140
out-link, 271
out-link spamming, 259
overfitting, 76–78, 569
overlapping community, 302–303

P
packet sniffer, 538, 573
page content, 7
page repository, 321–322
PageRank, 10, 277–288

aperiodic, 281–284
damping factor, 285
irreducible, 281–284
Markov chain, 279–281
power iteration, 279, 285
principal eigenvector, 279, 281
random surfer, 280
stationary probability distribution,

281
stochastic transition matrix, 281
strongly connected, 283

pageview, 531, 540
pageview identification, 529, 534
pageview-feature matrix, 542
pageview-weight, 546
partial tree alignment, 391–396, 405
partially supervised learning, 171
partitional clustering, 135–136
part-of-speech, 471
path completion, 538–539
pay per impression, 590
Pearson’s correlation coefficient, 559
Penn Treebank POS tags, 472
personalized Web content, 545
phrase query, 213–214
pivoted normalization weighting, 219
PLSA, see Probabilistic Latent Se-

mantic Analysis
PMI, see pointwise mutual

information

pointwise mutual information, 473
polar words, 477
polarity, 463
polynomial kernel, 122–123
polysemous query, 572
POS, see part-of-speech
positive potential items, 484
positively correlated, 444
post-pruning, 77
power iteration, 285
precision, 81–83, 224, 311
precision and recall breakeven point,

82–83
precision-recall curve, 225
predictive model, 64
preferential crawler, 311, 314–315
preferred entity, 496-498
PrefixSpan algorithm, 50–51
pre-processing, 528–540
pre-pruning, 77
prestige, 270, 273–275

degree prestige, 274
proximity prestige, 274
rank prestige, 275, 278

primal, 115
primal variable, 115, 119
principal eigenvector, 279, 281
Probabilistic Latent Semantic Analysis,

548
profile, 11
prominence, 275
proper subsequence, 54
proximity prestige, 274
proximity query, 214
proxy logger, 573
pseudo-relevance feedback, 223
PU learning, 171, 185, 222–223, 558

biased-SVM, 197–199
classifier selection, 196–197, 199
constrained optimization, 189
direct approach, 190
EM algorithm, 194–195
evaluation, 201
IDNF, 194
iterative SVM, 195–196
Probability estimation, 199–201

 Subject Index

616 Subject Index

Rocchio classification, 220
S-EM, 191–192, 205
Spy technique, 191–192
theoretical foundation, 187–190
two-step approach, 190
reliable negative, 190

purity, 160

Q
QLM, see query log mining
quality page, 251
query, 213–215

Boolean query, 213
full document query, 214
keyword query, 213
multi-word query, 252
natural language question, 214
phrase query, 213–214
proximity query, 214
single word query, 252

query classification, 586
query expansion, 583
query log data models, 577–581
query log data preparation, 575–577
query log features, 582–583
query log mining, 571–589
query logs, 571
query operation, 214
query recommendation, 583
query refinement, 584
query suggestion, 583
query-graph features, 582

R
random surfer, 280
rank precision, 227
rank prestige, 273, 275
ranking SVM, 223
rare classes, 86
rare item problem, 27, 28
rating prediction, 556–557
ratio-scaled attribute, 156
recall, 81, 189, 224, 349
receiver operating characteristics, 83–85

recency search, 286–288
reciprocal ranking, 256
recommendation engine, 11, 528
recommender systems, 555–571
redirection, 261–262
redundant rule, 39
regular expression, 382, 409–412,

415–416,
regular opinions, 463
regularization, 569
regularization constant, 569
reinforcement learning, 343
re-labeling, 378
related queries, 584
relative URL, 319
re-learning, 378
relevance feedback, 214, 220–223
reliable negative document, 190
replication, 231
reputation score, 252
reuse of previous match results,

