Indices

Tomasz Bartoszewski

Inverted Index

- Search
- Construction
- Compression

Inverted Index

• In its simplest form, the inverted index of a document collection is basically a data structure that attaches each distinctive term with a list of all documents that contains the term.

Applications:	id ₂	Applications:	<id<sub>2,</id<sub>	1, [3]>
Hyperlink:	id ₃	Hyperlink:	<id<sub>3,</id<sub>	1, [7]>
Mining:	<i>id</i> ₁ , <i>id</i> ₂ , <i>id</i> ₃	Mining:	<i><id< i="">1,</id<></i>	1, [2]>, < <i>id</i> ₂ , 1, [2]>, < <i>id</i> ₃ , 1, [3]>
Structure:	id ₃	Structure:	<id<sub>3,</id<sub>	2, [2, 8]>
Studies:	id ₃	Studies:	<id3,< td=""><td>1, [4]></td></id3,<>	1, [4]>
Usage:	id ₂	Usage:	<id<sub>2,</id<sub>	1, [1]>
Useful:	id ₁	Useful:	< <i>id</i> 1,	1, [4]>
Web:	<i>id</i> ₁ , <i>id</i> ₃	Web:	<i>≤id</i> ₁,	1, [1]>, < <i>id</i> ₃ , 2, [1, 6]>
(A)				(B)

Search Using an Inverted Index

Step 1 – vocabulary search

- finds each query term in the vocabulary
- If (Single term in query){
 - goto step3;
- } Else{ goto step2;

Step 2 – results merging

- merging of the lists is performed to find their intersection
- use the shortest list as the base
- partial match is possible

Step 3 – rank score computation

- based on a relevance function (e.g. okapi, cosine)
- score used in the final ranking

Applications:	id ₂	Applications:	<id<sub>2, 1, [3]></id<sub>
Hyperlink:	id ₃	Hyperlink:	<id<sub>3, 1, [7]></id<sub>
Mining:	id_1 , id_2 , id_3	Mining:	< <i>i</i> d ₁ , 1, [2]>, < <i>i</i> d ₂ , 1, [2]>, < <i>i</i> d ₃ , 1, [3]>
Structure:	id ₃	Structure:	<id<sub>3, 2, [2, 8]></id<sub>
Studies:	id ₃	Studies:	< <i>i</i> d ₃ , 1, [4]>
Usage:	id ₂	Usage:	<id<sub>2, 1, [1]></id<sub>
Useful:	id ₁	Useful:	< <i>i</i> d ₁ , 1, [4]>
Web:	id ₁ , id ₃	Web:	< <i>id</i> ₁ , 1, [1]>, < <i>id</i> ₃ , 2, [1, 6]>
(A)			(B)

Mining: < Web: <

<*id*₁, 1, [2]>, <*id*₂, 1, [2]>, <*id*₃, 1, [3]><*id*₁, 1, [1]>, <*id*₃, 2, [1, 6]>

Index Construction

Time complexity

 O(T), where T is the number of all terms (including duplicates) in the document collection (after pre-processing)

Index Compression

Why?

- avoid disk I/O
- the size of an inverted index can be reduced dramatically
- the original index can also be reconstructed
- all the information is represented with positive integers -> integer compression

Use gaps

- 4, 10, 300, and 305 -> 4, 6, 290 and 5
- Smaller numbers
- Large for rare terms not a big problem

All in one

		Elias	Elias	Golomb	Golomb	Variable
Decimal	Unary	Gamma	Delta	(b=3)	(b = 10)	byte
1	1	1	1	1 10	1 001	0000001 0
2	01	0 10	0 100	1 11	1 010	0000010 0
3	001	0 11	0 101	01 0	1 011	0000011 0
4	0001	00 100	0 1100	01 10	1 100	0000100 0
5	00001	00 101	0 1101	01 11	1 101	0000101 0
6	000001	00 110	0 1110	001 0	1 1100	0000110 0
7	0000001	00 111	0 1111	001 10	1 1101	0000111 0
8	00000001	000 1000	00 100000	001 11	1 1110	0001000 0
9	00000001	000 1001	00 100001	0001 0	1 1111	0001001 0
10	000000001	000 1010	00 100010	0001 10	01 000	0001010 0

Unary

• For x:

X-1 bits of 0 and one of 1

e.g.

