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1, Introduction 
The minimum-cost circulation problem is that of finding a circulation of minimum 
cost in a network whose arcs have flow capacities and costs per unit of flow. This 
problem is equivalent to the minimum-cost flow problem and to the transshipment 
problem, and it has a variety of applications [ 10, 22, 271. 

The minimum-cost circulation problem has a rich history; a series of faster and 
faster algorithms for it have been devised. A discussion of many of these algorithms 
can be found in our earlier paper [ 161; we summarize some of the previous results 
here. 
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The important parameters by which the running time of an algorithm is measured 
are n, the number of vertices in the network; m, the number of arcs; U, the 
maximum absolute value of an arc capacity; and C, the maximum absolute value 
of an arc cost. For ease in starting time bounds, we assume m 2 n z 2. III bounds 
containing U or C, the capacities or costs, respectively, are assumed to be integers. 

All known polynomial-time algorithms for the problem use the idea of scaling 
or successive approximation. These algorithms compute closer and closer approx- 
imations to an optimal solution. The idea of scaling is due to Edmonds and Karp 
[9], who used this idea to devise the first polynomial-time algorithm for the 
problem. Their algorithm uses capacity scaling and has a running time of 
O(m(log U)S(n, m, C)). Here S(n, m, C) is the time required for a single-source 
shortest path computation on a network with nonnegative arc lengths. The 
best-known strongly polynomial bound is S(n, m, C) = O(m + n log n) [ 111; 
when the length function is integral and C is not too large, better bounds on 
S(n, m, C) can be obtained [2, 341. R&k [28] exhibited another capacity-scaling 
algorithm achieving the same time bound and also presented a cost-scaling algo- 
rithm with a running time of O(n(log C)M(n, m, U)). Here M(n, m, U) is 
the time required for a maximum flow computation; the best current bound is 
M(n, m, U) = min(nm log (n2/m), nm log((n/m) (log U)” + 2)) [3, 171. The 
O(n(log C)M(n, m, U)) bound was also obtained later by Bland and Jensen [6] 
using a somewhat different cost-scaling approach. A generalization of the cost- 
scaling approach has been proposed in [ 151, [ 161, and [ 181. 

These results left open the question of whether there is a strongly polynomial 
algorithm for the problem. A strongly polynomial algorithm is one with a time- 
bound polynomial in n and m if arithmetic operations take unit time, and with a 
time-bound polynomial in n, m, log U, and log C if arithmetic operations take 
time polynomial in the number of bits needed to represent the operands. Tardos 
[32] was the first to devise a strongly polynomial algorithm for the problem. Other 
strongly polynomial algorithms were later proposed by Orlin [23], FujisIhige [ 121, 
and Gail and Tardos [ 141. The fastest known strongly polynomial algorithm is that 
of Orlin [25], which runs in O(m(log n)(m + n log n)) time. 

For networks having integer arc costs that are not huge, the asymptotically fastest 
algorithms are those of Goldberg and Tarjan [16], with a running time of 
O(nm(log (n2/m))min(log(nC), m log n)), and of Ahuja et al. [I], with a running 
time of O(nm log log U log nC)). 

All the known polynomial-time algorithms for the problem, whether strongly 
polynomial or not, are somewhat elaborate. Our purpose in this paper is to show 
that a simple, classical algorithm for the problem becomes strongly polynomial if 
a careful choice is made among possible iterative steps. The algorithm we analyze 
was proposed by Klein [2 11. We call it the cycle-canceling algorithm. This algorithm 
consists of repeatedly finding a residual cycle of negative cost and sending as much 
flow as possible around the cycle. The cycle-canceling algorithm can run for an 
exponential number of iterations even if the capacities and costs are integers, and 
it need not even terminate if the capacities are irrational [lo]. A natural question 
is whether there exists a rule for selecting cycles to cancel that results in a number 
of iterations bounded by a polynomial in n and m. We answer this question in the 
afirmative. Our selection rule is simple: always cancel a residual cycle whose 
average arc cost is as small as possible. We call such a cycle a minimum-mean 
cycle, and the above selection rule the minimum-mean selection rule. A minimum- 
mean cycle can be found in O(nm) time using an algorithm of Kar]p [ 191 or 
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in 0(&m log (nC)) time using an algorithm of Orlin and Ahuja [26]. We show 
that the cycle-canceling algorithm with minimum-mean selection terminates after 
O(nm min {log(nC), m log n)) cycles have been canceled, thereby establishing a 
strongly polynomial bound of O(n2m3(log n)) on its running time. 

The minimum-mean cycle-canceling strategy can be viewed as a greedy strategy. 
Interpret arcs of the network as unit-time transactions involving a certain com- 
modity, with profit per unit of commodity given by the negation of the cost 
function. A valid collection of transactions corresponds to a valid augmentation of 
flow along a cycle. Then minimum-mean selection corresponds to selecting a 
change that gives biggest improvement in profit per unit of time. 