436–437
right singular vector, 244
RMSE, see root mean square error,

565
RoadRunner, 414–415
robot, 311
robot exclusion protocol, 353
robot visits, 576–577
robots.txt, 353
ROC curve, 83–85
Rocchio classification, 221–222
Rocchio method, 558
Rocchio relevance feedback, 221
root mean square error, 565
rule induction, 87–93

decision list, 87
default class, 78
ordered class, 88–89
ordered rule, 88
rule pruning, 93
separate-and-conquer, 93
understandability, 93

rule learning, 87
rule pruning, 78, 93, 96
rule understandability, 93

 617

ruleitem, 38
rules of opinions, 483–486

S
sample selection bias, 187
scale-up method, 151
schema matching, 418, 426–427
search, 250–253
search engine, 4
search engine optimization, 258
search length, 349
search session, 575
second price auction model, 591
seed, 142
segmentation, 134
selected completely at random, 200
selective query expansion, 346
self-training, 178–179
semantic orientation, 463, 473
semantic similarity, 337
semi-supervised clustering, 171
semi-supervised learning, 141
sensitivity, 83
sentence-level sentiment

classification, 474
sentiment analysis, 459–514
sentiment classification, 469–474
sentiment consistency, 478
sentiment orientation, 463
sentiment words, 470, 477
separate-and-conquer, 93
sequence, 42
sequential covering, 87, 373
sequential crawler, 312
sequential pattern, 550
sequential pattern mining, 6, 43–56

frequent sequence, 42
GSP, 43–45
k-sequence, 42
minimum support, 42
MS-PS, 52–53
multiple minimum supports,

45–49, 52–53
minimum item support, 45
PrefixSpan, 49–51

sequence, 42
sequential pattern, 42

contain, 42
element, 42
itemset, 42
k-sequence, 42
length, 42
sequence, 42
size, 42
subsequence, 42
supersequence, 42

support, 42
sequential rule, 54–56

class sequential rule, 55–56
label sequential rule, 54–55

server log, 530
session, 532, 536, 577
session identification, 529
session length, 575
sessionization, 536–538
set expansion, 186, 499
set instance, 368
set type, 367
shingle method, 231–232
sibling locality, 335
similarity function, 124
similarity group, 133
simple domain, 432
simple matching distance, 153
simple tree matching, 387–389
single word query, 252
single-link method, 149
singular value, 244
singular value decomposition,

243–246, 565–571
skewed class distribution, 79
small-world, 357
smoothing, 103, 107, 220
social choice theory, 255
social media, 459
social network analysis, 9, 269–303
soft-margin SVM, 118
spam hosts, 584–585
spam queries, 584–585
spamming, 212, 257–263
sparse region, 163

 Subject Index

618 Subject Index

sparseness, 23
specificity, 83
spectral clustering, 166
spectral graph transducer, 181
spider, 311
spider trap, 320–321
sponsored Ads, 572
sponsored results, 585
sponsored search, 572, 589
sponsored search advertising, 585–

586, 590
spy technique, 191–192
squared Euclidean distance, 152
SSE, see sum of squared error
standard gradient descent, 568, 571
standardization of words, 428
start rule , 371–372
stationary probability distribution, 281
statistical language model, 219–220
stem, 228
stemmer, 228
stemming, 228, 318, 428
STM, see simple tree matching
stochastic gradient descent, 568
stochastic matrix, 280, 281, 284
stopword removal, 214, 227, 280, 428
string matching, 384–386
strongest rule, 97–99
strongly connected, 283
structure data, 532
structured data extraction, 363–419
structured summary, 467
subjectivity, 466
subjectivity classification, 466, 474
subsequence, 42
subspace clustering, 166
sufficient match, 381
sum of squared error, 137
summary of opinions, 460
superlative comparisons, 494
superlatives, 493
supersequence, 42
supervised approach, 509–511
supervised learning, 6, 63–127

assumption, 66
class attribute, 63

class label, 63, 109
classification function, 64
classification based on

associations, see classification
based on associations

decision tree, see decision tree
example, 63
instance, 63
k-nearest neighbor, see k-nearest
neighbor classification
learning process, 66

model, 65
testing phase, 66
training data, 65
training set, 65
training phase, 66
unseen data, 65
test data, 65

naïve Bayesian, see naïve Bayesian
classification

prediction function, 64
rule induction, see rule induction
SVM, see support vector machines
vector, 63

support, 18, 42, 54
support count, 18, 69
support difference constraint, 30, 49,

52
support vector, 115
support vector machines, 109–123

bias, 109
complementarity condition, 114,

118
decision boundary, 110, 116
decision surface, 110
dual variable, 116
dual, 115
input vector, 109
input space, 120
kernel, 120–123

feature space, 120
Gaussian RBF kernel, 123
input space, 120
kernel function, 122–123
kernel trick, 123
polynomial kernel, 122–123

 619

Kuhn-Tucker conditions, 114, 118
Lagrange multiplier, 113, 118
Lagrangian, 113
linear learning system, 109
linear separable case, 111–116
linear non-separable case, 117–120
margin hyperplane, 111–112
margin, 111
maximal margin hyperplane, 111,