5 -> 00001

7 -> 0000001

Elias Gamma Coding

- $1 + \lfloor \log_2 x \rfloor$ in unary (i.e., $\lfloor \log_2 x \rfloor$ 0-bits followed by a 1-bit)
- followed by the binary representation of x without its most significant bit.
- efficient for small integers but is not suited to large integers
- $1 + \lfloor \log_2 x \rfloor$ is simply the number of bits of x in binary
- 9 -> 000 1001

Elias Delta Coding

- For small int longer than gamma codes (better for larger)
- gamma code representation of $1 + \lfloor \log_2 x \rfloor$
- followed by the binary representation of x less the most significant bit
- Dla 9:
- $1 + [\log_2 9] = 4 \rightarrow 00100$
- 9 -> 00100 001

Golomb Coding

- values relative to a constant b
- several variations of the original Golomb
- E.g. $q = \lfloor x/b \rfloor$

Remainder r = x - qb (b possible reminders e.g. b=3: 0,1,2)

binary representation of a remainder requires $\lfloor \log_2 b \rfloor$ or $\lceil \log_2 b \rceil$ write the first few remainders using $\lfloor \log_2 b \rfloor$ rest $\lceil \log_2 b \rceil$

- b=3 and x=9
- $q = \lfloor 9/3 \rfloor = 3$
- $i = \lfloor \log_2 3 \rfloor = 1 \Longrightarrow d = 1 \ (d = 2^{i+1} b)$
- r = 9 3 * 3 = 0
- Result 00010

The coding tree for b=5

Selection of b

- $b \approx 0.69 * \frac{N}{n_t}$
- N total number of documents
- n_t -number of documents that contain term t

Variable-Byte Coding

- seven bits in each byte are used to code an integer
- last bit 0 end, 1 continue
- E.g. 135 -> 00000011 00001110

Summary

- Golomb coding better than Elias
- Gamma coding does not work well
- Variable-byte integers are often faster than Variable-bit (higher storage costs)
- compression technique can allow retrieval to be up to twice as fast than without compression
- space requirement averages 20% 25% of the cost of storing uncompressed integers

Latent Semantic Indexing

Reason

- many concepts or objects can be described in multiple ways
- find using synonyms of the words in the user query
- deal with this problem through the identification of statistical associations of terms

Singular value decomposition (SVD)

- estimate latent structure, and to remove the "noise"
- hidden "concept" space, which associates syntactically different but semantically similar terms and documents

LSI

- LSI starts with an m*n termdocument matrix A
- row = term; column = document
- value e.g. term frequency

Singular Value Decomposition

• factor matrix A into three matrices:

 $A = UEV^T$

m is the number of row in A n is the number of columns in A r is the rank of A, $r \le \min(m, n)$

Singular Value Decomposition

- U is a m * r matrix and its columns, called left singular vectors, are eigenvectors associated with the r non-zero eigenvalues of AA^T
- V is an n * r matrix and its columns, called right singular vectors, are eigenvectors associated with the r non-zero eigenvalues of $A^{T}A$
- E is a r * r diagonal matrix, $E = \text{diag}(\sigma_1, \sigma_2, ..., \sigma_r), \sigma_1 > 0. \sigma_1, \sigma_2, ..., \sigma_r$, called singular values, are the non-negative square roots of r non-zero eigenvalues of AA^T they are arranged in decreasing order, i.e., $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$
- reduce the size of the matrices

$$A_k = U_k E_k V_k^T$$

Query and Retrieval

- q user query (treated as a new document)
- document in the k-concept space, denoted by q_k
- $q_k = q^T U_k E_k^{-1}$

- c_1 : <u>Human</u> machine <u>interface</u> for Lab ABC <u>computer</u> applications
- c_2 : A <u>survey</u> of <u>user</u> opinion of <u>computer system response</u> time
- *c*₃: The <u>EPS</u> user interface management <u>system</u>
- c_4 : <u>System</u> and <u>human system</u> engineering testing of <u>EPS</u>
- c₅: Relation of <u>user-perceived response time</u> to error measurement
- m_1 : The generation of random, binary, unordered trees
- m_2 : The intersection <u>graph</u> of paths in <u>trees</u>
- *m*₃: <u>Graph minors</u> IV: Widths of <u>trees</u> and well-quasi-ordering
- *m*₄: <u>Graph minors</u>: A <u>survey</u>

	c_1	c_2	c_3	C_4	c_5	m_1	m_2	m_3	m_4	
	$\int 1$	0	0	1	0	0	0	0	0	human
	1	0	1	0	0	0	0	0	0	interface
	1	1	0	0	0	0	0	0	0	computer
	0	1	1	0	1	0	0	0	0	user
	0	1	1	2	0	0	0	0	0	system
<i>A</i> =	0	1	0	0	1	0	0	0	0	response
	0	1	0	0	1	0	0	0	0	time
	0	0	1	1	0	0	0	0	0	EPS
	0	1	0	0	0	0	0	0	1	survey
	0	0	0	0	0	1	1	1	0	trees
	0	0	0	0	0	0	1	1	1	graph
	$\setminus 0$	0	0	0	0	0	0	1	1)	minors