The minimum-mean cycle-canceling algorithm is closely related to a classical 
maximum flow method. Namely, the minimum-mean selection rule is a natural 
generalization of the rule proposed by Edmonds and Karp [9] and Dinic [8] for 
selecting augmenting paths in the Ford-Fulkerson maximum-flow algorithm [lo]. 
Their rule is to always select a shortest augmenting path. If a maximum-flow 
problem is formulated as a minimum-cost circulation problem in a standard way, 
the cycle-canceling algorithm corresponds exactly to the Ford-Fulkerson maxi- 
mum-flow algorithm, and the minimum-mean selection algorithm corresponds 
exactly to the Edmonds-Karp algorithm. 

The key to the analysis of the minimum-mean selection algorithm is the 
observation that the minimum-mean cycle cost is a good measure of the quality of 
a circulation (Theorem 3.3). This observation leads to a new method for proving 
strongly polynomial bounds on the running time of minimum-cost flow algorithms. 
In addition to the cycle-canceling algorithm, this method can be applied to any 
minimum-cost circulation algorithm that uses generalized cost scaling [ 161. 

Although the minimum-mean cycle-canceling algorithm seems to be of mostly 
theoretical interest, it has a variant that is more efficient. The variant combines 
more flexible cycle selection with the use of a sophisticated data structure for 
representing dynamic trees [30, 3 1, 331. It has an asymptotic running time of 
O(nm(log n)min(log nC), m log n)), which is competitive with the fastest previously 
known algorithms on nondense networks with arc costs that are not huge. This 
algorithm and its analysis are presented in Section 4. 

The minimum-mean cycle selection strategy is not the only one that leads to 
polynomial-time algorithms. Weintraub [35] describes an algorithm that at each 
iteration cancels a collection of negative cycles and significantly improves the 
objective function value. Although Weintraub’s algorithm does not run in poly- 
nomial time, a modification of it, suggested by Barahona and Tardos [4], does. 
Section 5 contains some concluding remarks, including a discussion of Weintraub’s 
algorithm. 

2. Minimum-Cost Circulations, Cycle Canceling 
and Minimum-Mean Cycles 

Our framework for discussing the minimum-cost circulation problem is as follows. 
Let G = ( I’, E) be a directed graph, with vertex set V containing n vertices and arc 
set E containing m arcs. We require G to be symmetric, that is, (v, w) E E if and 
only if (w, v) E E. For a vertex v, we denote by E(v) the set 1 w 1 (v, w) E El. Graph 
G is a circulation network if each arc (v, w) has a capacity u(v, w) and a cost 
C(V, w), both real numbers. We require the cost function to be antisymmetric, that 
is, c(v, w) = -c(w, v) for all (v, w) E E. 
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A circulation is a real-valued function f on arcs satisfying the following 
constraints: 

f(v, 4 5 NV, 4 V(v, w) E E (capacity constraints), (1) 
f(h w) = -SW, VI V(v, w) E E (flow antisymmetry constraints), (2) 

c f(v, w> = 0 Vw E V (conservation constraints). (3) VEE(W) 

The cost of a circulation fis given by the following expression: 

1 
cost(f) = - c c(v, w)f(v, w). 

2 (V,W)EE 

The minimum-cost circulation problem is that of finding a circulation of mini- 
mum cost. 

For a circulation fand an arc (v, w) the residual capacity of (v, w) is z+(v, w) = 
u(v, w) - f(v, w). An arc (v, w) is a residual arc if z+-(v, w) > 0. An arc that is not 
residual is saturated. We denote by Ef the set of residual arcs. A residual cycle is a 
simple cycle of residual arcs. The capacity of a residual cycle is the minimum of 
the residual capacities of its arcs. Note that the capacity of any residual cycle is 
positive. The cost of a cycle is the sum of the costs of its arcs. A residual cycle is 
negative if it has negative cost. 

The following classical theorem characterizes minimum-cost circulations: 

THEOREM 2.1 [7]. A circulation is minimum-cost if and only if there are no 
negative residual cycles. 

Theorem 2.1 suggests the following well-known algorithm due to Klein [2 I] for 
computing a minimum-cost circulation, which we call the cycle-canceling a/go- 
rithm. Begin with any circulation f: (A starting circulation can be computed using 
any maximum-flow algorithm, such as the algorithms of [3, 171.) Repeat the 
following step until there are no negative residual cycles: Find a negative residual 
cycle r and cancel it by increasing the flow on each of its arcs by an amount equal 
to the capacity of r. (This saturates at least one arc on I’.) 

We show that a careful choice of the next cycle to cancel leads to a strongly 
polynomial algorithm. Our selection rule is simple: always cancel a residual cycle 
whose average arc cost is as small as possible. In discussing this rule, we shall use 
the following terminology. The mean cost of a cycle is its cost divided by the 
number of arcs it contains. A minimum-mean cycle is a cycle whose mean cost is 
as small as possible. The minimum cycle mean of a graph with arc costs is the 
mean cost of a minimum-mean cycle. We call our selection rule minimum-mean 
selection. 