116
nonlinear SVM, 120–123
normal vector, 111
polynomial kernel, 123
primal, 115

primal Lagrangian, 115
primal variable, 115, 119

slack variable, 117
soft-margin SVM, 118
support vector, 115
weight vector, 109
Wolfe dual, 116

surface Web, 438
SVD, see singular value decomposition
symmetric attribute, 153

T
tag tree, see DOM tree
targeted advertising, 590
TCP/IP, 3
template, 364, 379
term, 211, 213, 215
term ambiguity, 572
term frequency, 217
term spamming, 258
term-pageview matrix, 542
test data, 65
test set, 79
testing phase, 66
text clustering, 154
text mining, 6
TF, 337
TF-IDF, 217, 337
theme, 295–296
Tim Berners-Lee, 2
time extraction, 498

Timed PageRank, 286
token, 370
top N candidate, 437–438
topic drift, 293
topical crawler, 311, 330–347

adaptive topical crawler, 341
best-first variation, 338–341
best-N-first, 330, 340
Clever, 340
cluster hypothesis, 333
InfoSpiders, 340, 344
lexical topology, 332
link topology, 333
linkage locality, 336
link-cluster conjecture, 333
link-content conjecture, 333
reinforcement learning, 343–346
sibling locality, 335

topology refinement, 376
training data, 65, 79
training phase, 66
training set, see training data
transaction, 17
transaction data, 527
transaction matrix, 541
transduction, 179
transductive Support Vector

Machines, 179–180
transductive SVM, see transductive

Support Vector Machines
transitive property, 437
tree matching, 231, 384, 386

simple tree matching, 387–388
normalized tree matching, 389

tree pruning, 76
true negative, 81
true negative rate, 83
true positive, 81
true positive rate, 83
tuple instance, 368
tuple type, 367

U
unary coding, 238
union-free regular expression, 383, 412

 Subject Index

620 Subject Index

universal crawler, 10, 311, 323
unlabeled examples, 172–203
unordered categorical, 152
unsupervised learning, 65, 133–166

cluster, 133
cluster representation, 144–147
clustering, 133–165
cluster evaluation, see cluster

evaluation
data standardization, see data

standardization
distance function, see distance

function
hierarchical clustering, see

agglomerative clustering
k-means clustering, see k-means

clustering
mixed attributes, 157–159
partition, 134, 135
segmentation, 134

URL, 2
usage data, 7, 530
usage-based clustering, 545
user activity record, 535
user data, 532
user identification, 534
user intent, 572
user profile, 527, 556–558
user transactions, 540
user-agent, 261, 353
user-based recommendations, 559
user-pageview matrix, 541
utility of reviews, 514–515

V
valence shifters, 482
validation set, 78, 80
variable-byte coding, 242
vector space model, 216–219
 cosine similarity, 218

IDF, see inverse document
frequency
Okapi, 218
inverse document frequency, 217
normalized term frequency, 217

pivoted normalized weighting, 219
term frequency, 217
TF, see term frequency
TF-IDF scheme, 217

vocabulary, 215
view graph, 580
virtual society, 1
visitor segmentation, 545
visual information, 396, 406
vocabulary search, 234

W
W3C, see World Wide Web

Consortium
Ward's method, 150
Web, 1, 2

CERN, 2
distributed hypertext system, 2
history, 2
HTML, 2,
HTTP, 2
HyperText Markup Language, 2
HyperText Transfer Protocol, 2
Tim Berners-Lee, 2
URL, 2

Web content mining, 7
Web data model, 366–368

basic type, 367
flat relation, 367
flat set type, 367
flat tuple type, 367
instance, 367
list, 369
nested relation, 366–368
set instance, 368
set node, 367
set type, 367
tuple instance, 368
tuple node, 367
tuple type, 367

Web database, 425
Web mining, 6
Web mining process, 7
Web page pre-processing, 229
Web query interface, 425, 438–454

 621

clustering based approach,
441–444

correlation based approach,
440–447

deep Web, 438
global query interface, 425, 449
instance based approach, 447–449
inter-site schema matching, 449
intra-site schema matching, 449
label, 439
name, 439
schema model, 439
surface Web, 438