	(0.22)	-0.11	0.29	-0.41	-0.11	-0.34	0.52	-0.06	-0.41
	0.20	-0.07	0.14	-0.55	0.28	0.50	-0.07	-0.01	-0.11
	0.24	0.04	-0.16	-0.59	-0.11	-0.25	-0.30	0.06	0.49
	0.40	0.06	-0.34	0.10	0.33	0.38	0.00	0.00	0.01
	0.64	-0.17	0.36	0.33	-0.16	-0.21	-0.17	0.03	0.27
U =	0.27	0.11	-0.43	0.07	0.08	-0.17	0.28	-0.02	-0.05
	0.27	0.11	-0.43	0.07	0.08	-0.17	0.28	-0.02	-0.05
	0.30	-0.14	0.33	0.19	0.11	0.27	0.03	-0.02	-0.17
	0.21	0.27	-0.18	-0.03	-0.54	0.08	-0.47	-0.04	-0.58
	0.01	0.49	0.23	0.03	0.59	-0.39	-0.29	0.25	-0.23
	0.04	0.62	0.22	0.00	-0.07	0.11	0.16	-0.68	0.23
	0.03	0.45	0.14	-0.01	-0.30	0.28	0.34	0.68	0.18

	(3.34	0	0	0	0	0	0	0	0)
	0	2.54	0	0	0	0	0	0	0
	0	0	2.35	0	0	0	0	0	0
	0	0	0	1.64	0	0	0	0	0
$\Sigma^{=}$	0	0	0	0	1.50	0	0	0	0
	0	0	0	0	0	1.31	0	0	0
	0	0	0	0	0	0	0.85	0	0
	0	0	0	0	0	0	0	0.56	0
	\setminus_0	0	0	0	0	0	0	0	0.36 J

	(0.20	-0.06	0.11	-0.95	0.05	-0.08	0.18	-0.01	-0.06
	0.61	0.17	-0.50	-0.03	-0.21	-0.26	-0.43	0.05	0.24
	0.46	-0.13	0.21	0.04	0.38	0.72	-0.24	0.01	0.02
V =	0.54	-0.23	0.57	0.27	-0.21	-0.37	0.26	-0.02	-0.08
	0.28	0.11	-0.51	0.15	0.33	0.03	0.67	-0.06	-0.26
	0.00	0.19	0.10	0.02	0.39	-0.30	-0.34	0.45	-0.62
	0.01	0.44	0.19	0.02	0.35	-0.21	-0.15	-0.76	0.02
	0.02	0.62	0.25	0.01	0.15	0.00	0.25	0.45	0.52
	0.08	0.53	0.08	-0.03	-0.60	0.36	0.04	-0.07	-0.45)

	$oldsymbol{U}_k$	Σ_k					V_k^T				
$A_k =$	$ \begin{pmatrix} 0.22 & -0.11 \\ 0.20 & -0.07 \\ 0.24 & 0.04 \\ 0.40 & 0.06 \\ 0.64 & -0.17 \\ 0.27 & 0.11 \\ 0.27 & 0.11 \\ 0.27 & 0.11 \\ 0.30 & -0.14 \\ 0.21 & 0.27 \\ 0.01 & 0.49 \\ 0.04 & 0.62 \\ 0.03 & 0.45 \\ \end{pmatrix} $	$\begin{bmatrix} 3.34 & 0 \\ 0 & 2.54 \end{bmatrix}$	[0.20 -0.06	0.61 0.17	0.46 -0.13	0.54 -0.23	0.28 0.11	0.00 0.19	0.02 0.44	0.02 0.62	0.08 0.53

q - "user interface"

	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}^T$	$\begin{pmatrix} 0.22 \\ 0.20 \end{pmatrix}$	(-0.11)	
	0	0.20	0.04	
	1	0.40	0.06	
	0	0.64	-0.17	
a –	0	0.27	0.11	$\begin{bmatrix} 3.34 & 0 \end{bmatrix}^{-1} = (0.179 - 0.004)$
\mathbf{q}_k –	0	0.27	0.11	$\begin{bmatrix} 0 & 2.54 \end{bmatrix} = (0.179 = 0.004)$
	0	0.30	-0.14	
	0	0.21	0.27	
	0	0.01	0.49	
	0	0.04	0.62	
	$\left(0 \right)$	0.03	0.45J	

c_1 :	0.964		
c ₂ : c ₃ : c ₄ :	0.957 0.968 0.928	$c_1: c_2:$	<u>Human</u> machine <u>interface</u> for Lab ABC <u>computer</u> applications A <u>survey</u> of <u>user</u> opinion of <u>computer system</u> <u>response time</u>
<i>c</i> ₅ :	0.922	c_3 :	The EPS user interface management system
		<i>c</i> ₄ :	System and human system engineering testing of EPS
m_1 .	-0.022	c_5 :	Relation of user-perceived response time to error measurement
m_2 :	0.022	m_1 :	The generation of random, binary, unordered trees
<i>m</i> ₃ :	0.010	m_2 :	The intersection graph of paths in trees
m_4 :	0.127	<i>m</i> ₃ :	Graph minors IV: Widths of trees and well-quasi-ordering
		m_4 :	Graph minors: A survey

Summary

- The original paper of LSI suggests 50–350 dimensions.
- k needs to be determined based on the specific document collection
- association rules may be able to approximate the results of LSI