A minimum-mean cycle can be found in O(nm) time using an algorithm of 
Karp [ 191 or in 0(&m log(nC)) time using a recent algorithm of Orlin and Ahuja. 
(Although these two algorithms give the best running time bounds, an alg,orithm 
of Karp and Orlin [20] may turn out to be faster in practice.) In the next section 
we show that the cycle-canceling algorithm with minimum-mean selection termi- 
nates after O(nm minllog(nC), m log n)) cycles have been canceled, thereby 
establishing a strongly polynomial bound of O(n2m3 log n) on its running time. 

3. Analysis of Minimum-Mean Cycle-Canceling 
In order to analyze the cycle-canceling algorithm, we need to introduce notions 
from linear programming duality theory. A pricejiinction p is a real-valued fLmction 
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on the vertices of G. For a price function p, the reduced cost of an arc (v, W) is 
c,(v, w) = c(v, w) + p(v) - p(w). Observe that the cost of a residual cycle is the 
same whether the original arc costs or the reduced arc costs with respect to some 
price function are used. Furthermore, the flow conservation constraints (3) imply 
that the cost of any circulation is unaffected by replacing original costs by reduced 
costs. 

The following classical result expresses linear programming duality for the 
special case of minimum-cost circulations. 

THEOREM 3.1 [lo]. A circulation f is minimum-cost ifand only if there is a price 
-function p such that: 

u/.(v, w) > 0 * c,(v, w) 2 0 V(v, W) E E (optimality constraints). (4) 

The optimality constraints are more commonly called the complementary slackness 
constraints. 

A notion of approximate optimality plays a crucial role in our analysis. The 
appropriate notion, called t-optimality, is obtained by relaxing the complementary 
slackness constraints. The relaxed complementary slackness constraints were first 
described in print by Tardos [32] and were independently discovered by Bertsekas 
[5]. The notion of t-optimality is the basis of several minimum-cost circulation 
algorithms [ 1, 5, 16, 321. For an c > 0, a circulation fis t-optimal if there is a price 
function p such that 

Uf(V, w) > 0 * c,(v, w) I -6 V(v, w) E E (t-optimality constraints). (5) 

Note that 0-optimality is equivalent to optimality. Furthermore, if all arc costs are 
integers and E is small enough, then an c-optimal circulation is optimal. 

THEOREM 3.2 [5]. If all arc costs are integers and t < l/n, then any E-optimal 
circulation is minimum-cost. 

PROOF. Consider a simple cycle in Gfi The t-optimality off implies that the 
reduced cost of the cycle is at least nc > - 1. The reduced cost of the cycle equals 
its original cost, which must be integral and hence nonnegative. Theorem 2.1 
implies that fis minimum-cost. 0 

A result from our previous paper establishes a connection between t-optimality 
and minimum cycle means. For a circulationf; we denote by c(f) the minimum E 
such that fis t-optimal, and by p(f) the mean cost of a minimum-mean residual 
cycle. 

THEOREM 3.3 [ 161. Suppose f is a nonoptimal circulation. Then t(f) = -p(f). 

PROOF. Consider any cycle T in G/: Let the length of r be 1. For any t, define 
c(‘) by &)(v, w) = c(v, w) + c for (v, w) E EP Since f is c( f )-optimal, we have 
0 I c(‘)(T) = c(r) + IE, i.e., c(I’)/l 2 -c(f). Since this is true for any cycle r, 
p(f) 2 -4f), i.e., E(f) 2 -Cc(f). 

Conversely, let r‘ be the minimum-mean cost residual cycle; then the mean cost 
of r is equal to p(f). Since f is not optimal, there is a negative-cost residual cycle, 
and therefore p(f) < 0. Fix a price function p and an E such that E > -p( f ). Since 
the cost of r is equal to the sum of the reduced costs of the arcs on T, for the 
minimum reduced cost arc (v, w) on r we have c,,(v, W) I p(f) (the minimum is 
at most the average). Therefore c,,(v, w) < -6, so f is not t-optimal with respect to 
p. Thus e(f) 5 -p(f). Cl 
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An important concept concerning minimum-cost flows is that of the admissible 
graph G(f; p) = (V, E(f; p)). The admissible graph is the subgraph of the residual 
graph induced by the arcs with negative reduced cost: 

E(f; P) = ((v, w) E EJ I c,(v, w) < 01. 

The following lemma provides a key insight into the problem. Although the 
lemma is not used until Section 4, it motivates the analysis of the current section. 

LEMMA 3.4. Suppose a circulation f is t-optimal with respect to a price junction 
p and G(f; p) is acyclic. Thenf is (1 - l/n)+optimal. 