Web search, 250
Web server access logs, 530
Web spam, 257–263

combating spam, 262–263
content spamming, 258
content hiding, 261
cloaking, 261
directory cloning, 260
in-link spamming, 260
link spamming, 259
out-link spamming, 260
redirection, 261
term spamming, 258
search engine optimization, 258
user-agent field, 261

Web structure mining, 7
Web usage mining, 7, 527–593
Weighted Euclidean distance, 152
within-k-neighborhood, 580
World Wide Web, 1
World Wide Web Consortium, 4
WorldWideWeb, 2
wrapper generation, 363–420

building DOM tree, 396–397
center star method, 390
center string, 390
conflict resolution, 405
data record, 363, 368, 404
data region, 364, 398, 404
DeLa, 420
DEPTA, 420
disjunction or optional, 416–417
EXALG, 420

extraction based on a single list
page, 397–413

extraction based on multiple pages,
413–415

generalized node, 400–401
grammar induction, 409
HTML code cleaning, 396
IEPAD, 420
MDR, 402, 420
multiple alignment, 390–391
nested data record, 407–413
NET, 407
node pattern, 409
partial tree alignment, 391–396
regular expression, 382, 409–411,

415–416
RoadRunner, 414–415
seed tree, 392
simple tree matching, 387–388
STM, see simple tree matching
string edit distance, 384–386
tree matching, 386–389
tidy, 396
union-free regular expression, 383,

412, 414
visual information, 396, 406

wrapper induction, 370–381
active learning, 377
co-testing, 377
end rule, 371–372
informative example, 377
instance-based wrapper learning,

378–381
landmark, 371
list iteration rule, 371
perfect disjunct, 373
rule learning, 373–377
sequential covering, 373
start rule, 371–372
token, 370
wrapper maintenance, 378
wrapper repair, 378
wrapper verification, 378

wrapper repair problem, 378
wrapper verification problem, 378
WWW conference, 4

 Subject Index

622 Subject Index

Y
Yahoo!, 4

Z
zero count, 102
Zipf law, 574
z-score, 155–156

	Cover
	Data-Centric Systems and Applications
	Web Data Mining, 2nd Edition
	ISBN 9783642194597
	Preface
	Table of Contents
	1 Introduction
	1.1 What is the World Wide Web?
	1.2 A Brief History of the Web and the Internet
	1.3 Web Data Mining
	1.3.1 What is Data Mining?
	1.3.2 What is Web Mining?

	1.4 Summary of Chapters
	1.5 How to Read this Book
	Bibliographic Notes
	Bibliography

	Part I:
Data Mining Foundations
	2 Association Rules and Sequential Patterns
	2.1 Basic Concepts of Association Rules
	2.2 Apriori Algorithm
	2.2.1 Frequent Itemset Generation
	2.2.2 Association Rule Generation

	2.3 Data Formats for Association Rule Mining
	2.4 Mining with Multiple Minimum Supports
	2.4.1 Extended Model
	2.4.2 Mining Algorithm
	2.4.3 Rule Generation

	2.5 Mining Class Association Rules
	2.5.1 Problem Definition
	2.5.2 Mining Algorithm
	2.5.3 Mining with Multiple Minimum Supports

	2.6 Basic Concepts of Sequential Patterns
	2.7 Mining Sequential Patterns Based on GSP
	2.7.1 GSP Algorithm
	2.7.2 Mining with Multiple Minimum Supports

	2.8 Mining Sequential Patterns Based on PrefixSpan
	2.8.1 PrefixSpan Algorithm
	2.8.2 Mining with Multiple Minimum Supports

	2.9 Generating Rules from Sequential Patterns
	2.9.1 Sequential Rules
	2.9.2 Label Sequential Rules
	2.9.3 Class Sequential Rules

	Bibliographic Notes
	Bibliography

	3 Supervised Learning
	3.1 Basic Concepts
	3.2 Decision Tree Induction
	3.2.1 Learning Algorithm
	3.2.2 Impurity Function
	Information Gain
	Information Gain Ratio

	3.2.3 Handling of Continuous Attributes
	3.2.4 Some Other Issues

	3.3 Classifier Evaluation
	3.3.1 Evaluation Methods
	3.3.2 Precision, Recall, F-score and Breakeven Point
	3.3.3 Receiver Operating Characteristic Curve
	3.3.4 Lift Curve

	3.4 Rule Induction
	3.4.1 Sequential Covering
	Algorithm 1 (Ordered Rules)
	Algorithm 2 (Ordered Classes)
	Use of Rules for Classification

	3.4.2 Rule Learning: Learn-One-Rule Function
	Learn-One-Rule-1
	Learn-One-Rule-2

	3.4.3 Discussion

	3.5 Classification Based on Associations
	3.5.1 Classification Using Class Association Rules
	Mining Class Association Rules for Classification
	Classifier Building

	3.5.2 Class Association Rules as Features
	3.5.3 Classification Using Normal Association Rules

	3.6 Naïve Bayesian Classification
	3.7 Naïve Bayesian Text Classification
	3.7.1 Probabilistic Framework
	3.7.2 Naïve Bayesian Model
	3.7.3 Discussion

	3.8 Support Vector Machines
	3.8.1 Linear SVM: Separable Case
	3.8.2 Linear SVM: Non-separable Case
	3.8.3 Nonlinear SVM: Kernel Functions
	Summary

	3.9 K-Nearest Neighbor Learning
	3.10 Ensemble of Classifiers
	3.10.1 Bagging
	3.10.2 Boosting

	Bibliographic Notes
	Bibliography

	4 Unsupervised Learning
	4.1 Basic Concepts
	4.2 K-means Clustering
	4.2.1 K-means Algorithm
	4.2.2 Disk Version of the K-means Algorithm
	4.2.3 Strengths and Weaknesses

	4.3 Representation of Clusters
	4.3.1 Common Ways of Representing Clusters
	4.3.2 Clusters of Arbitrary Shapes

	4.4 Hierarchical Clustering
	4.4.1 Single-Link Method
	4.4.2 Complete-Link Method
	4.4.3 Average-Link Method
	4.4.4. Strengths and Weaknesses

	4.5 Distance Functions
	4.5.1 Numeric Attributes
	4.5.2 Binary and Nominal Attributes
	4.5.3 Text Documents

	4.6 Data Standardization
	4.7 Handling of Mixed Attributes
	4.8 Which Clustering Algorithm to Use?
	4.9 Cluster Evaluation
	4.10 Discovering Holes and Data Regions
	Bibliographic Notes
	Bibliography

	5 Partially Supervised Learning
	5.1 Learning from Labeled and Unlabeled Examples
	5.1.1 EM Algorithm with Naïve Bayesian Classification
	5.1.2 Co-Training
	5.1.3 Self-Training
	5.1.4 Transductive Support Vector Machines
	5.1.5 Graph-Based Methods
	5.1.6 Discussion

	5.2 Learning from Positive and Unlabeled Examples
	5.2.1 Applications of PU Learning
	5.2.2 The Theoretical Foundation
	5.2.3 Building Classifiers: Two-Step Approach
	Techniques for Step 1
	Techniques for Step 2
	Classifier Selection

	5.2.4 Building Classifiers: Direct Approach
	5.2.5 Building Classifiers: Probability Estimation

	5.2.6 Discussion
	Appendix: Derivation of EM for Naïve Bayesian Classification

	Bibliographic Notes
	Bibliography

	Part II: Web Mining
	6 Information Retrieval and Web Search
	6.1 Basic Concepts of Information Retrieval
	6.2 Information Retrieval Models
	6.2.1 Boolean Model
	6.2.2 Vector Space Model
	Document Representation
	Queries
	Document Retrieval and Relevance Ranking

	6.2.3 Statistical Language Model

	6.3 Relevance Feedback
	The Rocchio Method
	Machine Learning Methods
	Pseudo-Relevance Feedback

	6.4 Evaluation Measures
	6.5 Text and Web Page Pre-Processing
	6.5.1 Stopword Removal
	6.5.2 Stemming
	6.5.3 Other Pre-Processing Tasks for Text
	6.5.4 Web Page Pre-Processing
	6.5.5 Duplicate Detection

	6.6 Inverted Index and Its Compression
	6.6.1 Inverted Index
	6.6.2 Search Using an Inverted Index
	6.6.3 Index Construction
	6.6.4 Index Compression
	Unary Coding
	Elias Gamma Coding
	Elias Delta Coding
	Golomb Coding
	Variable-Byte Coding

	6.7 Latent Semantic Indexing
	6.7.1 Singular Value Decomposition
	6.7.2 Query and Retrieval
	6.7.3 An Example
	6.7.4 Discussion

	6.8 Web Search
	6.9 Meta-Search and Combining Multiple Rankings
	6.9.1 Combination Using Similarity Scores
	6.9.2 Combination Using Rank Positions