PROOF. Let r be a simple cycle in GJ, and let I be the length of r. By the 
t-optimality off; the cost of every arc on I? is at least -6. Since the admissible 
graph is acyclic, at least one arc on I? has a nonnegative cost. Therefore, the mean 
cost of r is at least 

(1 - l)t --<- (n - lb = _ 
I - 

1 _ 1 ~. 
n ( 1 n 

Theorem 3.3 implies that f is (1 - l/n)e-optimal. Cl 

Now we have enough tools to analyze the minimum-mean cycle-canceling 
algorithm. As a measure of the quality of the current circulation 1; we use e(f): the 
smaller c(f), the closer f is to optimal. Let f be an arbitrary circulation, let e 7, 
t(f), and let p be a price function with respect to which j”is t-optimal. Holding c 
and p fixed, we study the effect on e(f) of minimum-mean cycle cancellations 
that modify f: 

LEMMA 3.5. Canceling a minimum-mean cycle cannot increase t(f). 

PROOF. Let l? be the minimum-mean cycle that is canceled. Before r is 
canceled, every residual arc satisfies c,(v, w) 2 -t by t-optimality. By Theorem 3.3, 
the choices oft and r imply that every arc (v, w) on r satisfies c,,(v, w) = YL before 
canceling. By antisymmetry, every new residual arc created by canceling r has cost 
t. (Every such arc is the reversal of an arc on I’.) It follows that after canoellation 
of r, every residual arc still satisfies c,(v, w) L -t. Thus after the canoellation 
c(f) I E. 0 

LEMMA 3.4. A sequence of m minimum-mean cycle cancellations reduces t(f) 
to at most (1 - l/n)E, that is, to at most 1 - l/n times its original value. 

PROOF. Consider a sequence of m minimum-mean cycle cancellations. As f 
changes, the admissible graph G(f; p) changes as well. Initially every arc (v, w) E 
E(f; p) satisfies c,,(v, w) L -t. Canceling a cycle all of whose arcs are in E(f; p) 
adds only arcs of positive reduced cost to EJ and deletes at least one arc from 
E(f; p). We consider two cases. 

Case 1. None of the cycles canceled contains an arc of nonnegative reduced 
cost. Then each cancellation reduces the size of E(f; p), and after m cancellations 
E(f; p) is empty, which implies that fis optimal, that is e(f) = 0. Thus the lemma 
is true in this case. 

Case 2. Some cycle canceled contains an arc of nonnegative reduced cost. Let 
r be the first such cycle canceled. Every arc of T‘ has a reduced cost of at least -6, 
one arc of r has a nonnegative reduced cost, and the number of arcs in r is at 
most n. Therefore, the mean cost of r is at least -( 1 - l/n)t. Thus, just before the 
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cancellation of r, c(f) 5 ( 1 - l/n)6 by Theorem 3.3. Since, by Lemma 3.5, c(f) 
never increases, the lemma is true in this case also. •i 

Lemmas 3.5 and 3.6 are enough to derive a polynomial bound on the number 
of iterations, assuming that all arc costs are integers. 

THEOREM 3.7. If all arc costs are integers, then the minimum-mean cycle- 
canceling algorithm terminates after O(nm log (nC)) iterations. 

PROOF. Let f be the circulation maintained by the algorithm. Initially 
t(f) 5 C. If c(f) < l/n, then c(f) = 0 by Theorem 3.1. Lemmas 3.5 and 3.6 
imply that if i is the total number of iterations, (1 - l/n)“‘-“l”’ I I/(&). That 
is, L(i - l)/ml 5 - ln(nC)/ln( 1 - l/n) 5 n ln(nC), since ln( 1 - l/n) 5 -l/n 
for n > 1. It follows that i = O(nm log (nC)). 0 

To obtain a strongly polynomial bound, we use an analysis closely following that 
of [ 161. We say that an arc is E-fixed if and only if the flow through this arc is the 
same for all t-optimal circulations. The following result is a generalization of a 
theorem of Tardos [32]. 

THEOREM 3.8 [ 161. Let t > 0, suppose a circulation f is c-optimal with respect 
to a price function p, and suppose that for some arc (v, w), I c,(v, w)l 2 2nt. Then 
(v, w) is +fixed. 

PROOF. By antisymmetry, it is enough to prove the theorem for the case 
c,(v, w) 1 2nc. Letf’ be a circulation such thatf(v, w) #f(v, w). Since c,(v, w) > 
t, the flow through the arc (v, w) must be as small as the capacity constraints allow, 
namely -u(w, v), and thereforef(v, w) #f(v, w) impliesf(v, w) >f(v, w). We show 
that,f is not c-optimal, from which the theorem follows. 

Consider G, = (V, ((x, y) E E ( f(x, y) >f(x, y))). Note that G, is a subgraph of 
G,,, and (v, w) is an arc of G,. Sincefandf’ are circulations, G, must contain a 
simple cycle r that passes through (v, w). Let 1 be the length of I’. Since all arcs of 
T are residual arcs, the cost of I’ is at least 

c,(v, w) - (! - 1)~ 2 2nt - (n - 1)~ > r.76 

Now consider a cycle F obtained by reversing the arcs on r. Note that F is a 
cycle in G, = (V, {(x, y) E E If’@, y) <f(x, y)j) and therefore a cycle in GY. By 
antisymmetry, the cost of r is less than -nt and thus the mean cost of r is less 
than -t. Theorem 3.3 implies thatf’ is not t-optimal. 0 

Consider an execution of the cycle-canceling algorithm. Suppose an edge (v, w) 
becomes fixed at some point in the execution. Since by Lemma 3.5 the error 
parameter t(j) never increases, the flow through (v, w) henceforth remains the 
same. When all edges are fixed, the current circulation is optimal. To see this, 
observe that an optimal circulation is t-optimal for any t 2 0, and therefore it must 
agree with the current circulation on all (fixed) arcs. 

The following theorem bounds the number of iterations of the cycle-canceling 
algorithm in the case of real-valued costs. In the proof, we use the following 
inequality: (1 - l/n) n(‘“n+‘) 5 1/(2n) for n 2 2. 

THEOREM 3.9. For arbitrary real-valued arc costs, the minimum-mean cycle- 
canceling algorithm terminates after O(nm210g n) iterations. 

PROOF. Let k = m(nfln n + 11). Divide the iterations into groups of k consec- 
utive iterations. We claim that each group of iterations fixes the flow on a distinct 
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arc (v, w), that is, iterations after those in the group do not change j”(v, w). The 
theorem is immediate from the claim. 

To prove the claim, consider any group of iterations. Let f be the flow be- 
fore the first iteration of the group, f the flow after the last iteration of the 
group, c = c(f), t’ = c(f), and let p be a price function for which y satisfies 
the c’-optimality constraints. Let I? be the cycle canceled in the first itera- 
tion of the group. The choice of k implies by Lemmas 3.5 and 3.6 that E’ I 
E(l - l/n)n(lnn+l) 5 t/(20). Since the mean cost of T‘ is -c, some arc on I, say (v, 
w), must have c,(v, w) 5 -t 5 -2n~‘. By Lemma 3.5 and Theorem 3.8, the flow 
on (v, w) will not be changed by iterations after those in the group. But f(v, w) is 
changed by the first iteration in the group, which cancels T. Thus each group fixes 
the flow on a distinct arc. q 

THEOREM 3.10. The minimum-mean cycle-canceling algorithm runs in 
O(n2m3 log n) time on networks with arbitrary real-valued arc costs, and 
in O(n3~2m2min(log2(nC), & log (nC), &m log n)) time on networks with inte- 
ger arc costs. 

PROOF. Immediate from Theorems 3.7 and 3.9. 0 

4. A Faster Cycle-Canceling Algorithm 

Although Theorem 3.10 is an interesting theoretical result because it shows that a 
classical minimum-cost circulation algorithm is strongly polynomial with a natural 
choice of iterative steps, the bounds on the performance of the algorithm are not 
competitive with those of the best previous polynomial-time algorithms. In this 
section we describe a variant of the minimum-mean cycle-canceling algorith:m for 
which the time per cycle cancellation is O(log n) instead of O(nm). This improve- 
ment is based on a more flexible selection of cycles for canceling, explicit mainte- 
nance of a price function to help identify cycles for canceling, and a sophisticated 
data structure to help keep track of arc flows. 

The algorithm, which we call the cancel-and-tighten algorithm, maintains 
a circulation f and a price function p. We denote by ~(f; p) the minimum E 
such that f satisfies the t-optimality constraints for p, that is, c(J; ,D) = 
max(0, -min(c,(v, w)] zq(v, w) > 0)). We call a residual arc (v, w) admissible if 
c,(v, w) < 0, and a residual cycle admissible if all its arcs are admissible. Initiallyf 
is any circulation and p is the identically zero price function. (Thus, ~(f; p) 5 C 
initially.) The algorithm consists of repeating the following two steps until the 
circulation f is optimal: 

Step 1 [cancel cycles]. Repeatedly find and cancel admissible cycles until the 
admissible graph is acyclic. 

Step 2 [tighten prices]. Modify p so that t(f; p) decreases to at most (1 - l/n) 
times its former value. 

Note that, by Lemma 3.4, a suitable price function can always be found in 
Step 2. 