	6.10 Web Spamming
	6.10.1 Content Spamming
	6.10.2 Link Spamming
	6.10.3 Hiding Techniques
	6.10.4 Combating Spam

	Bibliographic Notes
	Bibliography

	7 Social Network Analysis
	7.1 Social Network Analysis
	7.1.1 Centrality
	Degree Centrality
	Closeness Centrality
	Betweenness Centrality

	7.1.2 Prestige
	Degree Prestige
	Proximity Prestige
	Rank Prestige

	7.2 Co-Citation and Bibliographic Coupling
	7.2.1 Co-Citation
	7.2.2 Bibliographic Coupling

	7.3 PageRank
	7.3.1 PageRank Algorithm
	7.3.2 Strengths and Weaknesses of PageRank
	7.3.3 Timed PageRank and Recency Search

	7.4 HITS
	7.4.1 HITS Algorithm
	7.4.2 Finding Other Eigenvectors
	7.4.3 Relationships with Co-Citation and Bibliographic Coupling
	7.4.4 Strengths and Weaknesses of HITS

	7.5 Community Discovery
	7.5.1 Problem Definition
	7.5.2 Bipartite Core Communities
	Step 1: Pruning
	Step 2: Generating all (i, j) Cores

	7.5.3 Maximum Flow Communities
	7.5.4 Email Communities Based on Betweenness
	7.5.5 Overlapping Communities of Named Entities

	Bibliographic Notes
	Bibliography

	8 Web Crawling
	8.1 A Basic Crawler Algorithm
	8.1.1 Breadth-First Crawlers
	8.1.2 Preferential Crawlers

	8.2 Implementation Issues
	8.2.1 Fetching
	8.2.2 Parsing
	8.2.3 Stopword Removal and Stemming
	8.2.4 Link Extraction and Canonicalization
	8.2.5 Spider Traps
	8.2.6 Page Repository
	8.2.7 Concurrency

	8.3 Universal Crawlers
	8.3.1 Scalability
	8.3.2 Coverage vs. Freshness vs. Importance

	8.4 Focused Crawlers
	8.5 Topical Crawlers
	8.5.1 Topical Locality and Cues
	8.5.2 Best-First Variations
	8.5.3 Adaptation

	8.6 Evaluation
	8.7 Crawler Ethics and Conflicts
	8.8 Some New Developments
	Bibliographic Notes
	Bibliography

	9 Structured Data Extraction: Wrapper Generation
	9.1 Preliminaries
	9.1.1 Two Types of Data Rich Pages
	9.1.2 Data Model
	9.1.3 HTML Mark-Up Encoding of Data Instances

	9.2 Wrapper Induction
	9.2.1 Extraction from a Page
	9.2.2 Learning Extraction Rules
	9.2.3 Identifying Informative Examples
	9.2.4 Wrapper Maintenance

	9.3. Instance-Based Wrapper Learning
	9.4 Automatic Wrapper Generation: Problems
	9.4.1 Two Extraction Problems
	Problem 1: Extraction Based on a Single List Page
	Problem 2: Extraction Based on Multiple Pages

	9.4.2 Patterns as Regular Expressions

	9.5 String Matching and Tree Matching
	9.5.1 String Edit Distance
	9.5.2 Tree Matching

	9.6 Multiple Alignment
	9.6.1 Center Star Method
	9.6.2 Partial Tree Alignment
	Partial Alignment of Two Trees
	Partial Alignment of Multiple Trees

	9.7 Building DOM Trees
	9.8 Extraction Based on a Single List Page: Flat Data Records
	9.8.1 Two Observations about Data Records
	9.8.2 Mining Data Regions
	Comparing Generalized Nodes
	The Overall Algorithm

	9.8.3 Identifying Data Records in Data Regions
	9.8.4 Data Item Alignment and Extraction
	9.8.5 Making Use of Visual Information
	9.8.6 Some Other Techniques

	9.9 Extraction Based on a Single List Page: Nested Data Records
	9.10 Extraction Based on Multiple Pages
	9.10.1 Using Techniques in Previous Sections
	Given a Set of List Pages
	Given a Set of Detail Pages

	9.10.2 RoadRunner Algorithm

	9.11 Some Other Issues
	9.11.1 Extraction from Other Pages
	9.11.2 Disjunction or Optional
	9.11.3 A Set Type or a Tuple Type
	9.11.4 Labeling and Integration
	9.11.5 Domain Specific Extraction