THEOREM 4.1. Each iteration of Step 1 results in the canceling of at most m 
cycles. If all arc costs are integers, there are O(n fog(nC)) iterations of Steps 1 
and 2. 
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PROOF. Let E(fl p) be the set of admissible arcs. Canceling an admissible cycle 
reduces the size of E(f; p) by at least one and cannot increase t(l; p), since all 
newly created residual arcs have positive cost. Since E(f; p) has maximum size m 
and minimum size 0, after at most m cycle cancellations Step 1 terminates. 
Lemma 3.4 implies that after Step 1, the mean cost of a residual cycle is at 
least -( 1 - l/n)c(f; p), which implies that p can be modified to satisfy the 
requirement in Step 2. The third part of the theorem follows as in the proof 
of Theorem 3.7. Cl 

Now we show how to implement Steps 1 and 2. Step 1 is the dominant 
part of the computation. A simple implementation runs in O(nm) time (O(n) 
per cycle canceled). A more complicated implementation runs in O(m log n) per 
cycle canceled). 

Performing Step 1 is essentially the same as converting an arbitrary flow into an 
acyclic flow by eliminating cycles of flow, and algorithms for the latter purpose, 
such as the O(m log n)-time algorithm of Sleator and Tarjan [30], can be adapted 
to the former purpose. We shall describe the appropriately modified version of this 
algorithm. First, however, we describe the simple implementation of Step 1 on 
which the Sleater-Tarjan algorithm is based. 

The simple method is analogous to a subroutine in Dinic’s maximum flow 
algorithm for finding augmenting paths of a given length, once a layered residual 
network is constructed [8]. The method uses depth-first search to find admissible 
cycles. Each search advances only along admissible arcs. Whenever a search retreats 
from a vertex v, this vertex is marked as being on no admissible cycles. A search is 
allowed to visit only unmarked vertices. Whenever a search advances to a vertex it 
has already visited, an admissible cycle has been found. The cycle is canceled and 
a new search begun. A straightforward implementation of this algorithm has a 
running time of O(m) plus O(n) per cycle canceled, for a total of O(nm) time. 

The Sleator-Tarjan algorithm improves on this method by using a dynamic tree 
data structure [30, 3 1, 331 to avoid explicitly searching along the same path many 
times. The data structure allows the maintenance of a collection of vertex-disjoint 
rooted trees, each arc of which has an associated real value. The data structure 
supports the seven operations described in Figure 1. A sequence of I tree operations 
on trees of maximum size k takes O(1 log k) time. 

In the dynamic tree implementation of Step 1, if parent(v) is the parent of a 
vertex v, then (v, parent(v)) is an admissible arc. The implementation of Step 1 is 
described in Figure 2. 

A few extra data structures are needed in this method. To make Step 1 b efficient, 
the algorithm maintains a list of all vertices and a current pointer into this list. All 
vertices preceding the pointer are marked. To find an unmarked vertex, the 
algorithm steps the pointer through the list, stopping at the first unmarked vertex. 
Similarly, to find admissible arcs in Step lc, the algorithm maintains lists of the 
arcs leaving each vertex and a current pointer into each such list. In addition, for 
each vertex v, the algorithm maintains parent(v) and a list of the vertices u such 
that parent(u) = v. A straightforward analysis of the algorithm shows that it requires 
O(m) tree operations and runs in O(m log n) time. 

Step 2 of the cancel-and-tighten algorithm is much easier to implement. The 
simple method described in Figure 3 has an O(m) running time. 

Since Step 2 is only performed when there are no admissible cycles, the level of 
every vertex is well-defined, and Step 2a can be performed in O(m) time by 
computing the levels of vertices in a topological order, that is, an order such that 
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make-tree(v): Make vertex v into a one-vertex dynamic tree. Vertex v must be in no other tree. 
Jim-root(v): Find and return the root of the tree containing vertex v. 

Jind-value(v): Find and return the value of the tree arc connecting v to its parent. If v is a tree 
root, return infinity. 

fintl-min(v): Find and return the ancestor w of v such that the tree arc connecting IY to its 
parent has minimum value along the path from v to find-root(v). In case of a tie, 
choose the vertex w closest to the tree root. If v is a tree root, return v. 

change-va/ue(v, x): Add real number x to the value of every arc along the path from v tofind-root(v). 
/ink(v, W, x): Combine the trees containing v and w by making w the parent of v and giving the 

new tree arc joining v and w the value X. This operation does nothing if v and w 
are in the same tree or if v is not a tree root. 

cut(v): Break the tree containing v into two trees by deleting the arc from v to its parent. 
This operation does nothing if v is a tree root. 

Slep la 

Step lb 

Step lc 

Step Id 

Step le 

Step If 

Step lg 

FIG. 1. Dynamic tree operations. 

[initialize]. 
For each vertex v, unmark v and perform make-tree(v). 
[Jinding starting vertex@ a search]. 
If all vertices are marked, go to Step lg. 
Otherwise, select an unmarked vertex v and go to Step Ic. 
[Jnd end ofpath]. 
Perform r tjnd-root(v). 
If there is no admissible arc (r, w) with w unmarked, go to Step If. 
Otherwise, let (v, w) be such an arc and go to Step Id. 
[extendpath]. 
IfJnd-root(w) # r, perform link(r, w, zr/(r. MJ)) and go to Step lc. 
Otherwise, go to Step 1 e. 
[cancel cycle]. 
Let 6 = min(q(r, w), find-value(Jind-min(w))]. 
Performf(r, w) +f(r, w) + 6. If U, v, w) = 0, mark (r, w) inadmissible. ( 
Perform change-value(w, -6). 
Whilefind-va/ue(find-Mn(w)) = 0, do the following: 
z tjnd-min(w); f(z, parent(z)) c u(z, parent(z)); cut(z). 
Go to Step I b. 
[retract path]. 
Mark r. 
For each vertex z such that r = parent(z), do the following: 
f’(z, r) t u(z, r) -find-value(z); cut(z). 
Go to Step I b. 
[extractflow values of tree arcs]. 
For each vertex v, iffind-root(v) # v, performf(v, parent(v)) c u(v, parent(v)) -find-value(v). 
stop. 

FIG. 2. Implementation of Step 1. 

if (v, w) is an admissible arc, L(V) is computed before L(w). Step 2b obviously takes 
O(n) time. The following lemma shows that this implementation of Step 2 achieves 
the required decrease in ~(f; p): 

LEMMA 4.2. Steps 2a-26 reduce ~(1; p) to 1 - l/n times its former value. 

PROOF. The price change in Step 2b increases the reduced cost of each arc 
(v, w) such that L(v) < L(w) by an amount (t/n)(L(w) - L(v)) > c/n. This includes 
all the originally admissible arcs. Thus each such arc has a reduced cost of alt least 
-t + t/n after Step 2b. The reduced cost of an arc (v, W) with L(v) = L(w) is not 
changed by Step 2b, and thus the reduced cost remains nonnegative. The reduced 
cost of an arc (v, w) with L(v) > L(w) is decreased by (t/n)(L(v) - L(w)>. 
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Step 2a [compute levels]. 
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For each vertex v, compute a lrvrl L(v), defined recursively as follows: 
If v has no incoming admissible arcs, L(v) = 0. 
Otherwise, L(v) = max{L(u) + 1 1 (u, v) is an admissible arc}. 

Step 2b [compute new prices]. 
For all v t V, replace p(v) by p(v) - (~/n)L(v). 

FIG. 3. Implementation of Step 2. 

If c,,(v, w) 2 0 is its original reduced cost, its new reduced cost is c,,(v, w) - 
(t/n)&(v) - L(w)) z -t( 1 - l/n), as desired. 0 

Remark. An alternative implementation of Step 2 is described in Figure 4. The 
proof of Lemma 4.2 can be modified to show that the modified implementation 
reduces c(f) to at most 1 - l/n times its former value. One expects, however, that 
the modified implementation will do better in practice. 

The dynamic tree implementation of Step 1 and the above implementation of 
Step 2 yield an O(m log n) time bound per iteration of Steps 1 and 2. Theorem 4.1 
gives an O(nm log n log (nC)) bound on the total time to find a minimum-cost 
circulation. This algorithm is not strongly polynomial, but the implementation of 
Step 2 can be modified to give a strongly polynomial method. Namely, every nth 
iteration of Step 2 is performed differently. In such an iteration, we replace E by 
t(f) and then replace the price function p by a price function p’ such that f 
is E(j)-optimal with respect to p’. In our previous paper [ 161 we show how to 
find t(f) and p’ in O(nm) time using an algorithm of Karp [ 191 for finding a 
minimum mean cycle and the Bellman-Ford algorithm (see, e.g., [33]) for finding 
shortest paths from a single source. Since these computations only occur once 
every n iterations of Steps 1 and 2, they do not affect the O(m log n) bound per 
iteration, except that the bound becomes amortized instead of worst-case. With 
this change of Step 2, a bound of O(m log n) on the number of iterations of Steps 
1 and 2 follows as in the proof of Theorem 3.9. This bound is valid for arbitrary 
real-valued costs. Thus we obtain the following theorem: 

THEOREM 4.3. The cancel-and-tighten algorithm, with the dynamic tree imple- 
mentation of Step 1 and a minimum cycle mean computation after every n iterations, 
runs in O(nm2(logn)2) time on networks with arbitrary real-valued arc costs, and 
in O(nm(log n)min{log(nC), m log n)) time on networks with integer arc costs. 

5. Remarks 

As mentioned in the introduction, the algorithm of Weintraub [35] is another 
example of a cycle-canceling algorithm. Although Weintraub’s paper deals with 
networks with convex costs, we shall discuss his method in the special case of linear 
costs. 