	9.12 Discussion
	Bibliographic Notes
	Bibliography

	10 Information Integration
	10.1 Introduction to Schema Matching
	10.2 Pre-Processing for Schema Matching
	10.3 Schema-Level Matching
	10.3.1 Linguistic Approaches
	Name Match
	Description Match

	10.3.2 Constraint Based Approaches

	10.4 Domain and Instance-Level Matching
	10.5 Combining Similarities
	10.6 1:m Match
	10.7 Some Other Issues
	10.7.1 Reuse of Previous Match Results
	10.7.2 Matching a Large Number of Schemas
	10.7.3 Schema Match Results
	10.7.4 User Interactions

	10.8 Integration of Web Query Interfaces
	10.8.1 A Clustering Based Approach
	10.8.2 A Correlation Based Approach
	10.8.3 An Instance Based Approach

	10.9 Constructing a Unified Global Query Interface
	10.9.1 Structural Appropriateness and the Merge Algorithm
	10.9.2 Lexical Appropriateness
	10.9.3 Instance Appropriateness

	Bibliographic Notes
	Bibliography

	11 Opinion Mining and Sentiment Analysis
	11.1 The Problem of Opinion Mining
	11.1.1 Problem Definitions
	11.1.2 Aspect-Based Opinion Summary

	11.2 Document Sentiment Classification
	11.2.1 Classification Based on Supervised Learning
	11.2.2 Classification Based on Unsupervised Learning

	11.3 Sentence Subjectivity and Sentiment Classification
	11.3.1 Assumption of Sentence-Level Sentiment Classification

	11.4 Opinion Lexicon Expansion
	11.5 Aspect-Based Opinion Mining
	11.5.1 Aspect Sentiment Classification
	11.5.2 Basic Rules of Opinions
	11.5.3 Aspect Extraction
	11.5.4 Simultaneous Opinion Lexicon Expansion and Aspect Extraction

	11.6 Mining Comparative Opinions
	11.6.1 Problem Definitions
	11.6.2 Identification of Comparative Sentences
	11.6.3 Identification of Preferred Entities

	11.7 Some Other Problems
	11.8 Opinion Search and Retrieval
	11.9 Opinion Spam Detection
	11.9.1 Types of Spam and Spammers
	11.9.2 Hiding Techniques
	An Individual Spammer
	A Group of Spammers

	11.9.3 Spam Detection Based on Supervised Learning
	11.9.4 Spam Detection Based on Abnormal Behaviors
	11.9.5 Group Spam Detection

	11.10 Utility of Reviews
	Bibliographic Notes
	Bibliography

	12 Web Usage Mining
	12.1 Data Collection and Pre-Processing
	12.1.1 Sources and Types of Data
	12.1.2 Key Elements of Web Usage Data Pre-Processing
	Data Fusion and Cleaning
	Pageview Identification
	User Identification
	Sessionization
	Path Completion
	Data Integration

	12.2 Data Modeling for Web Usage Mining
	12.3 Discovery and Analysis of Web Usage Patterns
	12.3.1 Session and Visitor Analysis
	12.3.2 Cluster Analysis and Visitor Segmentation
	12.3.3 Association and Correlation Analysis
	12.3.4 Analysis of Sequential and Navigational Patterns
	12.3.5 Classification and Prediction based on Web User Transactions

	12.4 Recommender Systems and Collaborative Filtering
	12.4.1 The Recommendation Problem
	12.4.2 Content-Based Recommendation
	12.4.3 Collaborative Filtering: K-Nearest Neighbor (kNN)
	12.4.4 Collaborative Filtering: Using Association Rules
	12.4.5 Collaborative Filtering: Matrix Factorization

	12.5 Query Log Mining
	12.5.1 Data Sources, Characteristics, and Challenges
	12.5.2 Query Log Data Preparation
	12.5.3 Query Log Data Models
	12.5.4 Query Log Feature Extraction
	12.5.5 Query Log Mining Applications
	Query Modification and Recommendation

	Discovering Semantically Related Queries

	Detecting Query Polysemy, Spam Queries, and Spam Hosts

	Sponsored Search Advertising Click Prediction

	Early Influenza Epidemic Detection (Google Trends)

	12.5.6 Query Log Mining Methods
	Supervised Learning Techniques

	Unsupervised Learning Techniques

	12.6 Computational Advertising

	12.7 Discussion and Outlook
	Bibliographic Notes
	Bibliography

	Subject Index