Weintraub’s approach is as follows: Consider the improvement in the flow cost 
obtained by canceling a negative cycle. Since a symmetric difference of two 
circulations can be decomposed into at most m cycles, canceling the cycle that 
gives the best improvement reduces the difference between the current and the 
optimal values of the flow cost by a factor of ( 1 - 1 /m). If the input data is integral, 
only a polynomial number of such improvements can be made until an optimal 
solution is obtained. However, finding the cycle that gives the best improvement 
is NP-hard. Weintraub shows how to find a collection of cycles whose cancellation 
reduces the flow cost by at least as much as the best improvement achievable by 
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Step 2a [compute levels]. 
For each vertex v, compute a level L(v), defined recursively as follows: 
If v has no incoming admissible arcs, L(v) = 0. 
Otherwise, L(v) = max(l(u) + 1 1 (u, v) is an admissible arcj. 

Step 2b [compute price increment]. 
Compute t = -min{c,,(v, W) 1 (v, W) is admissible). 
Compute p = min{(c,(v, w) + c)/(L(v) - L(W) + 1) 1 q(v, w) > 0 and L(v) > L(w)]. 

Step 2c [compute new prices]. 
For all v e V, replace p(v) by p(v) - pL(v). 

FIG. 4. Alternative Implementation of Step 2. 

canceling a single cycle. His method requires a superpolynomial number of 
applications of an algorithm for the assignment problem. Each such application 
yields a minimum-cost collection of vertex-disjoint cycles. Barahona and Tardos 
[4] have shown that the algorithm can be modified so that the required collection 
of cycles is found in at most m assignment computations. The resulting algorithm 
runs in polynomial time. 

Orlin (personal communication) has suggested an alternative proof of 
Theorem 3.9. His proof combines the result of Theorem 3.7 and the techniques of 
[24]. Consider an instance (G = (V’, E), U, c) of the minimum-cost circulation 
problem. Let c’ be a cost function; for any cycle I in G, let p(T) denote the mean 
cost of I with respect to c, and let p’(I) denote the mean cost of I with respect to 
c’. Define c’ to be equivalent to c if for every pair of simple cycles I? and A in G, 
we have p(I) > p(A) implies p’(P) > p’(A) and p(I) = p(A) implies p’(r) = p.‘(A). 
Note that if c is equivalent to c’, there is a one-to-one correspondence between 
executions of the minimum-mean cycle-canceling algorithm on (G, u, c) and on 
(G, U, c’). (Different executions correspond to different ways of breaking ties arnong 
minimum-mean cost cycles.) By an argument similar to the one in [24], it can be 
shown that for every real-valued cost function c there is an equivalent cost function 
c’ whose values are integers in the range [-C’, . . . , C’], where C’ is not too large, 
namely log (C’) = O(m log n). This fact, combined with Theorem 3.7, implies that 
the number of iterations in any execution of the algorithm on (G, u, c’) is 
O(nm*log n). Therefore, the number of iterations in any execution of the algorithm 
on (G, U, c) is O(nm*log n). 

Open problems remain, concerning both the practical and the theoretical rami- 
fications of our results. On the practical side, we believe that the actual performance 
of the algorithm described in Section 4 is worth investigating. There are some 
obvious modifications that should improve the performance of the method. For 
example, Step 1 need not be performed unless there is an admissible cycle, and 
Step 2 can be repeatedly performed until such a cycle exists. Perhaps some 
alternative implementation of Step 2 might be better in practice. It is not clear how 
much time should be spent between iterations of Step 1 in trying to reduce ~(,f; p). 

On the theoretical side, an open question is whether one can reduce the 
asymptotic running time of Step 1, and hence of the entire algorithm. Previous 
results [ 16, 171 suggest the possibility of an O(m log (n”/m)) bound. (Note, however, 
that this bound requires a much more involved analysis. Compare, for exalmple 
the arguments in [ 161 and [ 171 with those in [ 151, [29], and [30].) More generally, 
it would be interesting to see what other well-known algorithms for the minimum- 
cost circulation problem and other problems can be made polynomial or strongly 
polynomial by choosing iterative steps carefully. Another question is to what extent 
the bounds in Theorems 3.10 and 4.3 can be improved in special cases. For 
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example, if all capacities are zero or one, the simple implementation of Step 1 of 
the cancel-and-tighten algorithm runs in O(m) time, and the bounds in Theorem 
4.3 decrease by a factor of log n. Probably even better bounds are obtainable. See, 
for example, [ 131. 

Although the minimum-mean cycle-canceling algorithm is primal and does not 
use scaling, the concepts of duality and scaling are crucial in our analysis. The use 
of these concepts in the analysis is natural; in fact, our discovery of Theorem 3.3 
lead us to the statement of the algorithm. It is possible, however, that there is a 
“purely combinatorial” analysis of the algorithm that does not use these concepts. 
For the special case of the maximum flow problem, Edmonds and Karp [9] give 
such an analysis. Such an analysis would be interesting from the theoretical point 
of view. 

We have exhibited cycle-canceling strategies that yield polynomial-time cycle- 
canceling algorithms. Barahona and Tardos have given another such strategy. The 
discovery of additional strategies of this kind would be of theoretical and potentially 
of practical interest. 
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